sparc: Kill custom io_remap_pfn_range().
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blobbc04518e9d8b588edc5682442c05e425eb15c451
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
57 unsigned integrity_supported:1;
60 * Indicates the rw permissions for the new logical
61 * device. This should be a combination of FMODE_READ
62 * and FMODE_WRITE.
64 fmode_t mode;
66 /* a list of devices used by this table */
67 struct list_head devices;
69 /* events get handed up using this callback */
70 void (*event_fn)(void *);
71 void *event_context;
73 struct dm_md_mempools *mempools;
75 struct list_head target_callbacks;
79 * Similar to ceiling(log_size(n))
81 static unsigned int int_log(unsigned int n, unsigned int base)
83 int result = 0;
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
90 return result;
94 * Calculate the index of the child node of the n'th node k'th key.
96 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 return (n * CHILDREN_PER_NODE) + k;
102 * Return the n'th node of level l from table t.
104 static inline sector_t *get_node(struct dm_table *t,
105 unsigned int l, unsigned int n)
107 return t->index[l] + (n * KEYS_PER_NODE);
111 * Return the highest key that you could lookup from the n'th
112 * node on level l of the btree.
114 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 for (; l < t->depth - 1; l++)
117 n = get_child(n, CHILDREN_PER_NODE - 1);
119 if (n >= t->counts[l])
120 return (sector_t) - 1;
122 return get_node(t, l, n)[KEYS_PER_NODE - 1];
126 * Fills in a level of the btree based on the highs of the level
127 * below it.
129 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 unsigned int n, k;
132 sector_t *node;
134 for (n = 0U; n < t->counts[l]; n++) {
135 node = get_node(t, l, n);
137 for (k = 0U; k < KEYS_PER_NODE; k++)
138 node[k] = high(t, l + 1, get_child(n, k));
141 return 0;
144 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 unsigned long size;
147 void *addr;
150 * Check that we're not going to overflow.
152 if (nmemb > (ULONG_MAX / elem_size))
153 return NULL;
155 size = nmemb * elem_size;
156 addr = vzalloc(size);
158 return addr;
160 EXPORT_SYMBOL(dm_vcalloc);
163 * highs, and targets are managed as dynamic arrays during a
164 * table load.
166 static int alloc_targets(struct dm_table *t, unsigned int num)
168 sector_t *n_highs;
169 struct dm_target *n_targets;
170 int n = t->num_targets;
173 * Allocate both the target array and offset array at once.
174 * Append an empty entry to catch sectors beyond the end of
175 * the device.
177 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
178 sizeof(sector_t));
179 if (!n_highs)
180 return -ENOMEM;
182 n_targets = (struct dm_target *) (n_highs + num);
184 if (n) {
185 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
186 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
190 vfree(t->highs);
192 t->num_allocated = num;
193 t->highs = n_highs;
194 t->targets = n_targets;
196 return 0;
199 int dm_table_create(struct dm_table **result, fmode_t mode,
200 unsigned num_targets, struct mapped_device *md)
202 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
204 if (!t)
205 return -ENOMEM;
207 INIT_LIST_HEAD(&t->devices);
208 INIT_LIST_HEAD(&t->target_callbacks);
209 atomic_set(&t->holders, 0);
211 if (!num_targets)
212 num_targets = KEYS_PER_NODE;
214 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
216 if (alloc_targets(t, num_targets)) {
217 kfree(t);
218 t = NULL;
219 return -ENOMEM;
222 t->mode = mode;
223 t->md = md;
224 *result = t;
225 return 0;
228 static void free_devices(struct list_head *devices)
230 struct list_head *tmp, *next;
232 list_for_each_safe(tmp, next, devices) {
233 struct dm_dev_internal *dd =
234 list_entry(tmp, struct dm_dev_internal, list);
235 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
236 dd->dm_dev.name);
237 kfree(dd);
241 void dm_table_destroy(struct dm_table *t)
243 unsigned int i;
245 if (!t)
246 return;
248 while (atomic_read(&t->holders))
249 msleep(1);
250 smp_mb();
252 /* free the indexes */
253 if (t->depth >= 2)
254 vfree(t->index[t->depth - 2]);
256 /* free the targets */
257 for (i = 0; i < t->num_targets; i++) {
258 struct dm_target *tgt = t->targets + i;
260 if (tgt->type->dtr)
261 tgt->type->dtr(tgt);
263 dm_put_target_type(tgt->type);
266 vfree(t->highs);
268 /* free the device list */
269 if (t->devices.next != &t->devices)
270 free_devices(&t->devices);
272 dm_free_md_mempools(t->mempools);
274 kfree(t);
277 void dm_table_get(struct dm_table *t)
279 atomic_inc(&t->holders);
281 EXPORT_SYMBOL(dm_table_get);
283 void dm_table_put(struct dm_table *t)
285 if (!t)
286 return;
288 smp_mb__before_atomic_dec();
289 atomic_dec(&t->holders);
291 EXPORT_SYMBOL(dm_table_put);
294 * Checks to see if we need to extend highs or targets.
