[CPUFREQ] the overdue removal of X86_SPEEDSTEP_CENTRINO_ACPI
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / cpu / intel_cacheinfo.c
blobe5be819492ef1daf5bed9ff653dfeaee6f117e24
1 /*
2 * Routines to indentify caches on Intel CPU.
4 * Changes:
5 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
6 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
7 * Andi Kleen : CPUID4 emulation on AMD.
8 */
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/sched.h>
17 #include <asm/processor.h>
18 #include <asm/smp.h>
20 #define LVL_1_INST 1
21 #define LVL_1_DATA 2
22 #define LVL_2 3
23 #define LVL_3 4
24 #define LVL_TRACE 5
26 struct _cache_table
28 unsigned char descriptor;
29 char cache_type;
30 short size;
33 /* all the cache descriptor types we care about (no TLB or trace cache entries) */
34 static struct _cache_table cache_table[] __cpuinitdata =
36 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
37 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
38 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
39 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
40 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
41 { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
42 { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
43 { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
44 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
45 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
46 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
47 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
48 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
49 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
50 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
51 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
52 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
53 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
54 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
55 { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
56 { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
57 { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
58 { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
59 { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
60 { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
61 { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
62 { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
63 { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
64 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
65 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
66 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
67 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
68 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
69 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
70 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
71 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
72 { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
73 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
74 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
75 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
76 { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
77 { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
78 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
79 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
80 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
81 { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
82 { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
83 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
84 { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
85 { 0x00, 0, 0}
89 enum _cache_type
91 CACHE_TYPE_NULL = 0,
92 CACHE_TYPE_DATA = 1,
93 CACHE_TYPE_INST = 2,
94 CACHE_TYPE_UNIFIED = 3
97 union _cpuid4_leaf_eax {
98 struct {
99 enum _cache_type type:5;
100 unsigned int level:3;
101 unsigned int is_self_initializing:1;
102 unsigned int is_fully_associative:1;
103 unsigned int reserved:4;
104 unsigned int num_threads_sharing:12;
105 unsigned int num_cores_on_die:6;
106 } split;
107 u32 full;
110 union _cpuid4_leaf_ebx {
111 struct {
112 unsigned int coherency_line_size:12;
113 unsigned int physical_line_partition:10;
114 unsigned int ways_of_associativity:10;
115 } split;
116 u32 full;
119 union _cpuid4_leaf_ecx {
120 struct {
121 unsigned int number_of_sets:32;
122 } split;
123 u32 full;
126 struct _cpuid4_info {
127 union _cpuid4_leaf_eax eax;
128 union _cpuid4_leaf_ebx ebx;
129 union _cpuid4_leaf_ecx ecx;
130 unsigned long size;
131 cpumask_t shared_cpu_map;
134 unsigned short num_cache_leaves;
136 /* AMD doesn't have CPUID4. Emulate it here to report the same
137 information to the user. This makes some assumptions about the machine:
138 No L3, L2 not shared, no SMT etc. that is currently true on AMD CPUs.
140 In theory the TLBs could be reported as fake type (they are in "dummy").
141 Maybe later */
142 union l1_cache {
143 struct {
144 unsigned line_size : 8;
145 unsigned lines_per_tag : 8;
146 unsigned assoc : 8;
147 unsigned size_in_kb : 8;
149 unsigned val;
152 union l2_cache {
153 struct {
154 unsigned line_size : 8;
155 unsigned lines_per_tag : 4;
156 unsigned assoc : 4;
157 unsigned size_in_kb : 16;
159 unsigned val;
162 static const unsigned short assocs[] = {
163 [1] = 1, [2] = 2, [4] = 4, [6] = 8,
164 [8] = 16,
165 [0xf] = 0xffff // ??
