4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
56 static int sync_buffer(void *word
)
58 struct block_device
*bd
;
59 struct buffer_head
*bh
60 = container_of(word
, struct buffer_head
, b_state
);
65 blk_run_address_space(bd
->bd_inode
->i_mapping
);
70 void fastcall
__lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void fastcall
unlock_buffer(struct buffer_head
*bh
)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh
);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh
->b_state
, BH_Lock
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
96 __clear_page_buffers(struct page
*page
)
98 ClearPagePrivate(page
);
99 set_page_private(page
, 0);
100 page_cache_release(page
);
103 static void buffer_io_error(struct buffer_head
*bh
)
105 char b
[BDEVNAME_SIZE
];
107 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh
->b_bdev
, b
),
109 (unsigned long long)bh
->b_blocknr
);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
119 set_buffer_uptodate(bh
);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh
);
128 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
130 char b
[BDEVNAME_SIZE
];
133 set_buffer_uptodate(bh
);
135 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
137 printk(KERN_WARNING
"lost page write due to "
139 bdevname(bh
->b_bdev
, b
));
141 set_buffer_write_io_error(bh
);
142 clear_buffer_uptodate(bh
);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device
*bdev
)
157 ret
= filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
160 EXPORT_SYMBOL(sync_blockdev
);
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_bdev(struct block_device
*bdev
)
169 struct super_block
*sb
= get_super(bdev
);
171 int res
= fsync_super(sb
);
175 return sync_blockdev(bdev
);
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
182 * This takes the block device bd_mount_sem to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
187 struct super_block
*freeze_bdev(struct block_device
*bdev
)
189 struct super_block
*sb
;
191 down(&bdev
->bd_mount_sem
);
192 sb
= get_super(bdev
);
193 if (sb
&& !(sb
->s_flags
& MS_RDONLY
)) {
194 sb
->s_frozen
= SB_FREEZE_WRITE
;
199 sb
->s_frozen
= SB_FREEZE_TRANS
;
202 sync_blockdev(sb
->s_bdev
);
204 if (sb
->s_op
->write_super_lockfs
)
205 sb
->s_op
->write_super_lockfs(sb
);
209 return sb
; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 EXPORT_SYMBOL(freeze_bdev
);
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 void thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
223 BUG_ON(sb
->s_bdev
!= bdev
);
225 if (sb
->s_op
->unlockfs
)
226 sb
->s_op
->unlockfs(sb
);
227 sb
->s_frozen
= SB_UNFROZEN
;
229 wake_up(&sb
->s_wait_unfrozen
);
233 up(&bdev
->bd_mount_sem
);
235 EXPORT_SYMBOL(thaw_bdev
);
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
248 static struct buffer_head
*
249 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
251 struct inode
*bd_inode
= bdev
->bd_inode
;
252 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
253 struct buffer_head
*ret
= NULL
;
255 struct buffer_head
*bh
;
256 struct buffer_head
*head
;
260 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
261 page
= find_get_page(bd_mapping
, index
);
265 spin_lock(&bd_mapping
->private_lock
);
266 if (!page_has_buffers(page
))
268 head
= page_buffers(page
);
271 if (bh
->b_blocknr
== block
) {
276 if (!buffer_mapped(bh
))
278 bh
= bh
->b_this_page
;
279 } while (bh
!= head
);
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block
,
290 (unsigned long long)bh
->b_blocknr
);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh
->b_state
, bh
->b_size
);
293 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
296 spin_unlock(&bd_mapping
->private_lock
);
297 page_cache_release(page
);
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device
*bdev
)
336 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
338 if (mapping
->nrpages
== 0)
341 invalidate_bh_lrus();
342 invalidate_mapping_pages(mapping
, 0, -1);
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
348 static void free_more_memory(void)
353 wakeup_pdflush(1024);
356 for_each_online_pgdat(pgdat
) {
357 zones
= pgdat
->node_zonelists
[gfp_zone(GFP_NOFS
)].zones
;
359 try_to_free_pages(zones
, GFP_NOFS
);
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
367 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
370 struct buffer_head
*first
;
371 struct buffer_head
*tmp
;
373 int page_uptodate
= 1;
375 BUG_ON(!buffer_async_read(bh
));
379 set_buffer_uptodate(bh
);
381 clear_buffer_uptodate(bh
);
382 if (printk_ratelimit())
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
392 first
= page_buffers(page
);
393 local_irq_save(flags
);
394 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
395 clear_buffer_async_read(bh
);
399 if (!buffer_uptodate(tmp
))
401 if (buffer_async_read(tmp
)) {
402 BUG_ON(!buffer_locked(tmp
));
405 tmp
= tmp
->b_this_page
;
407 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
408 local_irq_restore(flags
);
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
414 if (page_uptodate
&& !PageError(page
))
415 SetPageUptodate(page
);
420 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
421 local_irq_restore(flags
);
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
429 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
431 char b
[BDEVNAME_SIZE
];
433 struct buffer_head
*first
;
434 struct buffer_head
*tmp
;
437 BUG_ON(!buffer_async_write(bh
));
441 set_buffer_uptodate(bh
);
443 if (printk_ratelimit()) {
445 printk(KERN_WARNING
"lost page write due to "
447 bdevname(bh
->b_bdev
, b
));
449 set_bit(AS_EIO
, &page
->mapping
->flags
);
450 set_buffer_write_io_error(bh
);
451 clear_buffer_uptodate(bh
);
455 first
= page_buffers(page
);
456 local_irq_save(flags
);
457 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
459 clear_buffer_async_write(bh
);
461 tmp
= bh
->b_this_page
;
463 if (buffer_async_write(tmp
)) {
464 BUG_ON(!buffer_locked(tmp
));
467 tmp
= tmp
->b_this_page
;
469 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
470 local_irq_restore(flags
);
471 end_page_writeback(page
);
475 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
476 local_irq_restore(flags
);
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
489 * The page comes unlocked when it has no locked buffer_async buffers
492 * PageLocked prevents anyone starting new async I/O reads any of
495 * PageWriteback is used to prevent simultaneous writeout of the same
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
501 static void mark_buffer_async_read(struct buffer_head
*bh
)
503 bh
->b_end_io
= end_buffer_async_read
;
504 set_buffer_async_read(bh
);
507 void mark_buffer_async_write(struct buffer_head
*bh
)
509 bh
->b_end_io
= end_buffer_async_write
;
510 set_buffer_async_write(bh
);
512 EXPORT_SYMBOL(mark_buffer_async_write
);
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
565 * The buffer's backing address_space's private_lock must be held
567 static inline void __remove_assoc_queue(struct buffer_head
*bh
)
569 list_del_init(&bh
->b_assoc_buffers
);
570 WARN_ON(!bh
->b_assoc_map
);
571 if (buffer_write_io_error(bh
))
572 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
573 bh
->b_assoc_map
= NULL
;
576 int inode_has_buffers(struct inode
*inode
)
578 return !list_empty(&inode
->i_data
.private_list
);
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
591 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
593 struct buffer_head
*bh
;
599 list_for_each_prev(p
, list
) {
601 if (buffer_locked(bh
)) {
605 if (!buffer_uptodate(bh
))
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * @mapping: the mapping which wants those buffers written
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
628 int sync_mapping_buffers(struct address_space
*mapping
)
630 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
632 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
635 return fsync_buffers_list(&buffer_mapping
->private_lock
,
636 &mapping
->private_list
);
638 EXPORT_SYMBOL(sync_mapping_buffers
);
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 void write_boundary_block(struct block_device
*bdev
,
647 sector_t bblock
, unsigned blocksize
)
649 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
651 if (buffer_dirty(bh
))
652 ll_rw_block(WRITE
, 1, &bh
);
657 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
659 struct address_space
*mapping
= inode
->i_mapping
;
660 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
662 mark_buffer_dirty(bh
);
663 if (!mapping
->assoc_mapping
) {
664 mapping
->assoc_mapping
= buffer_mapping
;
666 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
668 if (list_empty(&bh
->b_assoc_buffers
)) {
669 spin_lock(&buffer_mapping
->private_lock
);
670 list_move_tail(&bh
->b_assoc_buffers
,
671 &mapping
->private_list
);
672 bh
->b_assoc_map
= mapping
;
673 spin_unlock(&buffer_mapping
->private_lock
);
676 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
679 * Add a page to the dirty page list.
