ieee1394: regression in 2.6.25: updates should happen before probes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ieee1394 / sbp2.c
blob9cbf3154d2432ec748a03625450b35b92f9ade7f
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
105 * Module load parameter definitions
109 * Change max_speed on module load if you have a bad IEEE-1394
110 * controller that has trouble running 2KB packets at 400mb.
112 * NOTE: On certain OHCI parts I have seen short packets on async transmit
113 * (probably due to PCI latency/throughput issues with the part). You can
114 * bump down the speed if you are running into problems.
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
122 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123 * This is and always has been buggy in multiple subtle ways. See above TODOs.
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128 "(default = Y, faster but buggy = N)");
131 * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132 * command can transfer at most. Please note that some older SBP-2 bridge
133 * chips are broken for transfers greater or equal to 128KB, therefore
134 * max_sectors used to be a safe 255 sectors for many years. We now have a
135 * default of 0 here which means that we let the SCSI stack choose a limit.
137 * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138 * module parameter or in the sbp2_workarounds_table[], will override the
139 * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140 * bridge chip which becomes known to need the 255 sectors limit.
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145 "(default = 0 = use SCSI stack's default)");
148 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149 * do an exclusive login, as it's generally unsafe to have two hosts
150 * talking to a single sbp2 device at the same time (filesystem coherency,
151 * etc.). If you're running an sbp2 device that supports multiple logins,
152 * and you're either running read-only filesystems or some sort of special
153 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154 * File System, or Lustre, then set exclusive_login to zero.
156 * So far only bridges from Oxford Semiconductor are known to support
157 * concurrent logins. Depending on firmware, four or two concurrent logins
158 * are possible on OXFW911 and newer Oxsemi bridges.
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163 "(default = Y, use N for concurrent initiators)");
166 * If any of the following workarounds is required for your device to work,
167 * please submit the kernel messages logged by sbp2 to the linux1394-devel
168 * mailing list.
170 * - 128kB max transfer
171 * Limit transfer size. Necessary for some old bridges.
173 * - 36 byte inquiry
174 * When scsi_mod probes the device, let the inquiry command look like that
175 * from MS Windows.
177 * - skip mode page 8
178 * Suppress sending of mode_sense for mode page 8 if the device pretends to
179 * support the SCSI Primary Block commands instead of Reduced Block Commands.
181 * - fix capacity
182 * Tell sd_mod to correct the last sector number reported by read_capacity.
183 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
184 * Don't use this with devices which don't have this bug.
186 * - delay inquiry
187 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
189 * - power condition
190 * Set the power condition field in the START STOP UNIT commands sent by
191 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192 * Some disks need this to spin down or to resume properly.
194 * - override internal blacklist
195 * Instead of adding to the built-in blacklist, use only the workarounds
196 * specified in the module load parameter.
197 * Useful if a blacklist entry interfered with a non-broken device.
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
204 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207 ", set power condition in start stop unit = "
208 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210 ", or a combination)");
213 * This influences the format of the sysfs attribute
214 * /sys/bus/scsi/devices/.../ieee1394_id.
216 * The default format is like in older kernels: %016Lx:%d:%d
217 * It contains the target's EUI-64, a number given to the logical unit by
218 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
220 * The long format is: %016Lx:%06x:%04x
221 * It contains the target's EUI-64, the unit directory's directory_ID as per
222 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
223 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
225 * independent of the implementation of the ieee1394 nodemgr, the longer format
226 * is recommended for future use.
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231 "(default = backwards-compatible = N, SAM-conforming = Y)");
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
238 * Globals
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242 void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251 u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254 struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
263 static struct hpsb_highlevel sbp2_highlevel = {
264 .name = SBP2_DEVICE_NAME,
265 .host_reset = sbp2_host_reset,
268 static struct hpsb_address_ops sbp2_ops = {
269 .write = sbp2_handle_status_write
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274 u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276 size_t, u16);
278 static struct hpsb_address_ops sbp2_physdma_ops = {
279 .read = sbp2_handle_physdma_read,
280 .write = sbp2_handle_physdma_write,
282 #endif
286 * Interface to driver core and IEEE 1394 core
288 static struct ieee1394_device_id sbp2_id_table[] = {
290 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
301 static struct hpsb_protocol_driver sbp2_driver = {
302 .name = SBP2_DEVICE_NAME,
303 .id_table = sbp2_id_table,
304 .update = sbp2_update,
305 .driver = {
306 .probe = sbp2_probe,
307 .remove = sbp2_remove,
313 * Interface to SCSI core
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316 void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323 struct device_attribute *, char *);
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328 &dev_attr_ieee1394_id,
329 NULL
332 static struct scsi_host_template sbp2_shost_template = {
333 .module = THIS_MODULE,
334 .name = "SBP-2 IEEE-1394",
335 .proc_name = SBP2_DEVICE_NAME,
336 .queuecommand = sbp2scsi_queuecommand,
337 .eh_abort_handler = sbp2scsi_abort,
338 .eh_device_reset_handler = sbp2scsi_reset,
339 .slave_alloc = sbp2scsi_slave_alloc,
340 .slave_configure = sbp2scsi_slave_configure,
341 .slave_destroy = sbp2scsi_slave_destroy,
342 .this_id = -1,
343 .sg_tablesize = SG_ALL,
344 .use_clustering = ENABLE_CLUSTERING,
345 .cmd_per_lun = SBP2_MAX_CMDS,
346 .can_queue = SBP2_MAX_CMDS,
347 .sdev_attrs = sbp2_sysfs_sdev_attrs,
350 /* for match-all entries in sbp2_workarounds_table */
351 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
354 * List of devices with known bugs.
356 * The firmware_revision field, masked with 0xffff00, is the best indicator
357 * for the type of bridge chip of a device. It yields a few false positives
358 * but this did not break correctly behaving devices so far.
360 static const struct {
361 u32 firmware_revision;
362 u32 model_id;
363 unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366 .firmware_revision = 0x002800,
367 .model_id = 0x001010,
368 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
369 SBP2_WORKAROUND_MODE_SENSE_8 |
370 SBP2_WORKAROUND_POWER_CONDITION,
372 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373 .firmware_revision = 0x002800,
374 .model_id = 0x000000,
375 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
376 SBP2_WORKAROUND_POWER_CONDITION,
378 /* Initio bridges, actually only needed for some older ones */ {
379 .firmware_revision = 0x000200,
380 .model_id = SBP2_ROM_VALUE_WILDCARD,
381 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
383 /* PL-3507 bridge with Prolific firmware */ {
384 .firmware_revision = 0x012800,
385 .model_id = SBP2_ROM_VALUE_WILDCARD,
386 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
388 /* Symbios bridge */ {
389 .firmware_revision = 0xa0b800,
390 .model_id = SBP2_ROM_VALUE_WILDCARD,
391 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
393 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394 .firmware_revision = 0x002600,
395 .model_id = SBP2_ROM_VALUE_WILDCARD,
396 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
398 /* iPod 4th generation */ {
399 .firmware_revision = 0x0a2700,
400 .model_id = 0x000021,
401 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
403 /* iPod mini */ {
404 .firmware_revision = 0x0a2700,
405 .model_id = 0x000023,
406 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
408 /* iPod Photo */ {
409 .firmware_revision = 0x0a2700,
410 .model_id = 0x00007e,
411 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
415 /**************************************
416 * General utility functions
417 **************************************/
419 #ifndef __BIG_ENDIAN
421 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
423 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
425 u32 *temp = buffer;
427 for (length = (length >> 2); length--; )
428 temp[length] = be32_to_cpu(temp[length]);
432 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
434 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
436 u32 *temp = buffer;
438 for (length = (length >> 2); length--; )
439 temp[length] = cpu_to_be32(temp[length]);
441 #else /* BIG_ENDIAN */
442 /* Why waste the cpu cycles? */
443 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
444 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
445 #endif
447 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
450 * Waits for completion of an SBP-2 access request.