167 static const unsigned char levels[] = { 1, 1, 2 };
168 static const unsigned char types[] = { 1, 2, 3 };
170 static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
171 union _cpuid4_leaf_ebx *ebx,
172 union _cpuid4_leaf_ecx *ecx)
174 unsigned dummy;
175 unsigned line_size, lines_per_tag, assoc, size_in_kb;
176 union l1_cache l1i, l1d;
177 union l2_cache l2;
179 eax->full = 0;
180 ebx->full = 0;
181 ecx->full = 0;
183 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
184 cpuid(0x80000006, &dummy, &dummy, &l2.val, &dummy);
186 if (leaf > 2 || !l1d.val || !l1i.val || !l2.val)
187 return;
189 eax->split.is_self_initializing = 1;
190 eax->split.type = types[leaf];
191 eax->split.level = levels[leaf];
192 eax->split.num_threads_sharing = 0;
193 eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
195 if (leaf <= 1) {
196 union l1_cache *l1 = leaf == 0 ? &l1d : &l1i;
197 assoc = l1->assoc;
198 line_size = l1->line_size;
199 lines_per_tag = l1->lines_per_tag;
200 size_in_kb = l1->size_in_kb;
201 } else {
202 assoc = l2.assoc;
203 line_size = l2.line_size;
204 lines_per_tag = l2.lines_per_tag;
205 /* cpu_data has errata corrections for K7 applied */
206 size_in_kb = current_cpu_data.x86_cache_size;
209 if (assoc == 0xf)
210 eax->split.is_fully_associative = 1;
211 ebx->split.coherency_line_size = line_size - 1;
212 ebx->split.ways_of_associativity = assocs[assoc] - 1;
213 ebx->split.physical_line_partition = lines_per_tag - 1;
214 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
215 (ebx->split.ways_of_associativity + 1) - 1;
218 static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
220 union _cpuid4_leaf_eax eax;
221 union _cpuid4_leaf_ebx ebx;
222 union _cpuid4_leaf_ecx ecx;
223 unsigned edx;
225 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
226 amd_cpuid4(index, &eax, &ebx, &ecx);
227 else
228 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
229 if (eax.split.type == CACHE_TYPE_NULL)
230 return -EIO; /* better error ? */
232 this_leaf->eax = eax;
233 this_leaf->ebx = ebx;
234 this_leaf->ecx = ecx;
235 this_leaf->size = (ecx.split.number_of_sets + 1) *
236 (ebx.split.coherency_line_size + 1) *
237 (ebx.split.physical_line_partition + 1) *
238 (ebx.split.ways_of_associativity + 1);
239 return 0;
242 /* will only be called once; __init is safe here */
243 static int __init find_num_cache_leaves(void)
245 unsigned int eax, ebx, ecx, edx;
246 union _cpuid4_leaf_eax cache_eax;
247 int i = -1;
249 do {
250 ++i;
251 /* Do cpuid(4) loop to find out num_cache_leaves */
252 cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
253 cache_eax.full = eax;
254 } while (cache_eax.split.type != CACHE_TYPE_NULL);
255 return i;
258 unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
260 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
261 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
262 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
263 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
264 #ifdef CONFIG_X86_HT
265 unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
266 #endif
268 if (c->cpuid_level > 3) {
269 static int is_initialized;
271 if (is_initialized == 0) {
272 /* Init num_cache_leaves from boot CPU */
273 num_cache_leaves = find_num_cache_leaves();
274 is_initialized++;
278 * Whenever possible use cpuid(4), deterministic cache
279 * parameters cpuid leaf to find the cache details
281 for (i = 0; i < num_cache_leaves; i++) {
282 struct _cpuid4_info this_leaf;
284 int retval;
286 retval = cpuid4_cache_lookup(i, &this_leaf);
287 if (retval >= 0) {
288 switch(this_leaf.eax.split.level) {
289 case 1:
290 if (this_leaf.eax.split.type ==
291 CACHE_TYPE_DATA)
292 new_l1d = this_leaf.size/1024;
293 else if (this_leaf.eax.split.type ==
294 CACHE_TYPE_INST)
295 new_l1i = this_leaf.size/1024;
296 break;
297 case 2:
298 new_l2 = this_leaf.size/1024;
