Btrfs: change how we unpin extents
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / disk-io.c
blobc658397c7473ce194fc9ec8c01c054013dbef09b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
46 * end_io_wq structs are used to do processing in task context when an IO is
47 * complete. This is used during reads to verify checksums, and it is used
48 * by writes to insert metadata for new file extents after IO is complete.
50 struct end_io_wq {
51 struct bio *bio;
52 bio_end_io_t *end_io;
53 void *private;
54 struct btrfs_fs_info *info;
55 int error;
56 int metadata;
57 struct list_head list;
58 struct btrfs_work work;
62 * async submit bios are used to offload expensive checksumming
63 * onto the worker threads. They checksum file and metadata bios
64 * just before they are sent down the IO stack.
66 struct async_submit_bio {
67 struct inode *inode;
68 struct bio *bio;
69 struct list_head list;
70 extent_submit_bio_hook_t *submit_bio_start;
71 extent_submit_bio_hook_t *submit_bio_done;
72 int rw;
73 int mirror_num;
74 unsigned long bio_flags;
75 struct btrfs_work work;
78 /* These are used to set the lockdep class on the extent buffer locks.
79 * The class is set by the readpage_end_io_hook after the buffer has
80 * passed csum validation but before the pages are unlocked.
82 * The lockdep class is also set by btrfs_init_new_buffer on freshly
83 * allocated blocks.
85 * The class is based on the level in the tree block, which allows lockdep
86 * to know that lower nodes nest inside the locks of higher nodes.
88 * We also add a check to make sure the highest level of the tree is
89 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
90 * code needs update as well.
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 # if BTRFS_MAX_LEVEL != 8
94 # error
95 # endif
96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
98 /* leaf */
99 "btrfs-extent-00",
100 "btrfs-extent-01",
101 "btrfs-extent-02",
102 "btrfs-extent-03",
103 "btrfs-extent-04",
104 "btrfs-extent-05",
105 "btrfs-extent-06",
106 "btrfs-extent-07",
107 /* highest possible level */
108 "btrfs-extent-08",
110 #endif
113 * extents on the btree inode are pretty simple, there's one extent
114 * that covers the entire device
116 static struct extent_map *btree_get_extent(struct inode *inode,
117 struct page *page, size_t page_offset, u64 start, u64 len,
118 int create)
120 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
121 struct extent_map *em;
122 int ret;
124 spin_lock(&em_tree->lock);
125 em = lookup_extent_mapping(em_tree, start, len);
126 if (em) {
127 em->bdev =
128 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
129 spin_unlock(&em_tree->lock);
130 goto out;
132 spin_unlock(&em_tree->lock);
134 em = alloc_extent_map(GFP_NOFS);
135 if (!em) {
136 em = ERR_PTR(-ENOMEM);
137 goto out;
139 em->start = 0;
140 em->len = (u64)-1;
141 em->block_len = (u64)-1;
142 em->block_start = 0;
143 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145 spin_lock(&em_tree->lock);
146 ret = add_extent_mapping(em_tree, em);
147 if (ret == -EEXIST) {
148 u64 failed_start = em->start;
149 u64 failed_len = em->len;
151 free_extent_map(em);
152 em = lookup_extent_mapping(em_tree, start, len);
153 if (em) {
154 ret = 0;
155 } else {
156 em = lookup_extent_mapping(em_tree, failed_start,
157 failed_len);
158 ret = -EIO;
160 } else if (ret) {
161 free_extent_map(em);
162 em = NULL;
164 spin_unlock(&em_tree->lock);
166 if (ret)
167 em = ERR_PTR(ret);
168 out:
169 return em;
172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 return crc32c(seed, data, len);
177 void btrfs_csum_final(u32 crc, char *result)
179 *(__le32 *)result = ~cpu_to_le32(crc);
183 * compute the csum for a btree block, and either verify it or write it
184 * into the csum field of the block.
186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
187 int verify)
189 u16 csum_size =
190 btrfs_super_csum_size(&root->fs_info->super_copy);
191 char *result = NULL;
192 unsigned long len;
193 unsigned long cur_len;
194 unsigned long offset = BTRFS_CSUM_SIZE;
195 char *map_token = NULL;
196 char *kaddr;
197 unsigned long map_start;
198 unsigned long map_len;
199 int err;
200 u32 crc = ~(u32)0;
201 unsigned long inline_result;
203 len = buf->len - offset;
204 while (len > 0) {
205 err = map_private_extent_buffer(buf, offset, 32,
206 &map_token, &kaddr,
207 &map_start, &map_len, KM_USER0);
208 if (err)
209 return 1;
210 cur_len = min(len, map_len - (offset - map_start));
211 crc = btrfs_csum_data(root, kaddr + offset - map_start,
212 crc, cur_len);
213 len -= cur_len;
214 offset += cur_len;
215 unmap_extent_buffer(buf, map_token, KM_USER0);
217 if (csum_size > sizeof(inline_result)) {
218 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
219 if (!result)
220 return 1;
221 } else {
222 result = (char *)&inline_result;
225 btrfs_csum_final(crc, result);
227 if (verify) {
228 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
229 u32 val;
230 u32 found = 0;
231 memcpy(&found, result, csum_size);
233 read_extent_buffer(buf, &val, 0, csum_size);
234 if (printk_ratelimit()) {
235 printk(KERN_INFO "btrfs: %s checksum verify "
236 "failed on %llu wanted %X found %X "
237 "level %d\n",
238 root->fs_info->sb->s_id,
239 (unsigned long long)buf->start, val, found,
240 btrfs_header_level(buf));
242 if (result != (char *)&inline_result)
243 kfree(result);
244 return 1;
246 } else {
247 write_extent_buffer(buf, result, 0, csum_size);
249 if (result != (char *)&inline_result)
250 kfree(result);
251 return 0;
255 * we can't consider a given block up to date unless the transid of the
256 * block matches the transid in the parent node's pointer. This is how we
257 * detect blocks that either didn't get written at all or got written
258 * in the wrong place.
260 static int verify_parent_transid(struct extent_io_tree *io_tree,
261 struct extent_buffer *eb, u64 parent_transid)
263 int ret;
265 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
266 return 0;
268 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
269 if (extent_buffer_uptodate(io_tree, eb) &&
270 btrfs_header_generation(eb) == parent_transid) {
271 ret = 0;
272 goto out;
274 if (printk_ratelimit()) {
275 printk("parent transid verify failed on %llu wanted %llu "
276 "found %llu\n",
277 (unsigned long long)eb->start,
278 (unsigned long long)parent_transid,
279 (unsigned long long)btrfs_header_generation(eb));
281 ret = 1;
282 clear_extent_buffer_uptodate(io_tree, eb);
283 out:
284 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
285 GFP_NOFS);
286 return ret;
290 * helper to read a given tree block, doing retries as required when
291 * the checksums don't match and we have alternate mirrors to try.
