Hook ext4 to the vfs fiemap interface.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
bloba4747867411fe1016a67169086f5d84cfdcf2141
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 #define MPAGE_DA_EXTENT_TAIL 0x01
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56 * Test whether an inode is a fast symlink.
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
78 int err;
80 might_sleep();
82 BUFFER_TRACE(bh, "enter");
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
100 return 0;
104 * data!=journal && (is_metadata || should_journal_data(inode))
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
119 static unsigned long blocks_for_truncate(struct inode *inode)
121 ext4_lblk_t needed;
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
152 static handle_t *start_transaction(struct inode *inode)
154 handle_t *result;
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
165 * Try to extend this transaction for the purposes of truncation.
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
191 * Called at the last iput() if i_nlink is zero.
193 void ext4_delete_inode(struct inode *inode)
195 handle_t *handle;
196 int err;
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
202 if (is_bad_inode(inode))
203 goto no_delete;
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
226 if (inode->i_blocks)
227 ext4_truncate(inode);
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 p->key = *(p->p = v);
286 p->bh = bh;
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
332 if (i_block < 0) {
333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
415 return NULL;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
490 * XXX need to get goal block from mballoc's data structures
493 return ext4_find_near(inode, partial);
497 * ext4_blks_to_allocate: Look up the block map and count the number
498 * of direct blocks need to be allocated for the given branch.
500 * @branch: chain of indirect blocks
501 * @k: number of blocks need for indirect blocks
502 * @blks: number of data blocks to be mapped.
503 * @blocks_to_boundary: the offset in the indirect block
505 * return the total number of blocks to be allocate, including the
506 * direct and indirect blocks.
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509 int blocks_to_boundary)
511 unsigned long count = 0;
514 * Simple case, [t,d]Indirect block(s) has not allocated yet
515 * then it's clear blocks on that path have not allocated
517 if (k > 0) {
518 /* right now we don't handle cross boundary allocation */
519 if (blks < blocks_to_boundary + 1)
520 count += blks;
521 else
522 count += blocks_to_boundary + 1;
523 return count;
526 count++;
527 while (count < blks && count <= blocks_to_boundary &&
528 le32_to_cpu(*(branch[0].p + count)) == 0) {
529 count++;
531 return count;
535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
536 * @indirect_blks: the number of blocks need to allocate for indirect
537 * blocks
539 * @new_blocks: on return it will store the new block numbers for
540 * the indirect blocks(if needed) and the first direct block,
541 * @blks: on return it will store the total number of allocated
542 * direct blocks
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545 ext4_lblk_t iblock, ext4_fsblk_t goal,
546 int indirect_blks, int blks,
547 ext4_fsblk_t new_blocks[4], int *err)
549 int target, i;
550 unsigned long count = 0, blk_allocated = 0;
551 int index = 0;
552 ext4_fsblk_t current_block = 0;
553 int ret = 0;
556 * Here we try to allocate the requested multiple blocks at once,
557 * on a best-effort basis.
558 * To build a branch, we should allocate blocks for
559 * the indirect blocks(if not allocated yet), and at least
560 * the first direct block of this branch. That's the
561 * minimum number of blocks need to allocate(required)
563 /* first we try to allocate the indirect blocks */
564 target = indirect_blks;
565 while (target > 0) {
566 count = target;
567 /* allocating blocks for indirect blocks and direct blocks */
568 current_block = ext4_new_meta_blocks(handle, inode,
569 goal, &count, err);
570 if (*err)
571 goto failed_out;
573 target -= count;
574 /* allocate blocks for indirect blocks */
575 while (index < indirect_blks && count) {
576 new_blocks[index++] = current_block++;
577 count--;
579 if (count > 0) {
581 * save the new block number
582 * for the first direct block
584 new_blocks[index] = current_block;
585 printk(KERN_INFO "%s returned more blocks than "
586 "requested\n", __func__);
587 WARN_ON(1);
588 break;
592 target = blks - count ;
593 blk_allocated = count;
594 if (!target)
595 goto allocated;
596 /* Now allocate data blocks */
597 count = target;
598 /* allocating blocks for data blocks */
599 current_block = ext4_new_blocks(handle, inode, iblock,
600 goal, &count, err);
601 if (*err && (target == blks)) {
603 * if the allocation failed and we didn't allocate
604 * any blocks before
606 goto failed_out;
608 if (!*err) {
609 if (target == blks) {
611 * save the new block number
612 * for the first direct block
614 new_blocks[index] = current_block;
616 blk_allocated += count;
618 allocated:
619 /* total number of blocks allocated for direct blocks */
620 ret = blk_allocated;
621 *err = 0;
622 return ret;
623 failed_out:
624 for (i = 0; i < index; i++)
625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626 return ret;
630 * ext4_alloc_branch - allocate and set up a chain of blocks.
631 * @inode: owner
632 * @indirect_blks: number of allocated indirect blocks
633 * @blks: number of allocated direct blocks
634 * @offsets: offsets (in the blocks) to store the pointers to next.
635 * @branch: place to store the chain in.
637 * This function allocates blocks, zeroes out all but the last one,
638 * links them into chain and (if we are synchronous) writes them to disk.
639 * In other words, it prepares a branch that can be spliced onto the
640 * inode. It stores the information about that chain in the branch[], in
641 * the same format as ext4_get_branch() would do. We are calling it after
642 * we had read the existing part of chain and partial points to the last
643 * triple of that (one with zero ->key). Upon the exit we have the same
644 * picture as after the successful ext4_get_block(), except that in one
645 * place chain is disconnected - *branch->p is still zero (we did not
646 * set the last link), but branch->key contains the number that should
647 * be placed into *branch->p to fill that gap.
649 * If allocation fails we free all blocks we've allocated (and forget
650 * their buffer_heads) and return the error value the from failed
651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652 * as described above and return 0.
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655 ext4_lblk_t iblock, int indirect_blks,
656 int *blks, ext4_fsblk_t goal,
657 ext4_lblk_t *offsets, Indirect *branch)
659 int blocksize = inode->i_sb->s_blocksize;
660 int i, n = 0;
661 int err = 0;
662 struct buffer_head *bh;
663 int num;
664 ext4_fsblk_t new_blocks[4];
665 ext4_fsblk_t current_block;
667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668 *blks, new_blocks, &err);
669 if (err)
670 return err;
672 branch[0].key = cpu_to_le32(new_blocks[0]);
674 * metadata blocks and data blocks are allocated.
676 for (n = 1; n <= indirect_blks; n++) {
678 * Get buffer_head for parent block, zero it out
679 * and set the pointer to new one, then send
680 * parent to disk.
682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683 branch[n].bh = bh;
684 lock_buffer(bh);
685 BUFFER_TRACE(bh, "call get_create_access");
686 err = ext4_journal_get_create_access(handle, bh);
687 if (err) {
688 unlock_buffer(bh);
689 brelse(bh);
690 goto failed;
693 memset(bh->b_data, 0, blocksize);
694 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695 branch[n].key = cpu_to_le32(new_blocks[n]);
696 *branch[n].p = branch[n].key;
697 if (n == indirect_blks) {
698 current_block = new_blocks[n];
700 * End of chain, update the last new metablock of
701 * the chain to point to the new allocated
702 * data blocks numbers
704 for (i=1; i < num; i++)
705 *(branch[n].p + i) = cpu_to_le32(++current_block);
707 BUFFER_TRACE(bh, "marking uptodate");
708 set_buffer_uptodate(bh);
709 unlock_buffer(bh);
711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712 err = ext4_journal_dirty_metadata(handle, bh);
713 if (err)
714 goto failed;
716 *blks = num;
717 return err;
718 failed:
719 /* Allocation failed, free what we already allocated */
720 for (i = 1; i <= n ; i++) {
721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722 ext4_journal_forget(handle, branch[i].bh);
724 for (i = 0; i < indirect_blks; i++)
725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
729 return err;
733 * ext4_splice_branch - splice the allocated branch onto inode.
734 * @inode: owner
735 * @block: (logical) number of block we are adding
736 * @chain: chain of indirect blocks (with a missing link - see
737 * ext4_alloc_branch)
738 * @where: location of missing link
739 * @num: number of indirect blocks we are adding
740 * @blks: number of direct blocks we are adding
742 * This function fills the missing link and does all housekeeping needed in
743 * inode (->i_blocks, etc.). In case of success we end up with the full
744 * chain to new block and return 0.
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747 ext4_lblk_t block, Indirect *where, int num, int blks)
749 int i;
750 int err = 0;
751 ext4_fsblk_t current_block;
754 * If we're splicing into a [td]indirect block (as opposed to the
755 * inode) then we need to get write access to the [td]indirect block
756 * before the splice.
758 if (where->bh) {
759 BUFFER_TRACE(where->bh, "get_write_access");
760 err = ext4_journal_get_write_access(handle, where->bh);
761 if (err)
762 goto err_out;
764 /* That's it */
766 *where->p = where->key;
769 * Update the host buffer_head or inode to point to more just allocated
770 * direct blocks blocks
772 if (num == 0 && blks > 1) {
773 current_block = le32_to_cpu(where->key) + 1;
774 for (i = 1; i < blks; i++)
775 *(where->p + i) = cpu_to_le32(current_block++);
778 /* We are done with atomic stuff, now do the rest of housekeeping */
780 inode->i_ctime = ext4_current_time(inode);
781 ext4_mark_inode_dirty(handle, inode);
783 /* had we spliced it onto indirect block? */
784 if (where->bh) {
786 * If we spliced it onto an indirect block, we haven't
787 * altered the inode. Note however that if it is being spliced
788 * onto an indirect block at the very end of the file (the
789 * file is growing) then we *will* alter the inode to reflect
790 * the new i_size. But that is not done here - it is done in
791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
793 jbd_debug(5, "splicing indirect only\n");
794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795 err = ext4_journal_dirty_metadata(handle, where->bh);
796 if (err)
797 goto err_out;
798 } else {
800 * OK, we spliced it into the inode itself on a direct block.
801 * Inode was dirtied above.
803 jbd_debug(5, "splicing direct\n");
805 return err;
807 err_out:
808 for (i = 1; i <= num; i++) {
809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810 ext4_journal_forget(handle, where[i].bh);
811 ext4_free_blocks(handle, inode,
812 le32_to_cpu(where[i-1].key), 1, 0);
814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
816 return err;
820 * Allocation strategy is simple: if we have to allocate something, we will
821 * have to go the whole way to leaf. So let's do it before attaching anything
822 * to tree, set linkage between the newborn blocks, write them if sync is
823 * required, recheck the path, free and repeat if check fails, otherwise
824 * set the last missing link (that will protect us from any truncate-generated
825 * removals - all blocks on the path are immune now) and possibly force the
826 * write on the parent block.
827 * That has a nice additional property: no special recovery from the failed
828 * allocations is needed - we simply release blocks and do not touch anything
829 * reachable from inode.
831 * `handle' can be NULL if create == 0.
833 * return > 0, # of blocks mapped or allocated.
834 * return = 0, if plain lookup failed.
835 * return < 0, error case.
838 * Need to be called with
839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843 ext4_lblk_t iblock, unsigned long maxblocks,
844 struct buffer_head *bh_result,
845 int create, int extend_disksize)
847 int err = -EIO;
848 ext4_lblk_t offsets[4];
849 Indirect chain[4];
850 Indirect *partial;
851 ext4_fsblk_t goal;
852 int indirect_blks;
853 int blocks_to_boundary = 0;
854 int depth;
855 struct ext4_inode_info *ei = EXT4_I(inode);
856 int count = 0;
857 ext4_fsblk_t first_block = 0;
858 loff_t disksize;
861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862 J_ASSERT(handle != NULL || create == 0);
863 depth = ext4_block_to_path(inode, iblock, offsets,
864 &blocks_to_boundary);
866 if (depth == 0)
867 goto out;
869 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
871 /* Simplest case - block found, no allocation needed */
872 if (!partial) {
873 first_block = le32_to_cpu(chain[depth - 1].key);
874 clear_buffer_new(bh_result);
875 count++;
876 /*map more blocks*/
877 while (count < maxblocks && count <= blocks_to_boundary) {
878 ext4_fsblk_t blk;
880 blk = le32_to_cpu(*(chain[depth-1].p + count));
882 if (blk == first_block + count)
883 count++;
884 else
885 break;
887 goto got_it;
890 /* Next simple case - plain lookup or failed read of indirect block */
891 if (!create || err == -EIO)
892 goto cleanup;
895 * Okay, we need to do block allocation.
897 goal = ext4_find_goal(inode, iblock, partial);
899 /* the number of blocks need to allocate for [d,t]indirect blocks */
900 indirect_blks = (chain + depth) - partial - 1;
903 * Next look up the indirect map to count the totoal number of
904 * direct blocks to allocate for this branch.
906 count = ext4_blks_to_allocate(partial, indirect_blks,
907 maxblocks, blocks_to_boundary);
909 * Block out ext4_truncate while we alter the tree
911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912 &count, goal,
913 offsets + (partial - chain), partial);
916 * The ext4_splice_branch call will free and forget any buffers
917 * on the new chain if there is a failure, but that risks using
918 * up transaction credits, especially for bitmaps where the
919 * credits cannot be returned. Can we handle this somehow? We
920 * may need to return -EAGAIN upwards in the worst case. --sct
922 if (!err)
923 err = ext4_splice_branch(handle, inode, iblock,
924 partial, indirect_blks, count);
926 * i_disksize growing is protected by i_data_sem. Don't forget to
927 * protect it if you're about to implement concurrent
928 * ext4_get_block() -bzzz
930 if (!err && extend_disksize) {
931 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932 if (disksize > i_size_read(inode))
933 disksize = i_size_read(inode);
934 if (disksize > ei->i_disksize)
935 ei->i_disksize = disksize;
937 if (err)
938 goto cleanup;
940 set_buffer_new(bh_result);
941 got_it:
942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943 if (count > blocks_to_boundary)
944 set_buffer_boundary(bh_result);
945 err = count;
946 /* Clean up and exit */
947 partial = chain + depth - 1; /* the whole chain */
948 cleanup:
949 while (partial > chain) {
950 BUFFER_TRACE(partial->bh, "call brelse");
951 brelse(partial->bh);
952 partial--;
954 BUFFER_TRACE(bh_result, "returned");
955 out:
956 return err;
960 * Calculate the number of metadata blocks need to reserve
961 * to allocate @blocks for non extent file based file
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966 int ind_blks, dind_blks, tind_blks;
968 /* number of new indirect blocks needed */
969 ind_blks = (blocks + icap - 1) / icap;
971 dind_blks = (ind_blks + icap - 1) / icap;
973 tind_blks = 1;
975 return ind_blks + dind_blks + tind_blks;
979 * Calculate the number of metadata blocks need to reserve
980 * to allocate given number of blocks
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
984 if (!blocks)
985 return 0;
987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988 return ext4_ext_calc_metadata_amount(inode, blocks);
990 return ext4_indirect_calc_metadata_amount(inode, blocks);
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996 int total, mdb, mdb_free;
998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999 /* recalculate the number of metablocks still need to be reserved */
1000 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001 mdb = ext4_calc_metadata_amount(inode, total);
1003 /* figure out how many metablocks to release */
1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1007 if (mdb_free) {
1008 /* Account for allocated meta_blocks */
1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1011 /* update fs dirty blocks counter */
1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1017 /* update per-inode reservations */
1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1019 EXT4_I(inode)->i_reserved_data_blocks -= used;
1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026 * and returns if the blocks are already mapped.
1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029 * and store the allocated blocks in the result buffer head and mark it
1030 * mapped.
1032 * If file type is extents based, it will call ext4_ext_get_blocks(),
1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034 * based files
1036 * On success, it returns the number of blocks being mapped or allocate.
1037 * if create==0 and the blocks are pre-allocated and uninitialized block,
1038 * the result buffer head is unmapped. If the create ==1, it will make sure
1039 * the buffer head is mapped.
1041 * It returns 0 if plain look up failed (blocks have not been allocated), in
1042 * that casem, buffer head is unmapped
1044 * It returns the error in case of allocation failure.