299 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
300 index_msb = get_count_order(num_threads_sharing);
301 l2_id = c->apicid >> index_msb;
302 break;
303 case 3:
304 new_l3 = this_leaf.size/1024;
305 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
306 index_msb = get_count_order(num_threads_sharing);
307 l3_id = c->apicid >> index_msb;
308 break;
309 default:
310 break;
316 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
317 * trace cache
319 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
320 /* supports eax=2 call */
321 int i, j, n;
322 int regs[4];
323 unsigned char *dp = (unsigned char *)regs;
324 int only_trace = 0;
326 if (num_cache_leaves != 0 && c->x86 == 15)
327 only_trace = 1;
329 /* Number of times to iterate */
330 n = cpuid_eax(2) & 0xFF;
332 for ( i = 0 ; i < n ; i++ ) {
333 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
335 /* If bit 31 is set, this is an unknown format */
336 for ( j = 0 ; j < 3 ; j++ ) {
337 if ( regs[j] < 0 ) regs[j] = 0;
340 /* Byte 0 is level count, not a descriptor */
341 for ( j = 1 ; j < 16 ; j++ ) {
342 unsigned char des = dp[j];
343 unsigned char k = 0;
345 /* look up this descriptor in the table */
346 while (cache_table[k].descriptor != 0)
348 if (cache_table[k].descriptor == des) {
349 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
350 break;
351 switch (cache_table[k].cache_type) {
352 case LVL_1_INST:
353 l1i += cache_table[k].size;
354 break;
355 case LVL_1_DATA:
356 l1d += cache_table[k].size;
357 break;
358 case LVL_2:
359 l2 += cache_table[k].size;
360 break;
361 case LVL_3:
362 l3 += cache_table[k].size;
363 break;
364 case LVL_TRACE:
365 trace += cache_table[k].size;
366 break;
369 break;
372 k++;
378 if (new_l1d)
379 l1d = new_l1d;
381 if (new_l1i)
382 l1i = new_l1i;
384 if (new_l2) {
385 l2 = new_l2;
386 #ifdef CONFIG_X86_HT
387 cpu_llc_id[cpu] = l2_id;
388 #endif
391 if (new_l3) {
392 l3 = new_l3;
393 #ifdef CONFIG_X86_HT
394 cpu_llc_id[cpu] = l3_id;
395 #endif
398 if (trace)
399 printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
400 else if ( l1i )
401 printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
403 if (l1d)
404 printk(", L1 D cache: %dK\n", l1d);
405 else
406 printk("\n");
408 if (l2)
409 printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
411 if (l3)
412 printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
414 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
416 return l2;
419 /* pointer to _cpuid4_info array (for each cache leaf) */
420 static struct _cpuid4_info *cpuid4_info[NR_CPUS];
421 #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
423 #ifdef CONFIG_SMP
424 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
426 struct _cpuid4_info *this_leaf, *sibling_leaf;
427 unsigned long num_threads_sharing;
428 int index_msb, i;
429 struct cpuinfo_x86 *c = cpu_data;
431 this_leaf = CPUID4_INFO_IDX(cpu, index);
432 num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
434 if (num_threads_sharing == 1)
435 cpu_set(cpu, this_leaf->shared_cpu_map);
436 else {
437 index_msb = get_count_order(num_threads_sharing);
439 for_each_online_cpu(i) {
440 if (c[i].apicid >> index_msb ==
441 c[cpu].apicid >> index_msb) {
442 cpu_set(i, this_leaf->shared_cpu_map);
443 if (i != cpu && cpuid4_info[i]) {
444 sibling_leaf = CPUID4_INFO_IDX(i, index);
445 cpu_set(cpu, sibling_leaf->shared_cpu_map);
451 static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
453 struct _cpuid4_info *this_leaf, *sibling_leaf;
454 int sibling;
456 this_leaf = CPUID4_INFO_IDX(cpu, index);
457 for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
458 sibling_leaf = CPUID4_INFO_IDX(sibling, index);
459 cpu_clear(cpu, sibling_leaf->shared_cpu_map);
462 #else
463 static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
464 static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
465 #endif
