mm: try_to_unuse check removing right swap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blob9ce7f81c8abc2a29902b2cbc174e3de9216d0c65
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
47 static struct swap_list_t swap_list = {-1, -1};
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
51 static DEFINE_MUTEX(swapon_mutex);
54 * We need this because the bdev->unplug_fn can sleep and we cannot
55 * hold swap_lock while calling the unplug_fn. And swap_lock
56 * cannot be turned into a mutex.
58 static DECLARE_RWSEM(swap_unplug_sem);
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 swp_entry_t entry;
64 down_read(&swap_unplug_sem);
65 entry.val = page_private(page);
66 if (PageSwapCache(page)) {
67 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68 struct backing_dev_info *bdi;
71 * If the page is removed from swapcache from under us (with a
72 * racy try_to_unuse/swapoff) we need an additional reference
73 * count to avoid reading garbage from page_private(page) above.
74 * If the WARN_ON triggers during a swapoff it maybe the race
75 * condition and it's harmless. However if it triggers without
76 * swapoff it signals a problem.
78 WARN_ON(page_count(page) <= 1);
80 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81 blk_run_backing_dev(bdi, page);
83 up_read(&swap_unplug_sem);
86 #define SWAPFILE_CLUSTER 256
87 #define LATENCY_LIMIT 256
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
91 unsigned long offset, last_in_cluster;
92 int latency_ration = LATENCY_LIMIT;
94 /*
95 * We try to cluster swap pages by allocating them sequentially
96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
97 * way, however, we resort to first-free allocation, starting
98 * a new cluster. This prevents us from scattering swap pages
99 * all over the entire swap partition, so that we reduce
100 * overall disk seek times between swap pages. -- sct
101 * But we do now try to find an empty cluster. -Andrea
104 si->flags += SWP_SCANNING;
105 if (unlikely(!si->cluster_nr)) {
106 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 goto lowest;
109 spin_unlock(&swap_lock);
111 offset = si->lowest_bit;
112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
114 /* Locate the first empty (unaligned) cluster */
115 for (; last_in_cluster <= si->highest_bit; offset++) {
116 if (si->swap_map[offset])
117 last_in_cluster = offset + SWAPFILE_CLUSTER;
118 else if (offset == last_in_cluster) {
119 spin_lock(&swap_lock);
120 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121 goto cluster;
123 if (unlikely(--latency_ration < 0)) {
124 cond_resched();
125 latency_ration = LATENCY_LIMIT;
128 spin_lock(&swap_lock);
129 goto lowest;
132 si->cluster_nr--;
133 cluster:
134 offset = si->cluster_next;
135 if (offset > si->highest_bit)
136 lowest: offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138 goto no_page;
139 if (!si->highest_bit)
140 goto no_page;
141 if (!si->swap_map[offset]) {
142 if (offset == si->lowest_bit)
143 si->lowest_bit++;
144 if (offset == si->highest_bit)
145 si->highest_bit--;
146 si->inuse_pages++;
147 if (si->inuse_pages == si->pages) {
148 si->lowest_bit = si->max;
149 si->highest_bit = 0;
151 si->swap_map[offset] = 1;
152 si->cluster_next = offset + 1;
153 si->flags -= SWP_SCANNING;
154 return offset;
157 spin_unlock(&swap_lock);
158 while (++offset <= si->highest_bit) {
159 if (!si->swap_map[offset]) {
160 spin_lock(&swap_lock);
161 goto checks;
163 if (unlikely(--latency_ration < 0)) {
164 cond_resched();
165 latency_ration = LATENCY_LIMIT;
168 spin_lock(&swap_lock);
169 goto lowest;
171 no_page:
172 si->flags -= SWP_SCANNING;
173 return 0;
176 swp_entry_t get_swap_page(void)
178 struct swap_info_struct *si;
179 pgoff_t offset;
180 int type, next;
181 int wrapped = 0;
183 spin_lock(&swap_lock);
184 if (nr_swap_pages <= 0)
185 goto noswap;
186 nr_swap_pages--;
188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189 si = swap_info + type;
190 next = si->next;
191 if (next < 0 ||
192 (!wrapped && si->prio != swap_info[next].prio)) {
193 next = swap_list.head;
194 wrapped++;
197 if (!si->highest_bit)
198 continue;
199 if (!(si->flags & SWP_WRITEOK))
200 continue;
202 swap_list.next = next;
203 offset = scan_swap_map(si);
204 if (offset) {
205 spin_unlock(&swap_lock);
206 return swp_entry(type, offset);
208 next = swap_list.next;
211 nr_swap_pages++;
212 noswap:
213 spin_unlock(&swap_lock);
214 return (swp_entry_t) {0};
217 swp_entry_t get_swap_page_of_type(int type)
219 struct swap_info_struct *si;
220 pgoff_t offset;
222 spin_lock(&swap_lock);
223 si = swap_info + type;
224 if (si->flags & SWP_WRITEOK) {
225 nr_swap_pages--;
226 offset = scan_swap_map(si);
227 if (offset) {
228 spin_unlock(&swap_lock);
229 return swp_entry(type, offset);
231 nr_swap_pages++;
233 spin_unlock(&swap_lock);
234 return (swp_entry_t) {0};
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
239 struct swap_info_struct * p;
240 unsigned long offset, type;
242 if (!entry.val)
243 goto out;
244 type = swp_type(entry);
245 if (type >= nr_swapfiles)
246 goto bad_nofile;
247 p = & swap_info[type];
248 if (!(p->flags & SWP_USED))
249 goto bad_device;
250 offset = swp_offset(entry);
251 if (offset >= p->max)
252 goto bad_offset;
253 if (!p->swap_map[offset])
254 goto bad_free;
255 spin_lock(&swap_lock);
256 return p;
258 bad_free:
259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 goto out;
261 bad_offset:
262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 goto out;
264 bad_device:
265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 goto out;
267 bad_nofile:
268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270 return NULL;
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
275 int count = p->swap_map[offset];
277 if (count < SWAP_MAP_MAX) {
278 count--;
279 p->swap_map[offset] = count;
280 if (!count) {
281 if (offset < p->lowest_bit)
282 p->lowest_bit = offset;
283 if (offset > p->highest_bit)
284 p->highest_bit = offset;
285 if (p->prio > swap_info[swap_list.next].prio)
286 swap_list.next = p - swap_info;
287 nr_swap_pages++;
288 p->inuse_pages--;
291 return count;
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
298 void swap_free(swp_entry_t entry)
300 struct swap_info_struct * p;
302 p = swap_info_get(entry);
303 if (p) {
304 swap_entry_free(p, swp_offset(entry));
305 spin_unlock(&swap_lock);
310 * How many references to page are currently swapped out?
