2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
23 /* This file implements TNC functions for committing */
28 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
29 * @c: UBIFS file-system description object
30 * @idx: buffer in which to place new index node
31 * @znode: znode from which to make new index node
32 * @lnum: LEB number where new index node will be written
33 * @offs: offset where new index node will be written
34 * @len: length of new index node
36 static int make_idx_node(struct ubifs_info
*c
, struct ubifs_idx_node
*idx
,
37 struct ubifs_znode
*znode
, int lnum
, int offs
, int len
)
39 struct ubifs_znode
*zp
;
43 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
44 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
45 idx
->level
= cpu_to_le16(znode
->level
);
46 for (i
= 0; i
< znode
->child_cnt
; i
++) {
47 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
48 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
50 key_write_idx(c
, &zbr
->key
, &br
->key
);
51 br
->lnum
= cpu_to_le32(zbr
->lnum
);
52 br
->offs
= cpu_to_le32(zbr
->offs
);
53 br
->len
= cpu_to_le32(zbr
->len
);
54 if (!zbr
->lnum
|| !zbr
->len
) {
55 ubifs_err("bad ref in znode");
56 dbg_dump_znode(c
, znode
);
58 dbg_dump_znode(c
, zbr
->znode
);
61 ubifs_prepare_node(c
, idx
, len
, 0);
63 #ifdef CONFIG_UBIFS_FS_DEBUG
69 err
= insert_old_idx_znode(c
, znode
);
71 /* Update the parent */
74 struct ubifs_zbranch
*zbr
;
76 zbr
= &zp
->zbranch
[znode
->iip
];
85 c
->calc_idx_sz
+= ALIGN(len
, 8);
87 atomic_long_dec(&c
->dirty_zn_cnt
);
89 ubifs_assert(ubifs_zn_dirty(znode
));
90 ubifs_assert(test_bit(COW_ZNODE
, &znode
->flags
));
92 __clear_bit(DIRTY_ZNODE
, &znode
->flags
);
93 __clear_bit(COW_ZNODE
, &znode
->flags
);
99 * fill_gap - make index nodes in gaps in dirty index LEBs.
100 * @c: UBIFS file-system description object
101 * @lnum: LEB number that gap appears in
102 * @gap_start: offset of start of gap
103 * @gap_end: offset of end of gap
104 * @dirt: adds dirty space to this
106 * This function returns the number of index nodes written into the gap.
108 static int fill_gap(struct ubifs_info
*c
, int lnum
, int gap_start
, int gap_end
,
111 int len
, gap_remains
, gap_pos
, written
, pad_len
;
113 ubifs_assert((gap_start
& 7) == 0);
114 ubifs_assert((gap_end
& 7) == 0);
115 ubifs_assert(gap_end
>= gap_start
);
117 gap_remains
= gap_end
- gap_start
;
123 len
= ubifs_idx_node_sz(c
, c
->enext
->child_cnt
);
124 if (len
< gap_remains
) {
125 struct ubifs_znode
*znode
= c
->enext
;
126 const int alen
= ALIGN(len
, 8);
129 ubifs_assert(alen
<= gap_remains
);
130 err
= make_idx_node(c
, c
->ileb_buf
+ gap_pos
, znode
,
136 c
->enext
= znode
->cnext
;
137 if (c
->enext
== c
->cnext
)
143 if (gap_end
== c
->leb_size
) {
144 c
->ileb_len
= ALIGN(gap_pos
, c
->min_io_size
);
145 /* Pad to end of min_io_size */
146 pad_len
= c
->ileb_len
- gap_pos
;
148 /* Pad to end of gap */
149 pad_len
= gap_remains
;
150 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
151 lnum
, gap_start
, gap_end
, gap_end
- gap_start
, written
, pad_len
);
152 ubifs_pad(c
, c
->ileb_buf
+ gap_pos
, pad_len
);
158 * find_old_idx - find an index node obsoleted since the last commit start.
159 * @c: UBIFS file-system description object
160 * @lnum: LEB number of obsoleted index node
161 * @offs: offset of obsoleted index node
163 * Returns %1 if found and %0 otherwise.
165 static int find_old_idx(struct ubifs_info
*c
, int lnum
, int offs
)
167 struct ubifs_old_idx
*o
;
170 p
= c
->old_idx
.rb_node
;
172 o
= rb_entry(p
, struct ubifs_old_idx
, rb
);
175 else if (lnum
> o
->lnum
)
177 else if (offs
< o
->offs
)
179 else if (offs
> o
->offs
)
188 * is_idx_node_in_use - determine if an index node can be overwritten.