296 static inline int check_space(struct dm_table *t)
298 if (t->num_targets >= t->num_allocated)
299 return alloc_targets(t, t->num_allocated * 2);
301 return 0;
305 * See if we've already got a device in the list.
307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 struct dm_dev_internal *dd;
311 list_for_each_entry (dd, l, list)
312 if (dd->dm_dev.bdev->bd_dev == dev)
313 return dd;
315 return NULL;
319 * Open a device so we can use it as a map destination.
321 static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 struct mapped_device *md)
324 static char *_claim_ptr = "I belong to device-mapper";
325 struct block_device *bdev;
327 int r;
329 BUG_ON(d->dm_dev.bdev);
331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 if (IS_ERR(bdev))
333 return PTR_ERR(bdev);
335 r = bd_link_disk_holder(bdev, dm_disk(md));
336 if (r) {
337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 return r;
341 d->dm_dev.bdev = bdev;
342 return 0;
346 * Close a device that we've been using.
348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 if (!d->dm_dev.bdev)
351 return;
353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 d->dm_dev.bdev = NULL;
359 * If possible, this checks an area of a destination device is invalid.
361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 sector_t start, sector_t len, void *data)
364 struct request_queue *q;
365 struct queue_limits *limits = data;
366 struct block_device *bdev = dev->bdev;
367 sector_t dev_size =
368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 unsigned short logical_block_size_sectors =
370 limits->logical_block_size >> SECTOR_SHIFT;
371 char b[BDEVNAME_SIZE];
374 * Some devices exist without request functions,
375 * such as loop devices not yet bound to backing files.
376 * Forbid the use of such devices.
378 q = bdev_get_queue(bdev);
379 if (!q || !q->make_request_fn) {
380 DMWARN("%s: %s is not yet initialised: "
381 "start=%llu, len=%llu, dev_size=%llu",
382 dm_device_name(ti->table->md), bdevname(bdev, b),
383 (unsigned long long)start,
384 (unsigned long long)len,
385 (unsigned long long)dev_size);
386 return 1;
389 if (!dev_size)
390 return 0;
392 if ((start >= dev_size) || (start + len > dev_size)) {
393 DMWARN("%s: %s too small for target: "
394 "start=%llu, len=%llu, dev_size=%llu",
395 dm_device_name(ti->table->md), bdevname(bdev, b),
396 (unsigned long long)start,
397 (unsigned long long)len,
398 (unsigned long long)dev_size);
399 return 1;
402 if (logical_block_size_sectors <= 1)
403 return 0;
405 if (start & (logical_block_size_sectors - 1)) {
406 DMWARN("%s: start=%llu not aligned to h/w "
407 "logical block size %u of %s",
408 dm_device_name(ti->table->md),
409 (unsigned long long)start,
410 limits->logical_block_size, bdevname(bdev, b));
411 return 1;
414 if (len & (logical_block_size_sectors - 1)) {
415 DMWARN("%s: len=%llu not aligned to h/w "
416 "logical block size %u of %s",
417 dm_device_name(ti->table->md),
418 (unsigned long long)len,
419 limits->logical_block_size, bdevname(bdev, b));
420 return 1;
423 return 0;
427 * This upgrades the mode on an already open dm_dev, being
428 * careful to leave things as they were if we fail to reopen the
429 * device and not to touch the existing bdev field in case
430 * it is accessed concurrently inside dm_table_any_congested().
432 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
433 struct mapped_device *md)
435 int r;
436 struct dm_dev_internal dd_new, dd_old;
438 dd_new = dd_old = *dd;
440 dd_new.dm_dev.mode |= new_mode;
441 dd_new.dm_dev.bdev = NULL;
443 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
444 if (r)
445 return r;
447 dd->dm_dev.mode |= new_mode;
448 close_dev(&dd_old, md);
450 return 0;
454 * Add a device to the list, or just increment the usage count if
455 * it's already present.