312 static inline int page_swapcount(struct page *page)
314 int count = 0;
315 struct swap_info_struct *p;
316 swp_entry_t entry;
318 entry.val = page_private(page);
319 p = swap_info_get(entry);
320 if (p) {
321 /* Subtract the 1 for the swap cache itself */
322 count = p->swap_map[swp_offset(entry)] - 1;
323 spin_unlock(&swap_lock);
325 return count;
329 * We can write to an anon page without COW if there are no other references
330 * to it. And as a side-effect, free up its swap: because the old content
331 * on disk will never be read, and seeking back there to write new content
332 * later would only waste time away from clustering.
334 int reuse_swap_page(struct page *page)
336 int count;
338 VM_BUG_ON(!PageLocked(page));
339 count = page_mapcount(page);
340 if (count <= 1 && PageSwapCache(page)) {
341 count += page_swapcount(page);
342 if (count == 1 && !PageWriteback(page)) {
343 delete_from_swap_cache(page);
344 SetPageDirty(page);
347 return count == 1;
351 * If swap is getting full, or if there are no more mappings of this page,
352 * then try_to_free_swap is called to free its swap space.
354 int try_to_free_swap(struct page *page)
356 VM_BUG_ON(!PageLocked(page));
358 if (!PageSwapCache(page))
359 return 0;
360 if (PageWriteback(page))
361 return 0;
362 if (page_swapcount(page))
363 return 0;
365 delete_from_swap_cache(page);
366 SetPageDirty(page);
367 return 1;
371 * Free the swap entry like above, but also try to
372 * free the page cache entry if it is the last user.
374 void free_swap_and_cache(swp_entry_t entry)
376 struct swap_info_struct * p;
377 struct page *page = NULL;
379 if (is_migration_entry(entry))
380 return;
382 p = swap_info_get(entry);
383 if (p) {
384 if (swap_entry_free(p, swp_offset(entry)) == 1) {
385 page = find_get_page(&swapper_space, entry.val);
386 if (page && !trylock_page(page)) {
387 page_cache_release(page);
388 page = NULL;
391 spin_unlock(&swap_lock);
393 if (page) {
395 * Not mapped elsewhere, or swap space full? Free it!
396 * Also recheck PageSwapCache now page is locked (above).
398 if (PageSwapCache(page) && !PageWriteback(page) &&
399 (!page_mapped(page) || vm_swap_full())) {
400 delete_from_swap_cache(page);
401 SetPageDirty(page);
403 unlock_page(page);
404 page_cache_release(page);
408 #ifdef CONFIG_HIBERNATION
410 * Find the swap type that corresponds to given device (if any).
412 * @offset - number of the PAGE_SIZE-sized block of the device, starting
413 * from 0, in which the swap header is expected to be located.
415 * This is needed for the suspend to disk (aka swsusp).
417 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
419 struct block_device *bdev = NULL;
420 int i;
422 if (device)
423 bdev = bdget(device);
425 spin_lock(&swap_lock);
426 for (i = 0; i < nr_swapfiles; i++) {
427 struct swap_info_struct *sis = swap_info + i;
429 if (!(sis->flags & SWP_WRITEOK))
430 continue;
432 if (!bdev) {
433 if (bdev_p)
434 *bdev_p = sis->bdev;
436 spin_unlock(&swap_lock);
437 return i;
439 if (bdev == sis->bdev) {
440 struct swap_extent *se;
442 se = list_entry(sis->extent_list.next,
443 struct swap_extent, list);
444 if (se->start_block == offset) {
445 if (bdev_p)
446 *bdev_p = sis->bdev;
448 spin_unlock(&swap_lock);
449 bdput(bdev);
450 return i;
454 spin_unlock(&swap_lock);
455 if (bdev)
456 bdput(bdev);
458 return -ENODEV;
462 * Return either the total number of swap pages of given type, or the number
463 * of free pages of that type (depending on @free)
465 * This is needed for software suspend
467 unsigned int count_swap_pages(int type, int free)
469 unsigned int n = 0;
471 if (type < nr_swapfiles) {
472 spin_lock(&swap_lock);
473 if (swap_info[type].flags & SWP_WRITEOK) {
474 n = swap_info[type].pages;
475 if (free)
476 n -= swap_info[type].inuse_pages;
478 spin_unlock(&swap_lock);
480 return n;
482 #endif
485 * No need to decide whether this PTE shares the swap entry with others,
486 * just let do_wp_page work it out if a write is requested later - to
487 * force COW, vm_page_prot omits write permission from any private vma.
489 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
490 unsigned long addr, swp_entry_t entry, struct page *page)
492 spinlock_t *ptl;
493 pte_t *pte;
494 int ret = 1;
496 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
497 ret = -ENOMEM;
499 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
500 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
501 if (ret > 0)
502 mem_cgroup_uncharge_page(page);
503 ret = 0;
504 goto out;
507 inc_mm_counter(vma->vm_mm, anon_rss);
508 get_page(page);
509 set_pte_at(vma->vm_mm, addr, pte,
510 pte_mkold(mk_pte(page, vma->vm_page_prot)));
511 page_add_anon_rmap(page, vma, addr);
512 swap_free(entry);
514 * Move the page to the active list so it is not
515 * immediately swapped out again after swapon.
517 activate_page(page);
518 out:
519 pte_unmap_unlock(pte, ptl);
520 return ret;
523 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
524 unsigned long addr, unsigned long end,
525 swp_entry_t entry, struct page *page)
527 pte_t swp_pte = swp_entry_to_pte(entry);
528 pte_t *pte;
529 int ret = 0;
532 * We don't actually need pte lock while scanning for swp_pte: since
533 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
534 * page table while we're scanning; though it could get zapped, and on
535 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
536 * of unmatched parts which look like swp_pte, so unuse_pte must
537 * recheck under pte lock. Scanning without pte lock lets it be
538 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
540 pte = pte_offset_map(pmd, addr);
541 do {
543 * swapoff spends a _lot_ of time in this loop!
