4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly
;
59 static unsigned int i_hash_shift __read_mostly
;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use
);
74 LIST_HEAD(inode_unused
);
75 static struct hlist_head
*inode_hashtable __read_mostly
;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock
);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex
);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat
;
100 static struct kmem_cache
* inode_cachep __read_mostly
;
102 static struct inode
*alloc_inode(struct super_block
*sb
)
104 static const struct address_space_operations empty_aops
;
105 static struct inode_operations empty_iops
;
106 static const struct file_operations empty_fops
;
109 if (sb
->s_op
->alloc_inode
)
110 inode
= sb
->s_op
->alloc_inode(sb
);
112 inode
= (struct inode
*) kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
115 struct address_space
* const mapping
= &inode
->i_data
;
118 inode
->i_blkbits
= sb
->s_blocksize_bits
;
120 atomic_set(&inode
->i_count
, 1);
121 inode
->i_op
= &empty_iops
;
122 inode
->i_fop
= &empty_fops
;
124 atomic_set(&inode
->i_writecount
, 0);
128 inode
->i_generation
= 0;
130 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
132 inode
->i_pipe
= NULL
;
133 inode
->i_bdev
= NULL
;
134 inode
->i_cdev
= NULL
;
136 inode
->dirtied_when
= 0;
137 if (security_inode_alloc(inode
)) {
138 if (inode
->i_sb
->s_op
->destroy_inode
)
139 inode
->i_sb
->s_op
->destroy_inode(inode
);
141 kmem_cache_free(inode_cachep
, (inode
));
145 mapping
->a_ops
= &empty_aops
;
146 mapping
->host
= inode
;
148 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER
);
149 mapping
->assoc_mapping
= NULL
;
150 mapping
->backing_dev_info
= &default_backing_dev_info
;
153 * If the block_device provides a backing_dev_info for client
154 * inodes then use that. Otherwise the inode share the bdev's
158 struct backing_dev_info
*bdi
;
160 bdi
= sb
->s_bdev
->bd_inode_backing_dev_info
;
162 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
163 mapping
->backing_dev_info
= bdi
;
165 inode
->i_private
= NULL
;
166 inode
->i_mapping
= mapping
;
171 void destroy_inode(struct inode
*inode
)
173 BUG_ON(inode_has_buffers(inode
));
174 security_inode_free(inode
);
175 if (inode
->i_sb
->s_op
->destroy_inode
)
176 inode
->i_sb
->s_op
->destroy_inode(inode
);
178 kmem_cache_free(inode_cachep
, (inode
));
183 * These are initializations that only need to be done
184 * once, because the fields are idempotent across use
185 * of the inode, so let the slab aware of that.
187 void inode_init_once(struct inode
*inode
)
189 memset(inode
, 0, sizeof(*inode
));
190 INIT_HLIST_NODE(&inode
->i_hash
);
191 INIT_LIST_HEAD(&inode
->i_dentry
);
192 INIT_LIST_HEAD(&inode
->i_devices
);
193 mutex_init(&inode
->i_mutex
);
194 init_rwsem(&inode
->i_alloc_sem
);
195 INIT_RADIX_TREE(&inode
->i_data
.page_tree
, GFP_ATOMIC
);
196 rwlock_init(&inode
->i_data
.tree_lock
);
197 spin_lock_init(&inode
->i_data
.i_mmap_lock
);
198 INIT_LIST_HEAD(&inode
->i_data
.private_list
);
199 spin_lock_init(&inode
->i_data
.private_lock
);
200 INIT_RAW_PRIO_TREE_ROOT(&inode
->i_data
.i_mmap
);
201 INIT_LIST_HEAD(&inode
->i_data
.i_mmap_nonlinear
);
202 spin_lock_init(&inode
->i_lock
);
203 i_size_ordered_init(inode
);
204 #ifdef CONFIG_INOTIFY
205 INIT_LIST_HEAD(&inode
->inotify_watches
);
206 mutex_init(&inode
->inotify_mutex
);
210 EXPORT_SYMBOL(inode_init_once
);
212 static void init_once(void * foo
, struct kmem_cache
* cachep
, unsigned long flags
)
214 struct inode
* inode
= (struct inode
*) foo
;
216 if (flags
& SLAB_CTOR_CONSTRUCTOR
)
217 inode_init_once(inode
);
221 * inode_lock must be held
223 void __iget(struct inode
* inode
)
225 if (atomic_read(&inode
->i_count
)) {
226 atomic_inc(&inode
->i_count
);
229 atomic_inc(&inode
->i_count
);
230 if (!(inode
->i_state
& (I_DIRTY
|I_LOCK
)))
231 list_move(&inode
->i_list
, &inode_in_use
);
232 inodes_stat
.nr_unused
--;
236 * clear_inode - clear an inode
237 * @inode: inode to clear
239 * This is called by the filesystem to tell us
240 * that the inode is no longer useful. We just
241 * terminate it with extreme prejudice.