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047 unsigned long max_blocks, struct buffer_head *bh,
1048 int create, int extend_disksize, int flag)
1050 int retval;
1052 clear_buffer_mapped(bh);
1055 * Try to see if we can get the block without requesting
1056 * for new file system block.
1058 down_read((&EXT4_I(inode)->i_data_sem));
1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061 bh, 0, 0);
1062 } else {
1063 retval = ext4_get_blocks_handle(handle,
1064 inode, block, max_blocks, bh, 0, 0);
1066 up_read((&EXT4_I(inode)->i_data_sem));
1068 /* If it is only a block(s) look up */
1069 if (!create)
1070 return retval;
1073 * Returns if the blocks have already allocated
1075 * Note that if blocks have been preallocated
1076 * ext4_ext_get_block() returns th create = 0
1077 * with buffer head unmapped.
1079 if (retval > 0 && buffer_mapped(bh))
1080 return retval;
1083 * New blocks allocate and/or writing to uninitialized extent
1084 * will possibly result in updating i_data, so we take
1085 * the write lock of i_data_sem, and call get_blocks()
1086 * with create == 1 flag.
1088 down_write((&EXT4_I(inode)->i_data_sem));
1091 * if the caller is from delayed allocation writeout path
1092 * we have already reserved fs blocks for allocation
1093 * let the underlying get_block() function know to
1094 * avoid double accounting
1096 if (flag)
1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1099 * We need to check for EXT4 here because migrate
1100 * could have changed the inode type in between
1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104 bh, create, extend_disksize);
1105 } else {
1106 retval = ext4_get_blocks_handle(handle, inode, block,
1107 max_blocks, bh, create, extend_disksize);
1109 if (retval > 0 && buffer_new(bh)) {
1111 * We allocated new blocks which will result in
1112 * i_data's format changing. Force the migrate
1113 * to fail by clearing migrate flags
1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116 ~EXT4_EXT_MIGRATE;
1120 if (flag) {
1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1123 * Update reserved blocks/metadata blocks
1124 * after successful block allocation
1125 * which were deferred till now
1127 if ((retval > 0) && buffer_delay(bh))
1128 ext4_da_update_reserve_space(inode, retval);
1131 up_write((&EXT4_I(inode)->i_data_sem));
1132 return retval;
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1138 int ext4_get_block(struct inode *inode, sector_t iblock,
1139 struct buffer_head *bh_result, int create)
1141 handle_t *handle = ext4_journal_current_handle();
1142 int ret = 0, started = 0;
1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144 int dio_credits;
1146 if (create && !handle) {
1147 /* Direct IO write... */
1148 if (max_blocks > DIO_MAX_BLOCKS)
1149 max_blocks = DIO_MAX_BLOCKS;
1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151 handle = ext4_journal_start(inode, dio_credits);
1152 if (IS_ERR(handle)) {
1153 ret = PTR_ERR(handle);
1154 goto out;
1156 started = 1;
1159 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160 max_blocks, bh_result, create, 0, 0);
1161 if (ret > 0) {
1162 bh_result->b_size = (ret << inode->i_blkbits);
1163 ret = 0;
1165 if (started)
1166 ext4_journal_stop(handle);
1167 out:
1168 return ret;
1172 * `handle' can be NULL if create is zero
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175 ext4_lblk_t block, int create, int *errp)
1177 struct buffer_head dummy;
1178 int fatal = 0, err;
1180 J_ASSERT(handle != NULL || create == 0);
1182 dummy.b_state = 0;
1183 dummy.b_blocknr = -1000;
1184 buffer_trace_init(&dummy.b_history);
1185 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186 &dummy, create, 1, 0);
1188 * ext4_get_blocks_handle() returns number of blocks
1189 * mapped. 0 in case of a HOLE.
1191 if (err > 0) {
1192 if (err > 1)
1193 WARN_ON(1);
1194 err = 0;
1196 *errp = err;
1197 if (!err && buffer_mapped(&dummy)) {
1198 struct buffer_head *bh;
1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200 if (!bh) {
1201 *errp = -EIO;
1202 goto err;
1204 if (buffer_new(&dummy)) {
1205 J_ASSERT(create != 0);
1206 J_ASSERT(handle != NULL);
1209 * Now that we do not always journal data, we should
1210 * keep in mind whether this should always journal the
1211 * new buffer as metadata. For now, regular file
1212 * writes use ext4_get_block instead, so it's not a
1213 * problem.
1215 lock_buffer(bh);
1216 BUFFER_TRACE(bh, "call get_create_access");
1217 fatal = ext4_journal_get_create_access(handle, bh);
1218 if (!fatal && !buffer_uptodate(bh)) {
1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220 set_buffer_uptodate(bh);
1222 unlock_buffer(bh);
1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224 err = ext4_journal_dirty_metadata(handle, bh);
1225 if (!fatal)
1226 fatal = err;
1227 } else {
1228 BUFFER_TRACE(bh, "not a new buffer");
1230 if (fatal) {
1231 *errp = fatal;
1232 brelse(bh);
1233 bh = NULL;
1235 return bh;
1237 err:
1238 return NULL;
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242 ext4_lblk_t block, int create, int *err)
1244 struct buffer_head *bh;
1246 bh = ext4_getblk(handle, inode, block, create, err);
1247 if (!bh)
1248 return bh;
1249 if (buffer_uptodate(bh))
1250 return bh;
1251 ll_rw_block(READ_META, 1, &bh);
1252 wait_on_buffer(bh);
1253 if (buffer_uptodate(bh))
1254 return bh;
1255 put_bh(bh);
1256 *err = -EIO;
1257 return NULL;
1260 static int walk_page_buffers(handle_t *handle,
1261 struct buffer_head *head,
1262 unsigned from,
1263 unsigned to,
1264 int *partial,
1265 int (*fn)(handle_t *handle,
1266 struct buffer_head *bh))
1268 struct buffer_head *bh;
1269 unsigned block_start, block_end;
1270 unsigned blocksize = head->b_size;
1271 int err, ret = 0;
1272 struct buffer_head *next;
1274 for (bh = head, block_start = 0;
1275 ret == 0 && (bh != head || !block_start);
1276 block_start = block_end, bh = next)
1278 next = bh->b_this_page;
1279 block_end = block_start + blocksize;
1280 if (block_end <= from || block_start >= to) {
1281 if (partial && !buffer_uptodate(bh))
1282 *partial = 1;
1283 continue;
1285 err = (*fn)(handle, bh);
1286 if (!ret)
1287 ret = err;
1289 return ret;
1293 * To preserve ordering, it is essential that the hole instantiation and
1294 * the data write be encapsulated in a single transaction. We cannot
1295 * close off a transaction and start a new one between the ext4_get_block()
1296 * and the commit_write(). So doing the jbd2_journal_start at the start of
1297 * prepare_write() is the right place.
1299 * Also, this function can nest inside ext4_writepage() ->
1300 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301 * has generated enough buffer credits to do the whole page. So we won't
1302 * block on the journal in that case, which is good, because the caller may
1303 * be PF_MEMALLOC.
1305 * By accident, ext4 can be reentered when a transaction is open via
1306 * quota file writes. If we were to commit the transaction while thus
1307 * reentered, there can be a deadlock - we would be holding a quota
1308 * lock, and the commit would never complete if another thread had a
1309 * transaction open and was blocking on the quota lock - a ranking
1310 * violation.
1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313 * will _not_ run commit under these circumstances because handle->h_ref
1314 * is elevated. We'll still have enough credits for the tiny quotafile
1315 * write.
1317 static int do_journal_get_write_access(handle_t *handle,
1318 struct buffer_head *bh)
1320 if (!buffer_mapped(bh) || buffer_freed(bh))
1321 return 0;
1322 return ext4_journal_get_write_access(handle, bh);
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned flags,
1327 struct page **pagep, void **fsdata)
1329 struct inode *inode = mapping->host;
1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331 handle_t *handle;
1332 int retries = 0;
1333 struct page *page;
1334 pgoff_t index;
1335 unsigned from, to;
1337 index = pos >> PAGE_CACHE_SHIFT;
1338 from = pos & (PAGE_CACHE_SIZE - 1);
1339 to = from + len;
1341 retry:
1342 handle = ext4_journal_start(inode, needed_blocks);
1343 if (IS_ERR(handle)) {
1344 ret = PTR_ERR(handle);
1345 goto out;
1348 page = __grab_cache_page(mapping, index);
1349 if (!page) {
1350 ext4_journal_stop(handle);
1351 ret = -ENOMEM;
1352 goto out;
1354 *pagep = page;
1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357 ext4_get_block);
1359 if (!ret && ext4_should_journal_data(inode)) {
1360 ret = walk_page_buffers(handle, page_buffers(page),
1361 from, to, NULL, do_journal_get_write_access);
1364 if (ret) {
1365 unlock_page(page);
1366 ext4_journal_stop(handle);
1367 page_cache_release(page);
1369 * block_write_begin may have instantiated a few blocks
1370 * outside i_size. Trim these off again. Don't need
1371 * i_size_read because we hold i_mutex.
1373 if (pos + len > inode->i_size)
1374 vmtruncate(inode, inode->i_size);
1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378 goto retry;
1379 out:
1380 return ret;
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1386 if (!buffer_mapped(bh) || buffer_freed(bh))
1387 return 0;
1388 set_buffer_uptodate(bh);
1389 return ext4_journal_dirty_metadata(handle, bh);
1393 * We need to pick up the new inode size which generic_commit_write gave us
1394 * `file' can be NULL - eg, when called from page_symlink().
1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1397 * buffers are managed internally.
1399 static int ext4_ordered_write_end(struct file *file,
1400 struct address_space *mapping,
1401 loff_t pos, unsigned len, unsigned copied,
1402 struct page *page, void *fsdata)
1404 handle_t *handle = ext4_journal_current_handle();
1405 struct inode *inode = mapping->host;
1406 int ret = 0, ret2;
1408 ret = ext4_jbd2_file_inode(handle, inode);
1410 if (ret == 0) {
1411 loff_t new_i_size;
1413 new_i_size = pos + copied;
1414 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415 ext4_update_i_disksize(inode, new_i_size);
1416 /* We need to mark inode dirty even if
1417 * new_i_size is less that inode->i_size
1418 * bu greater than i_disksize.(hint delalloc)
1420 ext4_mark_inode_dirty(handle, inode);
1423 ret2 = generic_write_end(file, mapping, pos, len, copied,
1424 page, fsdata);
1425 copied = ret2;
1426 if (ret2 < 0)
1427 ret = ret2;
1429 ret2 = ext4_journal_stop(handle);
1430 if (!ret)
1431 ret = ret2;
1433 return ret ? ret : copied;
1436 static int ext4_writeback_write_end(struct file *file,
1437 struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned copied,
1439 struct page *page, void *fsdata)
1441 handle_t *handle = ext4_journal_current_handle();
1442 struct inode *inode = mapping->host;
1443 int ret = 0, ret2;
1444 loff_t new_i_size;
1446 new_i_size = pos + copied;
1447 if (new_i_size > EXT4_I(inode)->i_disksize) {
1448 ext4_update_i_disksize(inode, new_i_size);
1449 /* We need to mark inode dirty even if
1450 * new_i_size is less that inode->i_size
1451 * bu greater than i_disksize.(hint delalloc)
1453 ext4_mark_inode_dirty(handle, inode);
1456 ret2 = generic_write_end(file, mapping, pos, len, copied,
1457 page, fsdata);
1458 copied = ret2;
1459 if (ret2 < 0)
1460 ret = ret2;
1462 ret2 = ext4_journal_stop(handle);
1463 if (!ret)
1464 ret = ret2;
1466 return ret ? ret : copied;
1469 static int ext4_journalled_write_end(struct file *file,
1470 struct address_space *mapping,
1471 loff_t pos, unsigned len, unsigned copied,
1472 struct page *page, void *fsdata)
1474 handle_t *handle = ext4_journal_current_handle();
1475 struct inode *inode = mapping->host;
1476 int ret = 0, ret2;
1477 int partial = 0;
1478 unsigned from, to;
1479 loff_t new_i_size;
1481 from = pos & (PAGE_CACHE_SIZE - 1);
1482 to = from + len;
1484 if (copied < len) {
1485 if (!PageUptodate(page))
1486 copied = 0;
1487 page_zero_new_buffers(page, from+copied, to);
1490 ret = walk_page_buffers(handle, page_buffers(page), from,
1491 to, &partial, write_end_fn);
1492 if (!partial)
1493 SetPageUptodate(page);
1494 new_i_size = pos + copied;
1495 if (new_i_size > inode->i_size)
1496 i_size_write(inode, pos+copied);
1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498 if (new_i_size > EXT4_I(inode)->i_disksize) {
1499 ext4_update_i_disksize(inode, new_i_size);
1500 ret2 = ext4_mark_inode_dirty(handle, inode);
1501 if (!ret)
1502 ret = ret2;
1505 unlock_page(page);
1506 ret2 = ext4_journal_stop(handle);
1507 if (!ret)
1508 ret = ret2;
1509 page_cache_release(page);
1511 return ret ? ret : copied;
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1516 int retries = 0;
1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518 unsigned long md_needed, mdblocks, total = 0;
1521 * recalculate the amount of metadata blocks to reserve
1522 * in order to allocate nrblocks
1523 * worse case is one extent per block
1525 repeat:
1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528 mdblocks = ext4_calc_metadata_amount(inode, total);
1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532 total = md_needed + nrblocks;
1534 if (ext4_claim_free_blocks(sbi, total)) {
1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537 yield();
1538 goto repeat;
1540 return -ENOSPC;
1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546 return 0; /* success */
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552 int total, mdb, mdb_free, release;
1554 if (!to_free)
1555 return; /* Nothing to release, exit */
1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1559 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1561 * if there is no reserved blocks, but we try to free some
1562 * then the counter is messed up somewhere.
1563 * but since this function is called from invalidate
1564 * page, it's harmless to return without any action
1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567 "blocks for inode %lu, but there is no reserved "
1568 "data blocks\n", to_free, inode->i_ino);
1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570 return;
1573 /* recalculate the number of metablocks still need to be reserved */
1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575 mdb = ext4_calc_metadata_amount(inode, total);
1577 /* figure out how many metablocks to release */
1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1581 release = to_free + mdb_free;
1583 /* update fs dirty blocks counter for truncate case */
1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1586 /* update per-inode reservations */
1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1595 static void ext4_da_page_release_reservation(struct page *page,
1596 unsigned long offset)
1598 int to_release = 0;
1599 struct buffer_head *head, *bh;
1600 unsigned int curr_off = 0;
1602 head = page_buffers(page);
1603 bh = head;
1604 do {
1605 unsigned int next_off = curr_off + bh->b_size;
1607 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608 to_release++;
1609 clear_buffer_delay(bh);
1611 curr_off = next_off;
1612 } while ((bh = bh->b_this_page) != head);
1613 ext4_da_release_space(page->mapping->host, to_release);
1617 * Delayed allocation stuff
1620 struct mpage_da_data {
1621 struct inode *inode;
1622 struct buffer_head lbh; /* extent of blocks */
1623 unsigned long first_page, next_page; /* extent of pages */
1624 get_block_t *get_block;
1625 struct writeback_control *wbc;
1626 int io_done;
1627 long pages_written;
1628 int retval;
1632 * mpage_da_submit_io - walks through extent of pages and try to write
1633 * them with writepage() call back
1635 * @mpd->inode: inode
1636 * @mpd->first_page: first page of the extent
1637 * @mpd->next_page: page after the last page of the extent
1638 * @mpd->get_block: the filesystem's block mapper function
1640 * By the time mpage_da_submit_io() is called we expect all blocks
1641 * to be allocated. this may be wrong if allocation failed.