467 static void free_cache_attributes(unsigned int cpu)
469 kfree(cpuid4_info[cpu]);
470 cpuid4_info[cpu] = NULL;
473 static int __cpuinit detect_cache_attributes(unsigned int cpu)
475 struct _cpuid4_info *this_leaf;
476 unsigned long j;
477 int retval;
478 cpumask_t oldmask;
480 if (num_cache_leaves == 0)
481 return -ENOENT;
483 cpuid4_info[cpu] = kzalloc(
484 sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
485 if (unlikely(cpuid4_info[cpu] == NULL))
486 return -ENOMEM;
488 oldmask = current->cpus_allowed;
489 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
490 if (retval)
491 goto out;
493 /* Do cpuid and store the results */
494 retval = 0;
495 for (j = 0; j < num_cache_leaves; j++) {
496 this_leaf = CPUID4_INFO_IDX(cpu, j);
497 retval = cpuid4_cache_lookup(j, this_leaf);
498 if (unlikely(retval < 0))
499 break;
500 cache_shared_cpu_map_setup(cpu, j);
502 set_cpus_allowed(current, oldmask);
504 out:
505 if (retval)
506 free_cache_attributes(cpu);
507 return retval;
510 #ifdef CONFIG_SYSFS
512 #include <linux/kobject.h>
513 #include <linux/sysfs.h>
515 extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
517 /* pointer to kobject for cpuX/cache */
518 static struct kobject * cache_kobject[NR_CPUS];
520 struct _index_kobject {
521 struct kobject kobj;
522 unsigned int cpu;
523 unsigned short index;
526 /* pointer to array of kobjects for cpuX/cache/indexY */
527 static struct _index_kobject *index_kobject[NR_CPUS];
528 #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
530 #define show_one_plus(file_name, object, val) \
531 static ssize_t show_##file_name \
532 (struct _cpuid4_info *this_leaf, char *buf) \
534 return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
537 show_one_plus(level, eax.split.level, 0);
538 show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
539 show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
540 show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
541 show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
543 static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
545 return sprintf (buf, "%luK\n", this_leaf->size / 1024);
548 static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
550 char mask_str[NR_CPUS];
551 cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
552 return sprintf(buf, "%s\n", mask_str);
555 static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
556 switch(this_leaf->eax.split.type) {
557 case CACHE_TYPE_DATA:
558 return sprintf(buf, "Data\n");
559 break;
560 case CACHE_TYPE_INST:
561 return sprintf(buf, "Instruction\n");
562 break;
563 case CACHE_TYPE_UNIFIED:
564 return sprintf(buf, "Unified\n");
565 break;
566 default:
567 return sprintf(buf, "Unknown\n");
568 break;
572 struct _cache_attr {
573 struct attribute attr;
574 ssize_t (*show)(struct _cpuid4_info *, char *);
575 ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
578 #define define_one_ro(_name) \
579 static struct _cache_attr _name = \
580 __ATTR(_name, 0444, show_##_name, NULL)
582 define_one_ro(level);
583 define_one_ro(type);
584 define_one_ro(coherency_line_size);
585 define_one_ro(physical_line_partition);
586 define_one_ro(ways_of_associativity);
587 define_one_ro(number_of_sets);
588 define_one_ro(size);
589 define_one_ro(shared_cpu_map);
591 static struct attribute * default_attrs[] = {
592 &type.attr,
593 &level.attr,
594 &coherency_line_size.attr,
595 &physical_line_partition.attr,
596 &ways_of_associativity.attr,
597 &number_of_sets.attr,
598 &size.attr,
599 &shared_cpu_map.attr,
600 NULL
603 #define to_object(k) container_of(k, struct _index_kobject, kobj)
604 #define to_attr(a) container_of(a, struct _cache_attr, attr)
606 static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
608 struct _cache_attr *fattr = to_attr(attr);
609 struct _index_kobject *this_leaf = to_object(kobj);
610 ssize_t ret;
612 ret = fattr->show ?