293 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
294 struct extent_buffer *eb,
295 u64 start, u64 parent_transid)
297 struct extent_io_tree *io_tree;
298 int ret;
299 int num_copies = 0;
300 int mirror_num = 0;
302 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
303 while (1) {
304 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
305 btree_get_extent, mirror_num);
306 if (!ret &&
307 !verify_parent_transid(io_tree, eb, parent_transid))
308 return ret;
310 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
311 eb->start, eb->len);
312 if (num_copies == 1)
313 return ret;
315 mirror_num++;
316 if (mirror_num > num_copies)
317 return ret;
319 return -EIO;
323 * checksum a dirty tree block before IO. This has extra checks to make sure
324 * we only fill in the checksum field in the first page of a multi-page block
327 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
329 struct extent_io_tree *tree;
330 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
331 u64 found_start;
332 int found_level;
333 unsigned long len;
334 struct extent_buffer *eb;
335 int ret;
337 tree = &BTRFS_I(page->mapping->host)->io_tree;
339 if (page->private == EXTENT_PAGE_PRIVATE)
340 goto out;
341 if (!page->private)
342 goto out;
343 len = page->private >> 2;
344 WARN_ON(len == 0);
346 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
347 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
348 btrfs_header_generation(eb));
349 BUG_ON(ret);
350 found_start = btrfs_header_bytenr(eb);
351 if (found_start != start) {
352 WARN_ON(1);
353 goto err;
355 if (eb->first_page != page) {
356 WARN_ON(1);
357 goto err;
359 if (!PageUptodate(page)) {
360 WARN_ON(1);
361 goto err;
363 found_level = btrfs_header_level(eb);
365 csum_tree_block(root, eb, 0);
366 err:
367 free_extent_buffer(eb);
368 out:
369 return 0;
372 static int check_tree_block_fsid(struct btrfs_root *root,
373 struct extent_buffer *eb)
375 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
376 u8 fsid[BTRFS_UUID_SIZE];
377 int ret = 1;
379 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
380 BTRFS_FSID_SIZE);
381 while (fs_devices) {
382 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
383 ret = 0;
384 break;
386 fs_devices = fs_devices->seed;
388 return ret;
391 #ifdef CONFIG_DEBUG_LOCK_ALLOC
392 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
394 lockdep_set_class_and_name(&eb->lock,
395 &btrfs_eb_class[level],
396 btrfs_eb_name[level]);
398 #endif
400 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
401 struct extent_state *state)
403 struct extent_io_tree *tree;
404 u64 found_start;
405 int found_level;
406 unsigned long len;
407 struct extent_buffer *eb;
408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
409 int ret = 0;
411 tree = &BTRFS_I(page->mapping->host)->io_tree;
412 if (page->private == EXTENT_PAGE_PRIVATE)
413 goto out;
414 if (!page->private)
415 goto out;
417 len = page->private >> 2;
418 WARN_ON(len == 0);
420 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
422 found_start = btrfs_header_bytenr(eb);
423 if (found_start != start) {
424 if (printk_ratelimit()) {
425 printk(KERN_INFO "btrfs bad tree block start "
426 "%llu %llu\n",
427 (unsigned long long)found_start,
428 (unsigned long long)eb->start);
430 ret = -EIO;
431 goto err;
433 if (eb->first_page != page) {
434 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
435 eb->first_page->index, page->index);
436 WARN_ON(1);
437 ret = -EIO;
438 goto err;
440 if (check_tree_block_fsid(root, eb)) {
441 if (printk_ratelimit()) {
442 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
443 (unsigned long long)eb->start);
445 ret = -EIO;
446 goto err;
448 found_level = btrfs_header_level(eb);
450 btrfs_set_buffer_lockdep_class(eb, found_level);
452 ret = csum_tree_block(root, eb, 1);
453 if (ret)
454 ret = -EIO;
456 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
457 end = eb->start + end - 1;
458 err:
459 free_extent_buffer(eb);
460 out:
461 return ret;
464 static void end_workqueue_bio(struct bio *bio, int err)
466 struct end_io_wq *end_io_wq = bio->bi_private;
467 struct btrfs_fs_info *fs_info;
469 fs_info = end_io_wq->info;
470 end_io_wq->error = err;
471 end_io_wq->work.func = end_workqueue_fn;
472 end_io_wq->work.flags = 0;
474 if (bio->bi_rw & (1 << BIO_RW)) {
475 if (end_io_wq->metadata)
476 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
477 &end_io_wq->work);
478 else
479 btrfs_queue_worker(&fs_info->endio_write_workers,
480 &end_io_wq->work);
481 } else {
482 if (end_io_wq->metadata)
483 btrfs_queue_worker(&fs_info->endio_meta_workers,
484 &end_io_wq->work);
485 else
486 btrfs_queue_worker(&fs_info->endio_workers,
487 &end_io_wq->work);
491 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
492 int metadata)
494 struct end_io_wq *end_io_wq;
495 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
496 if (!end_io_wq)
497 return -ENOMEM;
499 end_io_wq->private = bio->bi_private;
500 end_io_wq->end_io = bio->bi_end_io;
501 end_io_wq->info = info;
502 end_io_wq->error = 0;
503 end_io_wq->bio = bio;
504 end_io_wq->metadata = metadata;
506 bio->bi_private = end_io_wq;
507 bio->bi_end_io = end_workqueue_bio;
508 return 0;
511 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
513 unsigned long limit = min_t(unsigned long,
514 info->workers.max_workers,
515 info->fs_devices->open_devices);
516 return 256 * limit;
519 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
521 return atomic_read(&info->nr_async_bios) >
522 btrfs_async_submit_limit(info);
525 static void run_one_async_start(struct btrfs_work *work)
527 struct btrfs_fs_info *fs_info;
528 struct async_submit_bio *async;
530 async = container_of(work, struct async_submit_bio, work);
531 fs_info = BTRFS_I(async->inode)->root->fs_info;
532 async->submit_bio_start(async->inode, async->rw, async->bio,
533 async->mirror_num, async->bio_flags);
536 static void run_one_async_done(struct btrfs_work *work)
538 struct btrfs_fs_info *fs_info;
539 struct async_submit_bio *async;
540 int limit;
542 async = container_of(work, struct async_submit_bio, work);
543 fs_info = BTRFS_I(async->inode)->root->fs_info;
545 limit = btrfs_async_submit_limit(fs_info);
546 limit = limit * 2 / 3;
548 atomic_dec(&fs_info->nr_async_submits);
550 if (atomic_read(&fs_info->nr_async_submits) < limit &&
551 waitqueue_active(&fs_info->async_submit_wait))
552 wake_up(&fs_info->async_submit_wait);
554 async->submit_bio_done(async->inode, async->rw, async->bio,
555 async->mirror_num, async->bio_flags);
558 static void run_one_async_free(struct btrfs_work *work)
560 struct async_submit_bio *async;
562 async = container_of(work, struct async_submit_bio, work);
563 kfree(async);
566 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
567 int rw, struct bio *bio, int mirror_num,
568 unsigned long bio_flags,
569 extent_submit_bio_hook_t *submit_bio_start,
570 extent_submit_bio_hook_t *submit_bio_done)
572 struct async_submit_bio *async;
574 async = kmalloc(sizeof(*async), GFP_NOFS);
575 if (!async)
576 return -ENOMEM;
578 async->inode = inode;
579 async->rw = rw;
580 async->bio = bio;
581 async->mirror_num = mirror_num;
582 async->submit_bio_start = submit_bio_start;
583 async->submit_bio_done = submit_bio_done;
585 async->work.func = run_one_async_start;
586 async->work.ordered_func = run_one_async_done;
587 async->work.ordered_free = run_one_async_free;
589 async->work.flags = 0;
590 async->bio_flags = bio_flags;
592 atomic_inc(&fs_info->nr_async_submits);
594 if (rw & (1 << BIO_RW_SYNCIO))
595 btrfs_set_work_high_prio(&async->work);
597 btrfs_queue_worker(&fs_info->workers, &async->work);
599 while (atomic_read(&fs_info->async_submit_draining) &&
600 atomic_read(&fs_info->nr_async_submits)) {
601 wait_event(fs_info->async_submit_wait,
602 (atomic_read(&fs_info->nr_async_submits) == 0));
605 return 0;
608 static int btree_csum_one_bio(struct bio *bio)
610 struct bio_vec *bvec = bio->bi_io_vec;
611 int bio_index = 0;
612 struct btrfs_root *root;
614 WARN_ON(bio->bi_vcnt <= 0);
615 while (bio_index < bio->bi_vcnt) {
616 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
617 csum_dirty_buffer(root, bvec->bv_page);
618 bio_index++;
619 bvec++;
621 return 0;
624 static int __btree_submit_bio_start(struct inode *inode, int rw,
625 struct bio *bio, int mirror_num,
626 unsigned long bio_flags)
629 * when we're called for a write, we're already in the async
630 * submission context. Just jump into btrfs_map_bio
632 btree_csum_one_bio(bio);
633 return 0;
636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
637 int mirror_num, unsigned long bio_flags)
640 * when we're called for a write, we're already in the async
641 * submission context. Just jump into btrfs_map_bio
643 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
647 int mirror_num, unsigned long bio_flags)
649 int ret;
651 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
652 bio, 1);
653 BUG_ON(ret);
655 if (!(rw & (1 << BIO_RW))) {
657 * called for a read, do the setup so that checksum validation
658 * can happen in the async kernel threads
660 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
661 mirror_num, 0);
665 * kthread helpers are used to submit writes so that checksumming
666 * can happen in parallel across all CPUs
668 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
669 inode, rw, bio, mirror_num, 0,
670 __btree_submit_bio_start,
671 __btree_submit_bio_done);
674 static int btree_writepage(struct page *page, struct writeback_control *wbc)
676 struct extent_io_tree *tree;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678 struct extent_buffer *eb;
679 int was_dirty;
681 tree = &BTRFS_I(page->mapping->host)->io_tree;
682 if (!(current->flags & PF_MEMALLOC)) {