451 * Returns nonzero if timed out or prematurely interrupted.
453 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
455 long leftover;
457 leftover = wait_event_interruptible_timeout(
458 sbp2_access_wq, lu->access_complete, timeout);
459 lu->access_complete = 0;
460 return leftover <= 0;
463 static void sbp2_free_packet(void *packet)
465 hpsb_free_tlabel(packet);
466 hpsb_free_packet(packet);
470 * This is much like hpsb_node_write(), except it ignores the response
471 * subaction and returns immediately. Can be used from atomic context.
473 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
474 quadlet_t *buf, size_t len)
476 struct hpsb_packet *packet;
478 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
479 if (!packet)
480 return -ENOMEM;
482 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
483 hpsb_node_fill_packet(ne, packet);
484 if (hpsb_send_packet(packet) < 0) {
485 sbp2_free_packet(packet);
486 return -EIO;
488 return 0;
491 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
492 quadlet_t *data, size_t len)
494 /* There is a small window after a bus reset within which the node
495 * entry's generation is current but the reconnect wasn't completed. */
496 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
497 return;
499 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
500 data, len))
501 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
503 /* Now accept new SCSI commands, unless a bus reset happended during
504 * hpsb_node_write. */
505 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
506 scsi_unblock_requests(lu->shost);
509 static void sbp2util_write_orb_pointer(struct work_struct *work)
511 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
512 quadlet_t data[2];
514 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
515 data[1] = lu->last_orb_dma;
516 sbp2util_cpu_to_be32_buffer(data, 8);
517 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
520 static void sbp2util_write_doorbell(struct work_struct *work)
522 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
524 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
527 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
529 struct sbp2_fwhost_info *hi = lu->hi;
530 struct sbp2_command_info *cmd;
531 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
533 for (i = 0; i < orbs; i++) {
534 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
535 if (!cmd)
536 return -ENOMEM;
537 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
538 &cmd->command_orb,
539 sizeof(struct sbp2_command_orb),
540 DMA_TO_DEVICE);
541 cmd->sge_dma = dma_map_single(hi->host->device.parent,
542 &cmd->scatter_gather_element,
543 sizeof(cmd->scatter_gather_element),
544 DMA_TO_DEVICE);
545 INIT_LIST_HEAD(&cmd->list);
546 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
548 return 0;
551 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
552 struct hpsb_host *host)
554 struct list_head *lh, *next;
555 struct sbp2_command_info *cmd;
556 unsigned long flags;
558 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
559 if (!list_empty(&lu->cmd_orb_completed))
560 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
561 cmd = list_entry(lh, struct sbp2_command_info, list);
562 dma_unmap_single(host->device.parent,
563 cmd->command_orb_dma,
564 sizeof(struct sbp2_command_orb),
565 DMA_TO_DEVICE);
566 dma_unmap_single(host->device.parent, cmd->sge_dma,
567 sizeof(cmd->scatter_gather_element),
568 DMA_TO_DEVICE);
569 kfree(cmd);
571 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
572 return;
576 * Finds the sbp2_command for a given outstanding command ORB.
577 * Only looks at the in-use list.
579 static struct sbp2_command_info *sbp2util_find_command_for_orb(
580 struct sbp2_lu *lu, dma_addr_t orb)
582 struct sbp2_command_info *cmd;
583 unsigned long flags;
585 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
586 if (!list_empty(&lu->cmd_orb_inuse))
587 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
588 if (cmd->command_orb_dma == orb) {
589 spin_unlock_irqrestore(
590 &lu->cmd_orb_lock, flags);
591 return cmd;
593 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
594 return NULL;
598 * Finds the sbp2_command for a given outstanding SCpnt.
599 * Only looks at the in-use list.
600 * Must be called with lu->cmd_orb_lock held.
602 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
603 struct sbp2_lu *lu, void *SCpnt)
605 struct sbp2_command_info *cmd;
607 if (!list_empty(&lu->cmd_orb_inuse))
608 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
609 if (cmd->Current_SCpnt == SCpnt)
610 return cmd;
611 return NULL;
614 static struct sbp2_command_info *sbp2util_allocate_command_orb(
615 struct sbp2_lu *lu,
616 struct scsi_cmnd *Current_SCpnt,
617 void (*Current_done)(struct scsi_cmnd *))
619 struct list_head *lh;
620 struct sbp2_command_info *cmd = NULL;
621 unsigned long flags;
623 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
624 if (!list_empty(&lu->cmd_orb_completed)) {
625 lh = lu->cmd_orb_completed.next;
626 list_del(lh);
627 cmd = list_entry(lh, struct sbp2_command_info, list);
628 cmd->Current_done = Current_done;
629 cmd->Current_SCpnt = Current_SCpnt;
630 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
631 } else
632 SBP2_ERR("%s: no orbs available", __func__);
633 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
634 return cmd;
638 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
639 * Must be called with lu->cmd_orb_lock held.
641 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
642 struct sbp2_command_info *cmd)
644 struct hpsb_host *host = lu->ud->ne->host;
646 if (cmd->cmd_dma) {
647 if (cmd->dma_type == CMD_DMA_SINGLE)
648 dma_unmap_single(host->device.parent, cmd->cmd_dma,
649 cmd->dma_size, cmd->dma_dir);
650 else if (cmd->dma_type == CMD_DMA_PAGE)
651 dma_unmap_page(host->device.parent, cmd->cmd_dma,
652 cmd->dma_size, cmd->dma_dir);
653 /* XXX: Check for CMD_DMA_NONE bug */
654 cmd->dma_type = CMD_DMA_NONE;
655 cmd->cmd_dma = 0;
657 if (cmd->sge_buffer) {
658 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
659 cmd->dma_size, cmd->dma_dir);
660 cmd->sge_buffer = NULL;
662 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
666 * Is lu valid? Is the 1394 node still present?