189 * @c: UBIFS file-system description object
190 * @key: key of index node
191 * @level: index node level
192 * @lnum: LEB number of index node
193 * @offs: offset of index node
195 * If @key / @lnum / @offs identify an index node that was not part of the old
196 * index, then this function returns %0 (obsolete). Else if the index node was
197 * part of the old index but is now dirty %1 is returned, else if it is clean %2
198 * is returned. A negative error code is returned on failure.
200 static int is_idx_node_in_use(struct ubifs_info
*c
, union ubifs_key
*key
,
201 int level
, int lnum
, int offs
)
205 ret
= is_idx_node_in_tnc(c
, key
, level
, lnum
, offs
);
207 return ret
; /* Error code */
209 if (find_old_idx(c
, lnum
, offs
))
215 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
216 * @c: UBIFS file-system description object
217 * @p: return LEB number here
219 * This function lays out new index nodes for dirty znodes using in-the-gaps
220 * method of TNC commit.
221 * This function merely puts the next znode into the next gap, making no attempt
222 * to try to maximise the number of znodes that fit.
223 * This function returns the number of index nodes written into the gaps, or a
224 * negative error code on failure.
226 static int layout_leb_in_gaps(struct ubifs_info
*c
, int *p
)
228 struct ubifs_scan_leb
*sleb
;
229 struct ubifs_scan_node
*snod
;
230 int lnum
, dirt
= 0, gap_start
, gap_end
, err
, written
, tot_written
;
233 /* Get an index LEB with lots of obsolete index nodes */
234 lnum
= ubifs_find_dirty_idx_leb(c
);
237 * There also may be dirt in the index head that could be
238 * filled, however we do not check there at present.
240 return lnum
; /* Error code */
242 dbg_gc("LEB %d", lnum
);
244 * Scan the index LEB. We use the generic scan for this even though
245 * it is more comprehensive and less efficient than is needed for this
248 sleb
= ubifs_scan(c
, lnum
, 0, c
->ileb_buf
);
251 return PTR_ERR(sleb
);
253 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
254 struct ubifs_idx_node
*idx
;
257 ubifs_assert(snod
->type
== UBIFS_IDX_NODE
);
259 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
260 level
= le16_to_cpu(idx
->level
);
261 /* Determine if the index node is in use (not obsolete) */
262 in_use
= is_idx_node_in_use(c
, &snod
->key
, level
, lnum
,
265 ubifs_scan_destroy(sleb
);
266 return in_use
; /* Error code */
270 dirt
+= ALIGN(snod
->len
, 8);
272 * The obsolete index nodes form gaps that can be
273 * overwritten. This gap has ended because we have
274 * found an index node that is still in use
277 gap_end
= snod
->offs
;
278 /* Try to fill gap */
279 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
281 ubifs_scan_destroy(sleb
);
282 return written
; /* Error code */
284 tot_written
+= written
;
285 gap_start
= ALIGN(snod
->offs
+ snod
->len
, 8);
288 ubifs_scan_destroy(sleb
);
289 c
->ileb_len
= c
->leb_size
;
290 gap_end
= c
->leb_size
;
291 /* Try to fill gap */
292 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
294 return written
; /* Error code */
295 tot_written
+= written
;
296 if (tot_written
== 0) {
297 struct ubifs_lprops lp
;
299 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
300 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
303 if (lp
.free
== c
->leb_size
) {
305 * We must have snatched this LEB from the idx_gc list
306 * so we need to correct the free and dirty space.
308 err
= ubifs_change_one_lp(c
, lnum
,
309 c
->leb_size
- c
->ileb_len
,
316 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
- c
->ileb_len
, dirt
,
320 err
= ubifs_leb_change(c
, lnum
, c
->ileb_buf
, c
->ileb_len
,
324 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
329 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
330 * @c: UBIFS file-system description object
331 * @cnt: number of znodes to commit
333 * This function returns the number of empty LEBs needed to commit @cnt znodes
334 * to the current index head. The number is not exact and may be more than
337 static int get_leb_cnt(struct ubifs_info
*c
, int cnt
)
341 /* Assume maximum index node size (i.e. overestimate space needed) */
342 cnt
-= (c
->leb_size
- c
->ihead_offs
) / c
->max_idx_node_sz
;
345 d
= c
->leb_size
/ c
->max_idx_node_sz
;
346 return DIV_ROUND_UP(cnt
, d
);
350 * layout_in_gaps - in-the-gaps method of committing TNC.