457 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
458 struct dm_dev **result)
460 int r;
461 dev_t uninitialized_var(dev);
462 struct dm_dev_internal *dd;
463 unsigned int major, minor;
464 struct dm_table *t = ti->table;
466 BUG_ON(!t);
468 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
469 /* Extract the major/minor numbers */
470 dev = MKDEV(major, minor);
471 if (MAJOR(dev) != major || MINOR(dev) != minor)
472 return -EOVERFLOW;
473 } else {
474 /* convert the path to a device */
475 struct block_device *bdev = lookup_bdev(path);
477 if (IS_ERR(bdev))
478 return PTR_ERR(bdev);
479 dev = bdev->bd_dev;
480 bdput(bdev);
483 dd = find_device(&t->devices, dev);
484 if (!dd) {
485 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
486 if (!dd)
487 return -ENOMEM;
489 dd->dm_dev.mode = mode;
490 dd->dm_dev.bdev = NULL;
492 if ((r = open_dev(dd, dev, t->md))) {
493 kfree(dd);
494 return r;
497 format_dev_t(dd->dm_dev.name, dev);
499 atomic_set(&dd->count, 0);
500 list_add(&dd->list, &t->devices);
502 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
503 r = upgrade_mode(dd, mode, t->md);
504 if (r)
505 return r;
507 atomic_inc(&dd->count);
509 *result = &dd->dm_dev;
510 return 0;
512 EXPORT_SYMBOL(dm_get_device);
514 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
515 sector_t start, sector_t len, void *data)
517 struct queue_limits *limits = data;
518 struct block_device *bdev = dev->bdev;
519 struct request_queue *q = bdev_get_queue(bdev);
520 char b[BDEVNAME_SIZE];
522 if (unlikely(!q)) {
523 DMWARN("%s: Cannot set limits for nonexistent device %s",
524 dm_device_name(ti->table->md), bdevname(bdev, b));
525 return 0;
528 if (bdev_stack_limits(limits, bdev, start) < 0)
529 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
530 "physical_block_size=%u, logical_block_size=%u, "
531 "alignment_offset=%u, start=%llu",
532 dm_device_name(ti->table->md), bdevname(bdev, b),
533 q->limits.physical_block_size,
534 q->limits.logical_block_size,
535 q->limits.alignment_offset,
536 (unsigned long long) start << SECTOR_SHIFT);
539 * Check if merge fn is supported.
540 * If not we'll force DM to use PAGE_SIZE or
541 * smaller I/O, just to be safe.
543 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
544 blk_limits_max_hw_sectors(limits,
545 (unsigned int) (PAGE_SIZE >> 9));
546 return 0;
548 EXPORT_SYMBOL_GPL(dm_set_device_limits);
551 * Decrement a device's use count and remove it if necessary.
553 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
555 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
556 dm_dev);
558 if (atomic_dec_and_test(&dd->count)) {
559 close_dev(dd, ti->table->md);
560 list_del(&dd->list);
561 kfree(dd);
564 EXPORT_SYMBOL(dm_put_device);
567 * Checks to see if the target joins onto the end of the table.
569 static int adjoin(struct dm_table *table, struct dm_target *ti)
571 struct dm_target *prev;
573 if (!table->num_targets)
574 return !ti->begin;
576 prev = &table->targets[table->num_targets - 1];
577 return (ti->begin == (prev->begin + prev->len));
581 * Used to dynamically allocate the arg array.
583 static char **realloc_argv(unsigned *array_size, char **old_argv)
585 char **argv;
586 unsigned new_size;
588 new_size = *array_size ? *array_size * 2 : 64;
589 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
590 if (argv) {
591 memcpy(argv, old_argv, *array_size * sizeof(*argv));
592 *array_size = new_size;
595 kfree(old_argv);
596 return argv;
600 * Destructively splits up the argument list to pass to ctr.