668 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
670 return lu && lu->ne && !lu->ne->in_limbo;
673 /*********************************************
674 * IEEE-1394 core driver stack related section
675 *********************************************/
677 static int sbp2_probe(struct device *dev)
679 struct unit_directory *ud;
680 struct sbp2_lu *lu;
682 ud = container_of(dev, struct unit_directory, device);
684 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
685 * instead. */
686 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
687 return -ENODEV;
689 lu = sbp2_alloc_device(ud);
690 if (!lu)
691 return -ENOMEM;
693 sbp2_parse_unit_directory(lu, ud);
694 return sbp2_start_device(lu);
697 static int sbp2_remove(struct device *dev)
699 struct unit_directory *ud;
700 struct sbp2_lu *lu;
701 struct scsi_device *sdev;
703 ud = container_of(dev, struct unit_directory, device);
704 lu = ud->device.driver_data;
705 if (!lu)
706 return 0;
708 if (lu->shost) {
709 /* Get rid of enqueued commands if there is no chance to
710 * send them. */
711 if (!sbp2util_node_is_available(lu))
712 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
713 /* scsi_remove_device() may trigger shutdown functions of SCSI
714 * highlevel drivers which would deadlock if blocked. */
715 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
716 scsi_unblock_requests(lu->shost);
718 sdev = lu->sdev;
719 if (sdev) {
720 lu->sdev = NULL;
721 scsi_remove_device(sdev);
724 sbp2_logout_device(lu);
725 sbp2_remove_device(lu);
727 return 0;
730 static int sbp2_update(struct unit_directory *ud)
732 struct sbp2_lu *lu = ud->device.driver_data;
734 if (sbp2_reconnect_device(lu)) {
735 /* Reconnect has failed. Perhaps we didn't reconnect fast
736 * enough. Try a regular login, but first log out just in
737 * case of any weirdness. */
738 sbp2_logout_device(lu);
740 if (sbp2_login_device(lu)) {
741 /* Login failed too, just fail, and the backend
742 * will call our sbp2_remove for us */
743 SBP2_ERR("Failed to reconnect to sbp2 device!");
744 return -EBUSY;
748 sbp2_set_busy_timeout(lu);
749 sbp2_agent_reset(lu, 1);
750 sbp2_max_speed_and_size(lu);
752 /* Complete any pending commands with busy (so they get retried)
753 * and remove them from our queue. */
754 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
756 /* Accept new commands unless there was another bus reset in the
757 * meantime. */
758 if (hpsb_node_entry_valid(lu->ne)) {
759 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
760 scsi_unblock_requests(lu->shost);
762 return 0;
765 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
767 struct sbp2_fwhost_info *hi;
768 struct Scsi_Host *shost = NULL;
769 struct sbp2_lu *lu = NULL;
770 unsigned long flags;
772 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
773 if (!lu) {
774 SBP2_ERR("failed to create lu");
775 goto failed_alloc;
778 lu->ne = ud->ne;
779 lu->ud = ud;
780 lu->speed_code = IEEE1394_SPEED_100;
781 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
782 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
783 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
784 INIT_LIST_HEAD(&lu->cmd_orb_completed);
785 INIT_LIST_HEAD(&lu->lu_list);
786 spin_lock_init(&lu->cmd_orb_lock);
787 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
788 INIT_WORK(&lu->protocol_work, NULL);
790 ud->device.driver_data = lu;
792 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
793 if (!hi) {
794 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
795 sizeof(*hi));
796 if (!hi) {
797 SBP2_ERR("failed to allocate hostinfo");
798 goto failed_alloc;
800 hi->host = ud->ne->host;
801 INIT_LIST_HEAD(&hi->logical_units);
803 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
804 /* Handle data movement if physical dma is not
805 * enabled or not supported on host controller */
806 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
807 &sbp2_physdma_ops,
808 0x0ULL, 0xfffffffcULL)) {
809 SBP2_ERR("failed to register lower 4GB address range");
810 goto failed_alloc;
812 #endif
815 /* Prevent unloading of the 1394 host */
816 if (!try_module_get(hi->host->driver->owner)) {
817 SBP2_ERR("failed to get a reference on 1394 host driver");
818 goto failed_alloc;
821 lu->hi = hi;
823 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
824 list_add_tail(&lu->lu_list, &hi->logical_units);
825 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
827 /* Register the status FIFO address range. We could use the same FIFO
828 * for targets at different nodes. However we need different FIFOs per
829 * target in order to support multi-unit devices.
830 * The FIFO is located out of the local host controller's physical range
831 * but, if possible, within the posted write area. Status writes will
832 * then be performed as unified transactions. This slightly reduces
833 * bandwidth usage, and some Prolific based devices seem to require it.
835 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
836 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
837 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
838 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
839 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
840 SBP2_ERR("failed to allocate status FIFO address range");
841 goto failed_alloc;
844 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
845 if (!shost) {
846 SBP2_ERR("failed to register scsi host");
847 goto failed_alloc;
850 shost->hostdata[0] = (unsigned long)lu;
852 if (!scsi_add_host(shost, &ud->device)) {
853 lu->shost = shost;
854 return lu;
857 SBP2_ERR("failed to add scsi host");
858 scsi_host_put(shost);
860 failed_alloc:
861 sbp2_remove_device(lu);
862 return NULL;
865 static void sbp2_host_reset(struct hpsb_host *host)
867 struct sbp2_fwhost_info *hi;
868 struct sbp2_lu *lu;
869 unsigned long flags;
871 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
872 if (!hi)
873 return;
875 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
876 list_for_each_entry(lu, &hi->logical_units, lu_list)
877 if (likely(atomic_read(&lu->state) !=
878 SBP2LU_STATE_IN_SHUTDOWN)) {
879 atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
880 scsi_block_requests(lu->shost);
882 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
885 static int sbp2_start_device(struct sbp2_lu *lu)
887 struct sbp2_fwhost_info *hi = lu->hi;
888 int error;
890 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
891 sizeof(struct sbp2_login_response),
892 &lu->login_response_dma, GFP_KERNEL);
893 if (!lu->login_response)
894 goto alloc_fail;
896 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
897 sizeof(struct sbp2_query_logins_orb),
898 &lu->query_logins_orb_dma, GFP_KERNEL);
899 if (!lu->query_logins_orb)
900 goto alloc_fail;
902 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
903 sizeof(struct sbp2_query_logins_response),
904 &lu->query_logins_response_dma, GFP_KERNEL);
905 if (!lu->query_logins_response)
906 goto alloc_fail;
908 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
909 sizeof(struct sbp2_reconnect_orb),
910 &lu->reconnect_orb_dma, GFP_KERNEL);
911 if (!lu->reconnect_orb)
912 goto alloc_fail;
914 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
915 sizeof(struct sbp2_logout_orb),
916 &lu->logout_orb_dma, GFP_KERNEL);
917 if (!lu->logout_orb)
918 goto alloc_fail;
920 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
921 sizeof(struct sbp2_login_orb),
922 &lu->login_orb_dma, GFP_KERNEL);
923 if (!lu->login_orb)
924 goto alloc_fail;
926 if (sbp2util_create_command_orb_pool(lu))
