ieee1394: regression in 2.6.25: updates should happen before probes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-sh.c
blob1f88e9e914ec97d41c139519ab6e2e34c77ea4e2
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006, 2007, 2008 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <asm/rtc.h>
29 #define DRV_NAME "sh-rtc"
30 #define DRV_VERSION "0.2.0"
32 #define RTC_REG(r) ((r) * rtc_reg_size)
34 #define R64CNT RTC_REG(0)
36 #define RSECCNT RTC_REG(1) /* RTC sec */
37 #define RMINCNT RTC_REG(2) /* RTC min */
38 #define RHRCNT RTC_REG(3) /* RTC hour */
39 #define RWKCNT RTC_REG(4) /* RTC week */
40 #define RDAYCNT RTC_REG(5) /* RTC day */
41 #define RMONCNT RTC_REG(6) /* RTC month */
42 #define RYRCNT RTC_REG(7) /* RTC year */
43 #define RSECAR RTC_REG(8) /* ALARM sec */
44 #define RMINAR RTC_REG(9) /* ALARM min */
45 #define RHRAR RTC_REG(10) /* ALARM hour */
46 #define RWKAR RTC_REG(11) /* ALARM week */
47 #define RDAYAR RTC_REG(12) /* ALARM day */
48 #define RMONAR RTC_REG(13) /* ALARM month */
49 #define RCR1 RTC_REG(14) /* Control */
50 #define RCR2 RTC_REG(15) /* Control */
53 * Note on RYRAR and RCR3: Up until this point most of the register
54 * definitions are consistent across all of the available parts. However,
55 * the placement of the optional RYRAR and RCR3 (the RYRAR control
56 * register used to control RYRCNT/RYRAR compare) varies considerably
57 * across various parts, occasionally being mapped in to a completely
58 * unrelated address space. For proper RYRAR support a separate resource
59 * would have to be handed off, but as this is purely optional in
60 * practice, we simply opt not to support it, thereby keeping the code
61 * quite a bit more simplified.
64 /* ALARM Bits - or with BCD encoded value */
65 #define AR_ENB 0x80 /* Enable for alarm cmp */
67 /* Period Bits */
68 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
69 #define PF_COUNT 0x200 /* Half periodic counter */
70 #define PF_OXS 0x400 /* Periodic One x Second */
71 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
72 #define PF_MASK 0xf00
74 /* RCR1 Bits */
75 #define RCR1_CF 0x80 /* Carry Flag */
76 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
77 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
78 #define RCR1_AF 0x01 /* Alarm Flag */
80 /* RCR2 Bits */
81 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
82 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
83 #define RCR2_RTCEN 0x08 /* ENable RTC */
84 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
85 #define RCR2_RESET 0x02 /* Reset bit */
86 #define RCR2_START 0x01 /* Start bit */
88 struct sh_rtc {
89 void __iomem *regbase;
90 unsigned long regsize;
91 struct resource *res;
92 unsigned int alarm_irq, periodic_irq, carry_irq;
93 struct rtc_device *rtc_dev;
94 spinlock_t lock;
95 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
96 unsigned short periodic_freq;
99 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
101 struct sh_rtc *rtc = dev_id;
102 unsigned int tmp;
104 spin_lock(&rtc->lock);
106 tmp = readb(rtc->regbase + RCR1);
107 tmp &= ~RCR1_CF;
108 writeb(tmp, rtc->regbase + RCR1);
110 /* Users have requested One x Second IRQ */
111 if (rtc->periodic_freq & PF_OXS)
112 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
114 spin_unlock(&rtc->lock);
116 return IRQ_HANDLED;
119 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
121 struct sh_rtc *rtc = dev_id;
122 unsigned int tmp;
124 spin_lock(&rtc->lock);
126 tmp = readb(rtc->regbase + RCR1);
127 tmp &= ~(RCR1_AF | RCR1_AIE);
128 writeb(tmp, rtc->regbase + RCR1);
130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132 spin_unlock(&rtc->lock);
134 return IRQ_HANDLED;
137 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
139 struct sh_rtc *rtc = dev_id;
140 struct rtc_device *rtc_dev = rtc->rtc_dev;
141 unsigned int tmp;
143 spin_lock(&rtc->lock);
145 tmp = readb(rtc->regbase + RCR2);
146 tmp &= ~RCR2_PEF;
147 writeb(tmp, rtc->regbase + RCR2);
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 rtc->periodic_freq &= ~PF_COUNT;
