x86: access_error API cleanup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / gc.c
blob151f108828204dc4d88c9d890fbcce051b2d8912
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 * may move.
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
69 /**
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
81 static int switch_gc_head(struct ubifs_info *c)
83 int err, gc_lnum = c->gc_lnum;
84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
86 ubifs_assert(gc_lnum != -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 c->leb_size - wbuf->offs - wbuf->used);
91 err = ubifs_wbuf_sync_nolock(wbuf);
92 if (err)
93 return err;
96 * The GC write-buffer was synchronized, we may safely unmap
97 * 'c->gc_lnum'.
99 err = ubifs_leb_unmap(c, gc_lnum);
100 if (err)
101 return err;
103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 if (err)
105 return err;
107 c->gc_lnum = -1;
108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
109 return err;
113 * data_nodes_cmp - compare 2 data nodes.
114 * @priv: UBIFS file-system description object
115 * @a: first data node
116 * @a: second data node
118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
119 * inode or block number, and %-1 otherwise.
121 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
123 ino_t inuma, inumb;
124 struct ubifs_info *c = priv;
125 struct ubifs_scan_node *sa, *sb;
127 cond_resched();
128 if (a == b)
129 return 0;
131 sa = list_entry(a, struct ubifs_scan_node, list);
132 sb = list_entry(b, struct ubifs_scan_node, list);
134 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
135 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
136 ubifs_assert(sa->type == UBIFS_DATA_NODE);
137 ubifs_assert(sb->type == UBIFS_DATA_NODE);
139 inuma = key_inum(c, &sa->key);
140 inumb = key_inum(c, &sb->key);
142 if (inuma == inumb) {
143 unsigned int blka = key_block(c, &sa->key);
144 unsigned int blkb = key_block(c, &sb->key);
146 if (blka <= blkb)
147 return -1;
148 } else if (inuma <= inumb)
149 return -1;
151 return 1;
155 * nondata_nodes_cmp - compare 2 non-data nodes.
156 * @priv: UBIFS file-system description object
157 * @a: first node
158 * @a: second node
160 * This function compares nodes @a and @b. It makes sure that inode nodes go
161 * first and sorted by length in descending order. Directory entry nodes go
162 * after inode nodes and are sorted in ascending hash valuer order.
164 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
166 ino_t inuma, inumb;
167 struct ubifs_info *c = priv;
168 struct ubifs_scan_node *sa, *sb;
170 cond_resched();
171 if (a == b)
172 return 0;
174 sa = list_entry(a, struct ubifs_scan_node, list);
175 sb = list_entry(b, struct ubifs_scan_node, list);
177 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
178 key_type(c, &sb->key) != UBIFS_DATA_KEY);
179 ubifs_assert(sa->type != UBIFS_DATA_NODE &&
180 sb->type != UBIFS_DATA_NODE);
182 /* Inodes go before directory entries */
183 if (sa->type == UBIFS_INO_NODE) {
184 if (sb->type == UBIFS_INO_NODE)
185 return sb->len - sa->len;
186 return -1;
188 if (sb->type == UBIFS_INO_NODE)
189 return 1;
191 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
192 key_type(c, &sa->key) == UBIFS_XENT_KEY);
193 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
194 key_type(c, &sb->key) == UBIFS_XENT_KEY);
195 ubifs_assert(sa->type == UBIFS_DENT_NODE ||
196 sa->type == UBIFS_XENT_NODE);
197 ubifs_assert(sb->type == UBIFS_DENT_NODE ||
198 sb->type == UBIFS_XENT_NODE);
200 inuma = key_inum(c, &sa->key);
201 inumb = key_inum(c, &sb->key);
203 if (inuma == inumb) {
204 uint32_t hasha = key_hash(c, &sa->key);
205 uint32_t hashb = key_hash(c, &sb->key);
207 if (hasha <= hashb)
208 return -1;
209 } else if (inuma <= inumb)
210 return -1;
212 return 1;
216 * sort_nodes - sort nodes for GC.
217 * @c: UBIFS file-system description object
218 * @sleb: describes nodes to sort and contains the result on exit
219 * @nondata: contains non-data nodes on exit
220 * @min: minimum node size is returned here
222 * This function sorts the list of inodes to garbage collect. First of all, it
223 * kills obsolete nodes and separates data and non-data nodes to the
224 * @sleb->nodes and @nondata lists correspondingly.