351 * @c: UBIFS file-system description object
352 * @cnt: number of dirty znodes to commit.
354 * This function lays out new index nodes for dirty znodes using in-the-gaps
355 * method of TNC commit.
357 * This function returns %0 on success and a negative error code on failure.
359 static int layout_in_gaps(struct ubifs_info
*c
, int cnt
)
361 int err
, leb_needed_cnt
, written
, *p
;
363 dbg_gc("%d znodes to write", cnt
);
365 c
->gap_lebs
= kmalloc(sizeof(int) * (c
->lst
.idx_lebs
+ 1), GFP_NOFS
);
371 ubifs_assert(p
< c
->gap_lebs
+ sizeof(int) * c
->lst
.idx_lebs
);
372 written
= layout_leb_in_gaps(c
, p
);
375 if (err
!= -ENOSPC
) {
380 if (!dbg_force_in_the_gaps_enabled
) {
382 * Do not print scary warnings if the debugging
383 * option which forces in-the-gaps is enabled.
385 ubifs_err("out of space");
386 spin_lock(&c
->space_lock
);
388 spin_unlock(&c
->space_lock
);
391 /* Try to commit anyway */
397 leb_needed_cnt
= get_leb_cnt(c
, cnt
);
398 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt
,
399 leb_needed_cnt
, c
->ileb_cnt
);
400 } while (leb_needed_cnt
> c
->ileb_cnt
);
407 * layout_in_empty_space - layout index nodes in empty space.
408 * @c: UBIFS file-system description object
410 * This function lays out new index nodes for dirty znodes using empty LEBs.
412 * This function returns %0 on success and a negative error code on failure.
414 static int layout_in_empty_space(struct ubifs_info
*c
)
416 struct ubifs_znode
*znode
, *cnext
, *zp
;
417 int lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
, avail
;
424 lnum
= c
->ihead_lnum
;
425 buf_offs
= c
->ihead_offs
;
427 buf_len
= ubifs_idx_node_sz(c
, c
->fanout
);
428 buf_len
= ALIGN(buf_len
, c
->min_io_size
);
432 /* Ensure there is enough room for first write */
433 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
434 if (buf_offs
+ next_len
> c
->leb_size
)
440 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
442 /* Determine the index node position */
444 if (c
->ileb_nxt
>= c
->ileb_cnt
) {
445 ubifs_err("out of space");
448 lnum
= c
->ilebs
[c
->ileb_nxt
++];
454 offs
= buf_offs
+ used
;
456 #ifdef CONFIG_UBIFS_FS_DEBUG
462 /* Update the parent */
465 struct ubifs_zbranch
*zbr
;
469 zbr
= &zp
->zbranch
[i
];
474 c
->zroot
.lnum
= lnum
;
475 c
->zroot
.offs
= offs
;
478 c
->calc_idx_sz
+= ALIGN(len
, 8);
481 * Once lprops is updated, we can decrease the dirty znode count
482 * but it is easier to just do it here.
484 atomic_long_dec(&c
->dirty_zn_cnt
);
487 * Calculate the next index node length to see if there is
490 cnext
= znode
->cnext
;
491 if (cnext
== c
->cnext
)
494 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
496 if (c
->min_io_size
== 1) {
497 buf_offs
+= ALIGN(len
, 8);
499 if (buf_offs
+ next_len
<= c
->leb_size
)
501 err
= ubifs_update_one_lp(c
, lnum
, 0,
502 c
->leb_size
- buf_offs
, 0, 0);
508 err
= ubifs_update_one_lp(c
, lnum
,
509 c
->leb_size
- buf_offs
, 0, 0, 0);
515 /* Update buffer positions */
517 used
+= ALIGN(len
, 8);
518 avail
-= ALIGN(len
, 8);
521 buf_offs
+ used
+ next_len
<= c
->leb_size
&&
525 if (avail
<= 0 && next_len
&&
526 buf_offs
+ used
+ next_len
<= c
->leb_size
)
529 blen
= ALIGN(wlen
, c
->min_io_size
);
531 /* The buffer is full or there are no more znodes to do */
534 if (buf_offs
+ next_len
> c
->leb_size
) {
535 err
= ubifs_update_one_lp(c
, lnum
,
536 c
->leb_size
- buf_offs
, blen
- used
,
545 avail
= buf_len
- used
;
548 err
= ubifs_update_one_lp(c
, lnum
, c
->leb_size
- buf_offs
,
555 #ifdef CONFIG_UBIFS_FS_DEBUG
556 c
->dbg
->new_ihead_lnum
= lnum
;
557 c
->dbg
->new_ihead_offs
= buf_offs
;
564 * layout_commit - determine positions of index nodes to commit.