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
703 int __set_page_dirty_buffers(struct page
*page
)
705 struct address_space
* const mapping
= page_mapping(page
);
707 if (unlikely(!mapping
))
708 return !TestSetPageDirty(page
);
710 spin_lock(&mapping
->private_lock
);
711 if (page_has_buffers(page
)) {
712 struct buffer_head
*head
= page_buffers(page
);
713 struct buffer_head
*bh
= head
;
716 set_buffer_dirty(bh
);
717 bh
= bh
->b_this_page
;
718 } while (bh
!= head
);
720 spin_unlock(&mapping
->private_lock
);
722 if (TestSetPageDirty(page
))
725 write_lock_irq(&mapping
->tree_lock
);
726 if (page
->mapping
) { /* Race with truncate? */
727 if (mapping_cap_account_dirty(mapping
)) {
728 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
729 task_io_account_write(PAGE_CACHE_SIZE
);
731 radix_tree_tag_set(&mapping
->page_tree
,
732 page_index(page
), PAGECACHE_TAG_DIRTY
);
734 write_unlock_irq(&mapping
->tree_lock
);
735 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
738 EXPORT_SYMBOL(__set_page_dirty_buffers
);
741 * Write out and wait upon a list of buffers.
743 * We have conflicting pressures: we want to make sure that all
744 * initially dirty buffers get waited on, but that any subsequently
745 * dirtied buffers don't. After all, we don't want fsync to last
746 * forever if somebody is actively writing to the file.
748 * Do this in two main stages: first we copy dirty buffers to a
749 * temporary inode list, queueing the writes as we go. Then we clean
750 * up, waiting for those writes to complete.
752 * During this second stage, any subsequent updates to the file may end
753 * up refiling the buffer on the original inode's dirty list again, so
754 * there is a chance we will end up with a buffer queued for write but
755 * not yet completed on that list. So, as a final cleanup we go through
756 * the osync code to catch these locked, dirty buffers without requeuing
757 * any newly dirty buffers for write.
759 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
761 struct buffer_head
*bh
;
762 struct list_head tmp
;
765 INIT_LIST_HEAD(&tmp
);
768 while (!list_empty(list
)) {
769 bh
= BH_ENTRY(list
->next
);
770 __remove_assoc_queue(bh
);
771 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
772 list_add(&bh
->b_assoc_buffers
, &tmp
);
773 if (buffer_dirty(bh
)) {
777 * Ensure any pending I/O completes so that
778 * ll_rw_block() actually writes the current
779 * contents - it is a noop if I/O is still in
780 * flight on potentially older contents.
782 ll_rw_block(SWRITE
, 1, &bh
);
789 while (!list_empty(&tmp
)) {
790 bh
= BH_ENTRY(tmp
.prev
);
791 list_del_init(&bh
->b_assoc_buffers
);
795 if (!buffer_uptodate(bh
))
802 err2
= osync_buffers_list(lock
, list
);
810 * Invalidate any and all dirty buffers on a given inode. We are
811 * probably unmounting the fs, but that doesn't mean we have already
812 * done a sync(). Just drop the buffers from the inode list.
814 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
815 * assumes that all the buffers are against the blockdev. Not true
818 void invalidate_inode_buffers(struct inode
*inode
)
820 if (inode_has_buffers(inode
)) {
821 struct address_space
*mapping
= &inode
->i_data
;
822 struct list_head
*list
= &mapping
->private_list
;
823 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
825 spin_lock(&buffer_mapping
->private_lock
);
826 while (!list_empty(list
))
827 __remove_assoc_queue(BH_ENTRY(list
->next
));
828 spin_unlock(&buffer_mapping
->private_lock
);
833 * Remove any clean buffers from the inode's buffer list. This is called
834 * when we're trying to free the inode itself. Those buffers can pin it.
836 * Returns true if all buffers were removed.
838 int remove_inode_buffers(struct inode
*inode
)
842 if (inode_has_buffers(inode
)) {
843 struct address_space
*mapping
= &inode
->i_data
;
844 struct list_head
*list
= &mapping
->private_list
;
845 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
847 spin_lock(&buffer_mapping
->private_lock
);
848 while (!list_empty(list
)) {
849 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
850 if (buffer_dirty(bh
)) {
854 __remove_assoc_queue(bh
);
856 spin_unlock(&buffer_mapping
->private_lock
);
862 * Create the appropriate buffers when given a page for data area and
863 * the size of each buffer.. Use the bh->b_this_page linked list to
864 * follow the buffers created. Return NULL if unable to create more
867 * The retry flag is used to differentiate async IO (paging, swapping)
868 * which may not fail from ordinary buffer allocations.
870 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
873 struct buffer_head
*bh
, *head
;
879 while ((offset
-= size
) >= 0) {
880 bh
= alloc_buffer_head(GFP_NOFS
);
885 bh
->b_this_page
= head
;
890 atomic_set(&bh
->b_count
, 0);
891 bh
->b_private
= NULL
;
894 /* Link the buffer to its page */
895 set_bh_page(bh
, page
, offset
);
897 init_buffer(bh
, NULL
, NULL
);
901 * In case anything failed, we just free everything we got.
907 head
= head
->b_this_page
;
908 free_buffer_head(bh
);
913 * Return failure for non-async IO requests. Async IO requests
914 * are not allowed to fail, so we have to wait until buffer heads
915 * become available. But we don't want tasks sleeping with
916 * partially complete buffers, so all were released above.
921 /* We're _really_ low on memory. Now we just
922 * wait for old buffer heads to become free due to
923 * finishing IO. Since this is an async request and
924 * the reserve list is empty, we're sure there are
925 * async buffer heads in use.
930 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
933 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
935 struct buffer_head
*bh
, *tail
;
940 bh
= bh
->b_this_page
;
942 tail
->b_this_page
= head
;
943 attach_page_buffers(page
, head
);
947 * Initialise the state of a blockdev page's buffers.
950 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
951 sector_t block
, int size
)
953 struct buffer_head
*head
= page_buffers(page
);
954 struct buffer_head
*bh
= head
;
955 int uptodate
= PageUptodate(page
);
958 if (!buffer_mapped(bh
)) {
959 init_buffer(bh
, NULL
, NULL
);
961 bh
->b_blocknr
= block
;
963 set_buffer_uptodate(bh
);
964 set_buffer_mapped(bh
);
967 bh
= bh
->b_this_page
;
968 } while (bh
!= head
);
972 * Create the page-cache page that contains the requested block.
974 * This is user purely for blockdev mappings.
977 grow_dev_page(struct block_device
*bdev
, sector_t block
,
978 pgoff_t index
, int size
)
980 struct inode
*inode
= bdev
->bd_inode
;
982 struct buffer_head
*bh
;
984 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
988 BUG_ON(!PageLocked(page
));
990 if (page_has_buffers(page
)) {
991 bh
= page_buffers(page
);
992 if (bh
->b_size
== size
) {
993 init_page_buffers(page
, bdev
, block
, size
);
996 if (!try_to_free_buffers(page
))
1001 * Allocate some buffers for this page
1003 bh
= alloc_page_buffers(page
, size
, 0);
1008 * Link the page to the buffers and initialise them. Take the
1009 * lock to be atomic wrt __find_get_block(), which does not
1010 * run under the page lock.
1012 spin_lock(&inode
->i_mapping
->private_lock
);
1013 link_dev_buffers(page
, bh
);
1014 init_page_buffers(page
, bdev
, block
, size
);
1015 spin_unlock(&inode
->i_mapping
->private_lock
);
1021 page_cache_release(page
);
1026 * Create buffers for the specified block device block's page. If
1027 * that page was dirty, the buffers are set dirty also.
1029 * Except that's a bug. Attaching dirty buffers to a dirty
1030 * blockdev's page can result in filesystem corruption, because
1031 * some of those buffers may be aliases of filesystem data.