226 * Data nodes are then sorted in block number order - this is important for
227 * bulk-read; data nodes with lower inode number go before data nodes with
228 * higher inode number, and data nodes with lower block number go before data
229 * nodes with higher block number;
231 * Non-data nodes are sorted as follows.
232 * o First go inode nodes - they are sorted in descending length order.
233 * o Then go directory entry nodes - they are sorted in hash order, which
234 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
235 * inode number go before direntry nodes with higher parent inode number,
236 * and direntry nodes with lower name hash values go before direntry nodes
237 * with higher name hash values.
239 * This function returns zero in case of success and a negative error code in
240 * case of failure.
242 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
243 struct list_head *nondata, int *min)
245 int err;
246 struct ubifs_scan_node *snod, *tmp;
248 *min = INT_MAX;
250 /* Separate data nodes and non-data nodes */
251 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
252 ubifs_assert(snod->type == UBIFS_INO_NODE ||
253 snod->type == UBIFS_DATA_NODE ||
254 snod->type == UBIFS_DENT_NODE ||
255 snod->type == UBIFS_XENT_NODE ||
256 snod->type == UBIFS_TRUN_NODE);
258 if (snod->type != UBIFS_INO_NODE &&
259 snod->type != UBIFS_DATA_NODE &&
260 snod->type != UBIFS_DENT_NODE &&
261 snod->type != UBIFS_XENT_NODE) {
262 /* Probably truncation node, zap it */
263 list_del(&snod->list);
264 kfree(snod);
265 continue;
268 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
269 key_type(c, &snod->key) == UBIFS_INO_KEY ||
270 key_type(c, &snod->key) == UBIFS_DENT_KEY ||
271 key_type(c, &snod->key) == UBIFS_XENT_KEY);
273 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
274 snod->offs, 0);
275 if (err < 0)
276 return err;
278 if (!err) {
279 /* The node is obsolete, remove it from the list */
280 list_del(&snod->list);
281 kfree(snod);
282 continue;
285 if (snod->len < *min)
286 *min = snod->len;
288 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
289 list_move_tail(&snod->list, nondata);
292 /* Sort data and non-data nodes */
293 list_sort(c, &sleb->nodes, &data_nodes_cmp);
294 list_sort(c, nondata, &nondata_nodes_cmp);
296 err = dbg_check_data_nodes_order(c, &sleb->nodes);
297 if (err)
298 return err;
299 err = dbg_check_nondata_nodes_order(c, nondata);
300 if (err)
301 return err;
302 return 0;
306 * move_node - move a node.
307 * @c: UBIFS file-system description object
308 * @sleb: describes the LEB to move nodes from
309 * @snod: the mode to move
310 * @wbuf: write-buffer to move node to
312 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
313 * destroys @snod. Returns zero in case of success and a negative error code in
314 * case of failure.
316 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
317 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
319 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
321 cond_resched();
322 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
323 if (err)
324 return err;
326 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
327 snod->offs, new_lnum, new_offs,
328 snod->len);
329 list_del(&snod->list);
330 kfree(snod);
331 return err;
335 * move_nodes - move nodes.
336 * @c: UBIFS file-system description object
337 * @sleb: describes the LEB to move nodes from
339 * This function moves valid nodes from data LEB described by @sleb to the GC
340 * journal head. This function returns zero in case of success, %-EAGAIN if
341 * commit is required, and other negative error codes in case of other
342 * failures.
344 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
346 int err, min;
347 LIST_HEAD(nondata);
348 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
350 if (wbuf->lnum == -1) {
352 * The GC journal head is not set, because it is the first GC
353 * invocation since mount.
355 err = switch_gc_head(c);
356 if (err)
357 return err;
360 err = sort_nodes(c, sleb, &nondata, &min);
361 if (err)
362 goto out;
364 /* Write nodes to their new location. Use the first-fit strategy */
365 while (1) {
366 int avail;
367 struct ubifs_scan_node *snod, *tmp;
369 /* Move data nodes */
370 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
371 avail = c->leb_size - wbuf->offs - wbuf->used;
372 if (snod->len > avail)
374 * Do not skip data nodes in order to optimize
375 * bulk-read.