927 goto alloc_fail;
929 /* Wait a second before trying to log in. Previously logged in
930 * initiators need a chance to reconnect. */
931 if (msleep_interruptible(1000)) {
932 sbp2_remove_device(lu);
933 return -EINTR;
936 if (sbp2_login_device(lu)) {
937 sbp2_remove_device(lu);
938 return -EBUSY;
941 sbp2_set_busy_timeout(lu);
942 sbp2_agent_reset(lu, 1);
943 sbp2_max_speed_and_size(lu);
945 if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
946 ssleep(SBP2_INQUIRY_DELAY);
948 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
949 if (error) {
950 SBP2_ERR("scsi_add_device failed");
951 sbp2_logout_device(lu);
952 sbp2_remove_device(lu);
953 return error;
956 return 0;
958 alloc_fail:
959 SBP2_ERR("Could not allocate memory for lu");
960 sbp2_remove_device(lu);
961 return -ENOMEM;
964 static void sbp2_remove_device(struct sbp2_lu *lu)
966 struct sbp2_fwhost_info *hi;
967 unsigned long flags;
969 if (!lu)
970 return;
971 hi = lu->hi;
972 if (!hi)
973 goto no_hi;
975 if (lu->shost) {
976 scsi_remove_host(lu->shost);
977 scsi_host_put(lu->shost);
979 flush_scheduled_work();
980 sbp2util_remove_command_orb_pool(lu, hi->host);
982 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
983 list_del(&lu->lu_list);
984 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
986 if (lu->login_response)
987 dma_free_coherent(hi->host->device.parent,
988 sizeof(struct sbp2_login_response),
989 lu->login_response,
990 lu->login_response_dma);
991 if (lu->login_orb)
992 dma_free_coherent(hi->host->device.parent,
993 sizeof(struct sbp2_login_orb),
994 lu->login_orb,
995 lu->login_orb_dma);
996 if (lu->reconnect_orb)
997 dma_free_coherent(hi->host->device.parent,
998 sizeof(struct sbp2_reconnect_orb),
999 lu->reconnect_orb,
1000 lu->reconnect_orb_dma);
1001 if (lu->logout_orb)
1002 dma_free_coherent(hi->host->device.parent,
1003 sizeof(struct sbp2_logout_orb),
1004 lu->logout_orb,
1005 lu->logout_orb_dma);
1006 if (lu->query_logins_orb)
1007 dma_free_coherent(hi->host->device.parent,
1008 sizeof(struct sbp2_query_logins_orb),
1009 lu->query_logins_orb,
1010 lu->query_logins_orb_dma);
1011 if (lu->query_logins_response)
1012 dma_free_coherent(hi->host->device.parent,
1013 sizeof(struct sbp2_query_logins_response),
1014 lu->query_logins_response,
1015 lu->query_logins_response_dma);
1017 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1018 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1019 lu->status_fifo_addr);
1021 lu->ud->device.driver_data = NULL;
1023 module_put(hi->host->driver->owner);
1024 no_hi:
1025 kfree(lu);
1028 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1030 * Deal with write requests on adapters which do not support physical DMA or
1031 * have it switched off.
1033 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1034 int destid, quadlet_t *data, u64 addr,
1035 size_t length, u16 flags)
1037 memcpy(bus_to_virt((u32) addr), data, length);
1038 return RCODE_COMPLETE;
1042 * Deal with read requests on adapters which do not support physical DMA or
1043 * have it switched off.
1045 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1046 quadlet_t *data, u64 addr, size_t length,
1047 u16 flags)
1049 memcpy(data, bus_to_virt((u32) addr), length);
1050 return RCODE_COMPLETE;
1052 #endif
1054 /**************************************
1055 * SBP-2 protocol related section
1056 **************************************/
1058 static int sbp2_query_logins(struct sbp2_lu *lu)
1060 struct sbp2_fwhost_info *hi = lu->hi;
1061 quadlet_t data[2];
1062 int max_logins;
1063 int active_logins;
1065 lu->query_logins_orb->reserved1 = 0x0;
1066 lu->query_logins_orb->reserved2 = 0x0;
1068 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1069 lu->query_logins_orb->query_response_hi =
1070 ORB_SET_NODE_ID(hi->host->node_id);
1071 lu->query_logins_orb->lun_misc =
1072 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1073 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1074 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1076 lu->query_logins_orb->reserved_resp_length =
1077 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1078 sizeof(struct sbp2_query_logins_response));
1080 lu->query_logins_orb->status_fifo_hi =
1081 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1082 lu->query_logins_orb->status_fifo_lo =
1083 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1085 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1086 sizeof(struct sbp2_query_logins_orb));
1088 memset(lu->query_logins_response, 0,
1089 sizeof(struct sbp2_query_logins_response));
1091 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1092 data[1] = lu->query_logins_orb_dma;
1093 sbp2util_cpu_to_be32_buffer(data, 8);
1095 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1097 if (sbp2util_access_timeout(lu, 2*HZ)) {
1098 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1099 return -EIO;
1102 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1103 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1104 return -EIO;
1107 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1108 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1109 return -EIO;
1112 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1113 sizeof(struct sbp2_query_logins_response));
1115 max_logins = RESPONSE_GET_MAX_LOGINS(
1116 lu->query_logins_response->length_max_logins);
1117 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1119 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1120 lu->query_logins_response->length_max_logins);
1121 SBP2_INFO("Number of active logins: %d", active_logins);
1123 if (active_logins >= max_logins) {
1124 return -EIO;
1127 return 0;
1130 static int sbp2_login_device(struct sbp2_lu *lu)
1132 struct sbp2_fwhost_info *hi = lu->hi;
1133 quadlet_t data[2];
1135 if (!lu->login_orb)
1136 return -EIO;
1138 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1139 SBP2_INFO("Device does not support any more concurrent logins");
1140 return -EIO;
1143 /* assume no password */
1144 lu->login_orb->password_hi = 0;
1145 lu->login_orb->password_lo = 0;
1147 lu->login_orb->login_response_lo = lu->login_response_dma;
1148 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1149 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1151 /* one second reconnect time */
1152 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1153 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1154 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1155 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1157 lu->login_orb->passwd_resp_lengths =
1158 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1160 lu->login_orb->status_fifo_hi =
1161 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1162 lu->login_orb->status_fifo_lo =
1163 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1165 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1166 sizeof(struct sbp2_login_orb));
1168 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1170 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1171 data[1] = lu->login_orb_dma;
1172 sbp2util_cpu_to_be32_buffer(data, 8);
1174 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1176 /* wait up to 20 seconds for login status */
1177 if (sbp2util_access_timeout(lu, 20*HZ)) {
1178 SBP2_ERR("Error logging into SBP-2 device - timed out");
1179 return -EIO;
1182 /* make sure that the returned status matches the login ORB */
1183 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1184 SBP2_ERR("Error logging into SBP-2 device - timed out");
1185 return -EIO;