1032 * grow_dev_page() will go BUG() if this happens.
1035 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1044 } while ((size
<< sizebits
) < PAGE_SIZE
);
1046 index
= block
>> sizebits
;
1049 * Check for a block which wants to lie outside our maximum possible
1050 * pagecache index. (this comparison is done using sector_t types).
1052 if (unlikely(index
!= block
>> sizebits
)) {
1053 char b
[BDEVNAME_SIZE
];
1055 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1057 __FUNCTION__
, (unsigned long long)block
,
1061 block
= index
<< sizebits
;
1062 /* Create a page with the proper size buffers.. */
1063 page
= grow_dev_page(bdev
, block
, index
, size
);
1067 page_cache_release(page
);
1071 static struct buffer_head
*
1072 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1074 /* Size must be multiple of hard sectorsize */
1075 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1076 (size
< 512 || size
> PAGE_SIZE
))) {
1077 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1079 printk(KERN_ERR
"hardsect size: %d\n",
1080 bdev_hardsect_size(bdev
));
1087 struct buffer_head
* bh
;
1090 bh
= __find_get_block(bdev
, block
, size
);
1094 ret
= grow_buffers(bdev
, block
, size
);
1103 * The relationship between dirty buffers and dirty pages:
1105 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106 * the page is tagged dirty in its radix tree.
1108 * At all times, the dirtiness of the buffers represents the dirtiness of
1109 * subsections of the page. If the page has buffers, the page dirty bit is
1110 * merely a hint about the true dirty state.
1112 * When a page is set dirty in its entirety, all its buffers are marked dirty
1113 * (if the page has buffers).
1115 * When a buffer is marked dirty, its page is dirtied, but the page's other
1118 * Also. When blockdev buffers are explicitly read with bread(), they
1119 * individually become uptodate. But their backing page remains not
1120 * uptodate - even if all of its buffers are uptodate. A subsequent
1121 * block_read_full_page() against that page will discover all the uptodate
1122 * buffers, will set the page uptodate and will perform no I/O.
1126 * mark_buffer_dirty - mark a buffer_head as needing writeout
1127 * @bh: the buffer_head to mark dirty
1129 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130 * backing page dirty, then tag the page as dirty in its address_space's radix
1131 * tree and then attach the address_space's inode to its superblock's dirty
1134 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1135 * mapping->tree_lock and the global inode_lock.
1137 void fastcall
mark_buffer_dirty(struct buffer_head
*bh
)
1139 if (!buffer_dirty(bh
) && !test_set_buffer_dirty(bh
))
1140 __set_page_dirty_nobuffers(bh
->b_page
);
1144 * Decrement a buffer_head's reference count. If all buffers against a page
1145 * have zero reference count, are clean and unlocked, and if the page is clean
1146 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148 * a page but it ends up not being freed, and buffers may later be reattached).
1150 void __brelse(struct buffer_head
* buf
)
1152 if (atomic_read(&buf
->b_count
)) {
1156 printk(KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1161 * bforget() is like brelse(), except it discards any
1162 * potentially dirty data.
1164 void __bforget(struct buffer_head
*bh
)
1166 clear_buffer_dirty(bh
);
1167 if (!list_empty(&bh
->b_assoc_buffers
)) {
1168 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1170 spin_lock(&buffer_mapping
->private_lock
);
1171 list_del_init(&bh
->b_assoc_buffers
);
1172 bh
->b_assoc_map
= NULL
;
1173 spin_unlock(&buffer_mapping
->private_lock
);
1178 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1181 if (buffer_uptodate(bh
)) {
1186 bh
->b_end_io
= end_buffer_read_sync
;
1187 submit_bh(READ
, bh
);
1189 if (buffer_uptodate(bh
))
1197 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1198 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1199 * refcount elevated by one when they're in an LRU. A buffer can only appear
1200 * once in a particular CPU's LRU. A single buffer can be present in multiple
1201 * CPU's LRUs at the same time.
1203 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1204 * sb_find_get_block().
1206 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1207 * a local interrupt disable for that.
1210 #define BH_LRU_SIZE 8
1213 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1216 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1219 #define bh_lru_lock() local_irq_disable()
1220 #define bh_lru_unlock() local_irq_enable()
1222 #define bh_lru_lock() preempt_disable()
1223 #define bh_lru_unlock() preempt_enable()
1226 static inline void check_irqs_on(void)
1228 #ifdef irqs_disabled
1229 BUG_ON(irqs_disabled());
1234 * The LRU management algorithm is dopey-but-simple. Sorry.
1236 static void bh_lru_install(struct buffer_head
*bh
)
1238 struct buffer_head
*evictee
= NULL
;
1243 lru
= &__get_cpu_var(bh_lrus
);
1244 if (lru
->bhs
[0] != bh
) {
1245 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1251 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1252 struct buffer_head
*bh2
= lru
->bhs
[in
];
1257 if (out
>= BH_LRU_SIZE
) {
1258 BUG_ON(evictee
!= NULL
);
1265 while (out
< BH_LRU_SIZE
)
1267 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1276 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1278 static struct buffer_head
*
1279 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1281 struct buffer_head
*ret
= NULL
;
1287 lru
= &__get_cpu_var(bh_lrus
);
1288 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1289 struct buffer_head
*bh
= lru
->bhs
[i
];
1291 if (bh
&& bh
->b_bdev
== bdev
&&
1292 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1295 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1310 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1311 * it in the LRU and mark it as accessed. If it is not present then return
1314 struct buffer_head
*
1315 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1317 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1320 bh
= __find_get_block_slow(bdev
, block
);
1328 EXPORT_SYMBOL(__find_get_block
);
1331 * __getblk will locate (and, if necessary, create) the buffer_head
1332 * which corresponds to the passed block_device, block and size. The
1333 * returned buffer has its reference count incremented.
1335 * __getblk() cannot fail - it just keeps trying. If you pass it an
1336 * illegal block number, __getblk() will happily return a buffer_head
1337 * which represents the non-existent block. Very weird.
1339 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1340 * attempt is failing. FIXME, perhaps?
1342 struct buffer_head
*
1343 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1345 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1349 bh
= __getblk_slow(bdev
, block
, size
);
1352 EXPORT_SYMBOL(__getblk
);
1355 * Do async read-ahead on a buffer..
1357 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1359 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1361 ll_rw_block(READA
, 1, &bh
);
1365 EXPORT_SYMBOL(__breadahead
);
1368 * __bread() - reads a specified block and returns the bh
1369 * @bdev: the block_device to read from
1370 * @block: number of block
1371 * @size: size (in bytes) to read
1373 * Reads a specified block, and returns buffer head that contains it.
1374 * It returns NULL if the block was unreadable.
1376 struct buffer_head
*
1377 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1379 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1381 if (likely(bh
) && !buffer_uptodate(bh
))
1382 bh
= __bread_slow(bh
);
1385 EXPORT_SYMBOL(__bread
);
1388 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1389 * This doesn't race because it runs in each cpu either in irq
1390 * or with preempt disabled.
1392 static void invalidate_bh_lru(void *arg
)
1394 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1397 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1401 put_cpu_var(bh_lrus
);
1404 void invalidate_bh_lrus(void)
1406 on_each_cpu(invalidate_bh_lru
, NULL
, 1, 1);
1409 void set_bh_page(struct buffer_head
*bh
,
1410 struct page
*page
, unsigned long offset
)
1413 BUG_ON(offset
>= PAGE_SIZE
);
1414 if (PageHighMem(page
))
1416 * This catches illegal uses and preserves the offset:
1418 bh
->b_data
= (char *)(0 + offset
);
1420 bh
->b_data
= page_address(page
) + offset
;
1422 EXPORT_SYMBOL(set_bh_page
);
1425 * Called when truncating a buffer on a page completely.
1427 static void discard_buffer(struct buffer_head
* bh
)
1430 clear_buffer_dirty(bh
);
1432 clear_buffer_mapped(bh
);
1433 clear_buffer_req(bh
);
1434 clear_buffer_new(bh
);
1435 clear_buffer_delay(bh
);
1436 clear_buffer_unwritten(bh
);
1441 * block_invalidatepage - invalidate part of all of a buffer-backed page
1443 * @page: the page which is affected
1444 * @offset: the index of the truncation point
1446 * block_invalidatepage() is called when all or part of the page has become
1447 * invalidatedby a truncate operation.