243 void clear_inode(struct inode
*inode
)
246 invalidate_inode_buffers(inode
);
248 BUG_ON(inode
->i_data
.nrpages
);
249 BUG_ON(!(inode
->i_state
& I_FREEING
));
250 BUG_ON(inode
->i_state
& I_CLEAR
);
251 wait_on_inode(inode
);
253 if (inode
->i_sb
->s_op
->clear_inode
)
254 inode
->i_sb
->s_op
->clear_inode(inode
);
255 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
257 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
259 inode
->i_state
= I_CLEAR
;
262 EXPORT_SYMBOL(clear_inode
);
265 * dispose_list - dispose of the contents of a local list
266 * @head: the head of the list to free
268 * Dispose-list gets a local list with local inodes in it, so it doesn't
269 * need to worry about list corruption and SMP locks.
271 static void dispose_list(struct list_head
*head
)
275 while (!list_empty(head
)) {
278 inode
= list_first_entry(head
, struct inode
, i_list
);
279 list_del(&inode
->i_list
);
281 if (inode
->i_data
.nrpages
)
282 truncate_inode_pages(&inode
->i_data
, 0);
285 spin_lock(&inode_lock
);
286 hlist_del_init(&inode
->i_hash
);
287 list_del_init(&inode
->i_sb_list
);
288 spin_unlock(&inode_lock
);
290 wake_up_inode(inode
);
291 destroy_inode(inode
);
294 spin_lock(&inode_lock
);
295 inodes_stat
.nr_inodes
-= nr_disposed
;
296 spin_unlock(&inode_lock
);
300 * Invalidate all inodes for a device.
302 static int invalidate_list(struct list_head
*head
, struct list_head
*dispose
)
304 struct list_head
*next
;
305 int busy
= 0, count
= 0;
309 struct list_head
* tmp
= next
;
310 struct inode
* inode
;
313 * We can reschedule here without worrying about the list's
314 * consistency because the per-sb list of inodes must not
315 * change during umount anymore, and because iprune_mutex keeps
316 * shrink_icache_memory() away.
318 cond_resched_lock(&inode_lock
);
323 inode
= list_entry(tmp
, struct inode
, i_sb_list
);
324 invalidate_inode_buffers(inode
);
325 if (!atomic_read(&inode
->i_count
)) {
326 list_move(&inode
->i_list
, dispose
);
327 inode
->i_state
|= I_FREEING
;
333 /* only unused inodes may be cached with i_count zero */
334 inodes_stat
.nr_unused
-= count
;
339 * invalidate_inodes - discard the inodes on a device
342 * Discard all of the inodes for a given superblock. If the discard
343 * fails because there are busy inodes then a non zero value is returned.
344 * If the discard is successful all the inodes have been discarded.
346 int invalidate_inodes(struct super_block
* sb
)
349 LIST_HEAD(throw_away
);
351 mutex_lock(&iprune_mutex
);
352 spin_lock(&inode_lock
);
353 inotify_unmount_inodes(&sb
->s_inodes
);
354 busy
= invalidate_list(&sb
->s_inodes
, &throw_away
);
355 spin_unlock(&inode_lock
);
357 dispose_list(&throw_away
);
358 mutex_unlock(&iprune_mutex
);
363 EXPORT_SYMBOL(invalidate_inodes
);
365 static int can_unuse(struct inode
*inode
)
369 if (inode_has_buffers(inode
))
371 if (atomic_read(&inode
->i_count
))
373 if (inode
->i_data
.nrpages
)
379 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
380 * a temporary list and then are freed outside inode_lock by dispose_list().
382 * Any inodes which are pinned purely because of attached pagecache have their
383 * pagecache removed. We expect the final iput() on that inode to add it to
384 * the front of the inode_unused list. So look for it there and if the
385 * inode is still freeable, proceed. The right inode is found 99.9% of the
386 * time in testing on a 4-way.
388 * If the inode has metadata buffers attached to mapping->private_list then
389 * try to remove them.