565 * @c: UBIFS file-system description object
566 * @no_space: indicates that insufficient empty LEBs were allocated
567 * @cnt: number of znodes to commit
569 * Calculate and update the positions of index nodes to commit. If there were
570 * an insufficient number of empty LEBs allocated, then index nodes are placed
571 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
572 * this purpose, an obsolete index node is one that was not in the index as at
573 * the end of the last commit. To write "in-the-gaps" requires that those index
574 * LEBs are updated atomically in-place.
576 static int layout_commit(struct ubifs_info
*c
, int no_space
, int cnt
)
581 err
= layout_in_gaps(c
, cnt
);
585 err
= layout_in_empty_space(c
);
590 * find_first_dirty - find first dirty znode.
591 * @znode: znode to begin searching from
593 static struct ubifs_znode
*find_first_dirty(struct ubifs_znode
*znode
)
601 if (znode
->level
== 0) {
602 if (ubifs_zn_dirty(znode
))
607 for (i
= 0; i
< znode
->child_cnt
; i
++) {
608 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
610 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
)) {
617 if (ubifs_zn_dirty(znode
))
625 * find_next_dirty - find next dirty znode.
626 * @znode: znode to begin searching from
628 static struct ubifs_znode
*find_next_dirty(struct ubifs_znode
*znode
)
630 int n
= znode
->iip
+ 1;
632 znode
= znode
->parent
;
635 for (; n
< znode
->child_cnt
; n
++) {
636 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
638 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
))
639 return find_first_dirty(zbr
->znode
);
645 * get_znodes_to_commit - create list of dirty znodes to commit.
646 * @c: UBIFS file-system description object
648 * This function returns the number of znodes to commit.
650 static int get_znodes_to_commit(struct ubifs_info
*c
)
652 struct ubifs_znode
*znode
, *cnext
;
655 c
->cnext
= find_first_dirty(c
->zroot
.znode
);
656 znode
= c
->enext
= c
->cnext
;
658 dbg_cmt("no znodes to commit");
663 ubifs_assert(!test_bit(COW_ZNODE
, &znode
->flags
));
664 __set_bit(COW_ZNODE
, &znode
->flags
);
666 cnext
= find_next_dirty(znode
);
668 znode
->cnext
= c
->cnext
;
671 znode
->cnext
= cnext
;
675 dbg_cmt("committing %d znodes", cnt
);
676 ubifs_assert(cnt
== atomic_long_read(&c
->dirty_zn_cnt
));
681 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
682 * @c: UBIFS file-system description object
683 * @cnt: number of znodes to commit
685 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
686 * empty LEBs. %0 is returned on success, otherwise a negative error code
689 static int alloc_idx_lebs(struct ubifs_info
*c
, int cnt
)
691 int i
, leb_cnt
, lnum
;
695 leb_cnt
= get_leb_cnt(c
, cnt
);
696 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt
);
699 c
->ilebs
= kmalloc(leb_cnt
* sizeof(int), GFP_NOFS
);
702 for (i
= 0; i
< leb_cnt
; i
++) {
703 lnum
= ubifs_find_free_leb_for_idx(c
);
706 c
->ilebs
[c
->ileb_cnt
++] = lnum
;
707 dbg_cmt("LEB %d", lnum
);
709 if (dbg_force_in_the_gaps())
715 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
716 * @c: UBIFS file-system description object
718 * It is possible that we allocate more empty LEBs for the commit than we need.
719 * This functions frees the surplus.
721 * This function returns %0 on success and a negative error code on failure.
723 static int free_unused_idx_lebs(struct ubifs_info
*c
)
725 int i
, err
= 0, lnum
, er
;
727 for (i
= c
->ileb_nxt
; i
< c
->ileb_cnt
; i
++) {
729 dbg_cmt("LEB %d", lnum
);
730 er
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
731 LPROPS_INDEX
| LPROPS_TAKEN
, 0);
739 * free_idx_lebs - free unused LEBs after commit end.
740 * @c: UBIFS file-system description object
742 * This function returns %0 on success and a negative error code on failure.