1643 * As pages are already locked by write_cache_pages(), we can't use it
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1647 struct address_space *mapping = mpd->inode->i_mapping;
1648 int ret = 0, err, nr_pages, i;
1649 unsigned long index, end;
1650 struct pagevec pvec;
1652 BUG_ON(mpd->next_page <= mpd->first_page);
1653 pagevec_init(&pvec, 0);
1654 index = mpd->first_page;
1655 end = mpd->next_page - 1;
1657 while (index <= end) {
1658 /* XXX: optimize tail */
1659 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1660 if (nr_pages == 0)
1661 break;
1662 for (i = 0; i < nr_pages; i++) {
1663 struct page *page = pvec.pages[i];
1665 index = page->index;
1666 if (index > end)
1667 break;
1668 index++;
1670 err = mapping->a_ops->writepage(page, mpd->wbc);
1671 if (!err)
1672 mpd->pages_written++;
1674 * In error case, we have to continue because
1675 * remaining pages are still locked
1676 * XXX: unlock and re-dirty them?
1678 if (ret == 0)
1679 ret = err;
1681 pagevec_release(&pvec);
1683 return ret;
1687 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1689 * @mpd->inode - inode to walk through
1690 * @exbh->b_blocknr - first block on a disk
1691 * @exbh->b_size - amount of space in bytes
1692 * @logical - first logical block to start assignment with
1694 * the function goes through all passed space and put actual disk
1695 * block numbers into buffer heads, dropping BH_Delay
1697 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1698 struct buffer_head *exbh)
1700 struct inode *inode = mpd->inode;
1701 struct address_space *mapping = inode->i_mapping;
1702 int blocks = exbh->b_size >> inode->i_blkbits;
1703 sector_t pblock = exbh->b_blocknr, cur_logical;
1704 struct buffer_head *head, *bh;
1705 pgoff_t index, end;
1706 struct pagevec pvec;
1707 int nr_pages, i;
1709 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1710 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1711 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1713 pagevec_init(&pvec, 0);
1715 while (index <= end) {
1716 /* XXX: optimize tail */
1717 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1718 if (nr_pages == 0)
1719 break;
1720 for (i = 0; i < nr_pages; i++) {
1721 struct page *page = pvec.pages[i];
1723 index = page->index;
1724 if (index > end)
1725 break;
1726 index++;
1728 BUG_ON(!PageLocked(page));
1729 BUG_ON(PageWriteback(page));
1730 BUG_ON(!page_has_buffers(page));
1732 bh = page_buffers(page);
1733 head = bh;
1735 /* skip blocks out of the range */
1736 do {
1737 if (cur_logical >= logical)
1738 break;
1739 cur_logical++;
1740 } while ((bh = bh->b_this_page) != head);
1742 do {
1743 if (cur_logical >= logical + blocks)
1744 break;
1745 if (buffer_delay(bh)) {
1746 bh->b_blocknr = pblock;
1747 clear_buffer_delay(bh);
1748 bh->b_bdev = inode->i_sb->s_bdev;
1749 } else if (buffer_unwritten(bh)) {
1750 bh->b_blocknr = pblock;
1751 clear_buffer_unwritten(bh);
1752 set_buffer_mapped(bh);
1753 set_buffer_new(bh);
1754 bh->b_bdev = inode->i_sb->s_bdev;
1755 } else if (buffer_mapped(bh))
1756 BUG_ON(bh->b_blocknr != pblock);
1758 cur_logical++;
1759 pblock++;
1760 } while ((bh = bh->b_this_page) != head);
1762 pagevec_release(&pvec);
1768 * __unmap_underlying_blocks - just a helper function to unmap
1769 * set of blocks described by @bh
1771 static inline void __unmap_underlying_blocks(struct inode *inode,
1772 struct buffer_head *bh)
1774 struct block_device *bdev = inode->i_sb->s_bdev;
1775 int blocks, i;
1777 blocks = bh->b_size >> inode->i_blkbits;
1778 for (i = 0; i < blocks; i++)
1779 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1782 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1783 sector_t logical, long blk_cnt)
1785 int nr_pages, i;
1786 pgoff_t index, end;
1787 struct pagevec pvec;
1788 struct inode *inode = mpd->inode;
1789 struct address_space *mapping = inode->i_mapping;
1791 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1792 end = (logical + blk_cnt - 1) >>
1793 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1794 while (index <= end) {
1795 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1796 if (nr_pages == 0)
1797 break;
1798 for (i = 0; i < nr_pages; i++) {
1799 struct page *page = pvec.pages[i];
1800 index = page->index;
1801 if (index > end)
1802 break;
1803 index++;
1805 BUG_ON(!PageLocked(page));
1806 BUG_ON(PageWriteback(page));
1807 block_invalidatepage(page, 0);
1808 ClearPageUptodate(page);
1809 unlock_page(page);
1812 return;
1815 static void ext4_print_free_blocks(struct inode *inode)
1817 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1818 printk(KERN_EMERG "Total free blocks count %lld\n",
1819 ext4_count_free_blocks(inode->i_sb));
1820 printk(KERN_EMERG "Free/Dirty block details\n");
1821 printk(KERN_EMERG "free_blocks=%lld\n",
1822 percpu_counter_sum(&sbi->s_freeblocks_counter));
1823 printk(KERN_EMERG "dirty_blocks=%lld\n",
1824 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1825 printk(KERN_EMERG "Block reservation details\n");
1826 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1827 EXT4_I(inode)->i_reserved_data_blocks);
1828 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1829 EXT4_I(inode)->i_reserved_meta_blocks);
1830 return;
1834 * mpage_da_map_blocks - go through given space
1836 * @mpd->lbh - bh describing space
1837 * @mpd->get_block - the filesystem's block mapper function
1839 * The function skips space we know is already mapped to disk blocks.
1842 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1844 int err = 0;
1845 struct buffer_head new;
1846 struct buffer_head *lbh = &mpd->lbh;
1847 sector_t next;
1850 * We consider only non-mapped and non-allocated blocks
1852 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1853 return 0;
1854 new.b_state = lbh->b_state;
1855 new.b_blocknr = 0;
1856 new.b_size = lbh->b_size;
1857 next = lbh->b_blocknr;
1859 * If we didn't accumulate anything
1860 * to write simply return
1862 if (!new.b_size)
1863 return 0;
1864 err = mpd->get_block(mpd->inode, next, &new, 1);
1865 if (err) {
1867 /* If get block returns with error
1868 * we simply return. Later writepage
1869 * will redirty the page and writepages
1870 * will find the dirty page again
1872 if (err == -EAGAIN)
1873 return 0;
1875 if (err == -ENOSPC &&
1876 ext4_count_free_blocks(mpd->inode->i_sb)) {
1877 mpd->retval = err;
1878 return 0;
1882 * get block failure will cause us
1883 * to loop in writepages. Because
1884 * a_ops->writepage won't be able to
1885 * make progress. The page will be redirtied
1886 * by writepage and writepages will again
1887 * try to write the same.
1889 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1890 "at logical offset %llu with max blocks "
1891 "%zd with error %d\n",
1892 __func__, mpd->inode->i_ino,
1893 (unsigned long long)next,
1894 lbh->b_size >> mpd->inode->i_blkbits, err);
1895 printk(KERN_EMERG "This should not happen.!! "
1896 "Data will be lost\n");
1897 if (err == -ENOSPC) {
1898 ext4_print_free_blocks(mpd->inode);
1900 /* invlaidate all the pages */
1901 ext4_da_block_invalidatepages(mpd, next,
1902 lbh->b_size >> mpd->inode->i_blkbits);
1903 return err;
1905 BUG_ON(new.b_size == 0);
1907 if (buffer_new(&new))
1908 __unmap_underlying_blocks(mpd->inode, &new);
1911 * If blocks are delayed marked, we need to
1912 * put actual blocknr and drop delayed bit
1914 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1915 mpage_put_bnr_to_bhs(mpd, next, &new);
1917 return 0;
1920 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1921 (1 << BH_Delay) | (1 << BH_Unwritten))
1924 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1926 * @mpd->lbh - extent of blocks
1927 * @logical - logical number of the block in the file
1928 * @bh - bh of the block (used to access block's state)
1930 * the function is used to collect contig. blocks in same state
1932 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1933 sector_t logical, struct buffer_head *bh)
1935 sector_t next;
1936 size_t b_size = bh->b_size;
1937 struct buffer_head *lbh = &mpd->lbh;
1938 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1940 /* check if thereserved journal credits might overflow */
1941 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1942 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1944 * With non-extent format we are limited by the journal
1945 * credit available. Total credit needed to insert
1946 * nrblocks contiguous blocks is dependent on the
1947 * nrblocks. So limit nrblocks.
1949 goto flush_it;
1950 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1951 EXT4_MAX_TRANS_DATA) {
1953 * Adding the new buffer_head would make it cross the
1954 * allowed limit for which we have journal credit
1955 * reserved. So limit the new bh->b_size
1957 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1958 mpd->inode->i_blkbits;
1959 /* we will do mpage_da_submit_io in the next loop */
1963 * First block in the extent
1965 if (lbh->b_size == 0) {
1966 lbh->b_blocknr = logical;
1967 lbh->b_size = b_size;
1968 lbh->b_state = bh->b_state & BH_FLAGS;
1969 return;
1972 next = lbh->b_blocknr + nrblocks;
1974 * Can we merge the block to our big extent?
1976 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1977 lbh->b_size += b_size;
1978 return;
1981 flush_it:
1983 * We couldn't merge the block to our extent, so we
1984 * need to flush current extent and start new one
1986 if (mpage_da_map_blocks(mpd) == 0)
1987 mpage_da_submit_io(mpd);
1988 mpd->io_done = 1;
1989 return;
1993 * __mpage_da_writepage - finds extent of pages and blocks
1995 * @page: page to consider
1996 * @wbc: not used, we just follow rules
1997 * @data: context
1999 * The function finds extents of pages and scan them for all blocks.
2001 static int __mpage_da_writepage(struct page *page,
2002 struct writeback_control *wbc, void *data)
2004 struct mpage_da_data *mpd = data;
2005 struct inode *inode = mpd->inode;
2006 struct buffer_head *bh, *head, fake;
2007 sector_t logical;
2009 if (mpd->io_done) {
2011 * Rest of the page in the page_vec
2012 * redirty then and skip then. We will
2013 * try to to write them again after
2014 * starting a new transaction
2016 redirty_page_for_writepage(wbc, page);
2017 unlock_page(page);
2018 return MPAGE_DA_EXTENT_TAIL;
2021 * Can we merge this page to current extent?
2023 if (mpd->next_page != page->index) {
2025 * Nope, we can't. So, we map non-allocated blocks
2026 * and start IO on them using writepage()
2028 if (mpd->next_page != mpd->first_page) {
2029 if (mpage_da_map_blocks(mpd) == 0)
2030 mpage_da_submit_io(mpd);
2032 * skip rest of the page in the page_vec
2034 mpd->io_done = 1;
2035 redirty_page_for_writepage(wbc, page);
2036 unlock_page(page);
2037 return MPAGE_DA_EXTENT_TAIL;
2041 * Start next extent of pages ...
2043 mpd->first_page = page->index;
2046 * ... and blocks
2048 mpd->lbh.b_size = 0;
2049 mpd->lbh.b_state = 0;
2050 mpd->lbh.b_blocknr = 0;
2053 mpd->next_page = page->index + 1;
2054 logical = (sector_t) page->index <<
2055 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2057 if (!page_has_buffers(page)) {
2059 * There is no attached buffer heads yet (mmap?)
2060 * we treat the page asfull of dirty blocks
2062 bh = &fake;
2063 bh->b_size = PAGE_CACHE_SIZE;
2064 bh->b_state = 0;
2065 set_buffer_dirty(bh);
2066 set_buffer_uptodate(bh);
2067 mpage_add_bh_to_extent(mpd, logical, bh);
2068 if (mpd->io_done)
2069 return MPAGE_DA_EXTENT_TAIL;
2070 } else {
2072 * Page with regular buffer heads, just add all dirty ones
2074 head = page_buffers(page);
2075 bh = head;
2076 do {
2077 BUG_ON(buffer_locked(bh));
2078 if (buffer_dirty(bh) &&
2079 (!buffer_mapped(bh) || buffer_delay(bh))) {
2080 mpage_add_bh_to_extent(mpd, logical, bh);
2081 if (mpd->io_done)
2082 return MPAGE_DA_EXTENT_TAIL;
2084 logical++;
2085 } while ((bh = bh->b_this_page) != head);
2088 return 0;
2092 * mpage_da_writepages - walk the list of dirty pages of the given
2093 * address space, allocates non-allocated blocks, maps newly-allocated
2094 * blocks to existing bhs and issue IO them
2096 * @mapping: address space structure to write
2097 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2098 * @get_block: the filesystem's block mapper function.
2100 * This is a library function, which implements the writepages()
2101 * address_space_operation.
2103 static int mpage_da_writepages(struct address_space *mapping,
2104 struct writeback_control *wbc,
2105 struct mpage_da_data *mpd)
2107 long to_write;
2108 int ret;
2110 if (!mpd->get_block)
2111 return generic_writepages(mapping, wbc);
2113 mpd->lbh.b_size = 0;
2114 mpd->lbh.b_state = 0;
2115 mpd->lbh.b_blocknr = 0;
2116 mpd->first_page = 0;
2117 mpd->next_page = 0;
2118 mpd->io_done = 0;
2119 mpd->pages_written = 0;
2120 mpd->retval = 0;
2122 to_write = wbc->nr_to_write;
2124 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2127 * Handle last extent of pages
2129 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2130 if (mpage_da_map_blocks(mpd) == 0)
2131 mpage_da_submit_io(mpd);
2134 wbc->nr_to_write = to_write - mpd->pages_written;
2135 return ret;
2139 * this is a special callback for ->write_begin() only
2140 * it's intention is to return mapped block or reserve space
2142 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2143 struct buffer_head *bh_result, int create)
2145 int ret = 0;
2147 BUG_ON(create == 0);
2148 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2151 * first, we need to know whether the block is allocated already
2152 * preallocated blocks are unmapped but should treated
2153 * the same as allocated blocks.
2155 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2156 if ((ret == 0) && !buffer_delay(bh_result)) {
2157 /* the block isn't (pre)allocated yet, let's reserve space */
2159 * XXX: __block_prepare_write() unmaps passed block,
2160 * is it OK?
2162 ret = ext4_da_reserve_space(inode, 1);
2163 if (ret)
2164 /* not enough space to reserve */
2165 return ret;
2167 map_bh(bh_result, inode->i_sb, 0);
2168 set_buffer_new(bh_result);
2169 set_buffer_delay(bh_result);
2170 } else if (ret > 0) {
2171 bh_result->b_size = (ret << inode->i_blkbits);
2172 ret = 0;
2175 return ret;
2177 #define EXT4_DELALLOC_RSVED 1
2178 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2179 struct buffer_head *bh_result, int create)
2181 int ret;
2182 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2183 loff_t disksize = EXT4_I(inode)->i_disksize;
2184 handle_t *handle = NULL;
2186 handle = ext4_journal_current_handle();
2187 BUG_ON(!handle);
2188 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2189 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2190 if (ret > 0) {
2192 bh_result->b_size = (ret << inode->i_blkbits);
2194 if (ext4_should_order_data(inode)) {
2195 int retval;
2196 retval = ext4_jbd2_file_inode(handle, inode);
2197 if (retval)
2199 * Failed to add inode for ordered
2200 * mode. Don't update file size
2202 return retval;
2206 * Update on-disk size along with block allocation
2207 * we don't use 'extend_disksize' as size may change
2208 * within already allocated block -bzzz
2210 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2211 if (disksize > i_size_read(inode))
2212 disksize = i_size_read(inode);
2213 if (disksize > EXT4_I(inode)->i_disksize) {
2214 ext4_update_i_disksize(inode, disksize);
2215 ret = ext4_mark_inode_dirty(handle, inode);
2216 return ret;
2218 ret = 0;
2220 return ret;
2223 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2226 * unmapped buffer is possible for holes.