152 else {
153 if (rtc->periodic_freq & PF_HP)
154 rtc->periodic_freq |= PF_COUNT;
155 if (rtc->periodic_freq & PF_KOU) {
156 spin_lock(&rtc_dev->irq_task_lock);
157 if (rtc_dev->irq_task)
158 rtc_dev->irq_task->func(rtc_dev->irq_task->private_data);
159 spin_unlock(&rtc_dev->irq_task_lock);
160 } else
161 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164 spin_unlock(&rtc->lock);
166 return IRQ_HANDLED;
169 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
171 struct sh_rtc *rtc = dev_get_drvdata(dev);
172 unsigned int tmp;
174 spin_lock_irq(&rtc->lock);
176 tmp = readb(rtc->regbase + RCR2);
178 if (enable) {
179 tmp &= ~RCR2_PEF; /* Clear PES bit */
180 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
181 } else
182 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
184 writeb(tmp, rtc->regbase + RCR2);
186 spin_unlock_irq(&rtc->lock);
189 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
191 struct sh_rtc *rtc = dev_get_drvdata(dev);
192 int tmp, ret = 0;
194 spin_lock_irq(&rtc->lock);
195 tmp = rtc->periodic_freq & PF_MASK;
197 switch (freq) {
198 case 0:
199 rtc->periodic_freq = 0x00;
200 break;
201 case 1:
202 rtc->periodic_freq = 0x60;
203 break;
204 case 2:
205 rtc->periodic_freq = 0x50;
206 break;
207 case 4:
208 rtc->periodic_freq = 0x40;
209 break;
210 case 8:
211 rtc->periodic_freq = 0x30 | PF_HP;
212 break;
213 case 16:
214 rtc->periodic_freq = 0x30;
215 break;
216 case 32:
217 rtc->periodic_freq = 0x20 | PF_HP;
218 break;
219 case 64:
220 rtc->periodic_freq = 0x20;
221 break;
222 case 128:
223 rtc->periodic_freq = 0x10 | PF_HP;
224 break;
225 case 256:
226 rtc->periodic_freq = 0x10;
227 break;
228 default:
229 ret = -ENOTSUPP;
232 if (ret == 0) {
233 rtc->periodic_freq |= tmp;
234 rtc->rtc_dev->irq_freq = freq;
237 spin_unlock_irq(&rtc->lock);
238 return ret;
241 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
243 struct sh_rtc *rtc = dev_get_drvdata(dev);
244 unsigned int tmp;
246 spin_lock_irq(&rtc->lock);
248 tmp = readb(rtc->regbase + RCR1);
250 if (!enable)
251 tmp &= ~RCR1_AIE;
252 else
253 tmp |= RCR1_AIE;
255 writeb(tmp, rtc->regbase + RCR1);
257 spin_unlock_irq(&rtc->lock);
260 static void sh_rtc_release(struct device *dev)
262 sh_rtc_setpie(dev, 0);
263 sh_rtc_setaie(dev, 0);
266 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
268 struct sh_rtc *rtc = dev_get_drvdata(dev);
269 unsigned int tmp;
271 tmp = readb(rtc->regbase + RCR1);
272 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
274 tmp = readb(rtc->regbase + RCR2);
275 seq_printf(seq, "periodic_IRQ\t: %s\n",
276 (tmp & RCR2_PESMASK) ? "yes" : "no");
278 return 0;
281 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
283 struct sh_rtc *rtc = dev_get_drvdata(dev);
284 unsigned int ret = 0;
286 switch (cmd) {
287 case RTC_PIE_OFF:
288 case RTC_PIE_ON:
289 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
290 break;
291 case RTC_AIE_OFF:
292 case RTC_AIE_ON:
293 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
294 break;
295 case RTC_UIE_OFF:
296 rtc->periodic_freq &= ~PF_OXS;
297 break;
298 case RTC_UIE_ON:
299 rtc->periodic_freq |= PF_OXS;
300 break;
301 case RTC_IRQP_READ:
302 ret = put_user(rtc->rtc_dev->irq_freq,
303 (unsigned long __user *)arg);
304 break;
305 case RTC_IRQP_SET:
306 ret = sh_rtc_setfreq(dev, arg);
307 break;
308 default:
309 ret = -ENOIOCTLCMD;
312 return ret;
315 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
317 struct platform_device *pdev = to_platform_device(dev);
318 struct sh_rtc *rtc = platform_get_drvdata(pdev);
319 unsigned int sec128, sec2, yr, yr100, cf_bit;
321 do {
322 unsigned int tmp;
324 spin_lock_irq(&rtc->lock);
326 tmp = readb(rtc->regbase + RCR1);
327 tmp &= ~RCR1_CF; /* Clear CF-bit */
328 tmp |= RCR1_CIE;
329 writeb(tmp, rtc->regbase + RCR1);
331 sec128 = readb(rtc->regbase + R64CNT);
333 tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
334 tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
335 tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