391 static void prune_icache(int nr_to_scan
)
396 unsigned long reap
= 0;
398 mutex_lock(&iprune_mutex
);
399 spin_lock(&inode_lock
);
400 for (nr_scanned
= 0; nr_scanned
< nr_to_scan
; nr_scanned
++) {
403 if (list_empty(&inode_unused
))
406 inode
= list_entry(inode_unused
.prev
, struct inode
, i_list
);
408 if (inode
->i_state
|| atomic_read(&inode
->i_count
)) {
409 list_move(&inode
->i_list
, &inode_unused
);
412 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
414 spin_unlock(&inode_lock
);
415 if (remove_inode_buffers(inode
))
416 reap
+= invalidate_mapping_pages(&inode
->i_data
,
419 spin_lock(&inode_lock
);
421 if (inode
!= list_entry(inode_unused
.next
,
422 struct inode
, i_list
))
423 continue; /* wrong inode or list_empty */
424 if (!can_unuse(inode
))
427 list_move(&inode
->i_list
, &freeable
);
428 inode
->i_state
|= I_FREEING
;
431 inodes_stat
.nr_unused
-= nr_pruned
;
432 if (current_is_kswapd())
433 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
435 __count_vm_events(PGINODESTEAL
, reap
);
436 spin_unlock(&inode_lock
);
438 dispose_list(&freeable
);
439 mutex_unlock(&iprune_mutex
);
443 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
444 * "unused" means that no dentries are referring to the inodes: the files are
445 * not open and the dcache references to those inodes have already been
448 * This function is passed the number of inodes to scan, and it returns the
449 * total number of remaining possibly-reclaimable inodes.
451 static int shrink_icache_memory(int nr
, gfp_t gfp_mask
)
455 * Nasty deadlock avoidance. We may hold various FS locks,
456 * and we don't want to recurse into the FS that called us
457 * in clear_inode() and friends..
459 if (!(gfp_mask
& __GFP_FS
))
463 return (inodes_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
466 static void __wait_on_freeing_inode(struct inode
*inode
);
468 * Called with the inode lock held.
469 * NOTE: we are not increasing the inode-refcount, you must call __iget()
470 * by hand after calling find_inode now! This simplifies iunique and won't
471 * add any additional branch in the common code.
473 static struct inode
* find_inode(struct super_block
* sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), void *data
)
475 struct hlist_node
*node
;
476 struct inode
* inode
= NULL
;
479 hlist_for_each (node
, head
) {
480 inode
= hlist_entry(node
, struct inode
, i_hash
);
481 if (inode
->i_sb
!= sb
)
483 if (!test(inode
, data
))
485 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
486 __wait_on_freeing_inode(inode
);
491 return node
? inode
: NULL
;
495 * find_inode_fast is the fast path version of find_inode, see the comment at
496 * iget_locked for details.
498 static struct inode
* find_inode_fast(struct super_block
* sb
, struct hlist_head
*head
, unsigned long ino
)
500 struct hlist_node
*node
;
501 struct inode
* inode
= NULL
;
504 hlist_for_each (node
, head
) {
505 inode
= hlist_entry(node
, struct inode
, i_hash
);
506 if (inode
->i_ino
!= ino
)
508 if (inode
->i_sb
!= sb
)
510 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
511 __wait_on_freeing_inode(inode
);
516 return node
? inode
: NULL
;
520 * new_inode - obtain an inode
523 * Allocates a new inode for given superblock.
525 struct inode
*new_inode(struct super_block
*sb
)
528 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
529 * error if st_ino won't fit in target struct field. Use 32bit counter
530 * here to attempt to avoid that.
532 static unsigned int last_ino
;
533 struct inode
* inode
;
535 spin_lock_prefetch(&inode_lock
);
537 inode
= alloc_inode(sb
);
539 spin_lock(&inode_lock
);
540 inodes_stat
.nr_inodes
++;
541 list_add(&inode
->i_list
, &inode_in_use
);
542 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
543 inode
->i_ino
= ++last_ino
;
545 spin_unlock(&inode_lock
);
550 EXPORT_SYMBOL(new_inode
);
552 void unlock_new_inode(struct inode
*inode
)
555 * This is special! We do not need the spinlock
556 * when clearing I_LOCK, because we're guaranteed
557 * that nobody else tries to do anything about the
558 * state of the inode when it is locked, as we
559 * just created it (so there can be no old holders
560 * that haven't tested I_LOCK).