544 * Test inline before going to call unuse_pte.
546 if (unlikely(pte_same(*pte, swp_pte))) {
547 pte_unmap(pte);
548 ret = unuse_pte(vma, pmd, addr, entry, page);
549 if (ret)
550 goto out;
551 pte = pte_offset_map(pmd, addr);
553 } while (pte++, addr += PAGE_SIZE, addr != end);
554 pte_unmap(pte - 1);
555 out:
556 return ret;
559 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
560 unsigned long addr, unsigned long end,
561 swp_entry_t entry, struct page *page)
563 pmd_t *pmd;
564 unsigned long next;
565 int ret;
567 pmd = pmd_offset(pud, addr);
568 do {
569 next = pmd_addr_end(addr, end);
570 if (pmd_none_or_clear_bad(pmd))
571 continue;
572 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
573 if (ret)
574 return ret;
575 } while (pmd++, addr = next, addr != end);
576 return 0;
579 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 swp_entry_t entry, struct page *page)
583 pud_t *pud;
584 unsigned long next;
585 int ret;
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_none_or_clear_bad(pud))
591 continue;
592 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
593 if (ret)
594 return ret;
595 } while (pud++, addr = next, addr != end);
596 return 0;
599 static int unuse_vma(struct vm_area_struct *vma,
600 swp_entry_t entry, struct page *page)
602 pgd_t *pgd;
603 unsigned long addr, end, next;
604 int ret;
606 if (page->mapping) {
607 addr = page_address_in_vma(page, vma);
608 if (addr == -EFAULT)
609 return 0;
610 else
611 end = addr + PAGE_SIZE;
612 } else {
613 addr = vma->vm_start;
614 end = vma->vm_end;
617 pgd = pgd_offset(vma->vm_mm, addr);
618 do {
619 next = pgd_addr_end(addr, end);
620 if (pgd_none_or_clear_bad(pgd))
621 continue;
622 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
623 if (ret)
624 return ret;
625 } while (pgd++, addr = next, addr != end);
626 return 0;
629 static int unuse_mm(struct mm_struct *mm,
630 swp_entry_t entry, struct page *page)
632 struct vm_area_struct *vma;
633 int ret = 0;
635 if (!down_read_trylock(&mm->mmap_sem)) {
637 * Activate page so shrink_inactive_list is unlikely to unmap
638 * its ptes while lock is dropped, so swapoff can make progress.
640 activate_page(page);
641 unlock_page(page);
642 down_read(&mm->mmap_sem);
643 lock_page(page);
645 for (vma = mm->mmap; vma; vma = vma->vm_next) {
646 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
647 break;
649 up_read(&mm->mmap_sem);
650 return (ret < 0)? ret: 0;
654 * Scan swap_map from current position to next entry still in use.
655 * Recycle to start on reaching the end, returning 0 when empty.
657 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
658 unsigned int prev)
660 unsigned int max = si->max;
661 unsigned int i = prev;
662 int count;
665 * No need for swap_lock here: we're just looking
666 * for whether an entry is in use, not modifying it; false
667 * hits are okay, and sys_swapoff() has already prevented new
668 * allocations from this area (while holding swap_lock).
670 for (;;) {
671 if (++i >= max) {
672 if (!prev) {
673 i = 0;
674 break;
677 * No entries in use at top of swap_map,
678 * loop back to start and recheck there.
680 max = prev + 1;
681 prev = 0;
682 i = 1;
684 count = si->swap_map[i];
685 if (count && count != SWAP_MAP_BAD)
686 break;
688 return i;
692 * We completely avoid races by reading each swap page in advance,
693 * and then search for the process using it. All the necessary
694 * page table adjustments can then be made atomically.
696 static int try_to_unuse(unsigned int type)
698 struct swap_info_struct * si = &swap_info[type];
699 struct mm_struct *start_mm;
700 unsigned short *swap_map;
701 unsigned short swcount;
702 struct page *page;
703 swp_entry_t entry;
704 unsigned int i = 0;
705 int retval = 0;
706 int reset_overflow = 0;
707 int shmem;
710 * When searching mms for an entry, a good strategy is to
711 * start at the first mm we freed the previous entry from
712 * (though actually we don't notice whether we or coincidence
713 * freed the entry). Initialize this start_mm with a hold.
715 * A simpler strategy would be to start at the last mm we
716 * freed the previous entry from; but that would take less
717 * advantage of mmlist ordering, which clusters forked mms
718 * together, child after parent. If we race with dup_mmap(), we
719 * prefer to resolve parent before child, lest we miss entries
720 * duplicated after we scanned child: using last mm would invert
721 * that. Though it's only a serious concern when an overflowed
722 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
724 start_mm = &init_mm;
725 atomic_inc(&init_mm.mm_users);
728 * Keep on scanning until all entries have gone. Usually,
729 * one pass through swap_map is enough, but not necessarily:
730 * there are races when an instance of an entry might be missed.
732 while ((i = find_next_to_unuse(si, i)) != 0) {
733 if (signal_pending(current)) {
734 retval = -EINTR;
735 break;
739 * Get a page for the entry, using the existing swap
740 * cache page if there is one. Otherwise, get a clean
741 * page and read the swap into it.
743 swap_map = &si->swap_map[i];
744 entry = swp_entry(type, i);
745 page = read_swap_cache_async(entry,
746 GFP_HIGHUSER_MOVABLE, NULL, 0);
747 if (!page) {
749 * Either swap_duplicate() failed because entry
750 * has been freed independently, and will not be
751 * reused since sys_swapoff() already disabled
752 * allocation from here, or alloc_page() failed.
754 if (!*swap_map)
755 continue;
756 retval = -ENOMEM;
757 break;
761 * Don't hold on to start_mm if it looks like exiting.
763 if (atomic_read(&start_mm->mm_users) == 1) {
764 mmput(start_mm);
765 start_mm = &init_mm;
766 atomic_inc(&init_mm.mm_users);
770 * Wait for and lock page. When do_swap_page races with
771 * try_to_unuse, do_swap_page can handle the fault much
772 * faster than try_to_unuse can locate the entry. This
773 * apparently redundant "wait_on_page_locked" lets try_to_unuse
774 * defer to do_swap_page in such a case - in some tests,
775 * do_swap_page and try_to_unuse repeatedly compete.