2227 * delay buffer is possible with delayed allocation
2229 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2232 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2233 struct buffer_head *bh_result, int create)
2235 int ret = 0;
2236 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2239 * we don't want to do block allocation in writepage
2240 * so call get_block_wrap with create = 0
2242 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2243 bh_result, 0, 0, 0);
2244 if (ret > 0) {
2245 bh_result->b_size = (ret << inode->i_blkbits);
2246 ret = 0;
2248 return ret;
2252 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2253 * get called via journal_submit_inode_data_buffers (no journal handle)
2254 * get called via shrink_page_list via pdflush (no journal handle)
2255 * or grab_page_cache when doing write_begin (have journal handle)
2257 static int ext4_da_writepage(struct page *page,
2258 struct writeback_control *wbc)
2260 int ret = 0;
2261 loff_t size;
2262 unsigned long len;
2263 struct buffer_head *page_bufs;
2264 struct inode *inode = page->mapping->host;
2266 size = i_size_read(inode);
2267 if (page->index == size >> PAGE_CACHE_SHIFT)
2268 len = size & ~PAGE_CACHE_MASK;
2269 else
2270 len = PAGE_CACHE_SIZE;
2272 if (page_has_buffers(page)) {
2273 page_bufs = page_buffers(page);
2274 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2275 ext4_bh_unmapped_or_delay)) {
2277 * We don't want to do block allocation
2278 * So redirty the page and return
2279 * We may reach here when we do a journal commit
2280 * via journal_submit_inode_data_buffers.
2281 * If we don't have mapping block we just ignore
2282 * them. We can also reach here via shrink_page_list
2284 redirty_page_for_writepage(wbc, page);
2285 unlock_page(page);
2286 return 0;
2288 } else {
2290 * The test for page_has_buffers() is subtle:
2291 * We know the page is dirty but it lost buffers. That means
2292 * that at some moment in time after write_begin()/write_end()
2293 * has been called all buffers have been clean and thus they
2294 * must have been written at least once. So they are all
2295 * mapped and we can happily proceed with mapping them
2296 * and writing the page.
2298 * Try to initialize the buffer_heads and check whether
2299 * all are mapped and non delay. We don't want to
2300 * do block allocation here.
2302 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2303 ext4_normal_get_block_write);
2304 if (!ret) {
2305 page_bufs = page_buffers(page);
2306 /* check whether all are mapped and non delay */
2307 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2308 ext4_bh_unmapped_or_delay)) {
2309 redirty_page_for_writepage(wbc, page);
2310 unlock_page(page);
2311 return 0;
2313 } else {
2315 * We can't do block allocation here
2316 * so just redity the page and unlock
2317 * and return
2319 redirty_page_for_writepage(wbc, page);
2320 unlock_page(page);
2321 return 0;
2325 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2326 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2327 else
2328 ret = block_write_full_page(page,
2329 ext4_normal_get_block_write,
2330 wbc);
2332 return ret;
2336 * This is called via ext4_da_writepages() to
2337 * calulate the total number of credits to reserve to fit
2338 * a single extent allocation into a single transaction,
2339 * ext4_da_writpeages() will loop calling this before
2340 * the block allocation.
2343 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2345 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2348 * With non-extent format the journal credit needed to
2349 * insert nrblocks contiguous block is dependent on
2350 * number of contiguous block. So we will limit
2351 * number of contiguous block to a sane value
2353 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2354 (max_blocks > EXT4_MAX_TRANS_DATA))
2355 max_blocks = EXT4_MAX_TRANS_DATA;
2357 return ext4_chunk_trans_blocks(inode, max_blocks);
2360 static int ext4_da_writepages(struct address_space *mapping,
2361 struct writeback_control *wbc)
2363 handle_t *handle = NULL;
2364 loff_t range_start = 0;
2365 struct mpage_da_data mpd;
2366 struct inode *inode = mapping->host;
2367 int needed_blocks, ret = 0, nr_to_writebump = 0;
2368 long to_write, pages_skipped = 0;
2369 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2372 * No pages to write? This is mainly a kludge to avoid starting
2373 * a transaction for special inodes like journal inode on last iput()
2374 * because that could violate lock ordering on umount
2376 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2377 return 0;
2379 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2380 * This make sure small files blocks are allocated in
2381 * single attempt. This ensure that small files
2382 * get less fragmented.
2384 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2385 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2386 wbc->nr_to_write = sbi->s_mb_stream_request;
2389 if (!wbc->range_cyclic)
2391 * If range_cyclic is not set force range_cont
2392 * and save the old writeback_index
2394 wbc->range_cont = 1;
2396 range_start = wbc->range_start;
2397 pages_skipped = wbc->pages_skipped;
2399 mpd.wbc = wbc;
2400 mpd.inode = mapping->host;
2402 restart_loop:
2403 to_write = wbc->nr_to_write;
2404 while (!ret && to_write > 0) {
2407 * we insert one extent at a time. So we need
2408 * credit needed for single extent allocation.
2409 * journalled mode is currently not supported
2410 * by delalloc
2412 BUG_ON(ext4_should_journal_data(inode));
2413 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2415 /* start a new transaction*/
2416 handle = ext4_journal_start(inode, needed_blocks);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
2419 printk(KERN_EMERG "%s: jbd2_start: "
2420 "%ld pages, ino %lu; err %d\n", __func__,
2421 wbc->nr_to_write, inode->i_ino, ret);
2422 dump_stack();
2423 goto out_writepages;
2425 to_write -= wbc->nr_to_write;
2427 mpd.get_block = ext4_da_get_block_write;
2428 ret = mpage_da_writepages(mapping, wbc, &mpd);
2430 ext4_journal_stop(handle);
2432 if (mpd.retval == -ENOSPC)
2433 jbd2_journal_force_commit_nested(sbi->s_journal);
2435 /* reset the retry count */
2436 if (ret == MPAGE_DA_EXTENT_TAIL) {
2438 * got one extent now try with
2439 * rest of the pages
2441 to_write += wbc->nr_to_write;
2442 ret = 0;
2443 } else if (wbc->nr_to_write) {
2445 * There is no more writeout needed
2446 * or we requested for a noblocking writeout
2447 * and we found the device congested
2449 to_write += wbc->nr_to_write;
2450 break;
2452 wbc->nr_to_write = to_write;
2455 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2456 /* We skipped pages in this loop */
2457 wbc->range_start = range_start;
2458 wbc->nr_to_write = to_write +
2459 wbc->pages_skipped - pages_skipped;
2460 wbc->pages_skipped = pages_skipped;
2461 goto restart_loop;
2464 out_writepages:
2465 wbc->nr_to_write = to_write - nr_to_writebump;
2466 wbc->range_start = range_start;
2467 return ret;
2470 #define FALL_BACK_TO_NONDELALLOC 1
2471 static int ext4_nonda_switch(struct super_block *sb)
2473 s64 free_blocks, dirty_blocks;
2474 struct ext4_sb_info *sbi = EXT4_SB(sb);
2477 * switch to non delalloc mode if we are running low
2478 * on free block. The free block accounting via percpu
2479 * counters can get slightly wrong with FBC_BATCH getting
2480 * accumulated on each CPU without updating global counters
2481 * Delalloc need an accurate free block accounting. So switch
2482 * to non delalloc when we are near to error range.
2484 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2485 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2486 if (2 * free_blocks < 3 * dirty_blocks ||
2487 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2489 * free block count is less that 150% of dirty blocks
2490 * or free blocks is less that watermark
2492 return 1;
2494 return 0;
2497 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2498 loff_t pos, unsigned len, unsigned flags,
2499 struct page **pagep, void **fsdata)
2501 int ret, retries = 0;
2502 struct page *page;
2503 pgoff_t index;
2504 unsigned from, to;
2505 struct inode *inode = mapping->host;
2506 handle_t *handle;
2508 index = pos >> PAGE_CACHE_SHIFT;
2509 from = pos & (PAGE_CACHE_SIZE - 1);
2510 to = from + len;
2512 if (ext4_nonda_switch(inode->i_sb)) {
2513 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2514 return ext4_write_begin(file, mapping, pos,
2515 len, flags, pagep, fsdata);
2517 *fsdata = (void *)0;
2518 retry:
2520 * With delayed allocation, we don't log the i_disksize update
2521 * if there is delayed block allocation. But we still need
2522 * to journalling the i_disksize update if writes to the end
2523 * of file which has an already mapped buffer.
2525 handle = ext4_journal_start(inode, 1);
2526 if (IS_ERR(handle)) {
2527 ret = PTR_ERR(handle);
2528 goto out;
2531 page = __grab_cache_page(mapping, index);
2532 if (!page) {
2533 ext4_journal_stop(handle);
2534 ret = -ENOMEM;
2535 goto out;
2537 *pagep = page;
2539 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2540 ext4_da_get_block_prep);
2541 if (ret < 0) {
2542 unlock_page(page);
2543 ext4_journal_stop(handle);
2544 page_cache_release(page);
2546 * block_write_begin may have instantiated a few blocks
2547 * outside i_size. Trim these off again. Don't need
2548 * i_size_read because we hold i_mutex.
2550 if (pos + len > inode->i_size)
2551 vmtruncate(inode, inode->i_size);
2554 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2555 goto retry;
2556 out:
2557 return ret;
2561 * Check if we should update i_disksize
2562 * when write to the end of file but not require block allocation
2564 static int ext4_da_should_update_i_disksize(struct page *page,
2565 unsigned long offset)
2567 struct buffer_head *bh;
2568 struct inode *inode = page->mapping->host;
2569 unsigned int idx;
2570 int i;
2572 bh = page_buffers(page);
2573 idx = offset >> inode->i_blkbits;
2575 for (i = 0; i < idx; i++)
2576 bh = bh->b_this_page;
2578 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2579 return 0;
2580 return 1;
2583 static int ext4_da_write_end(struct file *file,
2584 struct address_space *mapping,
2585 loff_t pos, unsigned len, unsigned copied,
2586 struct page *page, void *fsdata)
2588 struct inode *inode = mapping->host;
2589 int ret = 0, ret2;
2590 handle_t *handle = ext4_journal_current_handle();
2591 loff_t new_i_size;
2592 unsigned long start, end;
2593 int write_mode = (int)(unsigned long)fsdata;
2595 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2596 if (ext4_should_order_data(inode)) {
2597 return ext4_ordered_write_end(file, mapping, pos,
2598 len, copied, page, fsdata);
2599 } else if (ext4_should_writeback_data(inode)) {
2600 return ext4_writeback_write_end(file, mapping, pos,
2601 len, copied, page, fsdata);
2602 } else {
2603 BUG();
2607 start = pos & (PAGE_CACHE_SIZE - 1);
2608 end = start + copied - 1;
2611 * generic_write_end() will run mark_inode_dirty() if i_size
2612 * changes. So let's piggyback the i_disksize mark_inode_dirty
2613 * into that.
2616 new_i_size = pos + copied;
2617 if (new_i_size > EXT4_I(inode)->i_disksize) {
2618 if (ext4_da_should_update_i_disksize(page, end)) {
2619 down_write(&EXT4_I(inode)->i_data_sem);
2620 if (new_i_size > EXT4_I(inode)->i_disksize) {
2622 * Updating i_disksize when extending file
2623 * without needing block allocation
2625 if (ext4_should_order_data(inode))
2626 ret = ext4_jbd2_file_inode(handle,
2627 inode);
2629 EXT4_I(inode)->i_disksize = new_i_size;
2631 up_write(&EXT4_I(inode)->i_data_sem);
2632 /* We need to mark inode dirty even if
2633 * new_i_size is less that inode->i_size
2634 * bu greater than i_disksize.(hint delalloc)
2636 ext4_mark_inode_dirty(handle, inode);
2639 ret2 = generic_write_end(file, mapping, pos, len, copied,
2640 page, fsdata);
2641 copied = ret2;
2642 if (ret2 < 0)
2643 ret = ret2;
2644 ret2 = ext4_journal_stop(handle);
2645 if (!ret)
2646 ret = ret2;
2648 return ret ? ret : copied;
2651 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2654 * Drop reserved blocks
2656 BUG_ON(!PageLocked(page));
2657 if (!page_has_buffers(page))
2658 goto out;
2660 ext4_da_page_release_reservation(page, offset);
2662 out:
2663 ext4_invalidatepage(page, offset);
2665 return;
2670 * bmap() is special. It gets used by applications such as lilo and by
2671 * the swapper to find the on-disk block of a specific piece of data.
2673 * Naturally, this is dangerous if the block concerned is still in the
2674 * journal. If somebody makes a swapfile on an ext4 data-journaling
2675 * filesystem and enables swap, then they may get a nasty shock when the
2676 * data getting swapped to that swapfile suddenly gets overwritten by
2677 * the original zero's written out previously to the journal and
2678 * awaiting writeback in the kernel's buffer cache.
2680 * So, if we see any bmap calls here on a modified, data-journaled file,
2681 * take extra steps to flush any blocks which might be in the cache.
2683 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2685 struct inode *inode = mapping->host;
2686 journal_t *journal;
2687 int err;
2689 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2690 test_opt(inode->i_sb, DELALLOC)) {
2692 * With delalloc we want to sync the file
2693 * so that we can make sure we allocate
2694 * blocks for file
2696 filemap_write_and_wait(mapping);
2699 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2701 * This is a REALLY heavyweight approach, but the use of
2702 * bmap on dirty files is expected to be extremely rare:
2703 * only if we run lilo or swapon on a freshly made file
2704 * do we expect this to happen.
2706 * (bmap requires CAP_SYS_RAWIO so this does not
2707 * represent an unprivileged user DOS attack --- we'd be
2708 * in trouble if mortal users could trigger this path at
2709 * will.)
2711 * NB. EXT4_STATE_JDATA is not set on files other than
2712 * regular files. If somebody wants to bmap a directory
2713 * or symlink and gets confused because the buffer
2714 * hasn't yet been flushed to disk, they deserve
2715 * everything they get.
2718 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2719 journal = EXT4_JOURNAL(inode);
2720 jbd2_journal_lock_updates(journal);
2721 err = jbd2_journal_flush(journal);
2722 jbd2_journal_unlock_updates(journal);
2724 if (err)
2725 return 0;
2728 return generic_block_bmap(mapping, block, ext4_get_block);
2731 static int bget_one(handle_t *handle, struct buffer_head *bh)
2733 get_bh(bh);
2734 return 0;
2737 static int bput_one(handle_t *handle, struct buffer_head *bh)
2739 put_bh(bh);
2740 return 0;
2744 * Note that we don't need to start a transaction unless we're journaling data
2745 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2746 * need to file the inode to the transaction's list in ordered mode because if
2747 * we are writing back data added by write(), the inode is already there and if
2748 * we are writing back data modified via mmap(), noone guarantees in which
2749 * transaction the data will hit the disk. In case we are journaling data, we
2750 * cannot start transaction directly because transaction start ranks above page
2751 * lock so we have to do some magic.
2753 * In all journaling modes block_write_full_page() will start the I/O.
2755 * Problem:
2757 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2758 * ext4_writepage()
2760 * Similar for:
2762 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2764 * Same applies to ext4_get_block(). We will deadlock on various things like
2765 * lock_journal and i_data_sem
2767 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2768 * allocations fail.
2770 * 16May01: If we're reentered then journal_current_handle() will be
2771 * non-zero. We simply *return*.
2773 * 1 July 2001: @@@ FIXME:
2774 * In journalled data mode, a data buffer may be metadata against the
2775 * current transaction. But the same file is part of a shared mapping
2776 * and someone does a writepage() on it.
2778 * We will move the buffer onto the async_data list, but *after* it has
2779 * been dirtied. So there's a small window where we have dirty data on
2780 * BJ_Metadata.
2782 * Note that this only applies to the last partial page in the file. The
2783 * bit which block_write_full_page() uses prepare/commit for. (That's
2784 * broken code anyway: it's wrong for msync()).
2786 * It's a rare case: affects the final partial page, for journalled data
2787 * where the file is subject to bith write() and writepage() in the same
2788 * transction. To fix it we'll need a custom block_write_full_page().
2789 * We'll probably need that anyway for journalling writepage() output.
2791 * We don't honour synchronous mounts for writepage(). That would be
2792 * disastrous. Any write() or metadata operation will sync the fs for
2793 * us.