562 inode
->i_state
&= ~(I_LOCK
|I_NEW
);
563 wake_up_inode(inode
);
566 EXPORT_SYMBOL(unlock_new_inode
);
569 * This is called without the inode lock held.. Be careful.
571 * We no longer cache the sb_flags in i_flags - see fs.h
572 * -- rmk@arm.uk.linux.org
574 static struct inode
* get_new_inode(struct super_block
*sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), int (*set
)(struct inode
*, void *), void *data
)
576 struct inode
* inode
;
578 inode
= alloc_inode(sb
);
582 spin_lock(&inode_lock
);
583 /* We released the lock, so.. */
584 old
= find_inode(sb
, head
, test
, data
);
586 if (set(inode
, data
))
589 inodes_stat
.nr_inodes
++;
590 list_add(&inode
->i_list
, &inode_in_use
);
591 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
592 hlist_add_head(&inode
->i_hash
, head
);
593 inode
->i_state
= I_LOCK
|I_NEW
;
594 spin_unlock(&inode_lock
);
596 /* Return the locked inode with I_NEW set, the
597 * caller is responsible for filling in the contents
603 * Uhhuh, somebody else created the same inode under
604 * us. Use the old inode instead of the one we just
608 spin_unlock(&inode_lock
);
609 destroy_inode(inode
);
611 wait_on_inode(inode
);
616 spin_unlock(&inode_lock
);
617 destroy_inode(inode
);
622 * get_new_inode_fast is the fast path version of get_new_inode, see the
623 * comment at iget_locked for details.
625 static struct inode
* get_new_inode_fast(struct super_block
*sb
, struct hlist_head
*head
, unsigned long ino
)
627 struct inode
* inode
;
629 inode
= alloc_inode(sb
);
633 spin_lock(&inode_lock
);
634 /* We released the lock, so.. */
635 old
= find_inode_fast(sb
, head
, ino
);
638 inodes_stat
.nr_inodes
++;
639 list_add(&inode
->i_list
, &inode_in_use
);
640 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
641 hlist_add_head(&inode
->i_hash
, head
);
642 inode
->i_state
= I_LOCK
|I_NEW
;
643 spin_unlock(&inode_lock
);
645 /* Return the locked inode with I_NEW set, the
646 * caller is responsible for filling in the contents
652 * Uhhuh, somebody else created the same inode under
653 * us. Use the old inode instead of the one we just
657 spin_unlock(&inode_lock
);
658 destroy_inode(inode
);
660 wait_on_inode(inode
);
665 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
669 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
671 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> I_HASHBITS
);
672 return tmp
& I_HASHMASK
;
676 * iunique - get a unique inode number
678 * @max_reserved: highest reserved inode number
680 * Obtain an inode number that is unique on the system for a given
681 * superblock. This is used by file systems that have no natural
682 * permanent inode numbering system. An inode number is returned that
683 * is higher than the reserved limit but unique.
686 * With a large number of inodes live on the file system this function
687 * currently becomes quite slow.
689 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
692 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
693 * error if st_ino won't fit in target struct field. Use 32bit counter
694 * here to attempt to avoid that.
696 static unsigned int counter
;
698 struct hlist_head
*head
;
701 spin_lock(&inode_lock
);
703 if (counter
<= max_reserved
)
704 counter
= max_reserved
+ 1;
706 head
= inode_hashtable
+ hash(sb
, res
);
707 inode
= find_inode_fast(sb
, head
, res
);
708 } while (inode
!= NULL
);
709 spin_unlock(&inode_lock
);
713 EXPORT_SYMBOL(iunique
);
715 struct inode
*igrab(struct inode
*inode
)
717 spin_lock(&inode_lock
);
718 if (!(inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)))
722 * Handle the case where s_op->clear_inode is not been
723 * called yet, and somebody is calling igrab
724 * while the inode is getting freed.
727 spin_unlock(&inode_lock
);
731 EXPORT_SYMBOL(igrab
);
734 * ifind - internal function, you want ilookup5() or iget5().
735 * @sb: super block of file system to search
736 * @head: the head of the list to search
737 * @test: callback used for comparisons between inodes
738 * @data: opaque data pointer to pass to @test
739 * @wait: if true wait for the inode to be unlocked, if false do not
741 * ifind() searches for the inode specified by @data in the inode
742 * cache. This is a generalized version of ifind_fast() for file systems where
743 * the inode number is not sufficient for unique identification of an inode.