777 wait_on_page_locked(page);
778 wait_on_page_writeback(page);
779 lock_page(page);
780 wait_on_page_writeback(page);
783 * Remove all references to entry.
784 * Whenever we reach init_mm, there's no address space
785 * to search, but use it as a reminder to search shmem.
787 shmem = 0;
788 swcount = *swap_map;
789 if (swcount > 1) {
790 if (start_mm == &init_mm)
791 shmem = shmem_unuse(entry, page);
792 else
793 retval = unuse_mm(start_mm, entry, page);
795 if (*swap_map > 1) {
796 int set_start_mm = (*swap_map >= swcount);
797 struct list_head *p = &start_mm->mmlist;
798 struct mm_struct *new_start_mm = start_mm;
799 struct mm_struct *prev_mm = start_mm;
800 struct mm_struct *mm;
802 atomic_inc(&new_start_mm->mm_users);
803 atomic_inc(&prev_mm->mm_users);
804 spin_lock(&mmlist_lock);
805 while (*swap_map > 1 && !retval && !shmem &&
806 (p = p->next) != &start_mm->mmlist) {
807 mm = list_entry(p, struct mm_struct, mmlist);
808 if (!atomic_inc_not_zero(&mm->mm_users))
809 continue;
810 spin_unlock(&mmlist_lock);
811 mmput(prev_mm);
812 prev_mm = mm;
814 cond_resched();
816 swcount = *swap_map;
817 if (swcount <= 1)
819 else if (mm == &init_mm) {
820 set_start_mm = 1;
821 shmem = shmem_unuse(entry, page);
822 } else
823 retval = unuse_mm(mm, entry, page);
824 if (set_start_mm && *swap_map < swcount) {
825 mmput(new_start_mm);
826 atomic_inc(&mm->mm_users);
827 new_start_mm = mm;
828 set_start_mm = 0;
830 spin_lock(&mmlist_lock);
832 spin_unlock(&mmlist_lock);
833 mmput(prev_mm);
834 mmput(start_mm);
835 start_mm = new_start_mm;
837 if (shmem) {
838 /* page has already been unlocked and released */
839 if (shmem > 0)
840 continue;
841 retval = shmem;
842 break;
844 if (retval) {
845 unlock_page(page);
846 page_cache_release(page);
847 break;
851 * How could swap count reach 0x7fff when the maximum
852 * pid is 0x7fff, and there's no way to repeat a swap
853 * page within an mm (except in shmem, where it's the
854 * shared object which takes the reference count)?
855 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
857 * If that's wrong, then we should worry more about
858 * exit_mmap() and do_munmap() cases described above:
859 * we might be resetting SWAP_MAP_MAX too early here.
860 * We know "Undead"s can happen, they're okay, so don't
861 * report them; but do report if we reset SWAP_MAP_MAX.
863 if (*swap_map == SWAP_MAP_MAX) {
864 spin_lock(&swap_lock);
865 *swap_map = 1;
866 spin_unlock(&swap_lock);
867 reset_overflow = 1;
871 * If a reference remains (rare), we would like to leave
872 * the page in the swap cache; but try_to_unmap could
873 * then re-duplicate the entry once we drop page lock,
874 * so we might loop indefinitely; also, that page could
875 * not be swapped out to other storage meanwhile. So:
876 * delete from cache even if there's another reference,
877 * after ensuring that the data has been saved to disk -
878 * since if the reference remains (rarer), it will be
879 * read from disk into another page. Splitting into two
880 * pages would be incorrect if swap supported "shared
881 * private" pages, but they are handled by tmpfs files.
883 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
884 struct writeback_control wbc = {
885 .sync_mode = WB_SYNC_NONE,
888 swap_writepage(page, &wbc);
889 lock_page(page);
890 wait_on_page_writeback(page);
894 * It is conceivable that a racing task removed this page from
895 * swap cache just before we acquired the page lock at the top,
896 * or while we dropped it in unuse_mm(). The page might even
897 * be back in swap cache on another swap area: that we must not
898 * delete, since it may not have been written out to swap yet.
900 if (PageSwapCache(page) &&
901 likely(page_private(page) == entry.val))
902 delete_from_swap_cache(page);
905 * So we could skip searching mms once swap count went
906 * to 1, we did not mark any present ptes as dirty: must
907 * mark page dirty so shrink_page_list will preserve it.
909 SetPageDirty(page);
910 unlock_page(page);
911 page_cache_release(page);
914 * Make sure that we aren't completely killing
915 * interactive performance.
917 cond_resched();
920 mmput(start_mm);
921 if (reset_overflow) {
922 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
923 swap_overflow = 0;
925 return retval;
929 * After a successful try_to_unuse, if no swap is now in use, we know
930 * we can empty the mmlist. swap_lock must be held on entry and exit.
931 * Note that mmlist_lock nests inside swap_lock, and an mm must be
932 * added to the mmlist just after page_duplicate - before would be racy.
934 static void drain_mmlist(void)
936 struct list_head *p, *next;
937 unsigned int i;
939 for (i = 0; i < nr_swapfiles; i++)
940 if (swap_info[i].inuse_pages)
941 return;
942 spin_lock(&mmlist_lock);
943 list_for_each_safe(p, next, &init_mm.mmlist)
944 list_del_init(p);
945 spin_unlock(&mmlist_lock);
949 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
950 * corresponds to page offset `offset'.
952 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
954 struct swap_extent *se = sis->curr_swap_extent;
955 struct swap_extent *start_se = se;
957 for ( ; ; ) {
958 struct list_head *lh;
960 if (se->start_page <= offset &&
961 offset < (se->start_page + se->nr_pages)) {
962 return se->start_block + (offset - se->start_page);
964 lh = se->list.next;
965 if (lh == &sis->extent_list)
966 lh = lh->next;
967 se = list_entry(lh, struct swap_extent, list);
968 sis->curr_swap_extent = se;
969 BUG_ON(se == start_se); /* It *must* be present */
973 #ifdef CONFIG_HIBERNATION
975 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
976 * corresponding to given index in swap_info (swap type).