2796 static int __ext4_normal_writepage(struct page *page,
2797 struct writeback_control *wbc)
2799 struct inode *inode = page->mapping->host;
2801 if (test_opt(inode->i_sb, NOBH))
2802 return nobh_writepage(page,
2803 ext4_normal_get_block_write, wbc);
2804 else
2805 return block_write_full_page(page,
2806 ext4_normal_get_block_write,
2807 wbc);
2810 static int ext4_normal_writepage(struct page *page,
2811 struct writeback_control *wbc)
2813 struct inode *inode = page->mapping->host;
2814 loff_t size = i_size_read(inode);
2815 loff_t len;
2817 J_ASSERT(PageLocked(page));
2818 if (page->index == size >> PAGE_CACHE_SHIFT)
2819 len = size & ~PAGE_CACHE_MASK;
2820 else
2821 len = PAGE_CACHE_SIZE;
2823 if (page_has_buffers(page)) {
2824 /* if page has buffers it should all be mapped
2825 * and allocated. If there are not buffers attached
2826 * to the page we know the page is dirty but it lost
2827 * buffers. That means that at some moment in time
2828 * after write_begin() / write_end() has been called
2829 * all buffers have been clean and thus they must have been
2830 * written at least once. So they are all mapped and we can
2831 * happily proceed with mapping them and writing the page.
2833 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2834 ext4_bh_unmapped_or_delay));
2837 if (!ext4_journal_current_handle())
2838 return __ext4_normal_writepage(page, wbc);
2840 redirty_page_for_writepage(wbc, page);
2841 unlock_page(page);
2842 return 0;
2845 static int __ext4_journalled_writepage(struct page *page,
2846 struct writeback_control *wbc)
2848 struct address_space *mapping = page->mapping;
2849 struct inode *inode = mapping->host;
2850 struct buffer_head *page_bufs;
2851 handle_t *handle = NULL;
2852 int ret = 0;
2853 int err;
2855 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2856 ext4_normal_get_block_write);
2857 if (ret != 0)
2858 goto out_unlock;
2860 page_bufs = page_buffers(page);
2861 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2862 bget_one);
2863 /* As soon as we unlock the page, it can go away, but we have
2864 * references to buffers so we are safe */
2865 unlock_page(page);
2867 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2868 if (IS_ERR(handle)) {
2869 ret = PTR_ERR(handle);
2870 goto out;
2873 ret = walk_page_buffers(handle, page_bufs, 0,
2874 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2876 err = walk_page_buffers(handle, page_bufs, 0,
2877 PAGE_CACHE_SIZE, NULL, write_end_fn);
2878 if (ret == 0)
2879 ret = err;
2880 err = ext4_journal_stop(handle);
2881 if (!ret)
2882 ret = err;
2884 walk_page_buffers(handle, page_bufs, 0,
2885 PAGE_CACHE_SIZE, NULL, bput_one);
2886 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2887 goto out;
2889 out_unlock:
2890 unlock_page(page);
2891 out:
2892 return ret;
2895 static int ext4_journalled_writepage(struct page *page,
2896 struct writeback_control *wbc)
2898 struct inode *inode = page->mapping->host;
2899 loff_t size = i_size_read(inode);
2900 loff_t len;
2902 J_ASSERT(PageLocked(page));
2903 if (page->index == size >> PAGE_CACHE_SHIFT)
2904 len = size & ~PAGE_CACHE_MASK;
2905 else
2906 len = PAGE_CACHE_SIZE;
2908 if (page_has_buffers(page)) {
2909 /* if page has buffers it should all be mapped
2910 * and allocated. If there are not buffers attached
2911 * to the page we know the page is dirty but it lost
2912 * buffers. That means that at some moment in time
2913 * after write_begin() / write_end() has been called
2914 * all buffers have been clean and thus they must have been
2915 * written at least once. So they are all mapped and we can
2916 * happily proceed with mapping them and writing the page.
2918 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2919 ext4_bh_unmapped_or_delay));
2922 if (ext4_journal_current_handle())
2923 goto no_write;
2925 if (PageChecked(page)) {
2927 * It's mmapped pagecache. Add buffers and journal it. There
2928 * doesn't seem much point in redirtying the page here.
2930 ClearPageChecked(page);
2931 return __ext4_journalled_writepage(page, wbc);
2932 } else {
2934 * It may be a page full of checkpoint-mode buffers. We don't
2935 * really know unless we go poke around in the buffer_heads.
2936 * But block_write_full_page will do the right thing.
2938 return block_write_full_page(page,
2939 ext4_normal_get_block_write,
2940 wbc);
2942 no_write:
2943 redirty_page_for_writepage(wbc, page);
2944 unlock_page(page);
2945 return 0;
2948 static int ext4_readpage(struct file *file, struct page *page)
2950 return mpage_readpage(page, ext4_get_block);
2953 static int
2954 ext4_readpages(struct file *file, struct address_space *mapping,
2955 struct list_head *pages, unsigned nr_pages)
2957 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2960 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2962 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965 * If it's a full truncate we just forget about the pending dirtying
2967 if (offset == 0)
2968 ClearPageChecked(page);
2970 jbd2_journal_invalidatepage(journal, page, offset);
2973 static int ext4_releasepage(struct page *page, gfp_t wait)
2975 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2977 WARN_ON(PageChecked(page));
2978 if (!page_has_buffers(page))
2979 return 0;
2980 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2984 * If the O_DIRECT write will extend the file then add this inode to the
2985 * orphan list. So recovery will truncate it back to the original size
2986 * if the machine crashes during the write.
2988 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2989 * crashes then stale disk data _may_ be exposed inside the file. But current
2990 * VFS code falls back into buffered path in that case so we are safe.
2992 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2993 const struct iovec *iov, loff_t offset,
2994 unsigned long nr_segs)
2996 struct file *file = iocb->ki_filp;
2997 struct inode *inode = file->f_mapping->host;
2998 struct ext4_inode_info *ei = EXT4_I(inode);
2999 handle_t *handle;
3000 ssize_t ret;
3001 int orphan = 0;
3002 size_t count = iov_length(iov, nr_segs);
3004 if (rw == WRITE) {
3005 loff_t final_size = offset + count;
3007 if (final_size > inode->i_size) {
3008 /* Credits for sb + inode write */
3009 handle = ext4_journal_start(inode, 2);
3010 if (IS_ERR(handle)) {
3011 ret = PTR_ERR(handle);
3012 goto out;
3014 ret = ext4_orphan_add(handle, inode);
3015 if (ret) {
3016 ext4_journal_stop(handle);
3017 goto out;
3019 orphan = 1;
3020 ei->i_disksize = inode->i_size;
3021 ext4_journal_stop(handle);
3025 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3026 offset, nr_segs,
3027 ext4_get_block, NULL);
3029 if (orphan) {
3030 int err;
3032 /* Credits for sb + inode write */
3033 handle = ext4_journal_start(inode, 2);
3034 if (IS_ERR(handle)) {
3035 /* This is really bad luck. We've written the data
3036 * but cannot extend i_size. Bail out and pretend
3037 * the write failed... */
3038 ret = PTR_ERR(handle);
3039 goto out;
3041 if (inode->i_nlink)
3042 ext4_orphan_del(handle, inode);
3043 if (ret > 0) {
3044 loff_t end = offset + ret;
3045 if (end > inode->i_size) {
3046 ei->i_disksize = end;
3047 i_size_write(inode, end);
3049 * We're going to return a positive `ret'
3050 * here due to non-zero-length I/O, so there's
3051 * no way of reporting error returns from
3052 * ext4_mark_inode_dirty() to userspace. So
3053 * ignore it.
3055 ext4_mark_inode_dirty(handle, inode);
3058 err = ext4_journal_stop(handle);
3059 if (ret == 0)
3060 ret = err;
3062 out:
3063 return ret;
3067 * Pages can be marked dirty completely asynchronously from ext4's journalling
3068 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3069 * much here because ->set_page_dirty is called under VFS locks. The page is
3070 * not necessarily locked.
3072 * We cannot just dirty the page and leave attached buffers clean, because the
3073 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3074 * or jbddirty because all the journalling code will explode.
3076 * So what we do is to mark the page "pending dirty" and next time writepage
3077 * is called, propagate that into the buffers appropriately.
3079 static int ext4_journalled_set_page_dirty(struct page *page)
3081 SetPageChecked(page);
3082 return __set_page_dirty_nobuffers(page);
3085 static const struct address_space_operations ext4_ordered_aops = {
3086 .readpage = ext4_readpage,
3087 .readpages = ext4_readpages,
3088 .writepage = ext4_normal_writepage,
3089 .sync_page = block_sync_page,
3090 .write_begin = ext4_write_begin,
3091 .write_end = ext4_ordered_write_end,
3092 .bmap = ext4_bmap,
3093 .invalidatepage = ext4_invalidatepage,
3094 .releasepage = ext4_releasepage,
3095 .direct_IO = ext4_direct_IO,
3096 .migratepage = buffer_migrate_page,
3097 .is_partially_uptodate = block_is_partially_uptodate,
3100 static const struct address_space_operations ext4_writeback_aops = {
3101 .readpage = ext4_readpage,
3102 .readpages = ext4_readpages,
3103 .writepage = ext4_normal_writepage,
3104 .sync_page = block_sync_page,
3105 .write_begin = ext4_write_begin,
3106 .write_end = ext4_writeback_write_end,
3107 .bmap = ext4_bmap,
3108 .invalidatepage = ext4_invalidatepage,
3109 .releasepage = ext4_releasepage,
3110 .direct_IO = ext4_direct_IO,
3111 .migratepage = buffer_migrate_page,
3112 .is_partially_uptodate = block_is_partially_uptodate,
3115 static const struct address_space_operations ext4_journalled_aops = {
3116 .readpage = ext4_readpage,
3117 .readpages = ext4_readpages,
3118 .writepage = ext4_journalled_writepage,
3119 .sync_page = block_sync_page,
3120 .write_begin = ext4_write_begin,
3121 .write_end = ext4_journalled_write_end,
3122 .set_page_dirty = ext4_journalled_set_page_dirty,
3123 .bmap = ext4_bmap,
3124 .invalidatepage = ext4_invalidatepage,
3125 .releasepage = ext4_releasepage,
3126 .is_partially_uptodate = block_is_partially_uptodate,
3129 static const struct address_space_operations ext4_da_aops = {
3130 .readpage = ext4_readpage,
3131 .readpages = ext4_readpages,
3132 .writepage = ext4_da_writepage,
3133 .writepages = ext4_da_writepages,
3134 .sync_page = block_sync_page,
3135 .write_begin = ext4_da_write_begin,
3136 .write_end = ext4_da_write_end,
3137 .bmap = ext4_bmap,
3138 .invalidatepage = ext4_da_invalidatepage,
3139 .releasepage = ext4_releasepage,
3140 .direct_IO = ext4_direct_IO,
3141 .migratepage = buffer_migrate_page,
3142 .is_partially_uptodate = block_is_partially_uptodate,
3145 void ext4_set_aops(struct inode *inode)
3147 if (ext4_should_order_data(inode) &&
3148 test_opt(inode->i_sb, DELALLOC))
3149 inode->i_mapping->a_ops = &ext4_da_aops;
3150 else if (ext4_should_order_data(inode))
3151 inode->i_mapping->a_ops = &ext4_ordered_aops;
3152 else if (ext4_should_writeback_data(inode) &&
3153 test_opt(inode->i_sb, DELALLOC))
3154 inode->i_mapping->a_ops = &ext4_da_aops;
3155 else if (ext4_should_writeback_data(inode))
3156 inode->i_mapping->a_ops = &ext4_writeback_aops;
3157 else
3158 inode->i_mapping->a_ops = &ext4_journalled_aops;
3162 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3163 * up to the end of the block which corresponds to `from'.
3164 * This required during truncate. We need to physically zero the tail end
3165 * of that block so it doesn't yield old data if the file is later grown.
3167 int ext4_block_truncate_page(handle_t *handle,
3168 struct address_space *mapping, loff_t from)
3170 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3172 unsigned blocksize, length, pos;
3173 ext4_lblk_t iblock;
3174 struct inode *inode = mapping->host;
3175 struct buffer_head *bh;
3176 struct page *page;
3177 int err = 0;
3179 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3180 if (!page)
3181 return -EINVAL;
3183 blocksize = inode->i_sb->s_blocksize;
3184 length = blocksize - (offset & (blocksize - 1));
3185 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3188 * For "nobh" option, we can only work if we don't need to
3189 * read-in the page - otherwise we create buffers to do the IO.
3191 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3192 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3193 zero_user(page, offset, length);
3194 set_page_dirty(page);
3195 goto unlock;
3198 if (!page_has_buffers(page))
3199 create_empty_buffers(page, blocksize, 0);
3201 /* Find the buffer that contains "offset" */
3202 bh = page_buffers(page);
3203 pos = blocksize;
3204 while (offset >= pos) {
3205 bh = bh->b_this_page;
3206 iblock++;
3207 pos += blocksize;
3210 err = 0;
3211 if (buffer_freed(bh)) {
3212 BUFFER_TRACE(bh, "freed: skip");
3213 goto unlock;
3216 if (!buffer_mapped(bh)) {
3217 BUFFER_TRACE(bh, "unmapped");
3218 ext4_get_block(inode, iblock, bh, 0);
3219 /* unmapped? It's a hole - nothing to do */
3220 if (!buffer_mapped(bh)) {
3221 BUFFER_TRACE(bh, "still unmapped");
3222 goto unlock;
3226 /* Ok, it's mapped. Make sure it's up-to-date */
3227 if (PageUptodate(page))
3228 set_buffer_uptodate(bh);
3230 if (!buffer_uptodate(bh)) {
3231 err = -EIO;
3232 ll_rw_block(READ, 1, &bh);
3233 wait_on_buffer(bh);
3234 /* Uhhuh. Read error. Complain and punt. */
3235 if (!buffer_uptodate(bh))
3236 goto unlock;
3239 if (ext4_should_journal_data(inode)) {
3240 BUFFER_TRACE(bh, "get write access");
3241 err = ext4_journal_get_write_access(handle, bh);
3242 if (err)
3243 goto unlock;
3246 zero_user(page, offset, length);
3248 BUFFER_TRACE(bh, "zeroed end of block");
3250 err = 0;
3251 if (ext4_should_journal_data(inode)) {
3252 err = ext4_journal_dirty_metadata(handle, bh);
3253 } else {
3254 if (ext4_should_order_data(inode))
3255 err = ext4_jbd2_file_inode(handle, inode);
3256 mark_buffer_dirty(bh);
3259 unlock:
3260 unlock_page(page);
3261 page_cache_release(page);
3262 return err;
3266 * Probably it should be a library function... search for first non-zero word
3267 * or memcmp with zero_page, whatever is better for particular architecture.
3268 * Linus?
3270 static inline int all_zeroes(__le32 *p, __le32 *q)
3272 while (p < q)
3273 if (*p++)
3274 return 0;
3275 return 1;
3279 * ext4_find_shared - find the indirect blocks for partial truncation.
3280 * @inode: inode in question
3281 * @depth: depth of the affected branch
3282 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3283 * @chain: place to store the pointers to partial indirect blocks
3284 * @top: place to the (detached) top of branch
3286 * This is a helper function used by ext4_truncate().
3288 * When we do truncate() we may have to clean the ends of several
3289 * indirect blocks but leave the blocks themselves alive. Block is
3290 * partially truncated if some data below the new i_size is refered
3291 * from it (and it is on the path to the first completely truncated
3292 * data block, indeed). We have to free the top of that path along
3293 * with everything to the right of the path. Since no allocation
3294 * past the truncation point is possible until ext4_truncate()
3295 * finishes, we may safely do the latter, but top of branch may
3296 * require special attention - pageout below the truncation point
3297 * might try to populate it.
3299 * We atomically detach the top of branch from the tree, store the
3300 * block number of its root in *@top, pointers to buffer_heads of
3301 * partially truncated blocks - in @chain[].bh and pointers to
3302 * their last elements that should not be removed - in
3303 * @chain[].p. Return value is the pointer to last filled element
3304 * of @chain.
3306 * The work left to caller to do the actual freeing of subtrees:
3307 * a) free the subtree starting from *@top
3308 * b) free the subtrees whose roots are stored in
3309 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3310 * c) free the subtrees growing from the inode past the @chain[0].