745 * If the inode is in the cache, the inode is returned with an incremented
748 * Otherwise NULL is returned.
750 * Note, @test is called with the inode_lock held, so can't sleep.
752 static struct inode
*ifind(struct super_block
*sb
,
753 struct hlist_head
*head
, int (*test
)(struct inode
*, void *),
754 void *data
, const int wait
)
758 spin_lock(&inode_lock
);
759 inode
= find_inode(sb
, head
, test
, data
);
762 spin_unlock(&inode_lock
);
764 wait_on_inode(inode
);
767 spin_unlock(&inode_lock
);
772 * ifind_fast - internal function, you want ilookup() or iget().
773 * @sb: super block of file system to search
774 * @head: head of the list to search
775 * @ino: inode number to search for
777 * ifind_fast() searches for the inode @ino in the inode cache. This is for
778 * file systems where the inode number is sufficient for unique identification
781 * If the inode is in the cache, the inode is returned with an incremented
784 * Otherwise NULL is returned.
786 static struct inode
*ifind_fast(struct super_block
*sb
,
787 struct hlist_head
*head
, unsigned long ino
)
791 spin_lock(&inode_lock
);
792 inode
= find_inode_fast(sb
, head
, ino
);
795 spin_unlock(&inode_lock
);
796 wait_on_inode(inode
);
799 spin_unlock(&inode_lock
);
804 * ilookup5_nowait - search for an inode in the inode cache
805 * @sb: super block of file system to search
806 * @hashval: hash value (usually inode number) to search for
807 * @test: callback used for comparisons between inodes
808 * @data: opaque data pointer to pass to @test
810 * ilookup5() uses ifind() to search for the inode specified by @hashval and
811 * @data in the inode cache. This is a generalized version of ilookup() for
812 * file systems where the inode number is not sufficient for unique
813 * identification of an inode.
815 * If the inode is in the cache, the inode is returned with an incremented
816 * reference count. Note, the inode lock is not waited upon so you have to be
817 * very careful what you do with the returned inode. You probably should be
818 * using ilookup5() instead.
820 * Otherwise NULL is returned.
822 * Note, @test is called with the inode_lock held, so can't sleep.
824 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
825 int (*test
)(struct inode
*, void *), void *data
)
827 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
829 return ifind(sb
, head
, test
, data
, 0);
832 EXPORT_SYMBOL(ilookup5_nowait
);
835 * ilookup5 - search for an inode in the inode cache
836 * @sb: super block of file system to search
837 * @hashval: hash value (usually inode number) to search for
838 * @test: callback used for comparisons between inodes
839 * @data: opaque data pointer to pass to @test
841 * ilookup5() uses ifind() to search for the inode specified by @hashval and
842 * @data in the inode cache. This is a generalized version of ilookup() for
843 * file systems where the inode number is not sufficient for unique
844 * identification of an inode.
846 * If the inode is in the cache, the inode lock is waited upon and the inode is
847 * returned with an incremented reference count.
849 * Otherwise NULL is returned.
851 * Note, @test is called with the inode_lock held, so can't sleep.
853 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
854 int (*test
)(struct inode
*, void *), void *data
)
856 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
858 return ifind(sb
, head
, test
, data
, 1);
861 EXPORT_SYMBOL(ilookup5
);
864 * ilookup - search for an inode in the inode cache
865 * @sb: super block of file system to search
866 * @ino: inode number to search for
868 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
869 * This is for file systems where the inode number is sufficient for unique
870 * identification of an inode.
872 * If the inode is in the cache, the inode is returned with an incremented
875 * Otherwise NULL is returned.
877 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
879 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
881 return ifind_fast(sb
, head
, ino
);
884 EXPORT_SYMBOL(ilookup
);
887 * iget5_locked - obtain an inode from a mounted file system
888 * @sb: super block of file system
889 * @hashval: hash value (usually inode number) to get
890 * @test: callback used for comparisons between inodes
891 * @set: callback used to initialize a new struct inode
892 * @data: opaque data pointer to pass to @test and @set
894 * This is iget() without the read_inode() portion of get_new_inode().
896 * iget5_locked() uses ifind() to search for the inode specified by @hashval
897 * and @data in the inode cache and if present it is returned with an increased
898 * reference count. This is a generalized version of iget_locked() for file
899 * systems where the inode number is not sufficient for unique identification
902 * If the inode is not in cache, get_new_inode() is called to allocate a new
903 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
904 * file system gets to fill it in before unlocking it via unlock_new_inode().