683 return extent_write_full_page(tree, page,
684 btree_get_extent, wbc);
687 redirty_page_for_writepage(wbc, page);
688 eb = btrfs_find_tree_block(root, page_offset(page),
689 PAGE_CACHE_SIZE);
690 WARN_ON(!eb);
692 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
693 if (!was_dirty) {
694 spin_lock(&root->fs_info->delalloc_lock);
695 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
696 spin_unlock(&root->fs_info->delalloc_lock);
698 free_extent_buffer(eb);
700 unlock_page(page);
701 return 0;
704 static int btree_writepages(struct address_space *mapping,
705 struct writeback_control *wbc)
707 struct extent_io_tree *tree;
708 tree = &BTRFS_I(mapping->host)->io_tree;
709 if (wbc->sync_mode == WB_SYNC_NONE) {
710 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
711 u64 num_dirty;
712 unsigned long thresh = 32 * 1024 * 1024;
714 if (wbc->for_kupdate)
715 return 0;
717 /* this is a bit racy, but that's ok */
718 num_dirty = root->fs_info->dirty_metadata_bytes;
719 if (num_dirty < thresh)
720 return 0;
722 return extent_writepages(tree, mapping, btree_get_extent, wbc);
725 static int btree_readpage(struct file *file, struct page *page)
727 struct extent_io_tree *tree;
728 tree = &BTRFS_I(page->mapping->host)->io_tree;
729 return extent_read_full_page(tree, page, btree_get_extent);
732 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
734 struct extent_io_tree *tree;
735 struct extent_map_tree *map;
736 int ret;
738 if (PageWriteback(page) || PageDirty(page))
739 return 0;
741 tree = &BTRFS_I(page->mapping->host)->io_tree;
742 map = &BTRFS_I(page->mapping->host)->extent_tree;
744 ret = try_release_extent_state(map, tree, page, gfp_flags);
745 if (!ret)
746 return 0;
748 ret = try_release_extent_buffer(tree, page);
749 if (ret == 1) {
750 ClearPagePrivate(page);
751 set_page_private(page, 0);
752 page_cache_release(page);
755 return ret;
758 static void btree_invalidatepage(struct page *page, unsigned long offset)
760 struct extent_io_tree *tree;
761 tree = &BTRFS_I(page->mapping->host)->io_tree;
762 extent_invalidatepage(tree, page, offset);
763 btree_releasepage(page, GFP_NOFS);
764 if (PagePrivate(page)) {
765 printk(KERN_WARNING "btrfs warning page private not zero "
766 "on page %llu\n", (unsigned long long)page_offset(page));
767 ClearPagePrivate(page);
768 set_page_private(page, 0);
769 page_cache_release(page);
773 static struct address_space_operations btree_aops = {
774 .readpage = btree_readpage,
775 .writepage = btree_writepage,
776 .writepages = btree_writepages,
777 .releasepage = btree_releasepage,
778 .invalidatepage = btree_invalidatepage,
779 .sync_page = block_sync_page,
782 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
783 u64 parent_transid)
785 struct extent_buffer *buf = NULL;
786 struct inode *btree_inode = root->fs_info->btree_inode;
787 int ret = 0;
789 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
790 if (!buf)
791 return 0;
792 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
793 buf, 0, 0, btree_get_extent, 0);
794 free_extent_buffer(buf);
795 return ret;
798 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
799 u64 bytenr, u32 blocksize)
801 struct inode *btree_inode = root->fs_info->btree_inode;
802 struct extent_buffer *eb;
803 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
804 bytenr, blocksize, GFP_NOFS);
805 return eb;
808 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
809 u64 bytenr, u32 blocksize)
811 struct inode *btree_inode = root->fs_info->btree_inode;
812 struct extent_buffer *eb;
814 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
815 bytenr, blocksize, NULL, GFP_NOFS);
816 return eb;
820 int btrfs_write_tree_block(struct extent_buffer *buf)
822 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
823 buf->start + buf->len - 1, WB_SYNC_ALL);
826 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
828 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
829 buf->start, buf->start + buf->len - 1);
832 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
833 u32 blocksize, u64 parent_transid)
835 struct extent_buffer *buf = NULL;
836 struct inode *btree_inode = root->fs_info->btree_inode;
837 struct extent_io_tree *io_tree;
838 int ret;
840 io_tree = &BTRFS_I(btree_inode)->io_tree;
842 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
843 if (!buf)
844 return NULL;
846 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
848 if (ret == 0)
849 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
850 return buf;
854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
855 struct extent_buffer *buf)
857 struct inode *btree_inode = root->fs_info->btree_inode;
858 if (btrfs_header_generation(buf) ==
859 root->fs_info->running_transaction->transid) {
860 btrfs_assert_tree_locked(buf);
862 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
863 spin_lock(&root->fs_info->delalloc_lock);
864 if (root->fs_info->dirty_metadata_bytes >= buf->len)
865 root->fs_info->dirty_metadata_bytes -= buf->len;
866 else
867 WARN_ON(1);
868 spin_unlock(&root->fs_info->delalloc_lock);
871 /* ugh, clear_extent_buffer_dirty needs to lock the page */
872 btrfs_set_lock_blocking(buf);
873 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
874 buf);
876 return 0;
879 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
880 u32 stripesize, struct btrfs_root *root,
881 struct btrfs_fs_info *fs_info,
882 u64 objectid)
884 root->node = NULL;
885 root->commit_root = NULL;
886 root->sectorsize = sectorsize;
887 root->nodesize = nodesize;
888 root->leafsize = leafsize;
889 root->stripesize = stripesize;
890 root->ref_cows = 0;
891 root->track_dirty = 0;
893 root->fs_info = fs_info;
894 root->objectid = objectid;
895 root->last_trans = 0;
896 root->highest_inode = 0;
897 root->last_inode_alloc = 0;
898 root->name = NULL;
899 root->in_sysfs = 0;
900 root->inode_tree.rb_node = NULL;
902 INIT_LIST_HEAD(&root->dirty_list);
903 INIT_LIST_HEAD(&root->orphan_list);
904 INIT_LIST_HEAD(&root->root_list);
905 spin_lock_init(&root->node_lock);
906 spin_lock_init(&root->list_lock);
907 spin_lock_init(&root->inode_lock);
908 mutex_init(&root->objectid_mutex);
909 mutex_init(&root->log_mutex);
910 init_rwsem(&root->commit_root_sem);
911 init_waitqueue_head(&root->log_writer_wait);
912 init_waitqueue_head(&root->log_commit_wait[0]);
913 init_waitqueue_head(&root->log_commit_wait[1]);
914 atomic_set(&root->log_commit[0], 0);
915 atomic_set(&root->log_commit[1], 0);
916 atomic_set(&root->log_writers, 0);
917 root->log_batch = 0;
918 root->log_transid = 0;
919 extent_io_tree_init(&root->dirty_log_pages,
920 fs_info->btree_inode->i_mapping, GFP_NOFS);
922 memset(&root->root_key, 0, sizeof(root->root_key));
923 memset(&root->root_item, 0, sizeof(root->root_item));
924 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
925 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
926 root->defrag_trans_start = fs_info->generation;
927 init_completion(&root->kobj_unregister);
928 root->defrag_running = 0;
929 root->defrag_level = 0;
930 root->root_key.objectid = objectid;
931 root->anon_super.s_root = NULL;
932 root->anon_super.s_dev = 0;
933 INIT_LIST_HEAD(&root->anon_super.s_list);
934 INIT_LIST_HEAD(&root->anon_super.s_instances);
935 init_rwsem(&root->anon_super.s_umount);
937 return 0;
940 static int find_and_setup_root(struct btrfs_root *tree_root,
941 struct btrfs_fs_info *fs_info,
942 u64 objectid,
943 struct btrfs_root *root)
945 int ret;
946 u32 blocksize;
947 u64 generation;
949 __setup_root(tree_root->nodesize, tree_root->leafsize,
950 tree_root->sectorsize, tree_root->stripesize,
951 root, fs_info, objectid);
952 ret = btrfs_find_last_root(tree_root, objectid,
953 &root->root_item, &root->root_key);
954 BUG_ON(ret);
956 generation = btrfs_root_generation(&root->root_item);
957 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
958 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
959 blocksize, generation);
960 root->commit_root = btrfs_root_node(root);
961 BUG_ON(!root->node);
962 return 0;
965 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
966 struct btrfs_fs_info *fs_info)
968 struct extent_buffer *eb;
969 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
970 u64 start = 0;
971 u64 end = 0;
972 int ret;
974 if (!log_root_tree)
975 return 0;
977 while (1) {
978 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
979 0, &start, &end, EXTENT_DIRTY);
980 if (ret)
981 break;
983 clear_extent_dirty(&log_root_tree->dirty_log_pages,
984 start, end, GFP_NOFS);
986 eb = fs_info->log_root_tree->node;
988 WARN_ON(btrfs_header_level(eb) != 0);
989 WARN_ON(btrfs_header_nritems(eb) != 0);
991 ret = btrfs_free_reserved_extent(fs_info->tree_root,
992 eb->start, eb->len);
993 BUG_ON(ret);
995 free_extent_buffer(eb);
996 kfree(fs_info->log_root_tree);
997 fs_info->log_root_tree = NULL;
998 return 0;
1001 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1002 struct btrfs_fs_info *fs_info)
1004 struct btrfs_root *root;
1005 struct btrfs_root *tree_root = fs_info->tree_root;
1006 struct extent_buffer *leaf;
1008 root = kzalloc(sizeof(*root), GFP_NOFS);
1009 if (!root)
1010 return ERR_PTR(-ENOMEM);
1012 __setup_root(tree_root->nodesize, tree_root->leafsize,
1013 tree_root->sectorsize, tree_root->stripesize,
1014 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1016 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1017 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1018 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1020 * log trees do not get reference counted because they go away
1021 * before a real commit is actually done. They do store pointers
1022 * to file data extents, and those reference counts still get
1023 * updated (along with back refs to the log tree).