1449 * block_invalidatepage() does not have to release all buffers, but it must
1450 * ensure that no dirty buffer is left outside @offset and that no I/O
1451 * is underway against any of the blocks which are outside the truncation
1452 * point. Because the caller is about to free (and possibly reuse) those
1455 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1457 struct buffer_head
*head
, *bh
, *next
;
1458 unsigned int curr_off
= 0;
1460 BUG_ON(!PageLocked(page
));
1461 if (!page_has_buffers(page
))
1464 head
= page_buffers(page
);
1467 unsigned int next_off
= curr_off
+ bh
->b_size
;
1468 next
= bh
->b_this_page
;
1471 * is this block fully invalidated?
1473 if (offset
<= curr_off
)
1475 curr_off
= next_off
;
1477 } while (bh
!= head
);
1480 * We release buffers only if the entire page is being invalidated.
1481 * The get_block cached value has been unconditionally invalidated,
1482 * so real IO is not possible anymore.
1485 try_to_release_page(page
, 0);
1489 EXPORT_SYMBOL(block_invalidatepage
);
1492 * We attach and possibly dirty the buffers atomically wrt
1493 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1494 * is already excluded via the page lock.
1496 void create_empty_buffers(struct page
*page
,
1497 unsigned long blocksize
, unsigned long b_state
)
1499 struct buffer_head
*bh
, *head
, *tail
;
1501 head
= alloc_page_buffers(page
, blocksize
, 1);
1504 bh
->b_state
|= b_state
;
1506 bh
= bh
->b_this_page
;
1508 tail
->b_this_page
= head
;
1510 spin_lock(&page
->mapping
->private_lock
);
1511 if (PageUptodate(page
) || PageDirty(page
)) {
1514 if (PageDirty(page
))
1515 set_buffer_dirty(bh
);
1516 if (PageUptodate(page
))
1517 set_buffer_uptodate(bh
);
1518 bh
= bh
->b_this_page
;
1519 } while (bh
!= head
);
1521 attach_page_buffers(page
, head
);
1522 spin_unlock(&page
->mapping
->private_lock
);
1524 EXPORT_SYMBOL(create_empty_buffers
);
1527 * We are taking a block for data and we don't want any output from any
1528 * buffer-cache aliases starting from return from that function and
1529 * until the moment when something will explicitly mark the buffer
1530 * dirty (hopefully that will not happen until we will free that block ;-)
1531 * We don't even need to mark it not-uptodate - nobody can expect
1532 * anything from a newly allocated buffer anyway. We used to used
1533 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1534 * don't want to mark the alias unmapped, for example - it would confuse
1535 * anyone who might pick it with bread() afterwards...
1537 * Also.. Note that bforget() doesn't lock the buffer. So there can
1538 * be writeout I/O going on against recently-freed buffers. We don't
1539 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1540 * only if we really need to. That happens here.
1542 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1544 struct buffer_head
*old_bh
;
1548 old_bh
= __find_get_block_slow(bdev
, block
);
1550 clear_buffer_dirty(old_bh
);
1551 wait_on_buffer(old_bh
);
1552 clear_buffer_req(old_bh
);
1556 EXPORT_SYMBOL(unmap_underlying_metadata
);
1559 * NOTE! All mapped/uptodate combinations are valid:
1561 * Mapped Uptodate Meaning
1563 * No No "unknown" - must do get_block()
1564 * No Yes "hole" - zero-filled
1565 * Yes No "allocated" - allocated on disk, not read in
1566 * Yes Yes "valid" - allocated and up-to-date in memory.
1568 * "Dirty" is valid only with the last case (mapped+uptodate).
1572 * While block_write_full_page is writing back the dirty buffers under
1573 * the page lock, whoever dirtied the buffers may decide to clean them
1574 * again at any time. We handle that by only looking at the buffer
1575 * state inside lock_buffer().
1577 * If block_write_full_page() is called for regular writeback
1578 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1579 * locked buffer. This only can happen if someone has written the buffer
1580 * directly, with submit_bh(). At the address_space level PageWriteback
1581 * prevents this contention from occurring.
1583 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1584 get_block_t
*get_block
, struct writeback_control
*wbc
)
1588 sector_t last_block
;
1589 struct buffer_head
*bh
, *head
;
1590 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1591 int nr_underway
= 0;
1593 BUG_ON(!PageLocked(page
));
1595 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1597 if (!page_has_buffers(page
)) {
1598 create_empty_buffers(page
, blocksize
,
1599 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1603 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1604 * here, and the (potentially unmapped) buffers may become dirty at
1605 * any time. If a buffer becomes dirty here after we've inspected it
1606 * then we just miss that fact, and the page stays dirty.
1608 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1609 * handle that here by just cleaning them.
1612 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1613 head
= page_buffers(page
);
1617 * Get all the dirty buffers mapped to disk addresses and
1618 * handle any aliases from the underlying blockdev's mapping.
1621 if (block
> last_block
) {
1623 * mapped buffers outside i_size will occur, because
1624 * this page can be outside i_size when there is a
1625 * truncate in progress.
1628 * The buffer was zeroed by block_write_full_page()
1630 clear_buffer_dirty(bh
);
1631 set_buffer_uptodate(bh
);
1632 } else if (!buffer_mapped(bh
) && buffer_dirty(bh
)) {
1633 WARN_ON(bh
->b_size
!= blocksize
);
1634 err
= get_block(inode
, block
, bh
, 1);
1637 if (buffer_new(bh
)) {
1638 /* blockdev mappings never come here */
1639 clear_buffer_new(bh
);
1640 unmap_underlying_metadata(bh
->b_bdev
,
1644 bh
= bh
->b_this_page
;
1646 } while (bh
!= head
);
1649 if (!buffer_mapped(bh
))
1652 * If it's a fully non-blocking write attempt and we cannot
1653 * lock the buffer then redirty the page. Note that this can
1654 * potentially cause a busy-wait loop from pdflush and kswapd
1655 * activity, but those code paths have their own higher-level
1658 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1660 } else if (test_set_buffer_locked(bh
)) {
1661 redirty_page_for_writepage(wbc
, page
);
1664 if (test_clear_buffer_dirty(bh
)) {
1665 mark_buffer_async_write(bh
);
1669 } while ((bh
= bh
->b_this_page
) != head
);
1672 * The page and its buffers are protected by PageWriteback(), so we can
1673 * drop the bh refcounts early.
1675 BUG_ON(PageWriteback(page
));
1676 set_page_writeback(page
);
1679 struct buffer_head
*next
= bh
->b_this_page
;
1680 if (buffer_async_write(bh
)) {
1681 submit_bh(WRITE
, bh
);
1685 } while (bh
!= head
);
1690 if (nr_underway
== 0) {
1692 * The page was marked dirty, but the buffers were
1693 * clean. Someone wrote them back by hand with
1694 * ll_rw_block/submit_bh. A rare case.
1696 end_page_writeback(page
);
1699 * The page and buffer_heads can be released at any time from
1702 wbc
->pages_skipped
++; /* We didn't write this page */
1708 * ENOSPC, or some other error. We may already have added some
1709 * blocks to the file, so we need to write these out to avoid
1710 * exposing stale data.
1711 * The page is currently locked and not marked for writeback
1714 /* Recovery: lock and submit the mapped buffers */
1716 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
1718 mark_buffer_async_write(bh
);
1721 * The buffer may have been set dirty during
1722 * attachment to a dirty page.