377 break;
379 err = move_node(c, sleb, snod, wbuf);
380 if (err)
381 goto out;
384 /* Move non-data nodes */
385 list_for_each_entry_safe(snod, tmp, &nondata, list) {
386 avail = c->leb_size - wbuf->offs - wbuf->used;
387 if (avail < min)
388 break;
390 if (snod->len > avail) {
392 * Keep going only if this is an inode with
393 * some data. Otherwise stop and switch the GC
394 * head. IOW, we assume that data-less inode
395 * nodes and direntry nodes are roughly of the
396 * same size.
398 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
399 snod->len == UBIFS_INO_NODE_SZ)
400 break;
401 continue;
404 err = move_node(c, sleb, snod, wbuf);
405 if (err)
406 goto out;
409 if (list_empty(&sleb->nodes) && list_empty(&nondata))
410 break;
413 * Waste the rest of the space in the LEB and switch to the
414 * next LEB.
416 err = switch_gc_head(c);
417 if (err)
418 goto out;
421 return 0;
423 out:
424 list_splice_tail(&nondata, &sleb->nodes);
425 return err;
429 * gc_sync_wbufs - sync write-buffers for GC.
430 * @c: UBIFS file-system description object
432 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
433 * be in a write-buffer instead. That is, a node could be written to a
434 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
435 * erased before the write-buffer is sync'd and then there is an unclean
436 * unmount, then an existing node is lost. To avoid this, we sync all
437 * write-buffers.
439 * This function returns %0 on success or a negative error code on failure.
441 static int gc_sync_wbufs(struct ubifs_info *c)
443 int err, i;
445 for (i = 0; i < c->jhead_cnt; i++) {
446 if (i == GCHD)
447 continue;
448 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
449 if (err)
450 return err;
452 return 0;
456 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
457 * @c: UBIFS file-system description object
458 * @lp: describes the LEB to garbage collect
460 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
461 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
462 * required, and other negative error codes in case of failures.
464 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
466 struct ubifs_scan_leb *sleb;
467 struct ubifs_scan_node *snod;
468 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
469 int err = 0, lnum = lp->lnum;
471 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
472 c->need_recovery);
473 ubifs_assert(c->gc_lnum != lnum);
474 ubifs_assert(wbuf->lnum != lnum);
477 * We scan the entire LEB even though we only really need to scan up to
478 * (c->leb_size - lp->free).
480 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
481 if (IS_ERR(sleb))
482 return PTR_ERR(sleb);
484 ubifs_assert(!list_empty(&sleb->nodes));
485 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
487 if (snod->type == UBIFS_IDX_NODE) {
488 struct ubifs_gced_idx_leb *idx_gc;
490 dbg_gc("indexing LEB %d (free %d, dirty %d)",
491 lnum, lp->free, lp->dirty);
492 list_for_each_entry(snod, &sleb->nodes, list) {
493 struct ubifs_idx_node *idx = snod->node;
494 int level = le16_to_cpu(idx->level);
496 ubifs_assert(snod->type == UBIFS_IDX_NODE);
497 key_read(c, ubifs_idx_key(c, idx), &snod->key);
498 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
499 snod->offs);
500 if (err)
501 goto out;
504 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
505 if (!idx_gc) {
506 err = -ENOMEM;
507 goto out;
510 idx_gc->lnum = lnum;
511 idx_gc->unmap = 0;
512 list_add(&idx_gc->list, &c->idx_gc);
515 * Don't release the LEB until after the next commit, because
516 * it may contain data which is needed for recovery. So
517 * although we freed this LEB, it will become usable only after
518 * the commit.