3311 * (no partially truncated stuff there). */
3313 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3314 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3316 Indirect *partial, *p;
3317 int k, err;
3319 *top = 0;
3320 /* Make k index the deepest non-null offest + 1 */
3321 for (k = depth; k > 1 && !offsets[k-1]; k--)
3323 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3324 /* Writer: pointers */
3325 if (!partial)
3326 partial = chain + k-1;
3328 * If the branch acquired continuation since we've looked at it -
3329 * fine, it should all survive and (new) top doesn't belong to us.
3331 if (!partial->key && *partial->p)
3332 /* Writer: end */
3333 goto no_top;
3334 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3337 * OK, we've found the last block that must survive. The rest of our
3338 * branch should be detached before unlocking. However, if that rest
3339 * of branch is all ours and does not grow immediately from the inode
3340 * it's easier to cheat and just decrement partial->p.
3342 if (p == chain + k - 1 && p > chain) {
3343 p->p--;
3344 } else {
3345 *top = *p->p;
3346 /* Nope, don't do this in ext4. Must leave the tree intact */
3347 #if 0
3348 *p->p = 0;
3349 #endif
3351 /* Writer: end */
3353 while (partial > p) {
3354 brelse(partial->bh);
3355 partial--;
3357 no_top:
3358 return partial;
3362 * Zero a number of block pointers in either an inode or an indirect block.
3363 * If we restart the transaction we must again get write access to the
3364 * indirect block for further modification.
3366 * We release `count' blocks on disk, but (last - first) may be greater
3367 * than `count' because there can be holes in there.
3369 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3370 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3371 unsigned long count, __le32 *first, __le32 *last)
3373 __le32 *p;
3374 if (try_to_extend_transaction(handle, inode)) {
3375 if (bh) {
3376 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3377 ext4_journal_dirty_metadata(handle, bh);
3379 ext4_mark_inode_dirty(handle, inode);
3380 ext4_journal_test_restart(handle, inode);
3381 if (bh) {
3382 BUFFER_TRACE(bh, "retaking write access");
3383 ext4_journal_get_write_access(handle, bh);
3388 * Any buffers which are on the journal will be in memory. We find
3389 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3390 * on them. We've already detached each block from the file, so
3391 * bforget() in jbd2_journal_forget() should be safe.
3393 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3395 for (p = first; p < last; p++) {
3396 u32 nr = le32_to_cpu(*p);
3397 if (nr) {
3398 struct buffer_head *tbh;
3400 *p = 0;
3401 tbh = sb_find_get_block(inode->i_sb, nr);
3402 ext4_forget(handle, 0, inode, tbh, nr);
3406 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3410 * ext4_free_data - free a list of data blocks
3411 * @handle: handle for this transaction
3412 * @inode: inode we are dealing with
3413 * @this_bh: indirect buffer_head which contains *@first and *@last
3414 * @first: array of block numbers
3415 * @last: points immediately past the end of array
3417 * We are freeing all blocks refered from that array (numbers are stored as
3418 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3420 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3421 * blocks are contiguous then releasing them at one time will only affect one
3422 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3423 * actually use a lot of journal space.
3425 * @this_bh will be %NULL if @first and @last point into the inode's direct
3426 * block pointers.
3428 static void ext4_free_data(handle_t *handle, struct inode *inode,
3429 struct buffer_head *this_bh,
3430 __le32 *first, __le32 *last)
3432 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3433 unsigned long count = 0; /* Number of blocks in the run */
3434 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3435 corresponding to
3436 block_to_free */
3437 ext4_fsblk_t nr; /* Current block # */
3438 __le32 *p; /* Pointer into inode/ind
3439 for current block */
3440 int err;
3442 if (this_bh) { /* For indirect block */
3443 BUFFER_TRACE(this_bh, "get_write_access");
3444 err = ext4_journal_get_write_access(handle, this_bh);
3445 /* Important: if we can't update the indirect pointers
3446 * to the blocks, we can't free them. */
3447 if (err)
3448 return;
3451 for (p = first; p < last; p++) {
3452 nr = le32_to_cpu(*p);
3453 if (nr) {
3454 /* accumulate blocks to free if they're contiguous */
3455 if (count == 0) {
3456 block_to_free = nr;
3457 block_to_free_p = p;
3458 count = 1;
3459 } else if (nr == block_to_free + count) {
3460 count++;
3461 } else {
3462 ext4_clear_blocks(handle, inode, this_bh,
3463 block_to_free,
3464 count, block_to_free_p, p);
3465 block_to_free = nr;
3466 block_to_free_p = p;
3467 count = 1;
3472 if (count > 0)
3473 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3474 count, block_to_free_p, p);
3476 if (this_bh) {
3477 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3480 * The buffer head should have an attached journal head at this
3481 * point. However, if the data is corrupted and an indirect
3482 * block pointed to itself, it would have been detached when
3483 * the block was cleared. Check for this instead of OOPSing.
3485 if (bh2jh(this_bh))
3486 ext4_journal_dirty_metadata(handle, this_bh);
3487 else
3488 ext4_error(inode->i_sb, __func__,
3489 "circular indirect block detected, "
3490 "inode=%lu, block=%llu",
3491 inode->i_ino,
3492 (unsigned long long) this_bh->b_blocknr);
3497 * ext4_free_branches - free an array of branches
3498 * @handle: JBD handle for this transaction
3499 * @inode: inode we are dealing with
3500 * @parent_bh: the buffer_head which contains *@first and *@last
3501 * @first: array of block numbers
3502 * @last: pointer immediately past the end of array
3503 * @depth: depth of the branches to free
3505 * We are freeing all blocks refered from these branches (numbers are
3506 * stored as little-endian 32-bit) and updating @inode->i_blocks
3507 * appropriately.
3509 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3510 struct buffer_head *parent_bh,
3511 __le32 *first, __le32 *last, int depth)
3513 ext4_fsblk_t nr;
3514 __le32 *p;
3516 if (is_handle_aborted(handle))
3517 return;
3519 if (depth--) {
3520 struct buffer_head *bh;
3521 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3522 p = last;
3523 while (--p >= first) {
3524 nr = le32_to_cpu(*p);
3525 if (!nr)
3526 continue; /* A hole */
3528 /* Go read the buffer for the next level down */
3529 bh = sb_bread(inode->i_sb, nr);
3532 * A read failure? Report error and clear slot
3533 * (should be rare).
3535 if (!bh) {
3536 ext4_error(inode->i_sb, "ext4_free_branches",
3537 "Read failure, inode=%lu, block=%llu",
3538 inode->i_ino, nr);
3539 continue;
3542 /* This zaps the entire block. Bottom up. */
3543 BUFFER_TRACE(bh, "free child branches");
3544 ext4_free_branches(handle, inode, bh,
3545 (__le32 *) bh->b_data,
3546 (__le32 *) bh->b_data + addr_per_block,
3547 depth);
3550 * We've probably journalled the indirect block several
3551 * times during the truncate. But it's no longer
3552 * needed and we now drop it from the transaction via
3553 * jbd2_journal_revoke().
3555 * That's easy if it's exclusively part of this
3556 * transaction. But if it's part of the committing
3557 * transaction then jbd2_journal_forget() will simply
3558 * brelse() it. That means that if the underlying
3559 * block is reallocated in ext4_get_block(),
3560 * unmap_underlying_metadata() will find this block
3561 * and will try to get rid of it. damn, damn.
3563 * If this block has already been committed to the
3564 * journal, a revoke record will be written. And
3565 * revoke records must be emitted *before* clearing
3566 * this block's bit in the bitmaps.
3568 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3571 * Everything below this this pointer has been
3572 * released. Now let this top-of-subtree go.
3574 * We want the freeing of this indirect block to be
3575 * atomic in the journal with the updating of the
3576 * bitmap block which owns it. So make some room in
3577 * the journal.
3579 * We zero the parent pointer *after* freeing its
3580 * pointee in the bitmaps, so if extend_transaction()
3581 * for some reason fails to put the bitmap changes and
3582 * the release into the same transaction, recovery
3583 * will merely complain about releasing a free block,
3584 * rather than leaking blocks.
3586 if (is_handle_aborted(handle))
3587 return;
3588 if (try_to_extend_transaction(handle, inode)) {
3589 ext4_mark_inode_dirty(handle, inode);
3590 ext4_journal_test_restart(handle, inode);
3593 ext4_free_blocks(handle, inode, nr, 1, 1);
3595 if (parent_bh) {
3597 * The block which we have just freed is
3598 * pointed to by an indirect block: journal it
3600 BUFFER_TRACE(parent_bh, "get_write_access");
3601 if (!ext4_journal_get_write_access(handle,
3602 parent_bh)){
3603 *p = 0;
3604 BUFFER_TRACE(parent_bh,
3605 "call ext4_journal_dirty_metadata");
3606 ext4_journal_dirty_metadata(handle,
3607 parent_bh);
3611 } else {
3612 /* We have reached the bottom of the tree. */
3613 BUFFER_TRACE(parent_bh, "free data blocks");
3614 ext4_free_data(handle, inode, parent_bh, first, last);
3618 int ext4_can_truncate(struct inode *inode)
3620 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3621 return 0;
3622 if (S_ISREG(inode->i_mode))
3623 return 1;
3624 if (S_ISDIR(inode->i_mode))
3625 return 1;
3626 if (S_ISLNK(inode->i_mode))
3627 return !ext4_inode_is_fast_symlink(inode);
3628 return 0;
3632 * ext4_truncate()
3634 * We block out ext4_get_block() block instantiations across the entire
3635 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3636 * simultaneously on behalf of the same inode.
3638 * As we work through the truncate and commmit bits of it to the journal there
3639 * is one core, guiding principle: the file's tree must always be consistent on
3640 * disk. We must be able to restart the truncate after a crash.
3642 * The file's tree may be transiently inconsistent in memory (although it
3643 * probably isn't), but whenever we close off and commit a journal transaction,
3644 * the contents of (the filesystem + the journal) must be consistent and
3645 * restartable. It's pretty simple, really: bottom up, right to left (although
3646 * left-to-right works OK too).
3648 * Note that at recovery time, journal replay occurs *before* the restart of
3649 * truncate against the orphan inode list.
3651 * The committed inode has the new, desired i_size (which is the same as
3652 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3653 * that this inode's truncate did not complete and it will again call
3654 * ext4_truncate() to have another go. So there will be instantiated blocks
3655 * to the right of the truncation point in a crashed ext4 filesystem. But
3656 * that's fine - as long as they are linked from the inode, the post-crash
3657 * ext4_truncate() run will find them and release them.
3659 void ext4_truncate(struct inode *inode)
3661 handle_t *handle;
3662 struct ext4_inode_info *ei = EXT4_I(inode);
3663 __le32 *i_data = ei->i_data;
3664 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3665 struct address_space *mapping = inode->i_mapping;
3666 ext4_lblk_t offsets[4];
3667 Indirect chain[4];
3668 Indirect *partial;
3669 __le32 nr = 0;
3670 int n;
3671 ext4_lblk_t last_block;
3672 unsigned blocksize = inode->i_sb->s_blocksize;
3674 if (!ext4_can_truncate(inode))
3675 return;
3677 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3678 ext4_ext_truncate(inode);
3679 return;
3682 handle = start_transaction(inode);
3683 if (IS_ERR(handle))
3684 return; /* AKPM: return what? */
3686 last_block = (inode->i_size + blocksize-1)
3687 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3689 if (inode->i_size & (blocksize - 1))
3690 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3691 goto out_stop;
3693 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3694 if (n == 0)
3695 goto out_stop; /* error */
3698 * OK. This truncate is going to happen. We add the inode to the
3699 * orphan list, so that if this truncate spans multiple transactions,
3700 * and we crash, we will resume the truncate when the filesystem
3701 * recovers. It also marks the inode dirty, to catch the new size.
3703 * Implication: the file must always be in a sane, consistent
3704 * truncatable state while each transaction commits.
3706 if (ext4_orphan_add(handle, inode))
3707 goto out_stop;
3710 * From here we block out all ext4_get_block() callers who want to
3711 * modify the block allocation tree.
3713 down_write(&ei->i_data_sem);
3715 ext4_discard_preallocations(inode);
3718 * The orphan list entry will now protect us from any crash which
3719 * occurs before the truncate completes, so it is now safe to propagate
3720 * the new, shorter inode size (held for now in i_size) into the
3721 * on-disk inode. We do this via i_disksize, which is the value which
3722 * ext4 *really* writes onto the disk inode.
3724 ei->i_disksize = inode->i_size;
3726 if (n == 1) { /* direct blocks */
3727 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3728 i_data + EXT4_NDIR_BLOCKS);
3729 goto do_indirects;
3732 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3733 /* Kill the top of shared branch (not detached) */
3734 if (nr) {
3735 if (partial == chain) {
3736 /* Shared branch grows from the inode */
3737 ext4_free_branches(handle, inode, NULL,
3738 &nr, &nr+1, (chain+n-1) - partial);
3739 *partial->p = 0;
3741 * We mark the inode dirty prior to restart,
3742 * and prior to stop. No need for it here.
3744 } else {
3745 /* Shared branch grows from an indirect block */
3746 BUFFER_TRACE(partial->bh, "get_write_access");
3747 ext4_free_branches(handle, inode, partial->bh,
3748 partial->p,
3749 partial->p+1, (chain+n-1) - partial);
3752 /* Clear the ends of indirect blocks on the shared branch */
3753 while (partial > chain) {
3754 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3755 (__le32*)partial->bh->b_data+addr_per_block,
3756 (chain+n-1) - partial);
3757 BUFFER_TRACE(partial->bh, "call brelse");
3758 brelse (partial->bh);
3759 partial--;
3761 do_indirects:
3762 /* Kill the remaining (whole) subtrees */
3763 switch (offsets[0]) {
3764 default:
3765 nr = i_data[EXT4_IND_BLOCK];
3766 if (nr) {
3767 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3768 i_data[EXT4_IND_BLOCK] = 0;
3770 case EXT4_IND_BLOCK:
3771 nr = i_data[EXT4_DIND_BLOCK];
3772 if (nr) {
3773 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3774 i_data[EXT4_DIND_BLOCK] = 0;
3776 case EXT4_DIND_BLOCK:
3777 nr = i_data[EXT4_TIND_BLOCK];
3778 if (nr) {
3779 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3780 i_data[EXT4_TIND_BLOCK] = 0;
3782 case EXT4_TIND_BLOCK:
3786 up_write(&ei->i_data_sem);
3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788 ext4_mark_inode_dirty(handle, inode);
3791 * In a multi-transaction truncate, we only make the final transaction
3792 * synchronous
3794 if (IS_SYNC(inode))
3795 handle->h_sync = 1;
3796 out_stop:
3798 * If this was a simple ftruncate(), and the file will remain alive
3799 * then we need to clear up the orphan record which we created above.
3800 * However, if this was a real unlink then we were called by
3801 * ext4_delete_inode(), and we allow that function to clean up the
3802 * orphan info for us.
3804 if (inode->i_nlink)
3805 ext4_orphan_del(handle, inode);
3807 ext4_journal_stop(handle);
3811 * ext4_get_inode_loc returns with an extra refcount against the inode's
3812 * underlying buffer_head on success. If 'in_mem' is true, we have all
3813 * data in memory that is needed to recreate the on-disk version of this
3814 * inode.
3816 static int __ext4_get_inode_loc(struct inode *inode,
3817 struct ext4_iloc *iloc, int in_mem)
3819 struct ext4_group_desc *gdp;
3820 struct buffer_head *bh;
3821 struct super_block *sb = inode->i_sb;
3822 ext4_fsblk_t block;
3823 int inodes_per_block, inode_offset;
3825 iloc->bh = 0;
3826 if (!ext4_valid_inum(sb, inode->i_ino))
3827 return -EIO;
3829 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3830 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3831 if (!gdp)
3832 return -EIO;
3835 * Figure out the offset within the block group inode table
3837 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3838 inode_offset = ((inode->i_ino - 1) %
3839 EXT4_INODES_PER_GROUP(sb));
3840 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3841 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3843 bh = sb_getblk(sb, block);
3844 if (!bh) {
3845 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3846 "inode block - inode=%lu, block=%llu",
3847 inode->i_ino, block);
3848 return -EIO;
3850 if (!buffer_uptodate(bh)) {
3851 lock_buffer(bh);
3854 * If the buffer has the write error flag, we have failed
3855 * to write out another inode in the same block. In this
3856 * case, we don't have to read the block because we may
3857 * read the old inode data successfully.