1724 clear_buffer_dirty(bh
);
1726 } while ((bh
= bh
->b_this_page
) != head
);
1728 BUG_ON(PageWriteback(page
));
1729 mapping_set_error(page
->mapping
, err
);
1730 set_page_writeback(page
);
1732 struct buffer_head
*next
= bh
->b_this_page
;
1733 if (buffer_async_write(bh
)) {
1734 clear_buffer_dirty(bh
);
1735 submit_bh(WRITE
, bh
);
1739 } while (bh
!= head
);
1744 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1745 unsigned from
, unsigned to
, get_block_t
*get_block
)
1747 unsigned block_start
, block_end
;
1750 unsigned blocksize
, bbits
;
1751 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1753 BUG_ON(!PageLocked(page
));
1754 BUG_ON(from
> PAGE_CACHE_SIZE
);
1755 BUG_ON(to
> PAGE_CACHE_SIZE
);
1758 blocksize
= 1 << inode
->i_blkbits
;
1759 if (!page_has_buffers(page
))
1760 create_empty_buffers(page
, blocksize
, 0);
1761 head
= page_buffers(page
);
1763 bbits
= inode
->i_blkbits
;
1764 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1766 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1767 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1768 block_end
= block_start
+ blocksize
;
1769 if (block_end
<= from
|| block_start
>= to
) {
1770 if (PageUptodate(page
)) {
1771 if (!buffer_uptodate(bh
))
1772 set_buffer_uptodate(bh
);
1777 clear_buffer_new(bh
);
1778 if (!buffer_mapped(bh
)) {
1779 WARN_ON(bh
->b_size
!= blocksize
);
1780 err
= get_block(inode
, block
, bh
, 1);
1783 if (buffer_new(bh
)) {
1784 unmap_underlying_metadata(bh
->b_bdev
,
1786 if (PageUptodate(page
)) {
1787 set_buffer_uptodate(bh
);
1790 if (block_end
> to
|| block_start
< from
) {
1793 kaddr
= kmap_atomic(page
, KM_USER0
);
1797 if (block_start
< from
)
1798 memset(kaddr
+block_start
,
1799 0, from
-block_start
);
1800 flush_dcache_page(page
);
1801 kunmap_atomic(kaddr
, KM_USER0
);
1806 if (PageUptodate(page
)) {
1807 if (!buffer_uptodate(bh
))
1808 set_buffer_uptodate(bh
);
1811 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1812 !buffer_unwritten(bh
) &&
1813 (block_start
< from
|| block_end
> to
)) {
1814 ll_rw_block(READ
, 1, &bh
);
1819 * If we issued read requests - let them complete.
1821 while(wait_bh
> wait
) {
1822 wait_on_buffer(*--wait_bh
);
1823 if (!buffer_uptodate(*wait_bh
))
1830 clear_buffer_new(bh
);
1831 } while ((bh
= bh
->b_this_page
) != head
);
1836 * Zero out any newly allocated blocks to avoid exposing stale
1837 * data. If BH_New is set, we know that the block was newly
1838 * allocated in the above loop.
1843 block_end
= block_start
+blocksize
;
1844 if (block_end
<= from
)
1846 if (block_start
>= to
)
1848 if (buffer_new(bh
)) {
1849 clear_buffer_new(bh
);
1850 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
1851 set_buffer_uptodate(bh
);
1852 mark_buffer_dirty(bh
);
1855 block_start
= block_end
;
1856 bh
= bh
->b_this_page
;
1857 } while (bh
!= head
);
1861 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1862 unsigned from
, unsigned to
)
1864 unsigned block_start
, block_end
;
1867 struct buffer_head
*bh
, *head
;
1869 blocksize
= 1 << inode
->i_blkbits
;
1871 for(bh
= head
= page_buffers(page
), block_start
= 0;
1872 bh
!= head
|| !block_start
;
1873 block_start
=block_end
, bh
= bh
->b_this_page
) {
1874 block_end
= block_start
+ blocksize
;
1875 if (block_end
<= from
|| block_start
>= to
) {
1876 if (!buffer_uptodate(bh
))
1879 set_buffer_uptodate(bh
);
1880 mark_buffer_dirty(bh
);
1885 * If this is a partial write which happened to make all buffers
1886 * uptodate then we can optimize away a bogus readpage() for
1887 * the next read(). Here we 'discover' whether the page went
1888 * uptodate as a result of this (potentially partial) write.
1891 SetPageUptodate(page
);
1896 * Generic "read page" function for block devices that have the normal
1897 * get_block functionality. This is most of the block device filesystems.
1898 * Reads the page asynchronously --- the unlock_buffer() and
1899 * set/clear_buffer_uptodate() functions propagate buffer state into the
1900 * page struct once IO has completed.
1902 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
1904 struct inode
*inode
= page
->mapping
->host
;
1905 sector_t iblock
, lblock
;
1906 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
1907 unsigned int blocksize
;
1909 int fully_mapped
= 1;
1911 BUG_ON(!PageLocked(page
));
1912 blocksize
= 1 << inode
->i_blkbits
;
1913 if (!page_has_buffers(page
))
1914 create_empty_buffers(page
, blocksize
, 0);
1915 head
= page_buffers(page
);
1917 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1918 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
1924 if (buffer_uptodate(bh
))
1927 if (!buffer_mapped(bh
)) {
1931 if (iblock
< lblock
) {
1932 WARN_ON(bh
->b_size
!= blocksize
);
1933 err
= get_block(inode
, iblock
, bh
, 0);
1937 if (!buffer_mapped(bh
)) {
1938 zero_user_page(page
, i
* blocksize
, blocksize
,
1941 set_buffer_uptodate(bh
);
1945 * get_block() might have updated the buffer
1948 if (buffer_uptodate(bh
))
1952 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
1955 SetPageMappedToDisk(page
);
1959 * All buffers are uptodate - we can set the page uptodate
1960 * as well. But not if get_block() returned an error.
1962 if (!PageError(page
))
1963 SetPageUptodate(page
);
1968 /* Stage two: lock the buffers */
1969 for (i
= 0; i
< nr
; i
++) {
1972 mark_buffer_async_read(bh
);
1976 * Stage 3: start the IO. Check for uptodateness
1977 * inside the buffer lock in case another process reading
1978 * the underlying blockdev brought it uptodate (the sct fix).
1980 for (i
= 0; i
< nr
; i
++) {
1982 if (buffer_uptodate(bh
))
1983 end_buffer_async_read(bh
, 1);
1985 submit_bh(READ
, bh
);
1990 /* utility function for filesystems that need to do work on expanding
1991 * truncates. Uses prepare/commit_write to allow the filesystem to
1992 * deal with the hole.
1994 static int __generic_cont_expand(struct inode
*inode
, loff_t size
,
1995 pgoff_t index
, unsigned int offset
)
1997 struct address_space
*mapping
= inode
->i_mapping
;
1999 unsigned long limit
;
2003 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2004 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2005 send_sig(SIGXFSZ
, current
, 0);
2008 if (size
> inode
->i_sb
->s_maxbytes
)
2012 page
= grab_cache_page(mapping
, index
);
2015 err
= mapping
->a_ops
->prepare_write(NULL
, page
, offset
, offset
);
2018 * ->prepare_write() may have instantiated a few blocks
2019 * outside i_size. Trim these off again.
2022 page_cache_release(page
);
2023 vmtruncate(inode
, inode
->i_size
);
2027 err
= mapping
->a_ops
->commit_write(NULL
, page
, offset
, offset
);
2030 page_cache_release(page
);
2037 int generic_cont_expand(struct inode
*inode
, loff_t size
)
2040 unsigned int offset
;
2042 offset
= (size
& (PAGE_CACHE_SIZE
- 1)); /* Within page */
2044 /* ugh. in prepare/commit_write, if from==to==start of block, we
2045 ** skip the prepare. make sure we never send an offset for the start
2048 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
2049 /* caller must handle this extra byte. */
2052 index
= size
>> PAGE_CACHE_SHIFT
;
2054 return __generic_cont_expand(inode
, size
, index
, offset
);
2057 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2059 loff_t pos
= size
- 1;
2060 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2061 unsigned int offset
= (pos
& (PAGE_CACHE_SIZE
- 1)) + 1;
2063 /* prepare/commit_write can handle even if from==to==start of block. */
2064 return __generic_cont_expand(inode
, size
, index
, offset
);
2068 * For moronic filesystems that do not allow holes in file.
2069 * We may have to extend the file.