978 sector_t swapdev_block(int swap_type, pgoff_t offset)
980 struct swap_info_struct *sis;
982 if (swap_type >= nr_swapfiles)
983 return 0;
985 sis = swap_info + swap_type;
986 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
988 #endif /* CONFIG_HIBERNATION */
991 * Free all of a swapdev's extent information
993 static void destroy_swap_extents(struct swap_info_struct *sis)
995 while (!list_empty(&sis->extent_list)) {
996 struct swap_extent *se;
998 se = list_entry(sis->extent_list.next,
999 struct swap_extent, list);
1000 list_del(&se->list);
1001 kfree(se);
1006 * Add a block range (and the corresponding page range) into this swapdev's
1007 * extent list. The extent list is kept sorted in page order.
1009 * This function rather assumes that it is called in ascending page order.
1011 static int
1012 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1013 unsigned long nr_pages, sector_t start_block)
1015 struct swap_extent *se;
1016 struct swap_extent *new_se;
1017 struct list_head *lh;
1019 lh = sis->extent_list.prev; /* The highest page extent */
1020 if (lh != &sis->extent_list) {
1021 se = list_entry(lh, struct swap_extent, list);
1022 BUG_ON(se->start_page + se->nr_pages != start_page);
1023 if (se->start_block + se->nr_pages == start_block) {
1024 /* Merge it */
1025 se->nr_pages += nr_pages;
1026 return 0;
1031 * No merge. Insert a new extent, preserving ordering.
1033 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1034 if (new_se == NULL)
1035 return -ENOMEM;
1036 new_se->start_page = start_page;
1037 new_se->nr_pages = nr_pages;
1038 new_se->start_block = start_block;
1040 list_add_tail(&new_se->list, &sis->extent_list);
1041 return 1;
1045 * A `swap extent' is a simple thing which maps a contiguous range of pages
1046 * onto a contiguous range of disk blocks. An ordered list of swap extents
1047 * is built at swapon time and is then used at swap_writepage/swap_readpage
1048 * time for locating where on disk a page belongs.
1050 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1051 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1052 * swap files identically.
1054 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1055 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1056 * swapfiles are handled *identically* after swapon time.
1058 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1059 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1060 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1061 * requirements, they are simply tossed out - we will never use those blocks
1062 * for swapping.
1064 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1065 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1066 * which will scribble on the fs.
1068 * The amount of disk space which a single swap extent represents varies.
1069 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1070 * extents in the list. To avoid much list walking, we cache the previous
1071 * search location in `curr_swap_extent', and start new searches from there.
1072 * This is extremely effective. The average number of iterations in
1073 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1075 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1077 struct inode *inode;
1078 unsigned blocks_per_page;
1079 unsigned long page_no;
1080 unsigned blkbits;
1081 sector_t probe_block;
1082 sector_t last_block;
1083 sector_t lowest_block = -1;
1084 sector_t highest_block = 0;
1085 int nr_extents = 0;
1086 int ret;
1088 inode = sis->swap_file->f_mapping->host;
1089 if (S_ISBLK(inode->i_mode)) {
1090 ret = add_swap_extent(sis, 0, sis->max, 0);
1091 *span = sis->pages;
1092 goto done;
1095 blkbits = inode->i_blkbits;
1096 blocks_per_page = PAGE_SIZE >> blkbits;
1099 * Map all the blocks into the extent list. This code doesn't try
1100 * to be very smart.
1102 probe_block = 0;
1103 page_no = 0;
1104 last_block = i_size_read(inode) >> blkbits;
1105 while ((probe_block + blocks_per_page) <= last_block &&
1106 page_no < sis->max) {
1107 unsigned block_in_page;
1108 sector_t first_block;
1110 first_block = bmap(inode, probe_block);
1111 if (first_block == 0)
1112 goto bad_bmap;
1115 * It must be PAGE_SIZE aligned on-disk
1117 if (first_block & (blocks_per_page - 1)) {
1118 probe_block++;
1119 goto reprobe;
1122 for (block_in_page = 1; block_in_page < blocks_per_page;
1123 block_in_page++) {
1124 sector_t block;
1126 block = bmap(inode, probe_block + block_in_page);
1127 if (block == 0)
1128 goto bad_bmap;
1129 if (block != first_block + block_in_page) {
1130 /* Discontiguity */
1131 probe_block++;
1132 goto reprobe;
1136 first_block >>= (PAGE_SHIFT - blkbits);
1137 if (page_no) { /* exclude the header page */
1138 if (first_block < lowest_block)
1139 lowest_block = first_block;
1140 if (first_block > highest_block)
1141 highest_block = first_block;
1145 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1147 ret = add_swap_extent(sis, page_no, 1, first_block);
1148 if (ret < 0)
1149 goto out;
1150 nr_extents += ret;
1151 page_no++;
1152 probe_block += blocks_per_page;
1153 reprobe:
1154 continue;
1156 ret = nr_extents;
1157 *span = 1 + highest_block - lowest_block;
1158 if (page_no == 0)
1159 page_no = 1; /* force Empty message */
1160 sis->max = page_no;
1161 sis->pages = page_no - 1;
1162 sis->highest_bit = page_no - 1;
1163 done:
1164 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1165 struct swap_extent, list);
1166 goto out;
1167 bad_bmap:
1168 printk(KERN_ERR "swapon: swapfile has holes\n");