906 * Note both @test and @set are called with the inode_lock held, so can't sleep.
908 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
909 int (*test
)(struct inode
*, void *),
910 int (*set
)(struct inode
*, void *), void *data
)
912 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
915 inode
= ifind(sb
, head
, test
, data
, 1);
919 * get_new_inode() will do the right thing, re-trying the search
920 * in case it had to block at any point.
922 return get_new_inode(sb
, head
, test
, set
, data
);
925 EXPORT_SYMBOL(iget5_locked
);
928 * iget_locked - obtain an inode from a mounted file system
929 * @sb: super block of file system
930 * @ino: inode number to get
932 * This is iget() without the read_inode() portion of get_new_inode_fast().
934 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
935 * the inode cache and if present it is returned with an increased reference
936 * count. This is for file systems where the inode number is sufficient for
937 * unique identification of an inode.
939 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
940 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
941 * The file system gets to fill it in before unlocking it via
942 * unlock_new_inode().
944 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
946 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
949 inode
= ifind_fast(sb
, head
, ino
);
953 * get_new_inode_fast() will do the right thing, re-trying the search
954 * in case it had to block at any point.
956 return get_new_inode_fast(sb
, head
, ino
);
959 EXPORT_SYMBOL(iget_locked
);
962 * __insert_inode_hash - hash an inode
963 * @inode: unhashed inode
964 * @hashval: unsigned long value used to locate this object in the
967 * Add an inode to the inode hash for this superblock.
969 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
971 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
972 spin_lock(&inode_lock
);
973 hlist_add_head(&inode
->i_hash
, head
);
974 spin_unlock(&inode_lock
);
977 EXPORT_SYMBOL(__insert_inode_hash
);
980 * remove_inode_hash - remove an inode from the hash
981 * @inode: inode to unhash
983 * Remove an inode from the superblock.
985 void remove_inode_hash(struct inode
*inode
)
987 spin_lock(&inode_lock
);
988 hlist_del_init(&inode
->i_hash
);
989 spin_unlock(&inode_lock
);
992 EXPORT_SYMBOL(remove_inode_hash
);
995 * Tell the filesystem that this inode is no longer of any interest and should
996 * be completely destroyed.
998 * We leave the inode in the inode hash table until *after* the filesystem's
999 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1000 * instigate) will always find up-to-date information either in the hash or on
1003 * I_FREEING is set so that no-one will take a new reference to the inode while
1004 * it is being deleted.
1006 void generic_delete_inode(struct inode
*inode
)
1008 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1010 list_del_init(&inode
->i_list
);
1011 list_del_init(&inode
->i_sb_list
);
1012 inode
->i_state
|= I_FREEING
;
1013 inodes_stat
.nr_inodes
--;
1014 spin_unlock(&inode_lock
);
1016 security_inode_delete(inode
);
1018 if (op
->delete_inode
) {
1019 void (*delete)(struct inode
*) = op
->delete_inode
;
1020 if (!is_bad_inode(inode
))
1022 /* Filesystems implementing their own
1023 * s_op->delete_inode are required to call
1024 * truncate_inode_pages and clear_inode()
1028 truncate_inode_pages(&inode
->i_data
, 0);
1031 spin_lock(&inode_lock
);
1032 hlist_del_init(&inode
->i_hash
);
1033 spin_unlock(&inode_lock
);
1034 wake_up_inode(inode
);
1035 BUG_ON(inode
->i_state
!= I_CLEAR
);
1036 destroy_inode(inode
);
1039 EXPORT_SYMBOL(generic_delete_inode
);
1041 static void generic_forget_inode(struct inode
*inode
)
1043 struct super_block
*sb
= inode
->i_sb
;
1045 if (!hlist_unhashed(&inode
->i_hash
)) {
1046 if (!(inode
->i_state
& (I_DIRTY
|I_LOCK
)))
1047 list_move(&inode
->i_list
, &inode_unused
);
1048 inodes_stat
.nr_unused
++;
1049 if (sb
->s_flags
& MS_ACTIVE
) {
1050 spin_unlock(&inode_lock
);
1053 inode
->i_state
|= I_WILL_FREE
;
1054 spin_unlock(&inode_lock
);
1055 write_inode_now(inode
, 1);
1056 spin_lock(&inode_lock
);
1057 inode
->i_state
&= ~I_WILL_FREE
;
1058 inodes_stat
.nr_unused
--;
1059 hlist_del_init(&inode
->i_hash
);
1061 list_del_init(&inode
->i_list
);
1062 list_del_init(&inode
->i_sb_list
);
1063 inode
->i_state
|= I_FREEING
;
1064 inodes_stat
.nr_inodes
--;
1065 spin_unlock(&inode_lock
);
1066 if (inode
->i_data
.nrpages
)
1067 truncate_inode_pages(&inode
->i_data
, 0);
1069 wake_up_inode(inode
);
1070 destroy_inode(inode
);
1074 * Normal UNIX filesystem behaviour: delete the
1075 * inode when the usage count drops to zero, and
1078 void generic_drop_inode(struct inode
*inode
)
1080 if (!inode
->i_nlink
)
1081 generic_delete_inode(inode
);
1083 generic_forget_inode(inode
);
1086 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1089 * Called when we're dropping the last reference
1092 * Call the FS "drop()" function, defaulting to
1093 * the legacy UNIX filesystem behaviour..