2072 int cont_prepare_write(struct page
*page
, unsigned offset
,
2073 unsigned to
, get_block_t
*get_block
, loff_t
*bytes
)
2075 struct address_space
*mapping
= page
->mapping
;
2076 struct inode
*inode
= mapping
->host
;
2077 struct page
*new_page
;
2081 unsigned blocksize
= 1 << inode
->i_blkbits
;
2083 while(page
->index
> (pgpos
= *bytes
>>PAGE_CACHE_SHIFT
)) {
2085 new_page
= grab_cache_page(mapping
, pgpos
);
2088 /* we might sleep */
2089 if (*bytes
>>PAGE_CACHE_SHIFT
!= pgpos
) {
2090 unlock_page(new_page
);
2091 page_cache_release(new_page
);
2094 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2095 if (zerofrom
& (blocksize
-1)) {
2096 *bytes
|= (blocksize
-1);
2099 status
= __block_prepare_write(inode
, new_page
, zerofrom
,
2100 PAGE_CACHE_SIZE
, get_block
);
2103 zero_user_page(page
, zerofrom
, PAGE_CACHE_SIZE
- zerofrom
,
2105 generic_commit_write(NULL
, new_page
, zerofrom
, PAGE_CACHE_SIZE
);
2106 unlock_page(new_page
);
2107 page_cache_release(new_page
);
2110 if (page
->index
< pgpos
) {
2111 /* completely inside the area */
2114 /* page covers the boundary, find the boundary offset */
2115 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2117 /* if we will expand the thing last block will be filled */
2118 if (to
> zerofrom
&& (zerofrom
& (blocksize
-1))) {
2119 *bytes
|= (blocksize
-1);
2123 /* starting below the boundary? Nothing to zero out */
2124 if (offset
<= zerofrom
)
2127 status
= __block_prepare_write(inode
, page
, zerofrom
, to
, get_block
);
2130 if (zerofrom
< offset
) {
2131 zero_user_page(page
, zerofrom
, offset
- zerofrom
, KM_USER0
);
2132 __block_commit_write(inode
, page
, zerofrom
, offset
);
2136 ClearPageUptodate(page
);
2140 ClearPageUptodate(new_page
);
2141 unlock_page(new_page
);
2142 page_cache_release(new_page
);
2147 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2148 get_block_t
*get_block
)
2150 struct inode
*inode
= page
->mapping
->host
;
2151 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2153 ClearPageUptodate(page
);
2157 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2159 struct inode
*inode
= page
->mapping
->host
;
2160 __block_commit_write(inode
,page
,from
,to
);
2164 int generic_commit_write(struct file
*file
, struct page
*page
,
2165 unsigned from
, unsigned to
)
2167 struct inode
*inode
= page
->mapping
->host
;
2168 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2169 __block_commit_write(inode
,page
,from
,to
);
2171 * No need to use i_size_read() here, the i_size
2172 * cannot change under us because we hold i_mutex.
2174 if (pos
> inode
->i_size
) {
2175 i_size_write(inode
, pos
);
2176 mark_inode_dirty(inode
);
2183 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2184 * immediately, while under the page lock. So it needs a special end_io
2185 * handler which does not touch the bh after unlocking it.
2187 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2188 * a race there is benign: unlock_buffer() only use the bh's address for
2189 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2192 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2195 set_buffer_uptodate(bh
);
2197 /* This happens, due to failed READA attempts. */
2198 clear_buffer_uptodate(bh
);
2204 * On entry, the page is fully not uptodate.
2205 * On exit the page is fully uptodate in the areas outside (from,to)
2207 int nobh_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2208 get_block_t
*get_block
)
2210 struct inode
*inode
= page
->mapping
->host
;
2211 const unsigned blkbits
= inode
->i_blkbits
;
2212 const unsigned blocksize
= 1 << blkbits
;
2213 struct buffer_head map_bh
;
2214 struct buffer_head
*read_bh
[MAX_BUF_PER_PAGE
];
2215 unsigned block_in_page
;
2216 unsigned block_start
;
2217 sector_t block_in_file
;
2222 int is_mapped_to_disk
= 1;
2224 if (PageMappedToDisk(page
))
2227 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2228 map_bh
.b_page
= page
;
2231 * We loop across all blocks in the page, whether or not they are
2232 * part of the affected region. This is so we can discover if the
2233 * page is fully mapped-to-disk.
2235 for (block_start
= 0, block_in_page
= 0;
2236 block_start
< PAGE_CACHE_SIZE
;
2237 block_in_page
++, block_start
+= blocksize
) {
2238 unsigned block_end
= block_start
+ blocksize
;
2243 if (block_start
>= to
)
2245 map_bh
.b_size
= blocksize
;
2246 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2250 if (!buffer_mapped(&map_bh
))
2251 is_mapped_to_disk
= 0;
2252 if (buffer_new(&map_bh
))
2253 unmap_underlying_metadata(map_bh
.b_bdev
,
2255 if (PageUptodate(page
))
2257 if (buffer_new(&map_bh
) || !buffer_mapped(&map_bh
)) {
2258 kaddr
= kmap_atomic(page
, KM_USER0
);
2259 if (block_start
< from
)
2260 memset(kaddr
+block_start
, 0, from
-block_start
);
2262 memset(kaddr
+ to
, 0, block_end
- to
);
2263 flush_dcache_page(page
);
2264 kunmap_atomic(kaddr
, KM_USER0
);
2267 if (buffer_uptodate(&map_bh
))
2268 continue; /* reiserfs does this */
2269 if (block_start
< from
|| block_end
> to
) {
2270 struct buffer_head
*bh
= alloc_buffer_head(GFP_NOFS
);
2276 bh
->b_state
= map_bh
.b_state
;
2277 atomic_set(&bh
->b_count
, 0);
2278 bh
->b_this_page
= NULL
;
2280 bh
->b_blocknr
= map_bh
.b_blocknr
;
2281 bh
->b_size
= blocksize
;
2282 bh
->b_data
= (char *)(long)block_start
;
2283 bh
->b_bdev
= map_bh
.b_bdev
;
2284 bh
->b_private
= NULL
;
2285 read_bh
[nr_reads
++] = bh
;
2290 struct buffer_head
*bh
;
2293 * The page is locked, so these buffers are protected from
2294 * any VM or truncate activity. Hence we don't need to care
2295 * for the buffer_head refcounts.
2297 for (i
= 0; i
< nr_reads
; i
++) {
2300 bh
->b_end_io
= end_buffer_read_nobh
;
2301 submit_bh(READ
, bh
);
2303 for (i
= 0; i
< nr_reads
; i
++) {
2306 if (!buffer_uptodate(bh
))
2308 free_buffer_head(bh
);
2315 if (is_mapped_to_disk
)
2316 SetPageMappedToDisk(page
);
2321 for (i
= 0; i
< nr_reads
; i
++) {
2323 free_buffer_head(read_bh
[i
]);
2327 * Error recovery is pretty slack. Clear the page and mark it dirty
2328 * so we'll later zero out any blocks which _were_ allocated.
2330 zero_user_page(page
, 0, PAGE_CACHE_SIZE
, KM_USER0
);
2331 SetPageUptodate(page
);
2332 set_page_dirty(page
);
2335 EXPORT_SYMBOL(nobh_prepare_write
);
2338 * Make sure any changes to nobh_commit_write() are reflected in
2339 * nobh_truncate_page(), since it doesn't call commit_write().
2341 int nobh_commit_write(struct file
*file
, struct page
*page
,
2342 unsigned from
, unsigned to
)
2344 struct inode
*inode
= page
->mapping
->host
;
2345 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2347 SetPageUptodate(page
);
2348 set_page_dirty(page
);
2349 if (pos
> inode
->i_size
) {
2350 i_size_write(inode
, pos
);
2351 mark_inode_dirty(inode
);
2355 EXPORT_SYMBOL(nobh_commit_write
);
2358 * nobh_writepage() - based on block_full_write_page() except
2359 * that it tries to operate without attaching bufferheads to
2362 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2363 struct writeback_control
*wbc
)
2365 struct inode
* const inode
= page
->mapping
->host
;
2366 loff_t i_size
= i_size_read(inode
);
2367 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2371 /* Is the page fully inside i_size? */
2372 if (page
->index
< end_index
)
2375 /* Is the page fully outside i_size? (truncate in progress) */
2376 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2377 if (page
->index
>= end_index
+1 || !offset
) {
2379 * The page may have dirty, unmapped buffers. For example,
2380 * they may have been added in ext3_writepage(). Make them
2381 * freeable here, so the page does not leak.