3859 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3860 set_buffer_uptodate(bh);
3862 if (buffer_uptodate(bh)) {
3863 /* someone brought it uptodate while we waited */
3864 unlock_buffer(bh);
3865 goto has_buffer;
3869 * If we have all information of the inode in memory and this
3870 * is the only valid inode in the block, we need not read the
3871 * block.
3873 if (in_mem) {
3874 struct buffer_head *bitmap_bh;
3875 int i, start;
3877 start = inode_offset & ~(inodes_per_block - 1);
3879 /* Is the inode bitmap in cache? */
3880 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3881 if (!bitmap_bh)
3882 goto make_io;
3885 * If the inode bitmap isn't in cache then the
3886 * optimisation may end up performing two reads instead
3887 * of one, so skip it.
3889 if (!buffer_uptodate(bitmap_bh)) {
3890 brelse(bitmap_bh);
3891 goto make_io;
3893 for (i = start; i < start + inodes_per_block; i++) {
3894 if (i == inode_offset)
3895 continue;
3896 if (ext4_test_bit(i, bitmap_bh->b_data))
3897 break;
3899 brelse(bitmap_bh);
3900 if (i == start + inodes_per_block) {
3901 /* all other inodes are free, so skip I/O */
3902 memset(bh->b_data, 0, bh->b_size);
3903 set_buffer_uptodate(bh);
3904 unlock_buffer(bh);
3905 goto has_buffer;
3909 make_io:
3911 * If we need to do any I/O, try to pre-readahead extra
3912 * blocks from the inode table.
3914 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3915 ext4_fsblk_t b, end, table;
3916 unsigned num;
3918 table = ext4_inode_table(sb, gdp);
3919 /* Make sure s_inode_readahead_blks is a power of 2 */
3920 while (EXT4_SB(sb)->s_inode_readahead_blks &
3921 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3922 EXT4_SB(sb)->s_inode_readahead_blks =
3923 (EXT4_SB(sb)->s_inode_readahead_blks &
3924 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3925 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3926 if (table > b)
3927 b = table;
3928 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3929 num = EXT4_INODES_PER_GROUP(sb);
3930 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3931 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3932 num -= le16_to_cpu(gdp->bg_itable_unused);
3933 table += num / inodes_per_block;
3934 if (end > table)
3935 end = table;
3936 while (b <= end)
3937 sb_breadahead(sb, b++);
3941 * There are other valid inodes in the buffer, this inode
3942 * has in-inode xattrs, or we don't have this inode in memory.
3943 * Read the block from disk.
3945 get_bh(bh);
3946 bh->b_end_io = end_buffer_read_sync;
3947 submit_bh(READ_META, bh);
3948 wait_on_buffer(bh);
3949 if (!buffer_uptodate(bh)) {
3950 ext4_error(sb, __func__,
3951 "unable to read inode block - inode=%lu, "
3952 "block=%llu", inode->i_ino, block);
3953 brelse(bh);
3954 return -EIO;
3957 has_buffer:
3958 iloc->bh = bh;
3959 return 0;
3962 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3964 /* We have all inode data except xattrs in memory here. */
3965 return __ext4_get_inode_loc(inode, iloc,
3966 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3969 void ext4_set_inode_flags(struct inode *inode)
3971 unsigned int flags = EXT4_I(inode)->i_flags;
3973 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3974 if (flags & EXT4_SYNC_FL)
3975 inode->i_flags |= S_SYNC;
3976 if (flags & EXT4_APPEND_FL)
3977 inode->i_flags |= S_APPEND;
3978 if (flags & EXT4_IMMUTABLE_FL)
3979 inode->i_flags |= S_IMMUTABLE;
3980 if (flags & EXT4_NOATIME_FL)
3981 inode->i_flags |= S_NOATIME;
3982 if (flags & EXT4_DIRSYNC_FL)
3983 inode->i_flags |= S_DIRSYNC;
3986 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3987 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3989 unsigned int flags = ei->vfs_inode.i_flags;
3991 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3992 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3993 if (flags & S_SYNC)
3994 ei->i_flags |= EXT4_SYNC_FL;
3995 if (flags & S_APPEND)
3996 ei->i_flags |= EXT4_APPEND_FL;
3997 if (flags & S_IMMUTABLE)
3998 ei->i_flags |= EXT4_IMMUTABLE_FL;
3999 if (flags & S_NOATIME)
4000 ei->i_flags |= EXT4_NOATIME_FL;
4001 if (flags & S_DIRSYNC)
4002 ei->i_flags |= EXT4_DIRSYNC_FL;
4004 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4005 struct ext4_inode_info *ei)
4007 blkcnt_t i_blocks ;
4008 struct inode *inode = &(ei->vfs_inode);
4009 struct super_block *sb = inode->i_sb;
4011 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4012 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4013 /* we are using combined 48 bit field */
4014 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4015 le32_to_cpu(raw_inode->i_blocks_lo);
4016 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4017 /* i_blocks represent file system block size */
4018 return i_blocks << (inode->i_blkbits - 9);
4019 } else {
4020 return i_blocks;
4022 } else {
4023 return le32_to_cpu(raw_inode->i_blocks_lo);
4027 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4029 struct ext4_iloc iloc;
4030 struct ext4_inode *raw_inode;
4031 struct ext4_inode_info *ei;
4032 struct buffer_head *bh;
4033 struct inode *inode;
4034 long ret;
4035 int block;
4037 inode = iget_locked(sb, ino);
4038 if (!inode)
4039 return ERR_PTR(-ENOMEM);
4040 if (!(inode->i_state & I_NEW))
4041 return inode;
4043 ei = EXT4_I(inode);
4044 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4045 ei->i_acl = EXT4_ACL_NOT_CACHED;
4046 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4047 #endif
4049 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4050 if (ret < 0)
4051 goto bad_inode;
4052 bh = iloc.bh;
4053 raw_inode = ext4_raw_inode(&iloc);
4054 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4055 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4056 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4057 if (!(test_opt(inode->i_sb, NO_UID32))) {
4058 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4059 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4061 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4063 ei->i_state = 0;
4064 ei->i_dir_start_lookup = 0;
4065 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4066 /* We now have enough fields to check if the inode was active or not.
4067 * This is needed because nfsd might try to access dead inodes
4068 * the test is that same one that e2fsck uses
4069 * NeilBrown 1999oct15
4071 if (inode->i_nlink == 0) {
4072 if (inode->i_mode == 0 ||
4073 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4074 /* this inode is deleted */
4075 brelse(bh);
4076 ret = -ESTALE;
4077 goto bad_inode;
4079 /* The only unlinked inodes we let through here have
4080 * valid i_mode and are being read by the orphan
4081 * recovery code: that's fine, we're about to complete
4082 * the process of deleting those. */
4084 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4085 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4086 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4087 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4088 cpu_to_le32(EXT4_OS_HURD)) {
4089 ei->i_file_acl |=
4090 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4092 inode->i_size = ext4_isize(raw_inode);
4093 ei->i_disksize = inode->i_size;
4094 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4095 ei->i_block_group = iloc.block_group;
4097 * NOTE! The in-memory inode i_data array is in little-endian order
4098 * even on big-endian machines: we do NOT byteswap the block numbers!
4100 for (block = 0; block < EXT4_N_BLOCKS; block++)
4101 ei->i_data[block] = raw_inode->i_block[block];
4102 INIT_LIST_HEAD(&ei->i_orphan);
4104 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4105 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4106 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4107 EXT4_INODE_SIZE(inode->i_sb)) {
4108 brelse(bh);
4109 ret = -EIO;
4110 goto bad_inode;
4112 if (ei->i_extra_isize == 0) {
4113 /* The extra space is currently unused. Use it. */
4114 ei->i_extra_isize = sizeof(struct ext4_inode) -
4115 EXT4_GOOD_OLD_INODE_SIZE;
4116 } else {
4117 __le32 *magic = (void *)raw_inode +
4118 EXT4_GOOD_OLD_INODE_SIZE +
4119 ei->i_extra_isize;
4120 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4121 ei->i_state |= EXT4_STATE_XATTR;
4123 } else
4124 ei->i_extra_isize = 0;
4126 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4127 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4128 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4129 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4131 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4132 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4134 inode->i_version |=
4135 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4138 if (S_ISREG(inode->i_mode)) {
4139 inode->i_op = &ext4_file_inode_operations;
4140 inode->i_fop = &ext4_file_operations;
4141 ext4_set_aops(inode);
4142 } else if (S_ISDIR(inode->i_mode)) {
4143 inode->i_op = &ext4_dir_inode_operations;
4144 inode->i_fop = &ext4_dir_operations;
4145 } else if (S_ISLNK(inode->i_mode)) {
4146 if (ext4_inode_is_fast_symlink(inode))
4147 inode->i_op = &ext4_fast_symlink_inode_operations;
4148 else {
4149 inode->i_op = &ext4_symlink_inode_operations;
4150 ext4_set_aops(inode);
4152 } else {
4153 inode->i_op = &ext4_special_inode_operations;
4154 if (raw_inode->i_block[0])
4155 init_special_inode(inode, inode->i_mode,
4156 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4157 else
4158 init_special_inode(inode, inode->i_mode,
4159 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4161 brelse(iloc.bh);
4162 ext4_set_inode_flags(inode);
4163 unlock_new_inode(inode);
4164 return inode;
4166 bad_inode:
4167 iget_failed(inode);
4168 return ERR_PTR(ret);
4171 static int ext4_inode_blocks_set(handle_t *handle,
4172 struct ext4_inode *raw_inode,
4173 struct ext4_inode_info *ei)
4175 struct inode *inode = &(ei->vfs_inode);
4176 u64 i_blocks = inode->i_blocks;
4177 struct super_block *sb = inode->i_sb;
4178 int err = 0;
4180 if (i_blocks <= ~0U) {
4182 * i_blocks can be represnted in a 32 bit variable
4183 * as multiple of 512 bytes
4185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4186 raw_inode->i_blocks_high = 0;
4187 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4188 } else if (i_blocks <= 0xffffffffffffULL) {
4190 * i_blocks can be represented in a 48 bit variable
4191 * as multiple of 512 bytes
4193 err = ext4_update_rocompat_feature(handle, sb,
4194 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4195 if (err)
4196 goto err_out;
4197 /* i_block is stored in the split 48 bit fields */
4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4199 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4200 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4201 } else {
4203 * i_blocks should be represented in a 48 bit variable
4204 * as multiple of file system block size
4206 err = ext4_update_rocompat_feature(handle, sb,
4207 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4208 if (err)
4209 goto err_out;
4210 ei->i_flags |= EXT4_HUGE_FILE_FL;
4211 /* i_block is stored in file system block size */
4212 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4213 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4214 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4216 err_out:
4217 return err;
4221 * Post the struct inode info into an on-disk inode location in the
4222 * buffer-cache. This gobbles the caller's reference to the
4223 * buffer_head in the inode location struct.
4225 * The caller must have write access to iloc->bh.
4227 static int ext4_do_update_inode(handle_t *handle,
4228 struct inode *inode,
4229 struct ext4_iloc *iloc)
4231 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4232 struct ext4_inode_info *ei = EXT4_I(inode);
4233 struct buffer_head *bh = iloc->bh;
4234 int err = 0, rc, block;
4236 /* For fields not not tracking in the in-memory inode,
4237 * initialise them to zero for new inodes. */
4238 if (ei->i_state & EXT4_STATE_NEW)
4239 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4241 ext4_get_inode_flags(ei);
4242 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4243 if (!(test_opt(inode->i_sb, NO_UID32))) {
4244 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4245 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4247 * Fix up interoperability with old kernels. Otherwise, old inodes get
4248 * re-used with the upper 16 bits of the uid/gid intact
4250 if (!ei->i_dtime) {
4251 raw_inode->i_uid_high =
4252 cpu_to_le16(high_16_bits(inode->i_uid));
4253 raw_inode->i_gid_high =
4254 cpu_to_le16(high_16_bits(inode->i_gid));
4255 } else {
4256 raw_inode->i_uid_high = 0;
4257 raw_inode->i_gid_high = 0;
4259 } else {
4260 raw_inode->i_uid_low =
4261 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4262 raw_inode->i_gid_low =
4263 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4264 raw_inode->i_uid_high = 0;
4265 raw_inode->i_gid_high = 0;
4267 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4269 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4270 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4271 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4272 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4274 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4275 goto out_brelse;
4276 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4277 /* clear the migrate flag in the raw_inode */
4278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4279 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4280 cpu_to_le32(EXT4_OS_HURD))
4281 raw_inode->i_file_acl_high =
4282 cpu_to_le16(ei->i_file_acl >> 32);
4283 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4284 ext4_isize_set(raw_inode, ei->i_disksize);
4285 if (ei->i_disksize > 0x7fffffffULL) {
4286 struct super_block *sb = inode->i_sb;
4287 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4288 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4289 EXT4_SB(sb)->s_es->s_rev_level ==
4290 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4291 /* If this is the first large file
4292 * created, add a flag to the superblock.
4294 err = ext4_journal_get_write_access(handle,
4295 EXT4_SB(sb)->s_sbh);
4296 if (err)
4297 goto out_brelse;
4298 ext4_update_dynamic_rev(sb);
4299 EXT4_SET_RO_COMPAT_FEATURE(sb,
4300 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4301 sb->s_dirt = 1;
4302 handle->h_sync = 1;
4303 err = ext4_journal_dirty_metadata(handle,
4304 EXT4_SB(sb)->s_sbh);
4307 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4308 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4309 if (old_valid_dev(inode->i_rdev)) {
4310 raw_inode->i_block[0] =
4311 cpu_to_le32(old_encode_dev(inode->i_rdev));
4312 raw_inode->i_block[1] = 0;
4313 } else {
4314 raw_inode->i_block[0] = 0;
4315 raw_inode->i_block[1] =
4316 cpu_to_le32(new_encode_dev(inode->i_rdev));
4317 raw_inode->i_block[2] = 0;
4319 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4320 raw_inode->i_block[block] = ei->i_data[block];
4322 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4323 if (ei->i_extra_isize) {
4324 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4325 raw_inode->i_version_hi =
4326 cpu_to_le32(inode->i_version >> 32);
4327 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4331 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4332 rc = ext4_journal_dirty_metadata(handle, bh);
4333 if (!err)
4334 err = rc;
4335 ei->i_state &= ~EXT4_STATE_NEW;
4337 out_brelse:
4338 brelse(bh);
4339 ext4_std_error(inode->i_sb, err);
4340 return err;
4344 * ext4_write_inode()
4346 * We are called from a few places:
4348 * - Within generic_file_write() for O_SYNC files.
4349 * Here, there will be no transaction running. We wait for any running
4350 * trasnaction to commit.
4352 * - Within sys_sync(), kupdate and such.
4353 * We wait on commit, if tol to.
4355 * - Within prune_icache() (PF_MEMALLOC == true)
4356 * Here we simply return. We can't afford to block kswapd on the
4357 * journal commit.
4359 * In all cases it is actually safe for us to return without doing anything,
4360 * because the inode has been copied into a raw inode buffer in
4361 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4362 * knfsd.
4364 * Note that we are absolutely dependent upon all inode dirtiers doing the
4365 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4366 * which we are interested.
4368 * It would be a bug for them to not do this. The code:
4370 * mark_inode_dirty(inode)
4371 * stuff();
4372 * inode->i_size = expr;
4374 * is in error because a kswapd-driven write_inode() could occur while
4375 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4376 * will no longer be on the superblock's dirty inode list.
4378 int ext4_write_inode(struct inode *inode, int wait)
4380 if (current->flags & PF_MEMALLOC)
4381 return 0;
4383 if (ext4_journal_current_handle()) {
4384 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4385 dump_stack();
4386 return -EIO;
4389 if (!wait)
4390 return 0;
4392 return ext4_force_commit(inode->i_sb);
4396 * ext4_setattr()
4398 * Called from notify_change.