336 tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
337 tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
338 tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
340 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
341 yr = readw(rtc->regbase + RYRCNT);
342 yr100 = BCD2BIN(yr >> 8);
343 yr &= 0xff;
344 } else {
345 yr = readb(rtc->regbase + RYRCNT);
346 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
349 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
351 sec2 = readb(rtc->regbase + R64CNT);
352 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
354 spin_unlock_irq(&rtc->lock);
355 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
357 #if RTC_BIT_INVERTED != 0
358 if ((sec128 & RTC_BIT_INVERTED))
359 tm->tm_sec--;
360 #endif
362 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
363 "mday=%d, mon=%d, year=%d, wday=%d\n",
364 __func__,
365 tm->tm_sec, tm->tm_min, tm->tm_hour,
366 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
368 if (rtc_valid_tm(tm) < 0) {
369 dev_err(dev, "invalid date\n");
370 rtc_time_to_tm(0, tm);
373 return 0;
376 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
378 struct platform_device *pdev = to_platform_device(dev);
379 struct sh_rtc *rtc = platform_get_drvdata(pdev);
380 unsigned int tmp;
381 int year;
383 spin_lock_irq(&rtc->lock);
385 /* Reset pre-scaler & stop RTC */
386 tmp = readb(rtc->regbase + RCR2);
387 tmp |= RCR2_RESET;
388 tmp &= ~RCR2_START;
389 writeb(tmp, rtc->regbase + RCR2);
391 writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
392 writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
393 writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
394 writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
395 writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
396 writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
398 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
399 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
400 BIN2BCD(tm->tm_year % 100);
401 writew(year, rtc->regbase + RYRCNT);
402 } else {
403 year = tm->tm_year % 100;
404 writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
407 /* Start RTC */
408 tmp = readb(rtc->regbase + RCR2);
409 tmp &= ~RCR2_RESET;
410 tmp |= RCR2_RTCEN | RCR2_START;
411 writeb(tmp, rtc->regbase + RCR2);
413 spin_unlock_irq(&rtc->lock);
415 return 0;
418 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
420 unsigned int byte;
421 int value = 0xff; /* return 0xff for ignored values */
423 byte = readb(rtc->regbase + reg_off);
424 if (byte & AR_ENB) {
425 byte &= ~AR_ENB; /* strip the enable bit */
426 value = BCD2BIN(byte);
429 return value;
432 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
434 struct platform_device *pdev = to_platform_device(dev);
435 struct sh_rtc *rtc = platform_get_drvdata(pdev);
436 struct rtc_time *tm = &wkalrm->time;
438 spin_lock_irq(&rtc->lock);
440 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
441 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
442 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
443 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
444 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
445 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
446 if (tm->tm_mon > 0)
447 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
448 tm->tm_year = 0xffff;
450 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
452 spin_unlock_irq(&rtc->lock);
454 return 0;
457 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
458 int value, int reg_off)
460 /* < 0 for a value that is ignored */
461 if (value < 0)
462 writeb(0, rtc->regbase + reg_off);
463 else
464 writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
467 static int sh_rtc_check_alarm(struct rtc_time *tm)
470 * The original rtc says anything > 0xc0 is "don't care" or "match
471 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
472 * The original rtc doesn't support years - some things use -1 and
473 * some 0xffff. We use -1 to make out tests easier.