2384 /* Not really sure about this - do we need this ? */
2385 if (page
->mapping
->a_ops
->invalidatepage
)
2386 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2389 return 0; /* don't care */
2393 * The page straddles i_size. It must be zeroed out on each and every
2394 * writepage invocation because it may be mmapped. "A file is mapped
2395 * in multiples of the page size. For a file that is not a multiple of
2396 * the page size, the remaining memory is zeroed when mapped, and
2397 * writes to that region are not written out to the file."
2399 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2401 ret
= mpage_writepage(page
, get_block
, wbc
);
2403 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2406 EXPORT_SYMBOL(nobh_writepage
);
2409 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2411 int nobh_truncate_page(struct address_space
*mapping
, loff_t from
)
2413 struct inode
*inode
= mapping
->host
;
2414 unsigned blocksize
= 1 << inode
->i_blkbits
;
2415 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2416 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2419 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2422 if ((offset
& (blocksize
- 1)) == 0)
2426 page
= grab_cache_page(mapping
, index
);
2430 to
= (offset
+ blocksize
) & ~(blocksize
- 1);
2431 ret
= a_ops
->prepare_write(NULL
, page
, offset
, to
);
2433 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
,
2436 * It would be more correct to call aops->commit_write()
2437 * here, but this is more efficient.
2439 SetPageUptodate(page
);
2440 set_page_dirty(page
);
2443 page_cache_release(page
);
2447 EXPORT_SYMBOL(nobh_truncate_page
);
2449 int block_truncate_page(struct address_space
*mapping
,
2450 loff_t from
, get_block_t
*get_block
)
2452 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2453 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2456 unsigned length
, pos
;
2457 struct inode
*inode
= mapping
->host
;
2459 struct buffer_head
*bh
;
2462 blocksize
= 1 << inode
->i_blkbits
;
2463 length
= offset
& (blocksize
- 1);
2465 /* Block boundary? Nothing to do */
2469 length
= blocksize
- length
;
2470 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2472 page
= grab_cache_page(mapping
, index
);
2477 if (!page_has_buffers(page
))
2478 create_empty_buffers(page
, blocksize
, 0);
2480 /* Find the buffer that contains "offset" */
2481 bh
= page_buffers(page
);
2483 while (offset
>= pos
) {
2484 bh
= bh
->b_this_page
;
2490 if (!buffer_mapped(bh
)) {
2491 WARN_ON(bh
->b_size
!= blocksize
);
2492 err
= get_block(inode
, iblock
, bh
, 0);
2495 /* unmapped? It's a hole - nothing to do */
2496 if (!buffer_mapped(bh
))
2500 /* Ok, it's mapped. Make sure it's up-to-date */
2501 if (PageUptodate(page
))
2502 set_buffer_uptodate(bh
);
2504 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2506 ll_rw_block(READ
, 1, &bh
);
2508 /* Uhhuh. Read error. Complain and punt. */
2509 if (!buffer_uptodate(bh
))
2513 zero_user_page(page
, offset
, length
, KM_USER0
);
2514 mark_buffer_dirty(bh
);
2519 page_cache_release(page
);
2525 * The generic ->writepage function for buffer-backed address_spaces
2527 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2528 struct writeback_control
*wbc
)
2530 struct inode
* const inode
= page
->mapping
->host
;
2531 loff_t i_size
= i_size_read(inode
);
2532 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2535 /* Is the page fully inside i_size? */
2536 if (page
->index
< end_index
)
2537 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2539 /* Is the page fully outside i_size? (truncate in progress) */
2540 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2541 if (page
->index
>= end_index
+1 || !offset
) {
2543 * The page may have dirty, unmapped buffers. For example,
2544 * they may have been added in ext3_writepage(). Make them
2545 * freeable here, so the page does not leak.
2547 do_invalidatepage(page
, 0);
2549 return 0; /* don't care */
2553 * The page straddles i_size. It must be zeroed out on each and every
2554 * writepage invokation because it may be mmapped. "A file is mapped
2555 * in multiples of the page size. For a file that is not a multiple of
2556 * the page size, the remaining memory is zeroed when mapped, and
2557 * writes to that region are not written out to the file."
2559 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2560 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2563 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2564 get_block_t
*get_block
)
2566 struct buffer_head tmp
;
2567 struct inode
*inode
= mapping
->host
;
2570 tmp
.b_size
= 1 << inode
->i_blkbits
;
2571 get_block(inode
, block
, &tmp
, 0);
2572 return tmp
.b_blocknr
;
2575 static int end_bio_bh_io_sync(struct bio
*bio
, unsigned int bytes_done
, int err
)
2577 struct buffer_head
*bh
= bio
->bi_private
;
2582 if (err
== -EOPNOTSUPP
) {
2583 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2584 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2587 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2592 int submit_bh(int rw
, struct buffer_head
* bh
)
2597 BUG_ON(!buffer_locked(bh
));
2598 BUG_ON(!buffer_mapped(bh
));
2599 BUG_ON(!bh
->b_end_io
);
2601 if (buffer_ordered(bh
) && (rw
== WRITE
))
2605 * Only clear out a write error when rewriting, should this
2606 * include WRITE_SYNC as well?
2608 if (test_set_buffer_req(bh
) && (rw
== WRITE
|| rw
== WRITE_BARRIER
))
2609 clear_buffer_write_io_error(bh
);
2612 * from here on down, it's all bio -- do the initial mapping,
2613 * submit_bio -> generic_make_request may further map this bio around
2615 bio
= bio_alloc(GFP_NOIO
, 1);
2617 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2618 bio
->bi_bdev
= bh
->b_bdev
;
2619 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2620 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2621 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2625 bio
->bi_size
= bh
->b_size
;
2627 bio
->bi_end_io
= end_bio_bh_io_sync
;
2628 bio
->bi_private
= bh
;
2631 submit_bio(rw
, bio
);
2633 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2641 * ll_rw_block: low-level access to block devices (DEPRECATED)
2642 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2643 * @nr: number of &struct buffer_heads in the array
2644 * @bhs: array of pointers to &struct buffer_head
2646 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2647 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2648 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2649 * are sent to disk. The fourth %READA option is described in the documentation
2650 * for generic_make_request() which ll_rw_block() calls.
2652 * This function drops any buffer that it cannot get a lock on (with the
2653 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2654 * clean when doing a write request, and any buffer that appears to be
2655 * up-to-date when doing read request. Further it marks as clean buffers that
2656 * are processed for writing (the buffer cache won't assume that they are
2657 * actually clean until the buffer gets unlocked).
2659 * ll_rw_block sets b_end_io to simple completion handler that marks
2660 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2663 * All of the buffers must be for the same device, and must also be a
2664 * multiple of the current approved size for the device.
2666 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2670 for (i
= 0; i
< nr
; i
++) {
2671 struct buffer_head
*bh
= bhs
[i
];
2675 else if (test_set_buffer_locked(bh
))
2678 if (rw
== WRITE
|| rw
== SWRITE
) {
2679 if (test_clear_buffer_dirty(bh
)) {
2680 bh
->b_end_io
= end_buffer_write_sync
;
2682 submit_bh(WRITE
, bh
);
2686 if (!buffer_uptodate(bh
)) {
2687 bh
->b_end_io
= end_buffer_read_sync
;
2698 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2699 * and then start new I/O and then wait upon it. The caller must have a ref on
2702 int sync_dirty_buffer(struct buffer_head
*bh
)
2706 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2708 if (test_clear_buffer_dirty(bh
)) {
2710 bh
->b_end_io
= end_buffer_write_sync
;
2711 ret
= submit_bh(WRITE
, bh
);
2713 if (buffer_eopnotsupp(bh
)) {
2714 clear_buffer_eopnotsupp(bh
);
2717 if (!ret
&& !buffer_uptodate(bh
))
2726 * try_to_free_buffers() checks if all the buffers on this particular page
2727 * are unused, and releases them if so.
