1 Taken from list archive at http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html
6 The following symbol definitions rely on you knowing the translation that
7 __virt_to_phys() does for your machine. This macro converts the passed
8 virtual address to a physical address. Normally, it is simply:
10 phys = virt - PAGE_OFFSET + PHYS_OFFSET
17 Start address of decompressor. There's no point in talking about
18 virtual or physical addresses here, since the MMU will be off at
19 the time when you call the decompressor code. You normally call
20 the kernel at this address to start it booting. This doesn't have
21 to be located in RAM, it can be in flash or other read-only or
22 read-write addressable medium.
25 Start address of zero-initialised work area for the decompressor.
26 This must be pointing at RAM. The decompressor will zero initialise
27 this for you. Again, the MMU will be off.
30 This is the address where the decompressed kernel will be written,
31 and eventually executed. The following constraint must be valid:
33 __virt_to_phys(TEXTADDR) == ZRELADDR
35 The initial part of the kernel is carefully coded to be position
39 Physical address to place the initial RAM disk. Only relevant if
40 you are using the bootpImage stuff (which only works on the old
44 Virtual address of the initial RAM disk. The following constraint
47 __virt_to_phys(INITRD_VIRT) == INITRD_PHYS
50 Physical address of the struct param_struct or tag list, giving the
51 kernel various parameters about its execution environment.
58 Physical start address of the first bank of RAM.
61 Virtual start address of the first bank of RAM. During the kernel
62 boot phase, virtual address PAGE_OFFSET will be mapped to physical
63 address PHYS_OFFSET, along with any other mappings you supply.
64 This should be the same value as TASK_SIZE.
67 The maximum size of a user process in bytes. Since user space
68 always starts at zero, this is the maximum address that a user
69 process can access+1. The user space stack grows down from this
72 Any virtual address below TASK_SIZE is deemed to be user process
73 area, and therefore managed dynamically on a process by process
74 basis by the kernel. I'll call this the user segment.
76 Anything above TASK_SIZE is common to all processes. I'll call
77 this the kernel segment.
79 (In other words, you can't put IO mappings below TASK_SIZE, and
83 Virtual start address of kernel, normally PAGE_OFFSET + 0x8000.
84 This is where the kernel image ends up. With the latest kernels,
85 it must be located at 32768 bytes into a 128MB region. Previous
86 kernels placed a restriction of 256MB here.
89 Virtual address for the kernel data segment. Must not be defined
90 when using the decompressor.
94 Virtual addresses bounding the vmalloc() area. There must not be
95 any static mappings in this area; vmalloc will overwrite them.
96 The addresses must also be in the kernel segment (see above).
97 Normally, the vmalloc() area starts VMALLOC_OFFSET bytes above the
98 last virtual RAM address (found using variable high_memory).
101 Offset normally incorporated into VMALLOC_START to provide a hole
102 between virtual RAM and the vmalloc area. We do this to allow
103 out of bounds memory accesses (eg, something writing off the end
104 of the mapped memory map) to be caught. Normally set to 8MB.
106 Architecture Specific Macros
107 ----------------------------
109 BOOT_MEM(pram,pio,vio)
110 `pram' specifies the physical start address of RAM. Must always
111 be present, and should be the same as PHYS_OFFSET.
113 `pio' is the physical address of an 8MB region containing IO for
114 use with the debugging macros in arch/arm/kernel/debug-armv.S.
116 `vio' is the virtual address of the 8MB debugging region.
118 It is expected that the debugging region will be re-initialised
119 by the architecture specific code later in the code (via the
123 Same as, and see PARAMS_PHYS.
126 Machine specific fixups, run before memory subsystems have been
130 Machine specific function to map IO areas (including the debug
134 Machine specific function to initialise interrupts.