520 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
521 LPROPS_INDEX, 1);
522 if (err)
523 goto out;
524 err = LEB_FREED_IDX;
525 } else {
526 dbg_gc("data LEB %d (free %d, dirty %d)",
527 lnum, lp->free, lp->dirty);
529 err = move_nodes(c, sleb);
530 if (err)
531 goto out_inc_seq;
533 err = gc_sync_wbufs(c);
534 if (err)
535 goto out_inc_seq;
537 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
538 if (err)
539 goto out_inc_seq;
541 /* Allow for races with TNC */
542 c->gced_lnum = lnum;
543 smp_wmb();
544 c->gc_seq += 1;
545 smp_wmb();
547 if (c->gc_lnum == -1) {
548 c->gc_lnum = lnum;
549 err = LEB_RETAINED;
550 } else {
551 err = ubifs_wbuf_sync_nolock(wbuf);
552 if (err)
553 goto out;
555 err = ubifs_leb_unmap(c, lnum);
556 if (err)
557 goto out;
559 err = LEB_FREED;
563 out:
564 ubifs_scan_destroy(sleb);
565 return err;
567 out_inc_seq:
568 /* We may have moved at least some nodes so allow for races with TNC */
569 c->gced_lnum = lnum;
570 smp_wmb();
571 c->gc_seq += 1;
572 smp_wmb();
573 goto out;
577 * ubifs_garbage_collect - UBIFS garbage collector.
578 * @c: UBIFS file-system description object
579 * @anyway: do GC even if there are free LEBs
581 * This function does out-of-place garbage collection. The return codes are:
582 * o positive LEB number if the LEB has been freed and may be used;
583 * o %-EAGAIN if the caller has to run commit;
584 * o %-ENOSPC if GC failed to make any progress;
585 * o other negative error codes in case of other errors.
587 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
588 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
589 * commit may be required. But commit cannot be run from inside GC, because the
590 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
591 * And this error code means that the caller has to run commit, and re-run GC
592 * if there is still no free space.
594 * There are many reasons why this function may return %-EAGAIN:
595 * o the log is full and there is no space to write an LEB reference for
596 * @c->gc_lnum;
597 * o the journal is too large and exceeds size limitations;
598 * o GC moved indexing LEBs, but they can be used only after the commit;
599 * o the shrinker fails to find clean znodes to free and requests the commit;
600 * o etc.
602 * Note, if the file-system is close to be full, this function may return
603 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
604 * the function. E.g., this happens if the limits on the journal size are too
605 * tough and GC writes too much to the journal before an LEB is freed. This
606 * might also mean that the journal is too large, and the TNC becomes to big,
607 * so that the shrinker is constantly called, finds not clean znodes to free,
608 * and requests commit. Well, this may also happen if the journal is all right,
609 * but another kernel process consumes too much memory. Anyway, infinite
610 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
612 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
614 int i, err, ret, min_space = c->dead_wm;
615 struct ubifs_lprops lp;
616 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
618 ubifs_assert_cmt_locked(c);
619 ubifs_assert(!c->ro_media && !c->ro_mount);
621 if (ubifs_gc_should_commit(c))
622 return -EAGAIN;
624 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
626 if (c->ro_error) {
627 ret = -EROFS;
628 goto out_unlock;
631 /* We expect the write-buffer to be empty on entry */
632 ubifs_assert(!wbuf->used);
634 for (i = 0; ; i++) {
635 int space_before = c->leb_size - wbuf->offs - wbuf->used;
636 int space_after;
638 cond_resched();
640 /* Give the commit an opportunity to run */
641 if (ubifs_gc_should_commit(c)) {
642 ret = -EAGAIN;
643 break;
646 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
648 * We've done enough iterations. Indexing LEBs were
649 * moved and will be available after the commit.
651 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
652 ubifs_commit_required(c);
653 ret = -EAGAIN;
654 break;
657 if (i > HARD_LEBS_LIMIT) {
659 * We've moved too many LEBs and have not made
660 * progress, give up.
662 dbg_gc("hard limit, -ENOSPC");
663 ret = -ENOSPC;
664 break;
668 * Empty and freeable LEBs can turn up while we waited for
669 * the wbuf lock, or while we have been running GC. In that
670 * case, we should just return one of those instead of
671 * continuing to GC dirty LEBs. Hence we request
672 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
674 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
675 if (ret) {
676 if (ret == -ENOSPC)
677 dbg_gc("no more dirty LEBs");
678 break;
681 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
682 "(min. space %d)", lp.lnum, lp.free, lp.dirty,
683 lp.free + lp.dirty, min_space);
685 if (lp.free + lp.dirty == c->leb_size) {
686 /* An empty LEB was returned */
687 dbg_gc("LEB %d is free, return it", lp.lnum);
689 * ubifs_find_dirty_leb() doesn't return freeable index
690 * LEBs.