1188 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1189 SBP2_ERR("Error logging into SBP-2 device - failed");
1190 return -EIO;
1193 sbp2util_cpu_to_be32_buffer(lu->login_response,
1194 sizeof(struct sbp2_login_response));
1195 lu->command_block_agent_addr =
1196 ((u64)lu->login_response->command_block_agent_hi) << 32;
1197 lu->command_block_agent_addr |=
1198 ((u64)lu->login_response->command_block_agent_lo);
1199 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1201 SBP2_INFO("Logged into SBP-2 device");
1202 return 0;
1205 static int sbp2_logout_device(struct sbp2_lu *lu)
1207 struct sbp2_fwhost_info *hi = lu->hi;
1208 quadlet_t data[2];
1209 int error;
1211 lu->logout_orb->reserved1 = 0x0;
1212 lu->logout_orb->reserved2 = 0x0;
1213 lu->logout_orb->reserved3 = 0x0;
1214 lu->logout_orb->reserved4 = 0x0;
1216 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1217 lu->logout_orb->login_ID_misc |=
1218 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1219 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1221 lu->logout_orb->reserved5 = 0x0;
1222 lu->logout_orb->status_fifo_hi =
1223 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1224 lu->logout_orb->status_fifo_lo =
1225 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1227 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1228 sizeof(struct sbp2_logout_orb));
1230 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1231 data[1] = lu->logout_orb_dma;
1232 sbp2util_cpu_to_be32_buffer(data, 8);
1234 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1235 if (error)
1236 return error;
1238 /* wait up to 1 second for the device to complete logout */
1239 if (sbp2util_access_timeout(lu, HZ))
1240 return -EIO;
1242 SBP2_INFO("Logged out of SBP-2 device");
1243 return 0;
1246 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1248 struct sbp2_fwhost_info *hi = lu->hi;
1249 quadlet_t data[2];
1250 int error;
1252 lu->reconnect_orb->reserved1 = 0x0;
1253 lu->reconnect_orb->reserved2 = 0x0;
1254 lu->reconnect_orb->reserved3 = 0x0;
1255 lu->reconnect_orb->reserved4 = 0x0;
1257 lu->reconnect_orb->login_ID_misc =
1258 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1259 lu->reconnect_orb->login_ID_misc |=
1260 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1261 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1263 lu->reconnect_orb->reserved5 = 0x0;
1264 lu->reconnect_orb->status_fifo_hi =
1265 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1266 lu->reconnect_orb->status_fifo_lo =
1267 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1269 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1270 sizeof(struct sbp2_reconnect_orb));
1272 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1273 data[1] = lu->reconnect_orb_dma;
1274 sbp2util_cpu_to_be32_buffer(data, 8);
1276 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1277 if (error)
1278 return error;
1280 /* wait up to 1 second for reconnect status */
1281 if (sbp2util_access_timeout(lu, HZ)) {
1282 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1283 return -EIO;
1286 /* make sure that the returned status matches the reconnect ORB */
1287 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1288 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1289 return -EIO;
1292 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1293 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1294 return -EIO;
1297 SBP2_INFO("Reconnected to SBP-2 device");
1298 return 0;
1302 * Set the target node's Single Phase Retry limit. Affects the target's retry
1303 * behaviour if our node is too busy to accept requests.
1305 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1307 quadlet_t data;
1309 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1310 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1311 SBP2_ERR("%s error", __func__);
1312 return 0;
1315 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1316 struct unit_directory *ud)
1318 struct csr1212_keyval *kv;
1319 struct csr1212_dentry *dentry;
1320 u64 management_agent_addr;
1321 u32 unit_characteristics, firmware_revision;
1322 unsigned workarounds;
1323 int i;
1325 management_agent_addr = 0;
1326 unit_characteristics = 0;
1327 firmware_revision = 0;
1329 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1330 switch (kv->key.id) {
1331 case CSR1212_KV_ID_DEPENDENT_INFO:
1332 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1333 management_agent_addr =
1334 CSR1212_REGISTER_SPACE_BASE +
1335 (kv->value.csr_offset << 2);
1337 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1338 lu->lun = ORB_SET_LUN(kv->value.immediate);
1339 break;
1341 case SBP2_UNIT_CHARACTERISTICS_KEY:
1342 /* FIXME: This is ignored so far.
1343 * See SBP-2 clause 7.4.8. */
1344 unit_characteristics = kv->value.immediate;
1345 break;
1347 case SBP2_FIRMWARE_REVISION_KEY:
1348 firmware_revision = kv->value.immediate;
1349 break;
1351 default:
1352 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1353 * Its "ordered" bit has consequences for command ORB
1354 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1355 break;
1359 workarounds = sbp2_default_workarounds;
1361 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1362 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1363 if (sbp2_workarounds_table[i].firmware_revision !=
1364 SBP2_ROM_VALUE_WILDCARD &&
1365 sbp2_workarounds_table[i].firmware_revision !=
1366 (firmware_revision & 0xffff00))
1367 continue;
1368 if (sbp2_workarounds_table[i].model_id !=
1369 SBP2_ROM_VALUE_WILDCARD &&
1370 sbp2_workarounds_table[i].model_id != ud->model_id)
1371 continue;
1372 workarounds |= sbp2_workarounds_table[i].workarounds;
1373 break;
1376 if (workarounds)
1377 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1378 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1379 " model_id 0x%06x)",
1380 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1381 workarounds, firmware_revision,
1382 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1383 ud->model_id);
1385 /* We would need one SCSI host template for each target to adjust
1386 * max_sectors on the fly, therefore warn only. */
1387 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1388 (sbp2_max_sectors * 512) > (128 * 1024))
1389 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1390 "max transfer size. WARNING: Current max_sectors "
1391 "setting is larger than 128KB (%d sectors)",
1392 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1393 sbp2_max_sectors);
1395 /* If this is a logical unit directory entry, process the parent
1396 * to get the values. */
1397 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1398 struct unit_directory *parent_ud = container_of(
1399 ud->device.parent, struct unit_directory, device);
1400 sbp2_parse_unit_directory(lu, parent_ud);
1401 } else {
1402 lu->management_agent_addr = management_agent_addr;
1403 lu->workarounds = workarounds;
1404 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1405 lu->lun = ORB_SET_LUN(ud->lun);
1409 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1412 * This function is called in order to determine the max speed and packet
1413 * size we can use in our ORBs. Note, that we (the driver and host) only
1414 * initiate the transaction. The SBP-2 device actually transfers the data
1415 * (by reading from the DMA area we tell it). This means that the SBP-2
1416 * device decides the actual maximum data it can transfer. We just tell it
1417 * the speed that it needs to use, and the max_rec the host supports, and
1418 * it takes care of the rest.