1169 ret = -EINVAL;
1170 out:
1171 return ret;
1174 #if 0 /* We don't need this yet */
1175 #include <linux/backing-dev.h>
1176 int page_queue_congested(struct page *page)
1178 struct backing_dev_info *bdi;
1180 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1182 if (PageSwapCache(page)) {
1183 swp_entry_t entry = { .val = page_private(page) };
1184 struct swap_info_struct *sis;
1186 sis = get_swap_info_struct(swp_type(entry));
1187 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1188 } else
1189 bdi = page->mapping->backing_dev_info;
1190 return bdi_write_congested(bdi);
1192 #endif
1194 asmlinkage long sys_swapoff(const char __user * specialfile)
1196 struct swap_info_struct * p = NULL;
1197 unsigned short *swap_map;
1198 struct file *swap_file, *victim;
1199 struct address_space *mapping;
1200 struct inode *inode;
1201 char * pathname;
1202 int i, type, prev;
1203 int err;
1205 if (!capable(CAP_SYS_ADMIN))
1206 return -EPERM;
1208 pathname = getname(specialfile);
1209 err = PTR_ERR(pathname);
1210 if (IS_ERR(pathname))
1211 goto out;
1213 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1214 putname(pathname);
1215 err = PTR_ERR(victim);
1216 if (IS_ERR(victim))
1217 goto out;
1219 mapping = victim->f_mapping;
1220 prev = -1;
1221 spin_lock(&swap_lock);
1222 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1223 p = swap_info + type;
1224 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1225 if (p->swap_file->f_mapping == mapping)
1226 break;
1228 prev = type;
1230 if (type < 0) {
1231 err = -EINVAL;
1232 spin_unlock(&swap_lock);
1233 goto out_dput;
1235 if (!security_vm_enough_memory(p->pages))
1236 vm_unacct_memory(p->pages);
1237 else {
1238 err = -ENOMEM;
1239 spin_unlock(&swap_lock);
1240 goto out_dput;
1242 if (prev < 0) {
1243 swap_list.head = p->next;
1244 } else {
1245 swap_info[prev].next = p->next;
1247 if (type == swap_list.next) {
1248 /* just pick something that's safe... */
1249 swap_list.next = swap_list.head;
1251 if (p->prio < 0) {
1252 for (i = p->next; i >= 0; i = swap_info[i].next)
1253 swap_info[i].prio = p->prio--;
1254 least_priority++;
1256 nr_swap_pages -= p->pages;
1257 total_swap_pages -= p->pages;
1258 p->flags &= ~SWP_WRITEOK;
1259 spin_unlock(&swap_lock);
1261 current->flags |= PF_SWAPOFF;
1262 err = try_to_unuse(type);
1263 current->flags &= ~PF_SWAPOFF;
1265 if (err) {
1266 /* re-insert swap space back into swap_list */
1267 spin_lock(&swap_lock);
1268 if (p->prio < 0)
1269 p->prio = --least_priority;
1270 prev = -1;
1271 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1272 if (p->prio >= swap_info[i].prio)
1273 break;
1274 prev = i;
1276 p->next = i;
1277 if (prev < 0)
1278 swap_list.head = swap_list.next = p - swap_info;
1279 else
1280 swap_info[prev].next = p - swap_info;
1281 nr_swap_pages += p->pages;
1282 total_swap_pages += p->pages;
1283 p->flags |= SWP_WRITEOK;
1284 spin_unlock(&swap_lock);
1285 goto out_dput;
1288 /* wait for any unplug function to finish */
1289 down_write(&swap_unplug_sem);
1290 up_write(&swap_unplug_sem);
1292 destroy_swap_extents(p);
1293 mutex_lock(&swapon_mutex);
1294 spin_lock(&swap_lock);
1295 drain_mmlist();
1297 /* wait for anyone still in scan_swap_map */
1298 p->highest_bit = 0; /* cuts scans short */
1299 while (p->flags >= SWP_SCANNING) {
1300 spin_unlock(&swap_lock);
1301 schedule_timeout_uninterruptible(1);
1302 spin_lock(&swap_lock);
1305 swap_file = p->swap_file;
1306 p->swap_file = NULL;
1307 p->max = 0;
1308 swap_map = p->swap_map;
1309 p->swap_map = NULL;
1310 p->flags = 0;
1311 spin_unlock(&swap_lock);
1312 mutex_unlock(&swapon_mutex);
1313 vfree(swap_map);
1314 inode = mapping->host;
1315 if (S_ISBLK(inode->i_mode)) {
1316 struct block_device *bdev = I_BDEV(inode);
1317 set_blocksize(bdev, p->old_block_size);
1318 bd_release(bdev);
1319 } else {
1320 mutex_lock(&inode->i_mutex);
1321 inode->i_flags &= ~S_SWAPFILE;
1322 mutex_unlock(&inode->i_mutex);
1324 filp_close(swap_file, NULL);
1325 err = 0;
1327 out_dput:
1328 filp_close(victim, NULL);
1329 out:
1330 return err;
1333 #ifdef CONFIG_PROC_FS
1334 /* iterator */
1335 static void *swap_start(struct seq_file *swap, loff_t *pos)
1337 struct swap_info_struct *ptr = swap_info;
1338 int i;
1339 loff_t l = *pos;
1341 mutex_lock(&swapon_mutex);
1343 if (!l)
1344 return SEQ_START_TOKEN;
1346 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1347 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1348 continue;
1349 if (!--l)
1350 return ptr;
1353 return NULL;
1356 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1358 struct swap_info_struct *ptr;
1359 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1361 if (v == SEQ_START_TOKEN)
1362 ptr = swap_info;
1363 else {
1364 ptr = v;
1365 ptr++;
1368 for (; ptr < endptr; ptr++) {
1369 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1370 continue;
1371 ++*pos;
1372 return ptr;
1375 return NULL;
1378 static void swap_stop(struct seq_file *swap, void *v)
1380 mutex_unlock(&swapon_mutex);
1383 static int swap_show(struct seq_file *swap, void *v)
1385 struct swap_info_struct *ptr = v;
1386 struct file *file;
1387 int len;
1389 if (ptr == SEQ_START_TOKEN) {
1390 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1391 return 0;
1394 file = ptr->swap_file;
1395 len = seq_path(swap, &file->f_path, " \t\n\\");
1396 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1397 len < 40 ? 40 - len : 1, " ",
1398 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1399 "partition" : "file\t",
1400 ptr->pages << (PAGE_SHIFT - 10),