744 static int free_idx_lebs(struct ubifs_info
*c
)
748 err
= free_unused_idx_lebs(c
);
755 * ubifs_tnc_start_commit - start TNC commit.
756 * @c: UBIFS file-system description object
757 * @zroot: new index root position is returned here
759 * This function prepares the list of indexing nodes to commit and lays out
760 * their positions on flash. If there is not enough free space it uses the
761 * in-gap commit method. Returns zero in case of success and a negative error
762 * code in case of failure.
764 int ubifs_tnc_start_commit(struct ubifs_info
*c
, struct ubifs_zbranch
*zroot
)
768 mutex_lock(&c
->tnc_mutex
);
769 err
= dbg_check_tnc(c
, 1);
772 cnt
= get_znodes_to_commit(c
);
776 err
= alloc_idx_lebs(c
, cnt
);
781 err
= layout_commit(c
, no_space
, cnt
);
784 ubifs_assert(atomic_long_read(&c
->dirty_zn_cnt
) == 0);
785 err
= free_unused_idx_lebs(c
);
790 memcpy(zroot
, &c
->zroot
, sizeof(struct ubifs_zbranch
));
792 err
= ubifs_save_dirty_idx_lnums(c
);
796 spin_lock(&c
->space_lock
);
798 * Although we have not finished committing yet, update size of the
799 * committed index ('c->old_idx_sz') and zero out the index growth
800 * budget. It is OK to do this now, because we've reserved all the
801 * space which is needed to commit the index, and it is save for the
802 * budgeting subsystem to assume the index is already committed,
803 * even though it is not.
805 ubifs_assert(c
->min_idx_lebs
== ubifs_calc_min_idx_lebs(c
));
806 c
->old_idx_sz
= c
->calc_idx_sz
;
807 c
->budg_uncommitted_idx
= 0;
808 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
809 spin_unlock(&c
->space_lock
);
810 mutex_unlock(&c
->tnc_mutex
);
812 dbg_cmt("number of index LEBs %d", c
->lst
.idx_lebs
);
813 dbg_cmt("size of index %llu", c
->calc_idx_sz
);
819 mutex_unlock(&c
->tnc_mutex
);
824 * write_index - write index nodes.
825 * @c: UBIFS file-system description object
827 * This function writes the index nodes whose positions were laid out in the
828 * layout_in_empty_space function.
830 static int write_index(struct ubifs_info
*c
)
832 struct ubifs_idx_node
*idx
;
833 struct ubifs_znode
*znode
, *cnext
;
834 int i
, lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
;
835 int avail
, wlen
, err
, lnum_pos
= 0;
842 * Always write index nodes to the index head so that index nodes and
843 * other types of nodes are never mixed in the same erase block.
845 lnum
= c
->ihead_lnum
;
846 buf_offs
= c
->ihead_offs
;
848 /* Allocate commit buffer */
849 buf_len
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
853 /* Ensure there is enough room for first write */
854 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
855 if (buf_offs
+ next_len
> c
->leb_size
) {
856 err
= ubifs_update_one_lp(c
, lnum
, LPROPS_NC
, 0, 0,
867 idx
= c
->cbuf
+ used
;
869 /* Make index node */
870 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
871 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
872 idx
->level
= cpu_to_le16(znode
->level
);
873 for (i
= 0; i
< znode
->child_cnt
; i
++) {
874 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
875 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
877 key_write_idx(c
, &zbr
->key
, &br
->key
);
878 br
->lnum
= cpu_to_le32(zbr
->lnum
);
879 br
->offs
= cpu_to_le32(zbr
->offs
);
880 br
->len
= cpu_to_le32(zbr
->len
);
881 if (!zbr
->lnum
|| !zbr
->len
) {
882 ubifs_err("bad ref in znode");
883 dbg_dump_znode(c
, znode
);
885 dbg_dump_znode(c
, zbr
->znode
);
888 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
889 ubifs_prepare_node(c
, idx
, len
, 0);
891 /* Determine the index node position */
893 lnum
= c
->ilebs
[lnum_pos
++];
898 offs
= buf_offs
+ used
;
900 #ifdef CONFIG_UBIFS_FS_DEBUG
901 if (lnum
!= znode
->lnum
|| offs
!= znode
->offs
||
903 ubifs_err("inconsistent znode posn");
908 /* Grab some stuff from znode while we still can */
909 cnext
= znode
->cnext
;
911 ubifs_assert(ubifs_zn_dirty(znode
));
912 ubifs_assert(test_bit(COW_ZNODE
, &znode
->flags
));
915 * It is important that other threads should see %DIRTY_ZNODE
916 * flag cleared before %COW_ZNODE. Specifically, it matters in
917 * the 'dirty_cow_znode()' function. This is the reason for the
918 * first barrier. Also, we want the bit changes to be seen to
919 * other threads ASAP, to avoid unnecesarry copying, which is
920 * the reason for the second barrier.