1420 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1422 struct sbp2_fwhost_info *hi = lu->hi;
1423 u8 payload;
1425 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1427 if (lu->speed_code > sbp2_max_speed) {
1428 lu->speed_code = sbp2_max_speed;
1429 SBP2_INFO("Reducing speed to %s",
1430 hpsb_speedto_str[sbp2_max_speed]);
1433 /* Payload size is the lesser of what our speed supports and what
1434 * our host supports. */
1435 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1436 (u8) (hi->host->csr.max_rec - 1));
1438 /* If physical DMA is off, work around limitation in ohci1394:
1439 * packet size must not exceed PAGE_SIZE */
1440 if (lu->ne->host->low_addr_space < (1ULL << 32))
1441 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1442 payload)
1443 payload--;
1445 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1446 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1447 hpsb_speedto_str[lu->speed_code],
1448 SBP2_PAYLOAD_TO_BYTES(payload));
1450 lu->max_payload_size = payload;
1451 return 0;
1454 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1456 quadlet_t data;
1457 u64 addr;
1458 int retval;
1459 unsigned long flags;
1461 /* flush lu->protocol_work */
1462 if (wait)
1463 flush_scheduled_work();
1465 data = ntohl(SBP2_AGENT_RESET_DATA);
1466 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1468 if (wait)
1469 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1470 else
1471 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1473 if (retval < 0) {
1474 SBP2_ERR("hpsb_node_write failed.\n");
1475 return -EIO;
1478 /* make sure that the ORB_POINTER is written on next command */
1479 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1480 lu->last_orb = NULL;
1481 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1483 return 0;
1486 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1487 struct sbp2_fwhost_info *hi,
1488 struct sbp2_command_info *cmd,
1489 unsigned int scsi_use_sg,
1490 struct scatterlist *sg,
1491 u32 orb_direction,
1492 enum dma_data_direction dma_dir)
1494 cmd->dma_dir = dma_dir;
1495 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1496 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1498 /* special case if only one element (and less than 64KB in size) */
1499 if (scsi_use_sg == 1 && sg->length <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1501 cmd->dma_size = sg->length;
1502 cmd->dma_type = CMD_DMA_PAGE;
1503 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1504 sg_page(sg), sg->offset,
1505 cmd->dma_size, cmd->dma_dir);
1507 orb->data_descriptor_lo = cmd->cmd_dma;
1508 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1510 } else {
1511 struct sbp2_unrestricted_page_table *sg_element =
1512 &cmd->scatter_gather_element[0];
1513 u32 sg_count, sg_len;
1514 dma_addr_t sg_addr;
1515 int i, count = dma_map_sg(hi->host->device.parent, sg,
1516 scsi_use_sg, dma_dir);
1518 cmd->dma_size = scsi_use_sg;
1519 cmd->sge_buffer = sg;
1521 /* use page tables (s/g) */
1522 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1523 orb->data_descriptor_lo = cmd->sge_dma;
1525 /* loop through and fill out our SBP-2 page tables
1526 * (and split up anything too large) */
1527 for (i = 0, sg_count = 0; i < count; i++, sg = sg_next(sg)) {
1528 sg_len = sg_dma_len(sg);
1529 sg_addr = sg_dma_address(sg);
1530 while (sg_len) {
1531 sg_element[sg_count].segment_base_lo = sg_addr;
1532 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1533 sg_element[sg_count].length_segment_base_hi =
1534 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1535 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1536 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1537 } else {
1538 sg_element[sg_count].length_segment_base_hi =
1539 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1540 sg_len = 0;
1542 sg_count++;
1546 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1548 sbp2util_cpu_to_be32_buffer(sg_element,
1549 (sizeof(struct sbp2_unrestricted_page_table)) *
1550 sg_count);
1554 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1555 struct sbp2_command_info *cmd,
1556 struct scsi_cmnd *SCpnt)
1558 struct sbp2_fwhost_info *hi = lu->hi;
1559 struct sbp2_command_orb *orb = &cmd->command_orb;
1560 u32 orb_direction;
1561 unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1562 enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1565 * Set-up our command ORB.
1567 * NOTE: We're doing unrestricted page tables (s/g), as this is
1568 * best performance (at least with the devices I have). This means
1569 * that data_size becomes the number of s/g elements, and
1570 * page_size should be zero (for unrestricted).
1572 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1573 orb->next_ORB_lo = 0x0;
1574 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1575 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1576 orb->misc |= ORB_SET_NOTIFY(1);
1578 if (dma_dir == DMA_NONE)
1579 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1580 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1581 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1582 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1583 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1584 else {
1585 SBP2_INFO("Falling back to DMA_NONE");
1586 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1589 /* set up our page table stuff */
1590 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1591 orb->data_descriptor_hi = 0x0;
1592 orb->data_descriptor_lo = 0x0;
1593 orb->misc |= ORB_SET_DIRECTION(1);
1594 } else
1595 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_sg_count(SCpnt),
1596 scsi_sglist(SCpnt),
1597 orb_direction, dma_dir);
1599 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1601 memset(orb->cdb, 0, sizeof(orb->cdb));
1602 memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1605 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1606 struct sbp2_command_info *cmd)
1608 struct sbp2_fwhost_info *hi = lu->hi;
1609 struct sbp2_command_orb *last_orb;
1610 dma_addr_t last_orb_dma;
1611 u64 addr = lu->command_block_agent_addr;
1612 quadlet_t data[2];
1613 size_t length;
1614 unsigned long flags;
1616 dma_sync_single_for_device(hi->host->device.parent,
1617 cmd->command_orb_dma,
1618 sizeof(struct sbp2_command_orb),
1619 DMA_TO_DEVICE);
1620 dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1621 sizeof(cmd->scatter_gather_element),
1622 DMA_TO_DEVICE);
1624 /* check to see if there are any previous orbs to use */
1625 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1626 last_orb = lu->last_orb;
1627 last_orb_dma = lu->last_orb_dma;
1628 if (!last_orb) {
1630 * last_orb == NULL means: We know that the target's fetch agent
1631 * is not active right now.
1633 addr += SBP2_ORB_POINTER_OFFSET;
1634 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1635 data[1] = cmd->command_orb_dma;
1636 sbp2util_cpu_to_be32_buffer(data, 8);
1637 length = 8;
1638 } else {
1640 * last_orb != NULL means: We know that the target's fetch agent
1641 * is (very probably) not dead or in reset state right now.
1642 * We have an ORB already sent that we can append a new one to.
1643 * The target's fetch agent may or may not have read this
1644 * previous ORB yet.
1646 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1647 sizeof(struct sbp2_command_orb),
1648 DMA_TO_DEVICE);
1649 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1650 wmb();
1651 /* Tells hardware that this pointer is valid */
1652 last_orb->next_ORB_hi = 0;
1653 dma_sync_single_for_device(hi->host->device.parent,
1654 last_orb_dma,
1655 sizeof(struct sbp2_command_orb),
1656 DMA_TO_DEVICE);
1657 addr += SBP2_DOORBELL_OFFSET;
1658 data[0] = 0;
1659 length = 4;
1661 lu->last_orb = &cmd->command_orb;
1662 lu->last_orb_dma = cmd->command_orb_dma;
1663 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1665 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1667 * sbp2util_node_write_no_wait failed. We certainly ran out
1668 * of transaction labels, perhaps just because there were no
1669 * context switches which gave khpsbpkt a chance to collect
1670 * free tlabels. Try again in non-atomic context. If necessary,
1671 * the workqueue job will sleep to guaranteedly get a tlabel.