1401 ptr->inuse_pages << (PAGE_SHIFT - 10),
1402 ptr->prio);
1403 return 0;
1406 static const struct seq_operations swaps_op = {
1407 .start = swap_start,
1408 .next = swap_next,
1409 .stop = swap_stop,
1410 .show = swap_show
1413 static int swaps_open(struct inode *inode, struct file *file)
1415 return seq_open(file, &swaps_op);
1418 static const struct file_operations proc_swaps_operations = {
1419 .open = swaps_open,
1420 .read = seq_read,
1421 .llseek = seq_lseek,
1422 .release = seq_release,
1425 static int __init procswaps_init(void)
1427 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1428 return 0;
1430 __initcall(procswaps_init);
1431 #endif /* CONFIG_PROC_FS */
1433 #ifdef MAX_SWAPFILES_CHECK
1434 static int __init max_swapfiles_check(void)
1436 MAX_SWAPFILES_CHECK();
1437 return 0;
1439 late_initcall(max_swapfiles_check);
1440 #endif
1443 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1445 * The swapon system call
1447 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1449 struct swap_info_struct * p;
1450 char *name = NULL;
1451 struct block_device *bdev = NULL;
1452 struct file *swap_file = NULL;
1453 struct address_space *mapping;
1454 unsigned int type;
1455 int i, prev;
1456 int error;
1457 union swap_header *swap_header = NULL;
1458 int swap_header_version;
1459 unsigned int nr_good_pages = 0;
1460 int nr_extents = 0;
1461 sector_t span;
1462 unsigned long maxpages = 1;
1463 int swapfilesize;
1464 unsigned short *swap_map = NULL;
1465 struct page *page = NULL;
1466 struct inode *inode = NULL;
1467 int did_down = 0;
1469 if (!capable(CAP_SYS_ADMIN))
1470 return -EPERM;
1471 spin_lock(&swap_lock);
1472 p = swap_info;
1473 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1474 if (!(p->flags & SWP_USED))
1475 break;
1476 error = -EPERM;
1477 if (type >= MAX_SWAPFILES) {
1478 spin_unlock(&swap_lock);
1479 goto out;
1481 if (type >= nr_swapfiles)
1482 nr_swapfiles = type+1;
1483 memset(p, 0, sizeof(*p));
1484 INIT_LIST_HEAD(&p->extent_list);
1485 p->flags = SWP_USED;
1486 p->next = -1;
1487 spin_unlock(&swap_lock);
1488 name = getname(specialfile);
1489 error = PTR_ERR(name);
1490 if (IS_ERR(name)) {
1491 name = NULL;
1492 goto bad_swap_2;
1494 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1495 error = PTR_ERR(swap_file);
1496 if (IS_ERR(swap_file)) {
1497 swap_file = NULL;
1498 goto bad_swap_2;
1501 p->swap_file = swap_file;
1502 mapping = swap_file->f_mapping;
1503 inode = mapping->host;
1505 error = -EBUSY;
1506 for (i = 0; i < nr_swapfiles; i++) {
1507 struct swap_info_struct *q = &swap_info[i];
1509 if (i == type || !q->swap_file)
1510 continue;
1511 if (mapping == q->swap_file->f_mapping)
1512 goto bad_swap;
1515 error = -EINVAL;
1516 if (S_ISBLK(inode->i_mode)) {
1517 bdev = I_BDEV(inode);
1518 error = bd_claim(bdev, sys_swapon);
1519 if (error < 0) {
1520 bdev = NULL;
1521 error = -EINVAL;
1522 goto bad_swap;
1524 p->old_block_size = block_size(bdev);
1525 error = set_blocksize(bdev, PAGE_SIZE);
1526 if (error < 0)
1527 goto bad_swap;
1528 p->bdev = bdev;
1529 } else if (S_ISREG(inode->i_mode)) {
1530 p->bdev = inode->i_sb->s_bdev;
1531 mutex_lock(&inode->i_mutex);
1532 did_down = 1;
1533 if (IS_SWAPFILE(inode)) {
1534 error = -EBUSY;
1535 goto bad_swap;
1537 } else {
1538 goto bad_swap;
1541 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1544 * Read the swap header.
1546 if (!mapping->a_ops->readpage) {
1547 error = -EINVAL;
1548 goto bad_swap;
1550 page = read_mapping_page(mapping, 0, swap_file);
1551 if (IS_ERR(page)) {
1552 error = PTR_ERR(page);
1553 goto bad_swap;
1555 kmap(page);
1556 swap_header = page_address(page);
1558 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1559 swap_header_version = 1;
1560 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1561 swap_header_version = 2;
1562 else {
1563 printk(KERN_ERR "Unable to find swap-space signature\n");
1564 error = -EINVAL;
1565 goto bad_swap;
1568 switch (swap_header_version) {
1569 case 1:
1570 printk(KERN_ERR "version 0 swap is no longer supported. "
1571 "Use mkswap -v1 %s\n", name);
1572 error = -EINVAL;
1573 goto bad_swap;
1574 case 2:
1575 /* swap partition endianess hack... */
1576 if (swab32(swap_header->info.version) == 1) {
1577 swab32s(&swap_header->info.version);
1578 swab32s(&swap_header->info.last_page);
1579 swab32s(&swap_header->info.nr_badpages);
1580 for (i = 0; i < swap_header->info.nr_badpages; i++)
1581 swab32s(&swap_header->info.badpages[i]);
1583 /* Check the swap header's sub-version and the size of
1584 the swap file and bad block lists */
1585 if (swap_header->info.version != 1) {
1586 printk(KERN_WARNING
1587 "Unable to handle swap header version %d\n",
1588 swap_header->info.version);
1589 error = -EINVAL;
1590 goto bad_swap;
1593 p->lowest_bit = 1;
1594 p->cluster_next = 1;
1597 * Find out how many pages are allowed for a single swap
1598 * device. There are two limiting factors: 1) the number of
1599 * bits for the swap offset in the swp_entry_t type and
1600 * 2) the number of bits in the a swap pte as defined by
1601 * the different architectures. In order to find the
1602 * largest possible bit mask a swap entry with swap type 0
1603 * and swap offset ~0UL is created, encoded to a swap pte,
1604 * decoded to a swp_entry_t again and finally the swap
1605 * offset is extracted. This will mask all the bits from
1606 * the initial ~0UL mask that can't be encoded in either
1607 * the swp_entry_t or the architecture definition of a
1608 * swap pte.