613 fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
614 buf) :
616 return ret;
619 static ssize_t store(struct kobject * kobj, struct attribute * attr,
620 const char * buf, size_t count)
622 return 0;
625 static struct sysfs_ops sysfs_ops = {
626 .show = show,
627 .store = store,
630 static struct kobj_type ktype_cache = {
631 .sysfs_ops = &sysfs_ops,
632 .default_attrs = default_attrs,
635 static struct kobj_type ktype_percpu_entry = {
636 .sysfs_ops = &sysfs_ops,
639 static void cpuid4_cache_sysfs_exit(unsigned int cpu)
641 kfree(cache_kobject[cpu]);
642 kfree(index_kobject[cpu]);
643 cache_kobject[cpu] = NULL;
644 index_kobject[cpu] = NULL;
645 free_cache_attributes(cpu);
648 static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
651 if (num_cache_leaves == 0)
652 return -ENOENT;
654 detect_cache_attributes(cpu);
655 if (cpuid4_info[cpu] == NULL)
656 return -ENOENT;
658 /* Allocate all required memory */
659 cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
660 if (unlikely(cache_kobject[cpu] == NULL))
661 goto err_out;
663 index_kobject[cpu] = kzalloc(
664 sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
665 if (unlikely(index_kobject[cpu] == NULL))
666 goto err_out;
668 return 0;
670 err_out:
671 cpuid4_cache_sysfs_exit(cpu);
672 return -ENOMEM;
675 /* Add/Remove cache interface for CPU device */
676 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
678 unsigned int cpu = sys_dev->id;
679 unsigned long i, j;
680 struct _index_kobject *this_object;
681 int retval = 0;
683 retval = cpuid4_cache_sysfs_init(cpu);
684 if (unlikely(retval < 0))
685 return retval;
687 cache_kobject[cpu]->parent = &sys_dev->kobj;
688 kobject_set_name(cache_kobject[cpu], "%s", "cache");
689 cache_kobject[cpu]->ktype = &ktype_percpu_entry;
690 retval = kobject_register(cache_kobject[cpu]);
692 for (i = 0; i < num_cache_leaves; i++) {
693 this_object = INDEX_KOBJECT_PTR(cpu,i);
694 this_object->cpu = cpu;
695 this_object->index = i;
696 this_object->kobj.parent = cache_kobject[cpu];
697 kobject_set_name(&(this_object->kobj), "index%1lu", i);
698 this_object->kobj.ktype = &ktype_cache;
699 retval = kobject_register(&(this_object->kobj));
700 if (unlikely(retval)) {
701 for (j = 0; j < i; j++) {
702 kobject_unregister(
703 &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
705 kobject_unregister(cache_kobject[cpu]);
706 cpuid4_cache_sysfs_exit(cpu);
707 break;
710 return retval;
713 static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
715 unsigned int cpu = sys_dev->id;
716 unsigned long i;
718 for (i = 0; i < num_cache_leaves; i++) {
719 cache_remove_shared_cpu_map(cpu, i);
720 kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
722 kobject_unregister(cache_kobject[cpu]);
723 cpuid4_cache_sysfs_exit(cpu);
724 return;
727 static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
728 unsigned long action, void *hcpu)
730 unsigned int cpu = (unsigned long)hcpu;
731 struct sys_device *sys_dev;
733 sys_dev = get_cpu_sysdev(cpu);
734 switch (action) {
735 case CPU_ONLINE:
736 case CPU_ONLINE_FROZEN:
737 cache_add_dev(sys_dev);
738 break;
739 case CPU_DEAD:
740 case CPU_DEAD_FROZEN:
741 cache_remove_dev(sys_dev);
742 break;
744 return NOTIFY_OK;
747 static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
749 .notifier_call = cacheinfo_cpu_callback,
752 static int __cpuinit cache_sysfs_init(void)
754 int i;
756 if (num_cache_leaves == 0)
757 return 0;
759 register_hotcpu_notifier(&cacheinfo_cpu_notifier);
761 for_each_online_cpu(i) {
762 cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
763 (void *)(long)i);
766 return 0;
769 device_initcall(cache_sysfs_init);
771 #endif