692 ubifs_assert(!(lp.flags & LPROPS_INDEX));
693 if (lp.free != c->leb_size) {
695 * Write buffers must be sync'd before
696 * unmapping freeable LEBs, because one of them
697 * may contain data which obsoletes something
698 * in 'lp.pnum'.
700 ret = gc_sync_wbufs(c);
701 if (ret)
702 goto out;
703 ret = ubifs_change_one_lp(c, lp.lnum,
704 c->leb_size, 0, 0, 0,
706 if (ret)
707 goto out;
709 ret = ubifs_leb_unmap(c, lp.lnum);
710 if (ret)
711 goto out;
712 ret = lp.lnum;
713 break;
716 space_before = c->leb_size - wbuf->offs - wbuf->used;
717 if (wbuf->lnum == -1)
718 space_before = 0;
720 ret = ubifs_garbage_collect_leb(c, &lp);
721 if (ret < 0) {
722 if (ret == -EAGAIN) {
724 * This is not error, so we have to return the
725 * LEB to lprops. But if 'ubifs_return_leb()'
726 * fails, its failure code is propagated to the
727 * caller instead of the original '-EAGAIN'.
729 err = ubifs_return_leb(c, lp.lnum);
730 if (err)
731 ret = err;
732 break;
734 goto out;
737 if (ret == LEB_FREED) {
738 /* An LEB has been freed and is ready for use */
739 dbg_gc("LEB %d freed, return", lp.lnum);
740 ret = lp.lnum;
741 break;
744 if (ret == LEB_FREED_IDX) {
746 * This was an indexing LEB and it cannot be
747 * immediately used. And instead of requesting the
748 * commit straight away, we try to garbage collect some
749 * more.
751 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
752 continue;
755 ubifs_assert(ret == LEB_RETAINED);
756 space_after = c->leb_size - wbuf->offs - wbuf->used;
757 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
758 space_after - space_before);
760 if (space_after > space_before) {
761 /* GC makes progress, keep working */
762 min_space >>= 1;
763 if (min_space < c->dead_wm)
764 min_space = c->dead_wm;
765 continue;
768 dbg_gc("did not make progress");
771 * GC moved an LEB bud have not done any progress. This means
772 * that the previous GC head LEB contained too few free space
773 * and the LEB which was GC'ed contained only large nodes which
774 * did not fit that space.
776 * We can do 2 things:
777 * 1. pick another LEB in a hope it'll contain a small node
778 * which will fit the space we have at the end of current GC
779 * head LEB, but there is no guarantee, so we try this out
780 * unless we have already been working for too long;
781 * 2. request an LEB with more dirty space, which will force
782 * 'ubifs_find_dirty_leb()' to start scanning the lprops
783 * table, instead of just picking one from the heap
784 * (previously it already picked the dirtiest LEB).
786 if (i < SOFT_LEBS_LIMIT) {
787 dbg_gc("try again");
788 continue;
791 min_space <<= 1;
792 if (min_space > c->dark_wm)
793 min_space = c->dark_wm;
794 dbg_gc("set min. space to %d", min_space);
797 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
798 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
799 ubifs_commit_required(c);
800 ret = -EAGAIN;
803 err = ubifs_wbuf_sync_nolock(wbuf);
804 if (!err)
805 err = ubifs_leb_unmap(c, c->gc_lnum);
806 if (err) {
807 ret = err;
808 goto out;
810 out_unlock:
811 mutex_unlock(&wbuf->io_mutex);
812 return ret;
814 out:
815 ubifs_assert(ret < 0);
816 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
817 ubifs_wbuf_sync_nolock(wbuf);
818 ubifs_ro_mode(c, ret);
819 mutex_unlock(&wbuf->io_mutex);
820 ubifs_return_leb(c, lp.lnum);
821 return ret;
825 * ubifs_gc_start_commit - garbage collection at start of commit.
826 * @c: UBIFS file-system description object
828 * If a LEB has only dirty and free space, then we may safely unmap it and make
829 * it free. Note, we cannot do this with indexing LEBs because dirty space may
830 * correspond index nodes that are required for recovery. In that case, the
831 * LEB cannot be unmapped until after the next commit.