475 if (tm->tm_year == 0xffff)
476 tm->tm_year = -1;
477 if (tm->tm_mon >= 0xff)
478 tm->tm_mon = -1;
479 if (tm->tm_mday >= 0xff)
480 tm->tm_mday = -1;
481 if (tm->tm_wday >= 0xff)
482 tm->tm_wday = -1;
483 if (tm->tm_hour >= 0xff)
484 tm->tm_hour = -1;
485 if (tm->tm_min >= 0xff)
486 tm->tm_min = -1;
487 if (tm->tm_sec >= 0xff)
488 tm->tm_sec = -1;
490 if (tm->tm_year > 9999 ||
491 tm->tm_mon >= 12 ||
492 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
493 tm->tm_wday >= 7 ||
494 tm->tm_hour >= 24 ||
495 tm->tm_min >= 60 ||
496 tm->tm_sec >= 60)
497 return -EINVAL;
499 return 0;
502 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
504 struct platform_device *pdev = to_platform_device(dev);
505 struct sh_rtc *rtc = platform_get_drvdata(pdev);
506 unsigned int rcr1;
507 struct rtc_time *tm = &wkalrm->time;
508 int mon, err;
510 err = sh_rtc_check_alarm(tm);
511 if (unlikely(err < 0))
512 return err;
514 spin_lock_irq(&rtc->lock);
516 /* disable alarm interrupt and clear the alarm flag */
517 rcr1 = readb(rtc->regbase + RCR1);
518 rcr1 &= ~(RCR1_AF | RCR1_AIE);
519 writeb(rcr1, rtc->regbase + RCR1);
521 /* set alarm time */
522 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
523 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
524 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
525 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
526 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
527 mon = tm->tm_mon;
528 if (mon >= 0)
529 mon += 1;
530 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
532 if (wkalrm->enabled) {
533 rcr1 |= RCR1_AIE;
534 writeb(rcr1, rtc->regbase + RCR1);
537 spin_unlock_irq(&rtc->lock);
539 return 0;
542 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
544 struct platform_device *pdev = to_platform_device(dev);
545 struct sh_rtc *rtc = platform_get_drvdata(pdev);
547 if (enabled) {
548 rtc->periodic_freq |= PF_KOU;
549 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
550 } else {
551 rtc->periodic_freq &= ~PF_KOU;
552 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
556 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
558 return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
561 static struct rtc_class_ops sh_rtc_ops = {
562 .release = sh_rtc_release,
563 .ioctl = sh_rtc_ioctl,
564 .read_time = sh_rtc_read_time,
565 .set_time = sh_rtc_set_time,
566 .read_alarm = sh_rtc_read_alarm,
567 .set_alarm = sh_rtc_set_alarm,
568 .irq_set_state = sh_rtc_irq_set_state,
569 .irq_set_freq = sh_rtc_irq_set_freq,
570 .proc = sh_rtc_proc,
573 static int __devinit sh_rtc_probe(struct platform_device *pdev)
575 struct sh_rtc *rtc;
576 struct resource *res;
577 unsigned int tmp;
578 int ret = -ENOENT;
580 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
581 if (unlikely(!rtc))
582 return -ENOMEM;
584 spin_lock_init(&rtc->lock);
586 /* get periodic/carry/alarm irqs */
587 rtc->periodic_irq = platform_get_irq(pdev, 0);
588 if (unlikely(rtc->periodic_irq < 0)) {
589 dev_err(&pdev->dev, "No IRQ for period\n");
590 goto err_badres;
593 rtc->carry_irq = platform_get_irq(pdev, 1);
594 if (unlikely(rtc->carry_irq < 0)) {
595 dev_err(&pdev->dev, "No IRQ for carry\n");
596 goto err_badres;
599 rtc->alarm_irq = platform_get_irq(pdev, 2);
600 if (unlikely(rtc->alarm_irq < 0)) {
601 dev_err(&pdev->dev, "No IRQ for alarm\n");
602 goto err_badres;
605 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
606 if (unlikely(res == NULL)) {
607 dev_err(&pdev->dev, "No IO resource\n");
608 goto err_badres;
611 rtc->regsize = res->end - res->start + 1;
613 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
614 if (unlikely(!rtc->res)) {
615 ret = -EBUSY;
616 goto err_badres;
619 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
620 if (unlikely(!rtc->regbase)) {
621 ret = -EINVAL;
622 goto err_badmap;
625 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
626 &sh_rtc_ops, THIS_MODULE);
627 if (IS_ERR(rtc->rtc_dev)) {
628 ret = PTR_ERR(rtc->rtc_dev);
629 goto err_unmap;
632 rtc->capabilities = RTC_DEF_CAPABILITIES;
633 if (pdev->dev.platform_data) {
634 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
637 * Some CPUs have special capabilities in addition to the
638 * default set. Add those in here.