1610 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1611 if (maxpages > swap_header->info.last_page)
1612 maxpages = swap_header->info.last_page;
1613 p->highest_bit = maxpages - 1;
1615 error = -EINVAL;
1616 if (!maxpages)
1617 goto bad_swap;
1618 if (swapfilesize && maxpages > swapfilesize) {
1619 printk(KERN_WARNING
1620 "Swap area shorter than signature indicates\n");
1621 goto bad_swap;
1623 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1624 goto bad_swap;
1625 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1626 goto bad_swap;
1628 /* OK, set up the swap map and apply the bad block list */
1629 swap_map = vmalloc(maxpages * sizeof(short));
1630 if (!swap_map) {
1631 error = -ENOMEM;
1632 goto bad_swap;
1635 error = 0;
1636 memset(swap_map, 0, maxpages * sizeof(short));
1637 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1638 int page_nr = swap_header->info.badpages[i];
1639 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1640 error = -EINVAL;
1641 else
1642 swap_map[page_nr] = SWAP_MAP_BAD;
1644 nr_good_pages = swap_header->info.last_page -
1645 swap_header->info.nr_badpages -
1646 1 /* header page */;
1647 if (error)
1648 goto bad_swap;
1651 if (nr_good_pages) {
1652 swap_map[0] = SWAP_MAP_BAD;
1653 p->max = maxpages;
1654 p->pages = nr_good_pages;
1655 nr_extents = setup_swap_extents(p, &span);
1656 if (nr_extents < 0) {
1657 error = nr_extents;
1658 goto bad_swap;
1660 nr_good_pages = p->pages;
1662 if (!nr_good_pages) {
1663 printk(KERN_WARNING "Empty swap-file\n");
1664 error = -EINVAL;
1665 goto bad_swap;
1668 mutex_lock(&swapon_mutex);
1669 spin_lock(&swap_lock);
1670 if (swap_flags & SWAP_FLAG_PREFER)
1671 p->prio =
1672 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1673 else
1674 p->prio = --least_priority;
1675 p->swap_map = swap_map;
1676 p->flags = SWP_ACTIVE;
1677 nr_swap_pages += nr_good_pages;
1678 total_swap_pages += nr_good_pages;
1680 printk(KERN_INFO "Adding %uk swap on %s. "
1681 "Priority:%d extents:%d across:%lluk\n",
1682 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1683 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1685 /* insert swap space into swap_list: */
1686 prev = -1;
1687 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1688 if (p->prio >= swap_info[i].prio) {
1689 break;
1691 prev = i;
1693 p->next = i;
1694 if (prev < 0) {
1695 swap_list.head = swap_list.next = p - swap_info;
1696 } else {
1697 swap_info[prev].next = p - swap_info;
1699 spin_unlock(&swap_lock);
1700 mutex_unlock(&swapon_mutex);
1701 error = 0;
1702 goto out;
1703 bad_swap:
1704 if (bdev) {
1705 set_blocksize(bdev, p->old_block_size);
1706 bd_release(bdev);
1708 destroy_swap_extents(p);
1709 bad_swap_2:
1710 spin_lock(&swap_lock);
1711 p->swap_file = NULL;
1712 p->flags = 0;
1713 spin_unlock(&swap_lock);
1714 vfree(swap_map);
1715 if (swap_file)
1716 filp_close(swap_file, NULL);
1717 out:
1718 if (page && !IS_ERR(page)) {
1719 kunmap(page);
1720 page_cache_release(page);
1722 if (name)
1723 putname(name);
1724 if (did_down) {
1725 if (!error)
1726 inode->i_flags |= S_SWAPFILE;
1727 mutex_unlock(&inode->i_mutex);
1729 return error;
1732 void si_swapinfo(struct sysinfo *val)
1734 unsigned int i;
1735 unsigned long nr_to_be_unused = 0;
1737 spin_lock(&swap_lock);
1738 for (i = 0; i < nr_swapfiles; i++) {
1739 if (!(swap_info[i].flags & SWP_USED) ||
1740 (swap_info[i].flags & SWP_WRITEOK))
1741 continue;
1742 nr_to_be_unused += swap_info[i].inuse_pages;
1744 val->freeswap = nr_swap_pages + nr_to_be_unused;
1745 val->totalswap = total_swap_pages + nr_to_be_unused;
1746 spin_unlock(&swap_lock);
1750 * Verify that a swap entry is valid and increment its swap map count.
1752 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1753 * "permanent", but will be reclaimed by the next swapoff.
1755 int swap_duplicate(swp_entry_t entry)
1757 struct swap_info_struct * p;
1758 unsigned long offset, type;
1759 int result = 0;
1761 if (is_migration_entry(entry))
1762 return 1;
1764 type = swp_type(entry);
1765 if (type >= nr_swapfiles)
1766 goto bad_file;
1767 p = type + swap_info;
1768 offset = swp_offset(entry);
1770 spin_lock(&swap_lock);
1771 if (offset < p->max && p->swap_map[offset]) {
1772 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1773 p->swap_map[offset]++;
1774 result = 1;
1775 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1776 if (swap_overflow++ < 5)
1777 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1778 p->swap_map[offset] = SWAP_MAP_MAX;
1779 result = 1;
1782 spin_unlock(&swap_lock);
1783 out:
1784 return result;
1786 bad_file:
1787 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1788 goto out;
1791 struct swap_info_struct *
1792 get_swap_info_struct(unsigned type)
1794 return &swap_info[type];
1798 * swap_lock prevents swap_map being freed. Don't grab an extra
1799 * reference on the swaphandle, it doesn't matter if it becomes unused.
1801 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1803 struct swap_info_struct *si;
1804 int our_page_cluster = page_cluster;
1805 pgoff_t target, toff;
1806 pgoff_t base, end;
1807 int nr_pages = 0;
1809 if (!our_page_cluster) /* no readahead */
1810 return 0;
1812 si = &swap_info[swp_type(entry)];
1813 target = swp_offset(entry);
1814 base = (target >> our_page_cluster) << our_page_cluster;
1815 end = base + (1 << our_page_cluster);
1816 if (!base) /* first page is swap header */
1817 base++;
1819 spin_lock(&swap_lock);
1820 if (end > si->max) /* don't go beyond end of map */
1821 end = si->max;
1823 /* Count contiguous allocated slots above our target */
1824 for (toff = target; ++toff < end; nr_pages++) {
1825 /* Don't read in free or bad pages */
1826 if (!si->swap_map[toff])
1827 break;
1828 if (si->swap_map[toff] == SWAP_MAP_BAD)
1829 break;
1831 /* Count contiguous allocated slots below our target */
1832 for (toff = target; --toff >= base; nr_pages++) {
1833 /* Don't read in free or bad pages */
1834 if (!si->swap_map[toff])
1835 break;
1836 if (si->swap_map[toff] == SWAP_MAP_BAD)
1837 break;
1839 spin_unlock(&swap_lock);
1842 * Indicate starting offset, and return number of pages to get:
1843 * if only 1, say 0, since there's then no readahead to be done.
1845 *offset = ++toff;
1846 return nr_pages? ++nr_pages: 0;