2729 * Exclusion against try_to_free_buffers may be obtained by either
2730 * locking the page or by holding its mapping's private_lock.
2732 * If the page is dirty but all the buffers are clean then we need to
2733 * be sure to mark the page clean as well. This is because the page
2734 * may be against a block device, and a later reattachment of buffers
2735 * to a dirty page will set *all* buffers dirty. Which would corrupt
2736 * filesystem data on the same device.
2738 * The same applies to regular filesystem pages: if all the buffers are
2739 * clean then we set the page clean and proceed. To do that, we require
2740 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2743 * try_to_free_buffers() is non-blocking.
2745 static inline int buffer_busy(struct buffer_head
*bh
)
2747 return atomic_read(&bh
->b_count
) |
2748 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
2752 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
2754 struct buffer_head
*head
= page_buffers(page
);
2755 struct buffer_head
*bh
;
2759 if (buffer_write_io_error(bh
) && page
->mapping
)
2760 set_bit(AS_EIO
, &page
->mapping
->flags
);
2761 if (buffer_busy(bh
))
2763 bh
= bh
->b_this_page
;
2764 } while (bh
!= head
);
2767 struct buffer_head
*next
= bh
->b_this_page
;
2769 if (!list_empty(&bh
->b_assoc_buffers
))
2770 __remove_assoc_queue(bh
);
2772 } while (bh
!= head
);
2773 *buffers_to_free
= head
;
2774 __clear_page_buffers(page
);
2780 int try_to_free_buffers(struct page
*page
)
2782 struct address_space
* const mapping
= page
->mapping
;
2783 struct buffer_head
*buffers_to_free
= NULL
;
2786 BUG_ON(!PageLocked(page
));
2787 if (PageWriteback(page
))
2790 if (mapping
== NULL
) { /* can this still happen? */
2791 ret
= drop_buffers(page
, &buffers_to_free
);
2795 spin_lock(&mapping
->private_lock
);
2796 ret
= drop_buffers(page
, &buffers_to_free
);
2799 * If the filesystem writes its buffers by hand (eg ext3)
2800 * then we can have clean buffers against a dirty page. We
2801 * clean the page here; otherwise the VM will never notice
2802 * that the filesystem did any IO at all.
2804 * Also, during truncate, discard_buffer will have marked all
2805 * the page's buffers clean. We discover that here and clean
2808 * private_lock must be held over this entire operation in order
2809 * to synchronise against __set_page_dirty_buffers and prevent the
2810 * dirty bit from being lost.
2813 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
2814 spin_unlock(&mapping
->private_lock
);
2816 if (buffers_to_free
) {
2817 struct buffer_head
*bh
= buffers_to_free
;
2820 struct buffer_head
*next
= bh
->b_this_page
;
2821 free_buffer_head(bh
);
2823 } while (bh
!= buffers_to_free
);
2827 EXPORT_SYMBOL(try_to_free_buffers
);
2829 void block_sync_page(struct page
*page
)
2831 struct address_space
*mapping
;
2834 mapping
= page_mapping(page
);
2836 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
2840 * There are no bdflush tunables left. But distributions are
2841 * still running obsolete flush daemons, so we terminate them here.
2843 * Use of bdflush() is deprecated and will be removed in a future kernel.
2844 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2846 asmlinkage
long sys_bdflush(int func
, long data
)
2848 static int msg_count
;
2850 if (!capable(CAP_SYS_ADMIN
))
2853 if (msg_count
< 5) {
2856 "warning: process `%s' used the obsolete bdflush"
2857 " system call\n", current
->comm
);
2858 printk(KERN_INFO
"Fix your initscripts?\n");
2867 * Buffer-head allocation
2869 static struct kmem_cache
*bh_cachep
;
2872 * Once the number of bh's in the machine exceeds this level, we start
2873 * stripping them in writeback.
2875 static int max_buffer_heads
;
2877 int buffer_heads_over_limit
;
2879 struct bh_accounting
{
2880 int nr
; /* Number of live bh's */
2881 int ratelimit
; /* Limit cacheline bouncing */
2884 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
2886 static void recalc_bh_state(void)
2891 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
2893 __get_cpu_var(bh_accounting
).ratelimit
= 0;
2894 for_each_online_cpu(i
)
2895 tot
+= per_cpu(bh_accounting
, i
).nr
;
2896 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
2899 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
2901 struct buffer_head
*ret
= kmem_cache_alloc(bh_cachep
, gfp_flags
);
2903 get_cpu_var(bh_accounting
).nr
++;
2905 put_cpu_var(bh_accounting
);
2909 EXPORT_SYMBOL(alloc_buffer_head
);
2911 void free_buffer_head(struct buffer_head
*bh
)
2913 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
2914 kmem_cache_free(bh_cachep
, bh
);
2915 get_cpu_var(bh_accounting
).nr
--;
2917 put_cpu_var(bh_accounting
);
2919 EXPORT_SYMBOL(free_buffer_head
);
2922 init_buffer_head(void *data
, struct kmem_cache
*cachep
, unsigned long flags
)
2924 if (flags
& SLAB_CTOR_CONSTRUCTOR
) {
2925 struct buffer_head
* bh
= (struct buffer_head
*)data
;
2927 memset(bh
, 0, sizeof(*bh
));
2928 INIT_LIST_HEAD(&bh
->b_assoc_buffers
);
2932 static void buffer_exit_cpu(int cpu
)
2935 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
2937 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
2941 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
2942 per_cpu(bh_accounting
, cpu
).nr
= 0;
2943 put_cpu_var(bh_accounting
);
2946 static int buffer_cpu_notify(struct notifier_block
*self
,
2947 unsigned long action
, void *hcpu
)
2949 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
2950 buffer_exit_cpu((unsigned long)hcpu
);
2954 void __init
buffer_init(void)
2958 bh_cachep
= kmem_cache_create("buffer_head",
2959 sizeof(struct buffer_head
), 0,
2960 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2966 * Limit the bh occupancy to 10% of ZONE_NORMAL
2968 nrpages
= (nr_free_buffer_pages() * 10) / 100;
2969 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
2970 hotcpu_notifier(buffer_cpu_notify
, 0);
2973 EXPORT_SYMBOL(__bforget
);
2974 EXPORT_SYMBOL(__brelse
);
2975 EXPORT_SYMBOL(__wait_on_buffer
);
2976 EXPORT_SYMBOL(block_commit_write
);
2977 EXPORT_SYMBOL(block_prepare_write
);
2978 EXPORT_SYMBOL(block_read_full_page
);
2979 EXPORT_SYMBOL(block_sync_page
);
2980 EXPORT_SYMBOL(block_truncate_page
);
2981 EXPORT_SYMBOL(block_write_full_page
);
2982 EXPORT_SYMBOL(cont_prepare_write
);
2983 EXPORT_SYMBOL(end_buffer_read_sync
);
2984 EXPORT_SYMBOL(end_buffer_write_sync
);
2985 EXPORT_SYMBOL(file_fsync
);
2986 EXPORT_SYMBOL(fsync_bdev
);
2987 EXPORT_SYMBOL(generic_block_bmap
);
2988 EXPORT_SYMBOL(generic_commit_write
);
2989 EXPORT_SYMBOL(generic_cont_expand
);
2990 EXPORT_SYMBOL(generic_cont_expand_simple
);
2991 EXPORT_SYMBOL(init_buffer
);
2992 EXPORT_SYMBOL(invalidate_bdev
);
2993 EXPORT_SYMBOL(ll_rw_block
);
2994 EXPORT_SYMBOL(mark_buffer_dirty
);
2995 EXPORT_SYMBOL(submit_bh
);
2996 EXPORT_SYMBOL(sync_dirty_buffer
);
2997 EXPORT_SYMBOL(unlock_buffer
);