1095 * NOTE! NOTE! NOTE! We're called with the inode lock
1096 * held, and the drop function is supposed to release
1099 static inline void iput_final(struct inode
*inode
)
1101 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1102 void (*drop
)(struct inode
*) = generic_drop_inode
;
1104 if (op
&& op
->drop_inode
)
1105 drop
= op
->drop_inode
;
1110 * iput - put an inode
1111 * @inode: inode to put
1113 * Puts an inode, dropping its usage count. If the inode use count hits
1114 * zero, the inode is then freed and may also be destroyed.
1116 * Consequently, iput() can sleep.
1118 void iput(struct inode
*inode
)
1121 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1123 BUG_ON(inode
->i_state
== I_CLEAR
);
1125 if (op
&& op
->put_inode
)
1126 op
->put_inode(inode
);
1128 if (atomic_dec_and_lock(&inode
->i_count
, &inode_lock
))
1133 EXPORT_SYMBOL(iput
);
1136 * bmap - find a block number in a file
1137 * @inode: inode of file
1138 * @block: block to find
1140 * Returns the block number on the device holding the inode that
1141 * is the disk block number for the block of the file requested.
1142 * That is, asked for block 4 of inode 1 the function will return the
1143 * disk block relative to the disk start that holds that block of the
1146 sector_t
bmap(struct inode
* inode
, sector_t block
)
1149 if (inode
->i_mapping
->a_ops
->bmap
)
1150 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1153 EXPORT_SYMBOL(bmap
);
1156 * touch_atime - update the access time
1157 * @mnt: mount the inode is accessed on
1158 * @dentry: dentry accessed
1160 * Update the accessed time on an inode and mark it for writeback.
1161 * This function automatically handles read only file systems and media,
1162 * as well as the "noatime" flag and inode specific "noatime" markers.
1164 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1166 struct inode
*inode
= dentry
->d_inode
;
1167 struct timespec now
;
1169 if (inode
->i_flags
& S_NOATIME
)
1171 if (IS_NOATIME(inode
))
1173 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1177 * We may have a NULL vfsmount when coming from NFSD
1180 if (mnt
->mnt_flags
& MNT_NOATIME
)
1182 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1185 if (mnt
->mnt_flags
& MNT_RELATIME
) {
1187 * With relative atime, only update atime if the
1188 * previous atime is earlier than either the ctime or
1191 if (timespec_compare(&inode
->i_mtime
,
1192 &inode
->i_atime
) < 0 &&
1193 timespec_compare(&inode
->i_ctime
,
1194 &inode
->i_atime
) < 0)
1199 now
= current_fs_time(inode
->i_sb
);
1200 if (timespec_equal(&inode
->i_atime
, &now
))
1203 inode
->i_atime
= now
;
1204 mark_inode_dirty_sync(inode
);
1206 EXPORT_SYMBOL(touch_atime
);
1209 * file_update_time - update mtime and ctime time
1210 * @file: file accessed
1212 * Update the mtime and ctime members of an inode and mark the inode
1213 * for writeback. Note that this function is meant exclusively for
1214 * usage in the file write path of filesystems, and filesystems may
1215 * choose to explicitly ignore update via this function with the
1216 * S_NOCTIME inode flag, e.g. for network filesystem where these
1217 * timestamps are handled by the server.