602 int dm_split_args(int *argc, char ***argvp, char *input)
604 char *start, *end = input, *out, **argv = NULL;
605 unsigned array_size = 0;
607 *argc = 0;
609 if (!input) {
610 *argvp = NULL;
611 return 0;
614 argv = realloc_argv(&array_size, argv);
615 if (!argv)
616 return -ENOMEM;
618 while (1) {
619 /* Skip whitespace */
620 start = skip_spaces(end);
622 if (!*start)
623 break; /* success, we hit the end */
625 /* 'out' is used to remove any back-quotes */
626 end = out = start;
627 while (*end) {
628 /* Everything apart from '\0' can be quoted */
629 if (*end == '\\' && *(end + 1)) {
630 *out++ = *(end + 1);
631 end += 2;
632 continue;
635 if (isspace(*end))
636 break; /* end of token */
638 *out++ = *end++;
641 /* have we already filled the array ? */
642 if ((*argc + 1) > array_size) {
643 argv = realloc_argv(&array_size, argv);
644 if (!argv)
645 return -ENOMEM;
648 /* we know this is whitespace */
649 if (*end)
650 end++;
652 /* terminate the string and put it in the array */
653 *out = '\0';
654 argv[*argc] = start;
655 (*argc)++;
658 *argvp = argv;
659 return 0;
663 * Impose necessary and sufficient conditions on a devices's table such
664 * that any incoming bio which respects its logical_block_size can be
665 * processed successfully. If it falls across the boundary between
666 * two or more targets, the size of each piece it gets split into must
667 * be compatible with the logical_block_size of the target processing it.
669 static int validate_hardware_logical_block_alignment(struct dm_table *table,
670 struct queue_limits *limits)
673 * This function uses arithmetic modulo the logical_block_size
674 * (in units of 512-byte sectors).
676 unsigned short device_logical_block_size_sects =
677 limits->logical_block_size >> SECTOR_SHIFT;
680 * Offset of the start of the next table entry, mod logical_block_size.
682 unsigned short next_target_start = 0;
685 * Given an aligned bio that extends beyond the end of a
686 * target, how many sectors must the next target handle?
688 unsigned short remaining = 0;
690 struct dm_target *uninitialized_var(ti);
691 struct queue_limits ti_limits;
692 unsigned i = 0;
695 * Check each entry in the table in turn.
697 while (i < dm_table_get_num_targets(table)) {
698 ti = dm_table_get_target(table, i++);
700 blk_set_default_limits(&ti_limits);
702 /* combine all target devices' limits */
703 if (ti->type->iterate_devices)
704 ti->type->iterate_devices(ti, dm_set_device_limits,
705 &ti_limits);
708 * If the remaining sectors fall entirely within this
709 * table entry are they compatible with its logical_block_size?
711 if (remaining < ti->len &&
712 remaining & ((ti_limits.logical_block_size >>
713 SECTOR_SHIFT) - 1))
714 break; /* Error */
716 next_target_start =
717 (unsigned short) ((next_target_start + ti->len) &
718 (device_logical_block_size_sects - 1));
719 remaining = next_target_start ?
720 device_logical_block_size_sects - next_target_start : 0;
723 if (remaining) {
724 DMWARN("%s: table line %u (start sect %llu len %llu) "
725 "not aligned to h/w logical block size %u",
726 dm_device_name(table->md), i,
727 (unsigned long long) ti->begin,
728 (unsigned long long) ti->len,
729 limits->logical_block_size);
730 return -EINVAL;
733 return 0;
736 int dm_table_add_target(struct dm_table *t, const char *type,
737 sector_t start, sector_t len, char *params)
739 int r = -EINVAL, argc;
740 char **argv;
741 struct dm_target *tgt;
743 if ((r = check_space(t)))
744 return r;
746 tgt = t->targets + t->num_targets;
747 memset(tgt, 0, sizeof(*tgt));
749 if (!len) {
750 DMERR("%s: zero-length target", dm_device_name(t->md));
751 return -EINVAL;
754 tgt->type = dm_get_target_type(type);
755 if (!tgt->type) {
756 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
757 type);
758 return -EINVAL;
761 tgt->table = t;
762 tgt->begin = start;
763 tgt->len = len;
764 tgt->error = "Unknown error";
767 * Does this target adjoin the previous one ?
769 if (!adjoin(t, tgt)) {
770 tgt->error = "Gap in table";
771 r = -EINVAL;
772 goto bad;
775 r = dm_split_args(&argc, &argv, params);
776 if (r) {
777 tgt->error = "couldn't split parameters (insufficient memory)";
778 goto bad;
781 r = tgt->type->ctr(tgt, argc, argv);
782 kfree(argv);
783 if (r)
784 goto bad;
786 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
788 if (!tgt->num_discard_requests && tgt->discards_supported)
789 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
790 dm_device_name(t->md), type);
792 return 0;
794 bad:
795 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
796 dm_put_target_type(tgt->type);
797 return r;
801 * Target argument parsing helpers.