1672 * We do not accept new commands until the job is over.
1674 scsi_block_requests(lu->shost);
1675 PREPARE_WORK(&lu->protocol_work,
1676 last_orb ? sbp2util_write_doorbell:
1677 sbp2util_write_orb_pointer);
1678 schedule_work(&lu->protocol_work);
1682 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1683 void (*done)(struct scsi_cmnd *))
1685 struct sbp2_command_info *cmd;
1687 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1688 if (!cmd)
1689 return -EIO;
1691 sbp2_create_command_orb(lu, cmd, SCpnt);
1692 sbp2_link_orb_command(lu, cmd);
1694 return 0;
1698 * Translates SBP-2 status into SCSI sense data for check conditions
1700 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1701 unchar *sense_data)
1703 /* OK, it's pretty ugly... ;-) */
1704 sense_data[0] = 0x70;
1705 sense_data[1] = 0x0;
1706 sense_data[2] = sbp2_status[9];
1707 sense_data[3] = sbp2_status[12];
1708 sense_data[4] = sbp2_status[13];
1709 sense_data[5] = sbp2_status[14];
1710 sense_data[6] = sbp2_status[15];
1711 sense_data[7] = 10;
1712 sense_data[8] = sbp2_status[16];
1713 sense_data[9] = sbp2_status[17];
1714 sense_data[10] = sbp2_status[18];
1715 sense_data[11] = sbp2_status[19];
1716 sense_data[12] = sbp2_status[10];
1717 sense_data[13] = sbp2_status[11];
1718 sense_data[14] = sbp2_status[20];
1719 sense_data[15] = sbp2_status[21];
1721 return sbp2_status[8] & 0x3f;
1724 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1725 int destid, quadlet_t *data, u64 addr,
1726 size_t length, u16 fl)
1728 struct sbp2_fwhost_info *hi;
1729 struct sbp2_lu *lu = NULL, *lu_tmp;
1730 struct scsi_cmnd *SCpnt = NULL;
1731 struct sbp2_status_block *sb;
1732 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1733 struct sbp2_command_info *cmd;
1734 unsigned long flags;
1736 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1737 SBP2_ERR("Wrong size of status block");
1738 return RCODE_ADDRESS_ERROR;
1740 if (unlikely(!host)) {
1741 SBP2_ERR("host is NULL - this is bad!");
1742 return RCODE_ADDRESS_ERROR;
1744 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1745 if (unlikely(!hi)) {
1746 SBP2_ERR("host info is NULL - this is bad!");
1747 return RCODE_ADDRESS_ERROR;
1750 /* Find the unit which wrote the status. */
1751 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1752 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1753 if (lu_tmp->ne->nodeid == nodeid &&
1754 lu_tmp->status_fifo_addr == addr) {
1755 lu = lu_tmp;
1756 break;
1759 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1761 if (unlikely(!lu)) {
1762 SBP2_ERR("lu is NULL - device is gone?");
1763 return RCODE_ADDRESS_ERROR;
1766 /* Put response into lu status fifo buffer. The first two bytes
1767 * come in big endian bit order. Often the target writes only a
1768 * truncated status block, minimally the first two quadlets. The rest
1769 * is implied to be zeros. */
1770 sb = &lu->status_block;
1771 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1772 memcpy(sb, data, length);
1773 sbp2util_be32_to_cpu_buffer(sb, 8);
1775 /* Ignore unsolicited status. Handle command ORB status. */
1776 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1777 cmd = NULL;
1778 else
1779 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1780 if (cmd) {
1781 dma_sync_single_for_cpu(hi->host->device.parent,
1782 cmd->command_orb_dma,
1783 sizeof(struct sbp2_command_orb),
1784 DMA_TO_DEVICE);
1785 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1786 sizeof(cmd->scatter_gather_element),
1787 DMA_TO_DEVICE);
1788 /* Grab SCSI command pointers and check status. */
1790 * FIXME: If the src field in the status is 1, the ORB DMA must
1791 * not be reused until status for a subsequent ORB is received.
1793 SCpnt = cmd->Current_SCpnt;
1794 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1795 sbp2util_mark_command_completed(lu, cmd);
1796 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1798 if (SCpnt) {
1799 u32 h = sb->ORB_offset_hi_misc;
1800 u32 r = STATUS_GET_RESP(h);
1802 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1803 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1804 r, STATUS_GET_SBP_STATUS(h));
1805 scsi_status =
1806 r == RESP_STATUS_TRANSPORT_FAILURE ?
1807 SBP2_SCSI_STATUS_BUSY :
1808 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1811 if (STATUS_GET_LEN(h) > 1)
1812 scsi_status = sbp2_status_to_sense_data(
1813 (unchar *)sb, SCpnt->sense_buffer);
1815 if (STATUS_TEST_DEAD(h))
1816 sbp2_agent_reset(lu, 0);
1819 /* Check here to see if there are no commands in-use. If there
1820 * are none, we know that the fetch agent left the active state
1821 * _and_ that we did not reactivate it yet. Therefore clear
1822 * last_orb so that next time we write directly to the
1823 * ORB_POINTER register. That way the fetch agent does not need
1824 * to refetch the next_ORB. */
1825 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1826 if (list_empty(&lu->cmd_orb_inuse))
1827 lu->last_orb = NULL;
1828 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1830 } else {
1831 /* It's probably status after a management request. */
1832 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1833 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1834 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1835 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1836 lu->access_complete = 1;
1837 wake_up_interruptible(&sbp2_access_wq);
1841 if (SCpnt)
1842 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1843 cmd->Current_done);
1844 return RCODE_COMPLETE;
1847 /**************************************
1848 * SCSI interface related section
1849 **************************************/
1851 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1852 void (*done)(struct scsi_cmnd *))
1854 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1855 struct sbp2_fwhost_info *hi;
1856 int result = DID_NO_CONNECT << 16;
1858 if (unlikely(!sbp2util_node_is_available(lu)))
1859 goto done;
1861 hi = lu->hi;
1863 if (unlikely(!hi)) {
1864 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1865 goto done;
1868 /* Multiple units are currently represented to the SCSI core as separate
1869 * targets, not as one target with multiple LUs. Therefore return
1870 * selection time-out to any IO directed at non-zero LUNs. */
1871 if (unlikely(SCpnt->device->lun))
1872 goto done;
1874 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1875 SBP2_ERR("Bus reset in progress - rejecting command");
1876 result = DID_BUS_BUSY << 16;
1877 goto done;
1880 /* Bidirectional commands are not yet implemented,
1881 * and unknown transfer direction not handled. */
1882 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1883 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1884 result = DID_ERROR << 16;
1885 goto done;
1888 if (sbp2_send_command(lu, SCpnt, done)) {
1889 SBP2_ERR("Error sending SCSI command");
1890 sbp2scsi_complete_command(lu,
1891 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1892 SCpnt, done);
1894 return 0;
1896 done:
1897 SCpnt->result = result;
1898 done(SCpnt);
1899 return 0;
1902 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1904 struct sbp2_fwhost_info *hi = lu->hi;
1905 struct list_head *lh;
1906 struct sbp2_command_info *cmd;
1907 unsigned long flags;
1909 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1910 while (!list_empty(&lu->cmd_orb_inuse)) {
1911 lh = lu->cmd_orb_inuse.next;
1912 cmd = list_entry(lh, struct sbp2_command_info, list);
1913 dma_sync_single_for_cpu(hi->host->device.parent,
1914 cmd->command_orb_dma,
1915 sizeof(struct sbp2_command_orb),
1916 DMA_TO_DEVICE);
1917 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1918 sizeof(cmd->scatter_gather_element),
1919 DMA_TO_DEVICE);
1920 sbp2util_mark_command_completed(lu, cmd);
1921 if (cmd->Current_SCpnt) {
1922 cmd->Current_SCpnt->result = status << 16;
1923 cmd->Current_done(cmd->Current_SCpnt);
1926 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1928 return;
1932 * Complete a regular SCSI command. Can be called in atomic context.