1025 root->ref_cows = 0;
1027 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1028 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1029 if (IS_ERR(leaf)) {
1030 kfree(root);
1031 return ERR_CAST(leaf);
1034 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1035 btrfs_set_header_bytenr(leaf, leaf->start);
1036 btrfs_set_header_generation(leaf, trans->transid);
1037 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1038 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1039 root->node = leaf;
1041 write_extent_buffer(root->node, root->fs_info->fsid,
1042 (unsigned long)btrfs_header_fsid(root->node),
1043 BTRFS_FSID_SIZE);
1044 btrfs_mark_buffer_dirty(root->node);
1045 btrfs_tree_unlock(root->node);
1046 return root;
1049 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1050 struct btrfs_fs_info *fs_info)
1052 struct btrfs_root *log_root;
1054 log_root = alloc_log_tree(trans, fs_info);
1055 if (IS_ERR(log_root))
1056 return PTR_ERR(log_root);
1057 WARN_ON(fs_info->log_root_tree);
1058 fs_info->log_root_tree = log_root;
1059 return 0;
1062 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root)
1065 struct btrfs_root *log_root;
1066 struct btrfs_inode_item *inode_item;
1068 log_root = alloc_log_tree(trans, root->fs_info);
1069 if (IS_ERR(log_root))
1070 return PTR_ERR(log_root);
1072 log_root->last_trans = trans->transid;
1073 log_root->root_key.offset = root->root_key.objectid;
1075 inode_item = &log_root->root_item.inode;
1076 inode_item->generation = cpu_to_le64(1);
1077 inode_item->size = cpu_to_le64(3);
1078 inode_item->nlink = cpu_to_le32(1);
1079 inode_item->nbytes = cpu_to_le64(root->leafsize);
1080 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1082 btrfs_set_root_node(&log_root->root_item, log_root->node);
1084 WARN_ON(root->log_root);
1085 root->log_root = log_root;
1086 root->log_transid = 0;
1087 return 0;
1090 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1091 struct btrfs_key *location)
1093 struct btrfs_root *root;
1094 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1095 struct btrfs_path *path;
1096 struct extent_buffer *l;
1097 u64 highest_inode;
1098 u64 generation;
1099 u32 blocksize;
1100 int ret = 0;
1102 root = kzalloc(sizeof(*root), GFP_NOFS);
1103 if (!root)
1104 return ERR_PTR(-ENOMEM);
1105 if (location->offset == (u64)-1) {
1106 ret = find_and_setup_root(tree_root, fs_info,
1107 location->objectid, root);
1108 if (ret) {
1109 kfree(root);
1110 return ERR_PTR(ret);
1112 goto insert;
1115 __setup_root(tree_root->nodesize, tree_root->leafsize,
1116 tree_root->sectorsize, tree_root->stripesize,
1117 root, fs_info, location->objectid);
1119 path = btrfs_alloc_path();
1120 BUG_ON(!path);
1121 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1122 if (ret != 0) {
1123 if (ret > 0)
1124 ret = -ENOENT;
1125 goto out;
1127 l = path->nodes[0];
1128 read_extent_buffer(l, &root->root_item,
1129 btrfs_item_ptr_offset(l, path->slots[0]),
1130 sizeof(root->root_item));
1131 memcpy(&root->root_key, location, sizeof(*location));
1132 ret = 0;
1133 out:
1134 btrfs_release_path(root, path);
1135 btrfs_free_path(path);
1136 if (ret) {
1137 kfree(root);
1138 return ERR_PTR(ret);
1140 generation = btrfs_root_generation(&root->root_item);
1141 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1142 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1143 blocksize, generation);
1144 root->commit_root = btrfs_root_node(root);
1145 BUG_ON(!root->node);
1146 insert:
1147 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1148 root->ref_cows = 1;
1149 ret = btrfs_find_highest_inode(root, &highest_inode);
1150 if (ret == 0) {
1151 root->highest_inode = highest_inode;
1152 root->last_inode_alloc = highest_inode;
1155 return root;
1158 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1159 u64 root_objectid)
1161 struct btrfs_root *root;
1163 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1164 return fs_info->tree_root;
1165 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1166 return fs_info->extent_root;
1168 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169 (unsigned long)root_objectid);
1170 return root;
1173 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1174 struct btrfs_key *location)
1176 struct btrfs_root *root;
1177 int ret;
1179 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1180 return fs_info->tree_root;
1181 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1182 return fs_info->extent_root;
1183 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1184 return fs_info->chunk_root;
1185 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1186 return fs_info->dev_root;
1187 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1188 return fs_info->csum_root;
1190 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1191 (unsigned long)location->objectid);
1192 if (root)
1193 return root;
1195 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1196 if (IS_ERR(root))
1197 return root;
1199 set_anon_super(&root->anon_super, NULL);
1201 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1202 (unsigned long)root->root_key.objectid,
1203 root);
1204 if (ret) {
1205 free_extent_buffer(root->node);
1206 kfree(root);
1207 return ERR_PTR(ret);
1209 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1210 ret = btrfs_find_dead_roots(fs_info->tree_root,
1211 root->root_key.objectid);
1212 BUG_ON(ret);
1213 btrfs_orphan_cleanup(root);
1215 return root;
1218 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1219 struct btrfs_key *location,
1220 const char *name, int namelen)
1222 struct btrfs_root *root;
1223 int ret;
1225 root = btrfs_read_fs_root_no_name(fs_info, location);
1226 if (!root)
1227 return NULL;
1229 if (root->in_sysfs)
1230 return root;
1232 ret = btrfs_set_root_name(root, name, namelen);
1233 if (ret) {
1234 free_extent_buffer(root->node);
1235 kfree(root);
1236 return ERR_PTR(ret);
1238 #if 0
1239 ret = btrfs_sysfs_add_root(root);
1240 if (ret) {
1241 free_extent_buffer(root->node);
1242 kfree(root->name);
1243 kfree(root);
1244 return ERR_PTR(ret);
1246 #endif
1247 root->in_sysfs = 1;
1248 return root;
1251 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1253 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1254 int ret = 0;
1255 struct btrfs_device *device;
1256 struct backing_dev_info *bdi;
1258 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1259 if (!device->bdev)
1260 continue;
1261 bdi = blk_get_backing_dev_info(device->bdev);
1262 if (bdi && bdi_congested(bdi, bdi_bits)) {
1263 ret = 1;
1264 break;
1267 return ret;
1271 * this unplugs every device on the box, and it is only used when page
1272 * is null
1274 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1276 struct btrfs_device *device;
1277 struct btrfs_fs_info *info;
1279 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1280 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1281 if (!device->bdev)
1282 continue;
1284 bdi = blk_get_backing_dev_info(device->bdev);
1285 if (bdi->unplug_io_fn)
1286 bdi->unplug_io_fn(bdi, page);
1290 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1292 struct inode *inode;
1293 struct extent_map_tree *em_tree;
1294 struct extent_map *em;
1295 struct address_space *mapping;
1296 u64 offset;
1298 /* the generic O_DIRECT read code does this */
1299 if (1 || !page) {
1300 __unplug_io_fn(bdi, page);
1301 return;
1305 * page->mapping may change at any time. Get a consistent copy
1306 * and use that for everything below
1308 smp_mb();
1309 mapping = page->mapping;
1310 if (!mapping)
1311 return;
1313 inode = mapping->host;
1316 * don't do the expensive searching for a small number of
1317 * devices