803 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
804 unsigned *value, char **error, unsigned grouped)
806 const char *arg_str = dm_shift_arg(arg_set);
808 if (!arg_str ||
809 (sscanf(arg_str, "%u", value) != 1) ||
810 (*value < arg->min) ||
811 (*value > arg->max) ||
812 (grouped && arg_set->argc < *value)) {
813 *error = arg->error;
814 return -EINVAL;
817 return 0;
820 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
821 unsigned *value, char **error)
823 return validate_next_arg(arg, arg_set, value, error, 0);
825 EXPORT_SYMBOL(dm_read_arg);
827 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
828 unsigned *value, char **error)
830 return validate_next_arg(arg, arg_set, value, error, 1);
832 EXPORT_SYMBOL(dm_read_arg_group);
834 const char *dm_shift_arg(struct dm_arg_set *as)
836 char *r;
838 if (as->argc) {
839 as->argc--;
840 r = *as->argv;
841 as->argv++;
842 return r;
845 return NULL;
847 EXPORT_SYMBOL(dm_shift_arg);
849 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
851 BUG_ON(as->argc < num_args);
852 as->argc -= num_args;
853 as->argv += num_args;
855 EXPORT_SYMBOL(dm_consume_args);
857 static int dm_table_set_type(struct dm_table *t)
859 unsigned i;
860 unsigned bio_based = 0, request_based = 0;
861 struct dm_target *tgt;
862 struct dm_dev_internal *dd;
863 struct list_head *devices;
865 for (i = 0; i < t->num_targets; i++) {
866 tgt = t->targets + i;
867 if (dm_target_request_based(tgt))
868 request_based = 1;
869 else
870 bio_based = 1;
872 if (bio_based && request_based) {
873 DMWARN("Inconsistent table: different target types"
874 " can't be mixed up");
875 return -EINVAL;
879 if (bio_based) {
880 /* We must use this table as bio-based */
881 t->type = DM_TYPE_BIO_BASED;
882 return 0;
885 BUG_ON(!request_based); /* No targets in this table */
887 /* Non-request-stackable devices can't be used for request-based dm */
888 devices = dm_table_get_devices(t);
889 list_for_each_entry(dd, devices, list) {
890 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
891 DMWARN("table load rejected: including"
892 " non-request-stackable devices");
893 return -EINVAL;
898 * Request-based dm supports only tables that have a single target now.
899 * To support multiple targets, request splitting support is needed,
900 * and that needs lots of changes in the block-layer.
901 * (e.g. request completion process for partial completion.)
903 if (t->num_targets > 1) {
904 DMWARN("Request-based dm doesn't support multiple targets yet");
905 return -EINVAL;
908 t->type = DM_TYPE_REQUEST_BASED;
910 return 0;
913 unsigned dm_table_get_type(struct dm_table *t)
915 return t->type;
918 bool dm_table_request_based(struct dm_table *t)
920 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
923 int dm_table_alloc_md_mempools(struct dm_table *t)
925 unsigned type = dm_table_get_type(t);
927 if (unlikely(type == DM_TYPE_NONE)) {
928 DMWARN("no table type is set, can't allocate mempools");
929 return -EINVAL;
932 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
933 if (!t->mempools)
934 return -ENOMEM;
936 return 0;
939 void dm_table_free_md_mempools(struct dm_table *t)
941 dm_free_md_mempools(t->mempools);
942 t->mempools = NULL;
945 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
947 return t->mempools;
950 static int setup_indexes(struct dm_table *t)
952 int i;
953 unsigned int total = 0;
954 sector_t *indexes;
956 /* allocate the space for *all* the indexes */
957 for (i = t->depth - 2; i >= 0; i--) {
958 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
959 total += t->counts[i];
962 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
963 if (!indexes)
964 return -ENOMEM;
966 /* set up internal nodes, bottom-up */
967 for (i = t->depth - 2; i >= 0; i--) {
968 t->index[i] = indexes;
969 indexes += (KEYS_PER_NODE * t->counts[i]);
970 setup_btree_index(i, t);
973 return 0;
977 * Builds the btree to index the map.