922 clear_bit(DIRTY_ZNODE
, &znode
->flags
);
923 smp_mb__before_clear_bit();
924 clear_bit(COW_ZNODE
, &znode
->flags
);
925 smp_mb__after_clear_bit();
927 /* Do not access znode from this point on */
929 /* Update buffer positions */
931 used
+= ALIGN(len
, 8);
932 avail
-= ALIGN(len
, 8);
935 * Calculate the next index node length to see if there is
938 if (cnext
== c
->cnext
)
941 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
943 if (c
->min_io_size
== 1) {
945 * Write the prepared index node immediately if there is
948 err
= ubifs_leb_write(c
, lnum
, c
->cbuf
, buf_offs
,
949 wlen
, UBI_SHORTTERM
);
952 buf_offs
+= ALIGN(wlen
, 8);
956 if (buf_offs
+ next_len
> c
->leb_size
) {
957 err
= ubifs_update_one_lp(c
, lnum
,
958 LPROPS_NC
, 0, 0, LPROPS_TAKEN
);
966 int blen
, nxt_offs
= buf_offs
+ used
+ next_len
;
968 if (next_len
&& nxt_offs
<= c
->leb_size
) {
974 wlen
= ALIGN(wlen
, 8);
975 blen
= ALIGN(wlen
, c
->min_io_size
);
976 ubifs_pad(c
, c
->cbuf
+ wlen
, blen
- wlen
);
979 * The buffer is full or there are no more znodes
982 err
= ubifs_leb_write(c
, lnum
, c
->cbuf
, buf_offs
,
983 blen
, UBI_SHORTTERM
);
988 if (nxt_offs
> c
->leb_size
) {
989 err
= ubifs_update_one_lp(c
, lnum
,
990 LPROPS_NC
, 0, 0, LPROPS_TAKEN
);
998 avail
= buf_len
- used
;
999 memmove(c
->cbuf
, c
->cbuf
+ blen
, used
);
1006 #ifdef CONFIG_UBIFS_FS_DEBUG
1007 if (lnum
!= c
->dbg
->new_ihead_lnum
||
1008 buf_offs
!= c
->dbg
->new_ihead_offs
) {
1009 ubifs_err("inconsistent ihead");
1014 c
->ihead_lnum
= lnum
;
1015 c
->ihead_offs
= buf_offs
;
1021 * free_obsolete_znodes - free obsolete znodes.
1022 * @c: UBIFS file-system description object
1024 * At the end of commit end, obsolete znodes are freed.
1026 static void free_obsolete_znodes(struct ubifs_info
*c
)
1028 struct ubifs_znode
*znode
, *cnext
;
1033 cnext
= znode
->cnext
;
1034 if (test_bit(OBSOLETE_ZNODE
, &znode
->flags
))
1037 znode
->cnext
= NULL
;
1038 atomic_long_inc(&c
->clean_zn_cnt
);
1039 atomic_long_inc(&ubifs_clean_zn_cnt
);
1041 } while (cnext
!= c
->cnext
);
1045 * return_gap_lebs - return LEBs used by the in-gap commit method.
1046 * @c: UBIFS file-system description object
1048 * This function clears the "taken" flag for the LEBs which were used by the
1049 * "commit in-the-gaps" method.
1051 static int return_gap_lebs(struct ubifs_info
*c
)
1059 for (p
= c
->gap_lebs
; *p
!= -1; p
++) {
1060 err
= ubifs_change_one_lp(c
, *p
, LPROPS_NC
, LPROPS_NC
, 0,
1072 * ubifs_tnc_end_commit - update the TNC for commit end.
1073 * @c: UBIFS file-system description object
1075 * Write the dirty znodes.
1077 int ubifs_tnc_end_commit(struct ubifs_info
*c
)
1084 err
= return_gap_lebs(c
);
1088 err
= write_index(c
);
1092 mutex_lock(&c
->tnc_mutex
);
1094 dbg_cmt("TNC height is %d", c
->zroot
.znode
->level
+ 1);
1096 free_obsolete_znodes(c
);
1102 mutex_unlock(&c
->tnc_mutex
);