1319 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1320 __unplug_io_fn(bdi, page);
1321 return;
1324 offset = page_offset(page);
1326 em_tree = &BTRFS_I(inode)->extent_tree;
1327 spin_lock(&em_tree->lock);
1328 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1329 spin_unlock(&em_tree->lock);
1330 if (!em) {
1331 __unplug_io_fn(bdi, page);
1332 return;
1335 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1336 free_extent_map(em);
1337 __unplug_io_fn(bdi, page);
1338 return;
1340 offset = offset - em->start;
1341 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1342 em->block_start + offset, page);
1343 free_extent_map(em);
1346 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1348 bdi_init(bdi);
1349 bdi->ra_pages = default_backing_dev_info.ra_pages;
1350 bdi->state = 0;
1351 bdi->capabilities = default_backing_dev_info.capabilities;
1352 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1353 bdi->unplug_io_data = info;
1354 bdi->congested_fn = btrfs_congested_fn;
1355 bdi->congested_data = info;
1356 return 0;
1359 static int bio_ready_for_csum(struct bio *bio)
1361 u64 length = 0;
1362 u64 buf_len = 0;
1363 u64 start = 0;
1364 struct page *page;
1365 struct extent_io_tree *io_tree = NULL;
1366 struct btrfs_fs_info *info = NULL;
1367 struct bio_vec *bvec;
1368 int i;
1369 int ret;
1371 bio_for_each_segment(bvec, bio, i) {
1372 page = bvec->bv_page;
1373 if (page->private == EXTENT_PAGE_PRIVATE) {
1374 length += bvec->bv_len;
1375 continue;
1377 if (!page->private) {
1378 length += bvec->bv_len;
1379 continue;
1381 length = bvec->bv_len;
1382 buf_len = page->private >> 2;
1383 start = page_offset(page) + bvec->bv_offset;
1384 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1385 info = BTRFS_I(page->mapping->host)->root->fs_info;
1387 /* are we fully contained in this bio? */
1388 if (buf_len <= length)
1389 return 1;
1391 ret = extent_range_uptodate(io_tree, start + length,
1392 start + buf_len - 1);
1393 return ret;
1397 * called by the kthread helper functions to finally call the bio end_io
1398 * functions. This is where read checksum verification actually happens
1400 static void end_workqueue_fn(struct btrfs_work *work)
1402 struct bio *bio;
1403 struct end_io_wq *end_io_wq;
1404 struct btrfs_fs_info *fs_info;
1405 int error;
1407 end_io_wq = container_of(work, struct end_io_wq, work);
1408 bio = end_io_wq->bio;
1409 fs_info = end_io_wq->info;
1411 /* metadata bio reads are special because the whole tree block must
1412 * be checksummed at once. This makes sure the entire block is in
1413 * ram and up to date before trying to verify things. For
1414 * blocksize <= pagesize, it is basically a noop
1416 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1417 !bio_ready_for_csum(bio)) {
1418 btrfs_queue_worker(&fs_info->endio_meta_workers,
1419 &end_io_wq->work);
1420 return;
1422 error = end_io_wq->error;
1423 bio->bi_private = end_io_wq->private;
1424 bio->bi_end_io = end_io_wq->end_io;
1425 kfree(end_io_wq);
1426 bio_endio(bio, error);
1429 static int cleaner_kthread(void *arg)
1431 struct btrfs_root *root = arg;
1433 do {
1434 smp_mb();
1435 if (root->fs_info->closing)
1436 break;
1438 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1439 mutex_lock(&root->fs_info->cleaner_mutex);
1440 btrfs_clean_old_snapshots(root);
1441 mutex_unlock(&root->fs_info->cleaner_mutex);
1443 if (freezing(current)) {
1444 refrigerator();
1445 } else {
1446 smp_mb();
1447 if (root->fs_info->closing)
1448 break;
1449 set_current_state(TASK_INTERRUPTIBLE);
1450 schedule();
1451 __set_current_state(TASK_RUNNING);
1453 } while (!kthread_should_stop());
1454 return 0;
1457 static int transaction_kthread(void *arg)
1459 struct btrfs_root *root = arg;
1460 struct btrfs_trans_handle *trans;
1461 struct btrfs_transaction *cur;
1462 unsigned long now;
1463 unsigned long delay;
1464 int ret;
1466 do {
1467 smp_mb();
1468 if (root->fs_info->closing)
1469 break;
1471 delay = HZ * 30;
1472 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1473 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1475 mutex_lock(&root->fs_info->trans_mutex);
1476 cur = root->fs_info->running_transaction;
1477 if (!cur) {
1478 mutex_unlock(&root->fs_info->trans_mutex);
1479 goto sleep;
1482 now = get_seconds();
1483 if (now < cur->start_time || now - cur->start_time < 30) {
1484 mutex_unlock(&root->fs_info->trans_mutex);
1485 delay = HZ * 5;
1486 goto sleep;
1488 mutex_unlock(&root->fs_info->trans_mutex);
1489 trans = btrfs_start_transaction(root, 1);
1490 ret = btrfs_commit_transaction(trans, root);
1492 sleep:
1493 wake_up_process(root->fs_info->cleaner_kthread);
1494 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1496 if (freezing(current)) {
1497 refrigerator();
1498 } else {
1499 if (root->fs_info->closing)
1500 break;
1501 set_current_state(TASK_INTERRUPTIBLE);
1502 schedule_timeout(delay);
1503 __set_current_state(TASK_RUNNING);
1505 } while (!kthread_should_stop());
1506 return 0;
1509 struct btrfs_root *open_ctree(struct super_block *sb,
1510 struct btrfs_fs_devices *fs_devices,
1511 char *options)
1513 u32 sectorsize;
1514 u32 nodesize;
1515 u32 leafsize;
1516 u32 blocksize;
1517 u32 stripesize;
1518 u64 generation;
1519 u64 features;
1520 struct btrfs_key location;
1521 struct buffer_head *bh;
1522 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1523 GFP_NOFS);
1524 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1525 GFP_NOFS);
1526 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1527 GFP_NOFS);
1528 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1529 GFP_NOFS);
1530 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1531 GFP_NOFS);
1532 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1533 GFP_NOFS);
1534 struct btrfs_root *log_tree_root;
1536 int ret;
1537 int err = -EINVAL;
1539 struct btrfs_super_block *disk_super;
1541 if (!extent_root || !tree_root || !fs_info ||
1542 !chunk_root || !dev_root || !csum_root) {
1543 err = -ENOMEM;
1544 goto fail;
1546 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1547 INIT_LIST_HEAD(&fs_info->trans_list);
1548 INIT_LIST_HEAD(&fs_info->dead_roots);
1549 INIT_LIST_HEAD(&fs_info->hashers);
1550 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1551 INIT_LIST_HEAD(&fs_info->ordered_operations);
1552 spin_lock_init(&fs_info->delalloc_lock);
1553 spin_lock_init(&fs_info->new_trans_lock);
1554 spin_lock_init(&fs_info->ref_cache_lock);
1556 init_completion(&fs_info->kobj_unregister);
1557 fs_info->tree_root = tree_root;
1558 fs_info->extent_root = extent_root;
1559 fs_info->csum_root = csum_root;
1560 fs_info->chunk_root = chunk_root;
1561 fs_info->dev_root = dev_root;
1562 fs_info->fs_devices = fs_devices;
1563 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1564 INIT_LIST_HEAD(&fs_info->space_info);
1565 btrfs_mapping_init(&fs_info->mapping_tree);
1566 atomic_set(&fs_info->nr_async_submits, 0);
1567 atomic_set(&fs_info->async_delalloc_pages, 0);
1568 atomic_set(&fs_info->async_submit_draining, 0);
1569 atomic_set(&fs_info->nr_async_bios, 0);
1570 fs_info->sb = sb;
1571 fs_info->max_extent = (u64)-1;
1572 fs_info->max_inline = 8192 * 1024;
1573 setup_bdi(fs_info, &fs_info->bdi);
1574 fs_info->btree_inode = new_inode(sb);
1575 fs_info->btree_inode->i_ino = 1;
1576 fs_info->btree_inode->i_nlink = 1;
1577 fs_info->metadata_ratio = 8;
1579 fs_info->thread_pool_size = min_t(unsigned long,
1580 num_online_cpus() + 2, 8);
1582 INIT_LIST_HEAD(&fs_info->ordered_extents);
1583 spin_lock_init(&fs_info->ordered_extent_lock);
1585 sb->s_blocksize = 4096;
1586 sb->s_blocksize_bits = blksize_bits(4096);
1589 * we set the i_size on the btree inode to the max possible int.