979 static int dm_table_build_index(struct dm_table *t)
981 int r = 0;
982 unsigned int leaf_nodes;
984 /* how many indexes will the btree have ? */
985 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
986 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
988 /* leaf layer has already been set up */
989 t->counts[t->depth - 1] = leaf_nodes;
990 t->index[t->depth - 1] = t->highs;
992 if (t->depth >= 2)
993 r = setup_indexes(t);
995 return r;
999 * Get a disk whose integrity profile reflects the table's profile.
1000 * If %match_all is true, all devices' profiles must match.
1001 * If %match_all is false, all devices must at least have an
1002 * allocated integrity profile; but uninitialized is ok.
1003 * Returns NULL if integrity support was inconsistent or unavailable.
1005 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1006 bool match_all)
1008 struct list_head *devices = dm_table_get_devices(t);
1009 struct dm_dev_internal *dd = NULL;
1010 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1012 list_for_each_entry(dd, devices, list) {
1013 template_disk = dd->dm_dev.bdev->bd_disk;
1014 if (!blk_get_integrity(template_disk))
1015 goto no_integrity;
1016 if (!match_all && !blk_integrity_is_initialized(template_disk))
1017 continue; /* skip uninitialized profiles */
1018 else if (prev_disk &&
1019 blk_integrity_compare(prev_disk, template_disk) < 0)
1020 goto no_integrity;
1021 prev_disk = template_disk;
1024 return template_disk;
1026 no_integrity:
1027 if (prev_disk)
1028 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1029 dm_device_name(t->md),
1030 prev_disk->disk_name,
1031 template_disk->disk_name);
1032 return NULL;
1036 * Register the mapped device for blk_integrity support if
1037 * the underlying devices have an integrity profile. But all devices
1038 * may not have matching profiles (checking all devices isn't reliable
1039 * during table load because this table may use other DM device(s) which
1040 * must be resumed before they will have an initialized integity profile).
1041 * Stacked DM devices force a 2 stage integrity profile validation:
1042 * 1 - during load, validate all initialized integrity profiles match
1043 * 2 - during resume, validate all integrity profiles match
1045 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1047 struct gendisk *template_disk = NULL;
1049 template_disk = dm_table_get_integrity_disk(t, false);
1050 if (!template_disk)
1051 return 0;
1053 if (!blk_integrity_is_initialized(dm_disk(md))) {
1054 t->integrity_supported = 1;
1055 return blk_integrity_register(dm_disk(md), NULL);
1059 * If DM device already has an initalized integrity
1060 * profile the new profile should not conflict.
1062 if (blk_integrity_is_initialized(template_disk) &&
1063 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1064 DMWARN("%s: conflict with existing integrity profile: "
1065 "%s profile mismatch",
1066 dm_device_name(t->md),
1067 template_disk->disk_name);
1068 return 1;
1071 /* Preserve existing initialized integrity profile */
1072 t->integrity_supported = 1;
1073 return 0;
1077 * Prepares the table for use by building the indices,
1078 * setting the type, and allocating mempools.
1080 int dm_table_complete(struct dm_table *t)
1082 int r;
1084 r = dm_table_set_type(t);
1085 if (r) {
1086 DMERR("unable to set table type");
1087 return r;
1090 r = dm_table_build_index(t);
1091 if (r) {
1092 DMERR("unable to build btrees");
1093 return r;
1096 r = dm_table_prealloc_integrity(t, t->md);
1097 if (r) {
1098 DMERR("could not register integrity profile.");
1099 return r;
1102 r = dm_table_alloc_md_mempools(t);
1103 if (r)
1104 DMERR("unable to allocate mempools");
1106 return r;
1109 static DEFINE_MUTEX(_event_lock);
1110 void dm_table_event_callback(struct dm_table *t,
1111 void (*fn)(void *), void *context)
1113 mutex_lock(&_event_lock);
1114 t->event_fn = fn;
1115 t->event_context = context;
1116 mutex_unlock(&_event_lock);
1119 void dm_table_event(struct dm_table *t)
1122 * You can no longer call dm_table_event() from interrupt
1123 * context, use a bottom half instead.