1934 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1935 struct scsi_cmnd *SCpnt,
1936 void (*done)(struct scsi_cmnd *))
1938 if (!SCpnt) {
1939 SBP2_ERR("SCpnt is NULL");
1940 return;
1943 switch (scsi_status) {
1944 case SBP2_SCSI_STATUS_GOOD:
1945 SCpnt->result = DID_OK << 16;
1946 break;
1948 case SBP2_SCSI_STATUS_BUSY:
1949 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1950 SCpnt->result = DID_BUS_BUSY << 16;
1951 break;
1953 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1954 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1955 break;
1957 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1958 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1959 SCpnt->result = DID_NO_CONNECT << 16;
1960 scsi_print_command(SCpnt);
1961 break;
1963 case SBP2_SCSI_STATUS_CONDITION_MET:
1964 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1965 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1966 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1967 SCpnt->result = DID_ERROR << 16;
1968 scsi_print_command(SCpnt);
1969 break;
1971 default:
1972 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1973 SCpnt->result = DID_ERROR << 16;
1976 /* If a bus reset is in progress and there was an error, complete
1977 * the command as busy so that it will get retried. */
1978 if (!hpsb_node_entry_valid(lu->ne)
1979 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1980 SBP2_ERR("Completing command with busy (bus reset)");
1981 SCpnt->result = DID_BUS_BUSY << 16;
1984 /* Tell the SCSI stack that we're done with this command. */
1985 done(SCpnt);
1988 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1990 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1992 if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1993 return -ENODEV;
1995 lu->sdev = sdev;
1996 sdev->allow_restart = 1;
1998 /* SBP-2 requires quadlet alignment of the data buffers. */
1999 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
2001 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2002 sdev->inquiry_len = 36;
2003 return 0;
2006 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2008 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2010 sdev->use_10_for_rw = 1;
2012 if (sbp2_exclusive_login)
2013 sdev->manage_start_stop = 1;
2014 if (sdev->type == TYPE_ROM)
2015 sdev->use_10_for_ms = 1;
2016 if (sdev->type == TYPE_DISK &&
2017 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2018 sdev->skip_ms_page_8 = 1;
2019 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2020 sdev->fix_capacity = 1;
2021 if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2022 sdev->start_stop_pwr_cond = 1;
2023 if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2024 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2025 return 0;
2028 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2030 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2031 return;
2035 * Called by scsi stack when something has really gone wrong.
2036 * Usually called when a command has timed-out for some reason.
2038 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2040 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2041 struct sbp2_fwhost_info *hi = lu->hi;
2042 struct sbp2_command_info *cmd;
2043 unsigned long flags;
2045 SBP2_INFO("aborting sbp2 command");
2046 scsi_print_command(SCpnt);
2048 if (sbp2util_node_is_available(lu)) {
2049 sbp2_agent_reset(lu, 1);
2051 /* Return a matching command structure to the free pool. */
2052 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2053 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2054 if (cmd) {
2055 dma_sync_single_for_cpu(hi->host->device.parent,
2056 cmd->command_orb_dma,
2057 sizeof(struct sbp2_command_orb),
2058 DMA_TO_DEVICE);
2059 dma_sync_single_for_cpu(hi->host->device.parent,
2060 cmd->sge_dma,
2061 sizeof(cmd->scatter_gather_element),
2062 DMA_TO_DEVICE);
2063 sbp2util_mark_command_completed(lu, cmd);
2064 if (cmd->Current_SCpnt) {
2065 cmd->Current_SCpnt->result = DID_ABORT << 16;
2066 cmd->Current_done(cmd->Current_SCpnt);
2069 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2071 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2074 return SUCCESS;
2078 * Called by scsi stack when something has really gone wrong.
2080 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2082 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2084 SBP2_INFO("reset requested");
2086 if (sbp2util_node_is_available(lu)) {
2087 SBP2_INFO("generating sbp2 fetch agent reset");
2088 sbp2_agent_reset(lu, 1);
2091 return SUCCESS;
2094 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2095 struct device_attribute *attr,
2096 char *buf)
2098 struct scsi_device *sdev;
2099 struct sbp2_lu *lu;
2101 if (!(sdev = to_scsi_device(dev)))
2102 return 0;
2104 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2105 return 0;
2107 if (sbp2_long_sysfs_ieee1394_id)
2108 return sprintf(buf, "%016Lx:%06x:%04x\n",
2109 (unsigned long long)lu->ne->guid,
2110 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2111 else
2112 return sprintf(buf, "%016Lx:%d:%d\n",
2113 (unsigned long long)lu->ne->guid,
2114 lu->ud->id, ORB_SET_LUN(lu->lun));
2117 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2118 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2119 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2120 MODULE_LICENSE("GPL");
2122 static int sbp2_module_init(void)
2124 int ret;
2126 if (sbp2_serialize_io) {
2127 sbp2_shost_template.can_queue = 1;
2128 sbp2_shost_template.cmd_per_lun = 1;
2131 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2133 hpsb_register_highlevel(&sbp2_highlevel);
2134 ret = hpsb_register_protocol(&sbp2_driver);
2135 if (ret) {
2136 SBP2_ERR("Failed to register protocol");
2137 hpsb_unregister_highlevel(&sbp2_highlevel);
2138 return ret;
2140 return 0;
2143 static void __exit sbp2_module_exit(void)
2145 hpsb_unregister_protocol(&sbp2_driver);
2146 hpsb_unregister_highlevel(&sbp2_highlevel);
2149 module_init(sbp2_module_init);
2150 module_exit(sbp2_module_exit);