1590 * the real end of the address space is determined by all of
1591 * the devices in the system
1593 fs_info->btree_inode->i_size = OFFSET_MAX;
1594 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1595 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1597 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1598 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1599 fs_info->btree_inode->i_mapping,
1600 GFP_NOFS);
1601 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1602 GFP_NOFS);
1604 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1606 spin_lock_init(&fs_info->block_group_cache_lock);
1607 fs_info->block_group_cache_tree.rb_node = NULL;
1609 extent_io_tree_init(&fs_info->pinned_extents,
1610 fs_info->btree_inode->i_mapping, GFP_NOFS);
1611 fs_info->do_barriers = 1;
1613 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1614 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1615 sizeof(struct btrfs_key));
1616 insert_inode_hash(fs_info->btree_inode);
1618 mutex_init(&fs_info->trans_mutex);
1619 mutex_init(&fs_info->ordered_operations_mutex);
1620 mutex_init(&fs_info->tree_log_mutex);
1621 mutex_init(&fs_info->drop_mutex);
1622 mutex_init(&fs_info->chunk_mutex);
1623 mutex_init(&fs_info->transaction_kthread_mutex);
1624 mutex_init(&fs_info->cleaner_mutex);
1625 mutex_init(&fs_info->volume_mutex);
1626 mutex_init(&fs_info->tree_reloc_mutex);
1628 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1629 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1631 init_waitqueue_head(&fs_info->transaction_throttle);
1632 init_waitqueue_head(&fs_info->transaction_wait);
1633 init_waitqueue_head(&fs_info->async_submit_wait);
1635 __setup_root(4096, 4096, 4096, 4096, tree_root,
1636 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1639 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1640 if (!bh)
1641 goto fail_iput;
1643 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1644 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1645 sizeof(fs_info->super_for_commit));
1646 brelse(bh);
1648 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1650 disk_super = &fs_info->super_copy;
1651 if (!btrfs_super_root(disk_super))
1652 goto fail_iput;
1654 ret = btrfs_parse_options(tree_root, options);
1655 if (ret) {
1656 err = ret;
1657 goto fail_iput;
1660 features = btrfs_super_incompat_flags(disk_super) &
1661 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1662 if (features) {
1663 printk(KERN_ERR "BTRFS: couldn't mount because of "
1664 "unsupported optional features (%Lx).\n",
1665 (unsigned long long)features);
1666 err = -EINVAL;
1667 goto fail_iput;
1670 features = btrfs_super_incompat_flags(disk_super);
1671 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1672 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1673 btrfs_set_super_incompat_flags(disk_super, features);
1676 features = btrfs_super_compat_ro_flags(disk_super) &
1677 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1678 if (!(sb->s_flags & MS_RDONLY) && features) {
1679 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1680 "unsupported option features (%Lx).\n",
1681 (unsigned long long)features);
1682 err = -EINVAL;
1683 goto fail_iput;
1687 * we need to start all the end_io workers up front because the
1688 * queue work function gets called at interrupt time, and so it
1689 * cannot dynamically grow.
1691 btrfs_init_workers(&fs_info->workers, "worker",
1692 fs_info->thread_pool_size);
1694 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1695 fs_info->thread_pool_size);
1697 btrfs_init_workers(&fs_info->submit_workers, "submit",
1698 min_t(u64, fs_devices->num_devices,
1699 fs_info->thread_pool_size));
1701 /* a higher idle thresh on the submit workers makes it much more
1702 * likely that bios will be send down in a sane order to the
1703 * devices
1705 fs_info->submit_workers.idle_thresh = 64;
1707 fs_info->workers.idle_thresh = 16;
1708 fs_info->workers.ordered = 1;
1710 fs_info->delalloc_workers.idle_thresh = 2;
1711 fs_info->delalloc_workers.ordered = 1;
1713 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1714 btrfs_init_workers(&fs_info->endio_workers, "endio",
1715 fs_info->thread_pool_size);
1716 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1717 fs_info->thread_pool_size);
1718 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1719 "endio-meta-write", fs_info->thread_pool_size);
1720 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1721 fs_info->thread_pool_size);
1724 * endios are largely parallel and should have a very
1725 * low idle thresh
1727 fs_info->endio_workers.idle_thresh = 4;
1728 fs_info->endio_meta_workers.idle_thresh = 4;
1730 fs_info->endio_write_workers.idle_thresh = 64;
1731 fs_info->endio_meta_write_workers.idle_thresh = 64;
1733 btrfs_start_workers(&fs_info->workers, 1);
1734 btrfs_start_workers(&fs_info->submit_workers, 1);
1735 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1736 btrfs_start_workers(&fs_info->fixup_workers, 1);
1737 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1738 btrfs_start_workers(&fs_info->endio_meta_workers,
1739 fs_info->thread_pool_size);
1740 btrfs_start_workers(&fs_info->endio_meta_write_workers,
1741 fs_info->thread_pool_size);
1742 btrfs_start_workers(&fs_info->endio_write_workers,
1743 fs_info->thread_pool_size);
1745 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1746 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1747 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1749 nodesize = btrfs_super_nodesize(disk_super);
1750 leafsize = btrfs_super_leafsize(disk_super);
1751 sectorsize = btrfs_super_sectorsize(disk_super);
1752 stripesize = btrfs_super_stripesize(disk_super);
1753 tree_root->nodesize = nodesize;
1754 tree_root->leafsize = leafsize;
1755 tree_root->sectorsize = sectorsize;
1756 tree_root->stripesize = stripesize;
1758 sb->s_blocksize = sectorsize;
1759 sb->s_blocksize_bits = blksize_bits(sectorsize);
1761 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1762 sizeof(disk_super->magic))) {
1763 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1764 goto fail_sb_buffer;
1767 mutex_lock(&fs_info->chunk_mutex);
1768 ret = btrfs_read_sys_array(tree_root);
1769 mutex_unlock(&fs_info->chunk_mutex);
1770 if (ret) {
1771 printk(KERN_WARNING "btrfs: failed to read the system "
1772 "array on %s\n", sb->s_id);
1773 goto fail_sb_buffer;
1776 blocksize = btrfs_level_size(tree_root,
1777 btrfs_super_chunk_root_level(disk_super));
1778 generation = btrfs_super_chunk_root_generation(disk_super);
1780 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1781 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1783 chunk_root->node = read_tree_block(chunk_root,
1784 btrfs_super_chunk_root(disk_super),
1785 blocksize, generation);
1786 BUG_ON(!chunk_root->node);
1787 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1788 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1789 sb->s_id);
1790 goto fail_chunk_root;
1792 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1793 chunk_root->commit_root = btrfs_root_node(chunk_root);
1795 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1796 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1797 BTRFS_UUID_SIZE);
1799 mutex_lock(&fs_info->chunk_mutex);
1800 ret = btrfs_read_chunk_tree(chunk_root);
1801 mutex_unlock(&fs_info->chunk_mutex);
1802 if (ret) {
1803 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1804 sb->s_id);
1805 goto fail_chunk_root;
1808 btrfs_close_extra_devices(fs_devices);
1810 blocksize = btrfs_level_size(tree_root,
1811 btrfs_super_root_level(disk_super));
1812 generation = btrfs_super_generation(disk_super);
1814 tree_root->node = read_tree_block(tree_root,
1815 btrfs_super_root(disk_super),
1816 blocksize, generation);
1817 if (!tree_root->node)
1818 goto fail_chunk_root;
1819 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1820 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1821 sb->s_id);
1822 goto fail_tree_root;
1824 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1825 tree_root->commit_root = btrfs_root_node(tree_root);
1827 ret = find_and_setup_root(tree_root, fs_info,
1828 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1829 if (ret)
1830 goto fail_tree_root;
1831 extent_root->track_dirty = 1;
1833 ret = find_and_setup_root(tree_root, fs_info,
1834 BTRFS_DEV_TREE_OBJECTID, dev_root);
1835 if (ret)
1836 goto fail_extent_root;
1837 dev_root->track_dirty = 1;
1839 ret = find_and_setup_root(tree_root, fs_info,
1840 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1841 if (ret)
1842 goto fail_dev_root;
1844 csum_root->track_dirty = 1;
1846 btrfs_read_block_groups(extent_root);
1848 fs_info->generation = generation;
1849 fs_info->last_trans_committed = generation;
1850 fs_info->data_alloc_profile = (u64)-1;
1851 fs_info->metadata_alloc_profile = (u64)-1;