4400 * We want to trap VFS attempts to truncate the file as soon as
4401 * possible. In particular, we want to make sure that when the VFS
4402 * shrinks i_size, we put the inode on the orphan list and modify
4403 * i_disksize immediately, so that during the subsequent flushing of
4404 * dirty pages and freeing of disk blocks, we can guarantee that any
4405 * commit will leave the blocks being flushed in an unused state on
4406 * disk. (On recovery, the inode will get truncated and the blocks will
4407 * be freed, so we have a strong guarantee that no future commit will
4408 * leave these blocks visible to the user.)
4410 * Another thing we have to assure is that if we are in ordered mode
4411 * and inode is still attached to the committing transaction, we must
4412 * we start writeout of all the dirty pages which are being truncated.
4413 * This way we are sure that all the data written in the previous
4414 * transaction are already on disk (truncate waits for pages under
4415 * writeback).
4417 * Called with inode->i_mutex down.
4419 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4421 struct inode *inode = dentry->d_inode;
4422 int error, rc = 0;
4423 const unsigned int ia_valid = attr->ia_valid;
4425 error = inode_change_ok(inode, attr);
4426 if (error)
4427 return error;
4429 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4430 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4431 handle_t *handle;
4433 /* (user+group)*(old+new) structure, inode write (sb,
4434 * inode block, ? - but truncate inode update has it) */
4435 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4436 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4437 if (IS_ERR(handle)) {
4438 error = PTR_ERR(handle);
4439 goto err_out;
4441 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4442 if (error) {
4443 ext4_journal_stop(handle);
4444 return error;
4446 /* Update corresponding info in inode so that everything is in
4447 * one transaction */
4448 if (attr->ia_valid & ATTR_UID)
4449 inode->i_uid = attr->ia_uid;
4450 if (attr->ia_valid & ATTR_GID)
4451 inode->i_gid = attr->ia_gid;
4452 error = ext4_mark_inode_dirty(handle, inode);
4453 ext4_journal_stop(handle);
4456 if (attr->ia_valid & ATTR_SIZE) {
4457 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4460 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4461 error = -EFBIG;
4462 goto err_out;
4467 if (S_ISREG(inode->i_mode) &&
4468 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4469 handle_t *handle;
4471 handle = ext4_journal_start(inode, 3);
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4474 goto err_out;
4477 error = ext4_orphan_add(handle, inode);
4478 EXT4_I(inode)->i_disksize = attr->ia_size;
4479 rc = ext4_mark_inode_dirty(handle, inode);
4480 if (!error)
4481 error = rc;
4482 ext4_journal_stop(handle);
4484 if (ext4_should_order_data(inode)) {
4485 error = ext4_begin_ordered_truncate(inode,
4486 attr->ia_size);
4487 if (error) {
4488 /* Do as much error cleanup as possible */
4489 handle = ext4_journal_start(inode, 3);
4490 if (IS_ERR(handle)) {
4491 ext4_orphan_del(NULL, inode);
4492 goto err_out;
4494 ext4_orphan_del(handle, inode);
4495 ext4_journal_stop(handle);
4496 goto err_out;
4501 rc = inode_setattr(inode, attr);
4503 /* If inode_setattr's call to ext4_truncate failed to get a
4504 * transaction handle at all, we need to clean up the in-core
4505 * orphan list manually. */
4506 if (inode->i_nlink)
4507 ext4_orphan_del(NULL, inode);
4509 if (!rc && (ia_valid & ATTR_MODE))
4510 rc = ext4_acl_chmod(inode);
4512 err_out:
4513 ext4_std_error(inode->i_sb, error);
4514 if (!error)
4515 error = rc;
4516 return error;
4519 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4520 struct kstat *stat)
4522 struct inode *inode;
4523 unsigned long delalloc_blocks;
4525 inode = dentry->d_inode;
4526 generic_fillattr(inode, stat);
4529 * We can't update i_blocks if the block allocation is delayed
4530 * otherwise in the case of system crash before the real block
4531 * allocation is done, we will have i_blocks inconsistent with
4532 * on-disk file blocks.
4533 * We always keep i_blocks updated together with real
4534 * allocation. But to not confuse with user, stat
4535 * will return the blocks that include the delayed allocation
4536 * blocks for this file.
4538 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4539 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4540 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4542 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4543 return 0;
4546 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4547 int chunk)
4549 int indirects;
4551 /* if nrblocks are contiguous */
4552 if (chunk) {
4554 * With N contiguous data blocks, it need at most
4555 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4556 * 2 dindirect blocks
4557 * 1 tindirect block
4559 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4560 return indirects + 3;
4563 * if nrblocks are not contiguous, worse case, each block touch
4564 * a indirect block, and each indirect block touch a double indirect
4565 * block, plus a triple indirect block
4567 indirects = nrblocks * 2 + 1;
4568 return indirects;
4571 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4573 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4574 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4575 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4578 * Account for index blocks, block groups bitmaps and block group
4579 * descriptor blocks if modify datablocks and index blocks
4580 * worse case, the indexs blocks spread over different block groups
4582 * If datablocks are discontiguous, they are possible to spread over
4583 * different block groups too. If they are contiugous, with flexbg,
4584 * they could still across block group boundary.
4586 * Also account for superblock, inode, quota and xattr blocks
4588 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4590 int groups, gdpblocks;
4591 int idxblocks;
4592 int ret = 0;
4595 * How many index blocks need to touch to modify nrblocks?
4596 * The "Chunk" flag indicating whether the nrblocks is
4597 * physically contiguous on disk
4599 * For Direct IO and fallocate, they calls get_block to allocate
4600 * one single extent at a time, so they could set the "Chunk" flag
4602 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4604 ret = idxblocks;
4607 * Now let's see how many group bitmaps and group descriptors need
4608 * to account
4610 groups = idxblocks;
4611 if (chunk)
4612 groups += 1;
4613 else
4614 groups += nrblocks;
4616 gdpblocks = groups;
4617 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4618 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4619 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4620 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4622 /* bitmaps and block group descriptor blocks */
4623 ret += groups + gdpblocks;
4625 /* Blocks for super block, inode, quota and xattr blocks */
4626 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4628 return ret;
4632 * Calulate the total number of credits to reserve to fit
4633 * the modification of a single pages into a single transaction,
4634 * which may include multiple chunks of block allocations.
4636 * This could be called via ext4_write_begin()
4638 * We need to consider the worse case, when
4639 * one new block per extent.
4641 int ext4_writepage_trans_blocks(struct inode *inode)
4643 int bpp = ext4_journal_blocks_per_page(inode);
4644 int ret;
4646 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4648 /* Account for data blocks for journalled mode */
4649 if (ext4_should_journal_data(inode))
4650 ret += bpp;
4651 return ret;
4655 * Calculate the journal credits for a chunk of data modification.
4657 * This is called from DIO, fallocate or whoever calling
4658 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4660 * journal buffers for data blocks are not included here, as DIO
4661 * and fallocate do no need to journal data buffers.
4663 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4665 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4669 * The caller must have previously called ext4_reserve_inode_write().
4670 * Give this, we know that the caller already has write access to iloc->bh.
4672 int ext4_mark_iloc_dirty(handle_t *handle,
4673 struct inode *inode, struct ext4_iloc *iloc)
4675 int err = 0;
4677 if (test_opt(inode->i_sb, I_VERSION))
4678 inode_inc_iversion(inode);
4680 /* the do_update_inode consumes one bh->b_count */
4681 get_bh(iloc->bh);
4683 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4684 err = ext4_do_update_inode(handle, inode, iloc);
4685 put_bh(iloc->bh);
4686 return err;
4690 * On success, We end up with an outstanding reference count against
4691 * iloc->bh. This _must_ be cleaned up later.
4695 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4696 struct ext4_iloc *iloc)
4698 int err = 0;
4699 if (handle) {
4700 err = ext4_get_inode_loc(inode, iloc);
4701 if (!err) {
4702 BUFFER_TRACE(iloc->bh, "get_write_access");
4703 err = ext4_journal_get_write_access(handle, iloc->bh);
4704 if (err) {
4705 brelse(iloc->bh);
4706 iloc->bh = NULL;
4710 ext4_std_error(inode->i_sb, err);
4711 return err;
4715 * Expand an inode by new_extra_isize bytes.
4716 * Returns 0 on success or negative error number on failure.
4718 static int ext4_expand_extra_isize(struct inode *inode,
4719 unsigned int new_extra_isize,
4720 struct ext4_iloc iloc,
4721 handle_t *handle)
4723 struct ext4_inode *raw_inode;
4724 struct ext4_xattr_ibody_header *header;
4725 struct ext4_xattr_entry *entry;
4727 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4728 return 0;
4730 raw_inode = ext4_raw_inode(&iloc);
4732 header = IHDR(inode, raw_inode);
4733 entry = IFIRST(header);
4735 /* No extended attributes present */
4736 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4737 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4738 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4739 new_extra_isize);
4740 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4741 return 0;
4744 /* try to expand with EAs present */
4745 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4746 raw_inode, handle);
4750 * What we do here is to mark the in-core inode as clean with respect to inode
4751 * dirtiness (it may still be data-dirty).
4752 * This means that the in-core inode may be reaped by prune_icache
4753 * without having to perform any I/O. This is a very good thing,
4754 * because *any* task may call prune_icache - even ones which
4755 * have a transaction open against a different journal.
4757 * Is this cheating? Not really. Sure, we haven't written the
4758 * inode out, but prune_icache isn't a user-visible syncing function.
4759 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4760 * we start and wait on commits.
4762 * Is this efficient/effective? Well, we're being nice to the system
4763 * by cleaning up our inodes proactively so they can be reaped
4764 * without I/O. But we are potentially leaving up to five seconds'
4765 * worth of inodes floating about which prune_icache wants us to
4766 * write out. One way to fix that would be to get prune_icache()
4767 * to do a write_super() to free up some memory. It has the desired
4768 * effect.
4770 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4772 struct ext4_iloc iloc;
4773 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4774 static unsigned int mnt_count;
4775 int err, ret;
4777 might_sleep();
4778 err = ext4_reserve_inode_write(handle, inode, &iloc);
4779 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4780 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4782 * We need extra buffer credits since we may write into EA block
4783 * with this same handle. If journal_extend fails, then it will
4784 * only result in a minor loss of functionality for that inode.
4785 * If this is felt to be critical, then e2fsck should be run to
4786 * force a large enough s_min_extra_isize.
4788 if ((jbd2_journal_extend(handle,
4789 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4790 ret = ext4_expand_extra_isize(inode,
4791 sbi->s_want_extra_isize,
4792 iloc, handle);
4793 if (ret) {
4794 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4795 if (mnt_count !=
4796 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4797 ext4_warning(inode->i_sb, __func__,
4798 "Unable to expand inode %lu. Delete"
4799 " some EAs or run e2fsck.",
4800 inode->i_ino);
4801 mnt_count =
4802 le16_to_cpu(sbi->s_es->s_mnt_count);
4807 if (!err)
4808 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4809 return err;
4813 * ext4_dirty_inode() is called from __mark_inode_dirty()
4815 * We're really interested in the case where a file is being extended.
4816 * i_size has been changed by generic_commit_write() and we thus need
4817 * to include the updated inode in the current transaction.
4819 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4820 * are allocated to the file.
4822 * If the inode is marked synchronous, we don't honour that here - doing
4823 * so would cause a commit on atime updates, which we don't bother doing.
4824 * We handle synchronous inodes at the highest possible level.
4826 void ext4_dirty_inode(struct inode *inode)
4828 handle_t *current_handle = ext4_journal_current_handle();
4829 handle_t *handle;
4831 handle = ext4_journal_start(inode, 2);
4832 if (IS_ERR(handle))
4833 goto out;
4834 if (current_handle &&
4835 current_handle->h_transaction != handle->h_transaction) {
4836 /* This task has a transaction open against a different fs */
4837 printk(KERN_EMERG "%s: transactions do not match!\n",
4838 __func__);
4839 } else {
4840 jbd_debug(5, "marking dirty. outer handle=%p\n",
4841 current_handle);
4842 ext4_mark_inode_dirty(handle, inode);
4844 ext4_journal_stop(handle);
4845 out:
4846 return;
4849 #if 0
4851 * Bind an inode's backing buffer_head into this transaction, to prevent
4852 * it from being flushed to disk early. Unlike
4853 * ext4_reserve_inode_write, this leaves behind no bh reference and
4854 * returns no iloc structure, so the caller needs to repeat the iloc
4855 * lookup to mark the inode dirty later.
4857 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4859 struct ext4_iloc iloc;
4861 int err = 0;
4862 if (handle) {
4863 err = ext4_get_inode_loc(inode, &iloc);
4864 if (!err) {
4865 BUFFER_TRACE(iloc.bh, "get_write_access");
4866 err = jbd2_journal_get_write_access(handle, iloc.bh);
4867 if (!err)
4868 err = ext4_journal_dirty_metadata(handle,
4869 iloc.bh);
4870 brelse(iloc.bh);
4873 ext4_std_error(inode->i_sb, err);
4874 return err;
4876 #endif
4878 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4880 journal_t *journal;
4881 handle_t *handle;
4882 int err;
4885 * We have to be very careful here: changing a data block's
4886 * journaling status dynamically is dangerous. If we write a
4887 * data block to the journal, change the status and then delete
4888 * that block, we risk forgetting to revoke the old log record
4889 * from the journal and so a subsequent replay can corrupt data.
4890 * So, first we make sure that the journal is empty and that
4891 * nobody is changing anything.
4894 journal = EXT4_JOURNAL(inode);
4895 if (is_journal_aborted(journal))
4896 return -EROFS;
4898 jbd2_journal_lock_updates(journal);
4899 jbd2_journal_flush(journal);
4902 * OK, there are no updates running now, and all cached data is
4903 * synced to disk. We are now in a completely consistent state
4904 * which doesn't have anything in the journal, and we know that
4905 * no filesystem updates are running, so it is safe to modify
4906 * the inode's in-core data-journaling state flag now.
4909 if (val)
4910 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4911 else
4912 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4913 ext4_set_aops(inode);
4915 jbd2_journal_unlock_updates(journal);
4917 /* Finally we can mark the inode as dirty. */
4919 handle = ext4_journal_start(inode, 1);
4920 if (IS_ERR(handle))
4921 return PTR_ERR(handle);
4923 err = ext4_mark_inode_dirty(handle, inode);
4924 handle->h_sync = 1;
4925 ext4_journal_stop(handle);
4926 ext4_std_error(inode->i_sb, err);
4928 return err;
4931 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4933 return !buffer_mapped(bh);
4936 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4938 loff_t size;
4939 unsigned long len;
4940 int ret = -EINVAL;
4941 void *fsdata;
4942 struct file *file = vma->vm_file;
4943 struct inode *inode = file->f_path.dentry->d_inode;
4944 struct address_space *mapping = inode->i_mapping;
4947 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4948 * get i_mutex because we are already holding mmap_sem.
4950 down_read(&inode->i_alloc_sem);
4951 size = i_size_read(inode);
4952 if (page->mapping != mapping || size <= page_offset(page)
4953 || !PageUptodate(page)) {
4954 /* page got truncated from under us? */
4955 goto out_unlock;
4957 ret = 0;
4958 if (PageMappedToDisk(page))
4959 goto out_unlock;
4961 if (page->index == size >> PAGE_CACHE_SHIFT)
4962 len = size & ~PAGE_CACHE_MASK;
4963 else
4964 len = PAGE_CACHE_SIZE;
4966 if (page_has_buffers(page)) {
4967 /* return if we have all the buffers mapped */
4968 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4969 ext4_bh_unmapped))
4970 goto out_unlock;
4973 * OK, we need to fill the hole... Do write_begin write_end
4974 * to do block allocation/reservation.We are not holding
4975 * inode.i__mutex here. That allow * parallel write_begin,
4976 * write_end call. lock_page prevent this from happening
4977 * on the same page though
4979 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4980 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4981 if (ret < 0)
4982 goto out_unlock;
4983 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4984 len, len, page, fsdata);
4985 if (ret < 0)
4986 goto out_unlock;
4987 ret = 0;
4988 out_unlock:
4989 up_read(&inode->i_alloc_sem);
4990 return ret;