1220 void file_update_time(struct file
*file
)
1222 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1223 struct timespec now
;
1226 if (IS_NOCMTIME(inode
))
1228 if (IS_RDONLY(inode
))
1231 now
= current_fs_time(inode
->i_sb
);
1232 if (!timespec_equal(&inode
->i_mtime
, &now
)) {
1233 inode
->i_mtime
= now
;
1237 if (!timespec_equal(&inode
->i_ctime
, &now
)) {
1238 inode
->i_ctime
= now
;
1243 mark_inode_dirty_sync(inode
);
1246 EXPORT_SYMBOL(file_update_time
);
1248 int inode_needs_sync(struct inode
*inode
)
1252 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1257 EXPORT_SYMBOL(inode_needs_sync
);
1259 int inode_wait(void *word
)
1266 * If we try to find an inode in the inode hash while it is being
1267 * deleted, we have to wait until the filesystem completes its
1268 * deletion before reporting that it isn't found. This function waits
1269 * until the deletion _might_ have completed. Callers are responsible
1270 * to recheck inode state.
1272 * It doesn't matter if I_LOCK is not set initially, a call to
1273 * wake_up_inode() after removing from the hash list will DTRT.
1275 * This is called with inode_lock held.
1277 static void __wait_on_freeing_inode(struct inode
*inode
)
1279 wait_queue_head_t
*wq
;
1280 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_LOCK
);
1281 wq
= bit_waitqueue(&inode
->i_state
, __I_LOCK
);
1282 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1283 spin_unlock(&inode_lock
);
1285 finish_wait(wq
, &wait
.wait
);
1286 spin_lock(&inode_lock
);
1289 void wake_up_inode(struct inode
*inode
)
1292 * Prevent speculative execution through spin_unlock(&inode_lock);
1295 wake_up_bit(&inode
->i_state
, __I_LOCK
);
1299 * We rarely want to lock two inodes that do not have a parent/child
1300 * relationship (such as directory, child inode) simultaneously. The
1301 * vast majority of file systems should be able to get along fine
1302 * without this. Do not use these functions except as a last resort.
1304 void inode_double_lock(struct inode
*inode1
, struct inode
*inode2
)
1306 if (inode1
== NULL
|| inode2
== NULL
|| inode1
== inode2
) {
1308 mutex_lock(&inode1
->i_mutex
);
1310 mutex_lock(&inode2
->i_mutex
);
1314 if (inode1
< inode2
) {
1315 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
1316 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
1318 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_PARENT
);
1319 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_CHILD
);
1322 EXPORT_SYMBOL(inode_double_lock
);
1324 void inode_double_unlock(struct inode
*inode1
, struct inode
*inode2
)
1327 mutex_unlock(&inode1
->i_mutex
);
1329 if (inode2
&& inode2
!= inode1
)
1330 mutex_unlock(&inode2
->i_mutex
);
1332 EXPORT_SYMBOL(inode_double_unlock
);
1334 static __initdata
unsigned long ihash_entries
;
1335 static int __init
set_ihash_entries(char *str
)
1339 ihash_entries
= simple_strtoul(str
, &str
, 0);
1342 __setup("ihash_entries=", set_ihash_entries
);
1345 * Initialize the waitqueues and inode hash table.
1347 void __init
inode_init_early(void)
1351 /* If hashes are distributed across NUMA nodes, defer
1352 * hash allocation until vmalloc space is available.
1358 alloc_large_system_hash("Inode-cache",
1359 sizeof(struct hlist_head
),
1367 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1368 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1371 void __init
inode_init(unsigned long mempages
)
1375 /* inode slab cache */
1376 inode_cachep
= kmem_cache_create("inode_cache",
1377 sizeof(struct inode
),
1379 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1383 set_shrinker(DEFAULT_SEEKS
, shrink_icache_memory
);
1385 /* Hash may have been set up in inode_init_early */
1390 alloc_large_system_hash("Inode-cache",
1391 sizeof(struct hlist_head
),
1399 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1400 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1403 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1405 inode
->i_mode
= mode
;
1406 if (S_ISCHR(mode
)) {
1407 inode
->i_fop
= &def_chr_fops
;
1408 inode
->i_rdev
= rdev
;
1409 } else if (S_ISBLK(mode
)) {
1410 inode
->i_fop
= &def_blk_fops
;
1411 inode
->i_rdev
= rdev
;
1412 } else if (S_ISFIFO(mode
))
1413 inode
->i_fop
= &def_fifo_fops
;
1414 else if (S_ISSOCK(mode
))
1415 inode
->i_fop
= &bad_sock_fops
;
1417 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o)\n",
1420 EXPORT_SYMBOL(init_special_inode
);