833 * This function returns %0 upon success and a negative error code upon failure.
835 int ubifs_gc_start_commit(struct ubifs_info *c)
837 struct ubifs_gced_idx_leb *idx_gc;
838 const struct ubifs_lprops *lp;
839 int err = 0, flags;
841 ubifs_get_lprops(c);
844 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
845 * wbufs are sync'd before this, which is done in 'do_commit()'.
847 while (1) {
848 lp = ubifs_fast_find_freeable(c);
849 if (IS_ERR(lp)) {
850 err = PTR_ERR(lp);
851 goto out;
853 if (!lp)
854 break;
855 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
856 ubifs_assert(!(lp->flags & LPROPS_INDEX));
857 err = ubifs_leb_unmap(c, lp->lnum);
858 if (err)
859 goto out;
860 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
861 if (IS_ERR(lp)) {
862 err = PTR_ERR(lp);
863 goto out;
865 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
866 ubifs_assert(!(lp->flags & LPROPS_INDEX));
869 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
870 list_for_each_entry(idx_gc, &c->idx_gc, list)
871 idx_gc->unmap = 1;
873 /* Record index freeable LEBs for unmapping after commit */
874 while (1) {
875 lp = ubifs_fast_find_frdi_idx(c);
876 if (IS_ERR(lp)) {
877 err = PTR_ERR(lp);
878 goto out;
880 if (!lp)
881 break;
882 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
883 if (!idx_gc) {
884 err = -ENOMEM;
885 goto out;
887 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
888 ubifs_assert(lp->flags & LPROPS_INDEX);
889 /* Don't release the LEB until after the next commit */
890 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
891 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
892 if (IS_ERR(lp)) {
893 err = PTR_ERR(lp);
894 kfree(idx_gc);
895 goto out;
897 ubifs_assert(lp->flags & LPROPS_TAKEN);
898 ubifs_assert(!(lp->flags & LPROPS_INDEX));
899 idx_gc->lnum = lp->lnum;
900 idx_gc->unmap = 1;
901 list_add(&idx_gc->list, &c->idx_gc);
903 out:
904 ubifs_release_lprops(c);
905 return err;
909 * ubifs_gc_end_commit - garbage collection at end of commit.
910 * @c: UBIFS file-system description object
912 * This function completes out-of-place garbage collection of index LEBs.
914 int ubifs_gc_end_commit(struct ubifs_info *c)
916 struct ubifs_gced_idx_leb *idx_gc, *tmp;
917 struct ubifs_wbuf *wbuf;
918 int err = 0;
920 wbuf = &c->jheads[GCHD].wbuf;
921 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
922 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
923 if (idx_gc->unmap) {
924 dbg_gc("LEB %d", idx_gc->lnum);
925 err = ubifs_leb_unmap(c, idx_gc->lnum);
926 if (err)
927 goto out;
928 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
929 LPROPS_NC, 0, LPROPS_TAKEN, -1);
930 if (err)
931 goto out;
932 list_del(&idx_gc->list);
933 kfree(idx_gc);
935 out:
936 mutex_unlock(&wbuf->io_mutex);
937 return err;
941 * ubifs_destroy_idx_gc - destroy idx_gc list.
942 * @c: UBIFS file-system description object
944 * This function destroys the @c->idx_gc list. It is called when unmounting
945 * so locks are not needed. Returns zero in case of success and a negative
946 * error code in case of failure.
948 void ubifs_destroy_idx_gc(struct ubifs_info *c)
950 while (!list_empty(&c->idx_gc)) {
951 struct ubifs_gced_idx_leb *idx_gc;
953 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
954 list);
955 c->idx_gc_cnt -= 1;
956 list_del(&idx_gc->list);
957 kfree(idx_gc);
962 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
963 * @c: UBIFS file-system description object
965 * Called during start commit so locks are not needed.
967 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
969 struct ubifs_gced_idx_leb *idx_gc;
970 int lnum;
972 if (list_empty(&c->idx_gc))
973 return -ENOSPC;
974 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
975 lnum = idx_gc->lnum;
976 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
977 list_del(&idx_gc->list);
978 kfree(idx_gc);
979 return lnum;