1852 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1853 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1854 "btrfs-cleaner");
1855 if (IS_ERR(fs_info->cleaner_kthread))
1856 goto fail_csum_root;
1858 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1859 tree_root,
1860 "btrfs-transaction");
1861 if (IS_ERR(fs_info->transaction_kthread))
1862 goto fail_cleaner;
1864 if (!btrfs_test_opt(tree_root, SSD) &&
1865 !btrfs_test_opt(tree_root, NOSSD) &&
1866 !fs_info->fs_devices->rotating) {
1867 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1868 "mode\n");
1869 btrfs_set_opt(fs_info->mount_opt, SSD);
1872 if (btrfs_super_log_root(disk_super) != 0) {
1873 u64 bytenr = btrfs_super_log_root(disk_super);
1875 if (fs_devices->rw_devices == 0) {
1876 printk(KERN_WARNING "Btrfs log replay required "
1877 "on RO media\n");
1878 err = -EIO;
1879 goto fail_trans_kthread;
1881 blocksize =
1882 btrfs_level_size(tree_root,
1883 btrfs_super_log_root_level(disk_super));
1885 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1886 GFP_NOFS);
1888 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1889 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1891 log_tree_root->node = read_tree_block(tree_root, bytenr,
1892 blocksize,
1893 generation + 1);
1894 ret = btrfs_recover_log_trees(log_tree_root);
1895 BUG_ON(ret);
1897 if (sb->s_flags & MS_RDONLY) {
1898 ret = btrfs_commit_super(tree_root);
1899 BUG_ON(ret);
1903 if (!(sb->s_flags & MS_RDONLY)) {
1904 ret = btrfs_recover_relocation(tree_root);
1905 BUG_ON(ret);
1908 location.objectid = BTRFS_FS_TREE_OBJECTID;
1909 location.type = BTRFS_ROOT_ITEM_KEY;
1910 location.offset = (u64)-1;
1912 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1913 if (!fs_info->fs_root)
1914 goto fail_trans_kthread;
1916 return tree_root;
1918 fail_trans_kthread:
1919 kthread_stop(fs_info->transaction_kthread);
1920 fail_cleaner:
1921 kthread_stop(fs_info->cleaner_kthread);
1924 * make sure we're done with the btree inode before we stop our
1925 * kthreads
1927 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1928 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1930 fail_csum_root:
1931 free_extent_buffer(csum_root->node);
1932 free_extent_buffer(csum_root->commit_root);
1933 fail_dev_root:
1934 free_extent_buffer(dev_root->node);
1935 free_extent_buffer(dev_root->commit_root);
1936 fail_extent_root:
1937 free_extent_buffer(extent_root->node);
1938 free_extent_buffer(extent_root->commit_root);
1939 fail_tree_root:
1940 free_extent_buffer(tree_root->node);
1941 free_extent_buffer(tree_root->commit_root);
1942 fail_chunk_root:
1943 free_extent_buffer(chunk_root->node);
1944 free_extent_buffer(chunk_root->commit_root);
1945 fail_sb_buffer:
1946 btrfs_stop_workers(&fs_info->fixup_workers);
1947 btrfs_stop_workers(&fs_info->delalloc_workers);
1948 btrfs_stop_workers(&fs_info->workers);
1949 btrfs_stop_workers(&fs_info->endio_workers);
1950 btrfs_stop_workers(&fs_info->endio_meta_workers);
1951 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1952 btrfs_stop_workers(&fs_info->endio_write_workers);
1953 btrfs_stop_workers(&fs_info->submit_workers);
1954 fail_iput:
1955 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1956 iput(fs_info->btree_inode);
1958 btrfs_close_devices(fs_info->fs_devices);
1959 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1960 bdi_destroy(&fs_info->bdi);
1962 fail:
1963 kfree(extent_root);
1964 kfree(tree_root);
1965 kfree(fs_info);
1966 kfree(chunk_root);
1967 kfree(dev_root);
1968 kfree(csum_root);
1969 return ERR_PTR(err);
1972 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1974 char b[BDEVNAME_SIZE];
1976 if (uptodate) {
1977 set_buffer_uptodate(bh);
1978 } else {
1979 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1980 printk(KERN_WARNING "lost page write due to "
1981 "I/O error on %s\n",
1982 bdevname(bh->b_bdev, b));
1984 /* note, we dont' set_buffer_write_io_error because we have
1985 * our own ways of dealing with the IO errors
1987 clear_buffer_uptodate(bh);
1989 unlock_buffer(bh);
1990 put_bh(bh);
1993 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1995 struct buffer_head *bh;
1996 struct buffer_head *latest = NULL;
1997 struct btrfs_super_block *super;
1998 int i;
1999 u64 transid = 0;
2000 u64 bytenr;
2002 /* we would like to check all the supers, but that would make
2003 * a btrfs mount succeed after a mkfs from a different FS.
2004 * So, we need to add a special mount option to scan for
2005 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2007 for (i = 0; i < 1; i++) {
2008 bytenr = btrfs_sb_offset(i);
2009 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2010 break;
2011 bh = __bread(bdev, bytenr / 4096, 4096);
2012 if (!bh)
2013 continue;
2015 super = (struct btrfs_super_block *)bh->b_data;
2016 if (btrfs_super_bytenr(super) != bytenr ||
2017 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2018 sizeof(super->magic))) {
2019 brelse(bh);
2020 continue;
2023 if (!latest || btrfs_super_generation(super) > transid) {
2024 brelse(latest);
2025 latest = bh;
2026 transid = btrfs_super_generation(super);
2027 } else {
2028 brelse(bh);
2031 return latest;
2035 * this should be called twice, once with wait == 0 and
2036 * once with wait == 1. When wait == 0 is done, all the buffer heads
2037 * we write are pinned.
2039 * They are released when wait == 1 is done.
2040 * max_mirrors must be the same for both runs, and it indicates how
2041 * many supers on this one device should be written.
2043 * max_mirrors == 0 means to write them all.
2045 static int write_dev_supers(struct btrfs_device *device,
2046 struct btrfs_super_block *sb,
2047 int do_barriers, int wait, int max_mirrors)
2049 struct buffer_head *bh;
2050 int i;
2051 int ret;
2052 int errors = 0;
2053 u32 crc;
2054 u64 bytenr;
2055 int last_barrier = 0;
2057 if (max_mirrors == 0)
2058 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2060 /* make sure only the last submit_bh does a barrier */
2061 if (do_barriers) {
2062 for (i = 0; i < max_mirrors; i++) {
2063 bytenr = btrfs_sb_offset(i);
2064 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2065 device->total_bytes)
2066 break;
2067 last_barrier = i;
2071 for (i = 0; i < max_mirrors; i++) {
2072 bytenr = btrfs_sb_offset(i);
2073 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2074 break;
2076 if (wait) {
2077 bh = __find_get_block(device->bdev, bytenr / 4096,
2078 BTRFS_SUPER_INFO_SIZE);
2079 BUG_ON(!bh);
2080 wait_on_buffer(bh);
2081 if (!buffer_uptodate(bh))
2082 errors++;
2084 /* drop our reference */
2085 brelse(bh);
2087 /* drop the reference from the wait == 0 run */
2088 brelse(bh);
2089 continue;
2090 } else {
2091 btrfs_set_super_bytenr(sb, bytenr);
2093 crc = ~(u32)0;
2094 crc = btrfs_csum_data(NULL, (char *)sb +
2095 BTRFS_CSUM_SIZE, crc,
2096 BTRFS_SUPER_INFO_SIZE -
2097 BTRFS_CSUM_SIZE);
2098 btrfs_csum_final(crc, sb->csum);
2101 * one reference for us, and we leave it for the
2102 * caller
2104 bh = __getblk(device->bdev, bytenr / 4096,
2105 BTRFS_SUPER_INFO_SIZE);
2106 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2108 /* one reference for submit_bh */
2109 get_bh(bh);
2111 set_buffer_uptodate(bh);
2112 lock_buffer(bh);
2113 bh->b_end_io = btrfs_end_buffer_write_sync;
2116 if (i == last_barrier && do_barriers && device->barriers) {
2117 ret = submit_bh(WRITE_BARRIER, bh);
2118 if (ret == -EOPNOTSUPP) {
2119 printk("btrfs: disabling barriers on dev %s\n",
2120 device->name);
2121 set_buffer_uptodate(bh);
2122 device->barriers = 0;
2123 /* one reference for submit_bh */
2124 get_bh(bh);
2125 lock_buffer(bh);
2126 ret = submit_bh(WRITE_SYNC, bh);
2128 } else {
2129 ret = submit_bh(WRITE_SYNC, bh);
2132 if (ret)
2133 errors++;
2135 return errors < i ? 0 : -1;
2138 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2140 struct list_head *head;
2141 struct btrfs_device *dev;
2142 struct btrfs_super_block *sb;
2143 struct btrfs_dev_item *dev_item;
2144 int ret;
2145 int do_barriers;
2146 int max_errors;
2147 int total_errors = 0;
2148 u64 flags;
2150 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2151 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2153 sb = &root->fs_info->super_for_commit;
2154 dev_item = &sb->dev_item;
2156 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2157 head = &root->fs_info->fs_devices->devices;
2158 list_for_each_entry(dev, head, dev_list) {
2159 if (!dev->bdev) {
2160 total_errors++;
2161 continue;
2163 if (!dev->in_fs_metadata || !dev->writeable)
2164 continue;
2166 btrfs_set_stack_device_generation(dev_item, 0);
2167 btrfs_set_stack_device_type(dev_item, dev->type);
2168 btrfs_set_stack_device_id(dev_item, dev->devid);