640 rtc->capabilities |= pinfo->capabilities;
643 rtc->rtc_dev->max_user_freq = 256;
644 rtc->rtc_dev->irq_freq = 1;
645 rtc->periodic_freq = 0x60;
647 platform_set_drvdata(pdev, rtc);
649 /* register periodic/carry/alarm irqs */
650 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
651 "sh-rtc period", rtc);
652 if (unlikely(ret)) {
653 dev_err(&pdev->dev,
654 "request period IRQ failed with %d, IRQ %d\n", ret,
655 rtc->periodic_irq);
656 goto err_unmap;
659 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
660 "sh-rtc carry", rtc);
661 if (unlikely(ret)) {
662 dev_err(&pdev->dev,
663 "request carry IRQ failed with %d, IRQ %d\n", ret,
664 rtc->carry_irq);
665 free_irq(rtc->periodic_irq, rtc);
666 goto err_unmap;
669 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
670 "sh-rtc alarm", rtc);
671 if (unlikely(ret)) {
672 dev_err(&pdev->dev,
673 "request alarm IRQ failed with %d, IRQ %d\n", ret,
674 rtc->alarm_irq);
675 free_irq(rtc->carry_irq, rtc);
676 free_irq(rtc->periodic_irq, rtc);
677 goto err_unmap;
680 tmp = readb(rtc->regbase + RCR1);
681 tmp &= ~RCR1_CF;
682 tmp |= RCR1_CIE;
683 writeb(tmp, rtc->regbase + RCR1);
685 return 0;
687 err_unmap:
688 iounmap(rtc->regbase);
689 err_badmap:
690 release_resource(rtc->res);
691 err_badres:
692 kfree(rtc);
694 return ret;
697 static int __devexit sh_rtc_remove(struct platform_device *pdev)
699 struct sh_rtc *rtc = platform_get_drvdata(pdev);
701 if (likely(rtc->rtc_dev))
702 rtc_device_unregister(rtc->rtc_dev);
704 sh_rtc_setpie(&pdev->dev, 0);
705 sh_rtc_setaie(&pdev->dev, 0);
707 free_irq(rtc->carry_irq, rtc);
708 free_irq(rtc->periodic_irq, rtc);
709 free_irq(rtc->alarm_irq, rtc);
711 release_resource(rtc->res);
713 iounmap(rtc->regbase);
715 platform_set_drvdata(pdev, NULL);
717 kfree(rtc);
719 return 0;
721 static struct platform_driver sh_rtc_platform_driver = {
722 .driver = {
723 .name = DRV_NAME,
724 .owner = THIS_MODULE,
726 .probe = sh_rtc_probe,
727 .remove = __devexit_p(sh_rtc_remove),
730 static int __init sh_rtc_init(void)
732 return platform_driver_register(&sh_rtc_platform_driver);
735 static void __exit sh_rtc_exit(void)
737 platform_driver_unregister(&sh_rtc_platform_driver);
740 module_init(sh_rtc_init);
741 module_exit(sh_rtc_exit);
743 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
744 MODULE_VERSION(DRV_VERSION);
745 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
746 "Jamie Lenehan <lenehan@twibble.org>, "
747 "Angelo Castello <angelo.castello@st.com>");
748 MODULE_LICENSE("GPL");
749 MODULE_ALIAS("platform:" DRV_NAME);