2169 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2170 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2171 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2172 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2173 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2174 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2175 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2177 flags = btrfs_super_flags(sb);
2178 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2180 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2181 if (ret)
2182 total_errors++;
2184 if (total_errors > max_errors) {
2185 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2186 total_errors);
2187 BUG();
2190 total_errors = 0;
2191 list_for_each_entry(dev, head, dev_list) {
2192 if (!dev->bdev)
2193 continue;
2194 if (!dev->in_fs_metadata || !dev->writeable)
2195 continue;
2197 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2198 if (ret)
2199 total_errors++;
2201 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2202 if (total_errors > max_errors) {
2203 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2204 total_errors);
2205 BUG();
2207 return 0;
2210 int write_ctree_super(struct btrfs_trans_handle *trans,
2211 struct btrfs_root *root, int max_mirrors)
2213 int ret;
2215 ret = write_all_supers(root, max_mirrors);
2216 return ret;
2219 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2221 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2222 radix_tree_delete(&fs_info->fs_roots_radix,
2223 (unsigned long)root->root_key.objectid);
2224 if (root->anon_super.s_dev) {
2225 down_write(&root->anon_super.s_umount);
2226 kill_anon_super(&root->anon_super);
2228 if (root->node)
2229 free_extent_buffer(root->node);
2230 if (root->commit_root)
2231 free_extent_buffer(root->commit_root);
2232 kfree(root->name);
2233 kfree(root);
2234 return 0;
2237 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2239 int ret;
2240 struct btrfs_root *gang[8];
2241 int i;
2243 while (1) {
2244 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2245 (void **)gang, 0,
2246 ARRAY_SIZE(gang));
2247 if (!ret)
2248 break;
2249 for (i = 0; i < ret; i++)
2250 btrfs_free_fs_root(fs_info, gang[i]);
2252 return 0;
2255 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2257 u64 root_objectid = 0;
2258 struct btrfs_root *gang[8];
2259 int i;
2260 int ret;
2262 while (1) {
2263 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2264 (void **)gang, root_objectid,
2265 ARRAY_SIZE(gang));
2266 if (!ret)
2267 break;
2269 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2270 for (i = 0; i < ret; i++) {
2271 root_objectid = gang[i]->root_key.objectid;
2272 ret = btrfs_find_dead_roots(fs_info->tree_root,
2273 root_objectid);
2274 BUG_ON(ret);
2275 btrfs_orphan_cleanup(gang[i]);
2277 root_objectid++;
2279 return 0;
2282 int btrfs_commit_super(struct btrfs_root *root)
2284 struct btrfs_trans_handle *trans;
2285 int ret;
2287 mutex_lock(&root->fs_info->cleaner_mutex);
2288 btrfs_clean_old_snapshots(root);
2289 mutex_unlock(&root->fs_info->cleaner_mutex);
2290 trans = btrfs_start_transaction(root, 1);
2291 ret = btrfs_commit_transaction(trans, root);
2292 BUG_ON(ret);
2293 /* run commit again to drop the original snapshot */
2294 trans = btrfs_start_transaction(root, 1);
2295 btrfs_commit_transaction(trans, root);
2296 ret = btrfs_write_and_wait_transaction(NULL, root);
2297 BUG_ON(ret);
2299 ret = write_ctree_super(NULL, root, 0);
2300 return ret;
2303 int close_ctree(struct btrfs_root *root)
2305 struct btrfs_fs_info *fs_info = root->fs_info;
2306 int ret;
2308 fs_info->closing = 1;
2309 smp_mb();
2311 kthread_stop(root->fs_info->transaction_kthread);
2312 kthread_stop(root->fs_info->cleaner_kthread);
2314 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2315 ret = btrfs_commit_super(root);
2316 if (ret)
2317 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2320 if (fs_info->delalloc_bytes) {
2321 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2322 (unsigned long long)fs_info->delalloc_bytes);
2324 if (fs_info->total_ref_cache_size) {
2325 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2326 (unsigned long long)fs_info->total_ref_cache_size);
2329 free_extent_buffer(fs_info->extent_root->node);
2330 free_extent_buffer(fs_info->extent_root->commit_root);
2331 free_extent_buffer(fs_info->tree_root->node);
2332 free_extent_buffer(fs_info->tree_root->commit_root);
2333 free_extent_buffer(root->fs_info->chunk_root->node);
2334 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2335 free_extent_buffer(root->fs_info->dev_root->node);
2336 free_extent_buffer(root->fs_info->dev_root->commit_root);
2337 free_extent_buffer(root->fs_info->csum_root->node);
2338 free_extent_buffer(root->fs_info->csum_root->commit_root);
2340 btrfs_free_block_groups(root->fs_info);
2341 btrfs_free_pinned_extents(root->fs_info);
2343 del_fs_roots(fs_info);
2345 iput(fs_info->btree_inode);
2347 btrfs_stop_workers(&fs_info->fixup_workers);
2348 btrfs_stop_workers(&fs_info->delalloc_workers);
2349 btrfs_stop_workers(&fs_info->workers);
2350 btrfs_stop_workers(&fs_info->endio_workers);
2351 btrfs_stop_workers(&fs_info->endio_meta_workers);
2352 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2353 btrfs_stop_workers(&fs_info->endio_write_workers);
2354 btrfs_stop_workers(&fs_info->submit_workers);
2356 btrfs_close_devices(fs_info->fs_devices);
2357 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2359 bdi_destroy(&fs_info->bdi);
2361 kfree(fs_info->extent_root);
2362 kfree(fs_info->tree_root);
2363 kfree(fs_info->chunk_root);
2364 kfree(fs_info->dev_root);
2365 kfree(fs_info->csum_root);
2366 return 0;
2369 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2371 int ret;
2372 struct inode *btree_inode = buf->first_page->mapping->host;
2374 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2375 if (!ret)
2376 return ret;
2378 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2379 parent_transid);
2380 return !ret;
2383 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2385 struct inode *btree_inode = buf->first_page->mapping->host;
2386 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2387 buf);
2390 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2392 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2393 u64 transid = btrfs_header_generation(buf);
2394 struct inode *btree_inode = root->fs_info->btree_inode;
2395 int was_dirty;
2397 btrfs_assert_tree_locked(buf);
2398 if (transid != root->fs_info->generation) {
2399 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2400 "found %llu running %llu\n",
2401 (unsigned long long)buf->start,
2402 (unsigned long long)transid,
2403 (unsigned long long)root->fs_info->generation);
2404 WARN_ON(1);
2406 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2407 buf);
2408 if (!was_dirty) {
2409 spin_lock(&root->fs_info->delalloc_lock);
2410 root->fs_info->dirty_metadata_bytes += buf->len;
2411 spin_unlock(&root->fs_info->delalloc_lock);
2415 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2418 * looks as though older kernels can get into trouble with
2419 * this code, they end up stuck in balance_dirty_pages forever
2421 u64 num_dirty;
2422 unsigned long thresh = 32 * 1024 * 1024;
2424 if (current->flags & PF_MEMALLOC)
2425 return;
2427 num_dirty = root->fs_info->dirty_metadata_bytes;
2429 if (num_dirty > thresh) {
2430 balance_dirty_pages_ratelimited_nr(
2431 root->fs_info->btree_inode->i_mapping, 1);
2433 return;
2436 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2438 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2439 int ret;
2440 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2441 if (ret == 0)
2442 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2443 return ret;
2446 int btree_lock_page_hook(struct page *page)
2448 struct inode *inode = page->mapping->host;
2449 struct btrfs_root *root = BTRFS_I(inode)->root;
2450 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2451 struct extent_buffer *eb;
2452 unsigned long len;
2453 u64 bytenr = page_offset(page);
2455 if (page->private == EXTENT_PAGE_PRIVATE)
2456 goto out;
2458 len = page->private >> 2;
2459 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2460 if (!eb)
2461 goto out;
2463 btrfs_tree_lock(eb);
2464 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2466 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2467 spin_lock(&root->fs_info->delalloc_lock);
2468 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2469 root->fs_info->dirty_metadata_bytes -= eb->len;
2470 else
2471 WARN_ON(1);
2472 spin_unlock(&root->fs_info->delalloc_lock);
2475 btrfs_tree_unlock(eb);
2476 free_extent_buffer(eb);
2477 out:
2478 lock_page(page);
2479 return 0;
2482 static struct extent_io_ops btree_extent_io_ops = {
2483 .write_cache_pages_lock_hook = btree_lock_page_hook,
2484 .readpage_end_io_hook = btree_readpage_end_io_hook,
2485 .submit_bio_hook = btree_submit_bio_hook,
2486 /* note we're sharing with inode.c for the merge bio hook */
2487 .merge_bio_hook = btrfs_merge_bio_hook,