1125 BUG_ON(in_interrupt());
1127 mutex_lock(&_event_lock);
1128 if (t->event_fn)
1129 t->event_fn(t->event_context);
1130 mutex_unlock(&_event_lock);
1132 EXPORT_SYMBOL(dm_table_event);
1134 sector_t dm_table_get_size(struct dm_table *t)
1136 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1138 EXPORT_SYMBOL(dm_table_get_size);
1140 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1142 if (index >= t->num_targets)
1143 return NULL;
1145 return t->targets + index;
1149 * Search the btree for the correct target.
1151 * Caller should check returned pointer with dm_target_is_valid()
1152 * to trap I/O beyond end of device.
1154 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1156 unsigned int l, n = 0, k = 0;
1157 sector_t *node;
1159 for (l = 0; l < t->depth; l++) {
1160 n = get_child(n, k);
1161 node = get_node(t, l, n);
1163 for (k = 0; k < KEYS_PER_NODE; k++)
1164 if (node[k] >= sector)
1165 break;
1168 return &t->targets[(KEYS_PER_NODE * n) + k];
1172 * Establish the new table's queue_limits and validate them.
1174 int dm_calculate_queue_limits(struct dm_table *table,
1175 struct queue_limits *limits)
1177 struct dm_target *uninitialized_var(ti);
1178 struct queue_limits ti_limits;
1179 unsigned i = 0;
1181 blk_set_default_limits(limits);
1183 while (i < dm_table_get_num_targets(table)) {
1184 blk_set_default_limits(&ti_limits);
1186 ti = dm_table_get_target(table, i++);
1188 if (!ti->type->iterate_devices)
1189 goto combine_limits;
1192 * Combine queue limits of all the devices this target uses.
1194 ti->type->iterate_devices(ti, dm_set_device_limits,
1195 &ti_limits);
1197 /* Set I/O hints portion of queue limits */
1198 if (ti->type->io_hints)
1199 ti->type->io_hints(ti, &ti_limits);
1202 * Check each device area is consistent with the target's
1203 * overall queue limits.
1205 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1206 &ti_limits))
1207 return -EINVAL;
1209 combine_limits:
1211 * Merge this target's queue limits into the overall limits
1212 * for the table.
1214 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1215 DMWARN("%s: adding target device "
1216 "(start sect %llu len %llu) "
1217 "caused an alignment inconsistency",
1218 dm_device_name(table->md),
1219 (unsigned long long) ti->begin,
1220 (unsigned long long) ti->len);
1223 return validate_hardware_logical_block_alignment(table, limits);
1227 * Set the integrity profile for this device if all devices used have
1228 * matching profiles. We're quite deep in the resume path but still
1229 * don't know if all devices (particularly DM devices this device
1230 * may be stacked on) have matching profiles. Even if the profiles
1231 * don't match we have no way to fail (to resume) at this point.
1233 static void dm_table_set_integrity(struct dm_table *t)
1235 struct gendisk *template_disk = NULL;
1237 if (!blk_get_integrity(dm_disk(t->md)))
1238 return;
1240 template_disk = dm_table_get_integrity_disk(t, true);
1241 if (template_disk)
1242 blk_integrity_register(dm_disk(t->md),
1243 blk_get_integrity(template_disk));
1244 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1245 DMWARN("%s: device no longer has a valid integrity profile",
1246 dm_device_name(t->md));
1247 else
1248 DMWARN("%s: unable to establish an integrity profile",
1249 dm_device_name(t->md));
1252 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1253 sector_t start, sector_t len, void *data)
1255 unsigned flush = (*(unsigned *)data);
1256 struct request_queue *q = bdev_get_queue(dev->bdev);
1258 return q && (q->flush_flags & flush);
1261 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1263 struct dm_target *ti;
1264 unsigned i = 0;
1267 * Require at least one underlying device to support flushes.
1268 * t->devices includes internal dm devices such as mirror logs
1269 * so we need to use iterate_devices here, which targets
1270 * supporting flushes must provide.
1272 while (i < dm_table_get_num_targets(t)) {
1273 ti = dm_table_get_target(t, i++);
1275 if (!ti->num_flush_requests)
1276 continue;
1278 if (ti->type->iterate_devices &&
1279 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1280 return 1;
1283 return 0;
1286 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1288 struct dm_target *ti;
1289 unsigned i = 0;
1291 /* Ensure that all targets supports discard_zeroes_data. */
1292 while (i < dm_table_get_num_targets(t)) {
1293 ti = dm_table_get_target(t, i++);
1295 if (ti->discard_zeroes_data_unsupported)
1296 return 0;
1299 return 1;
1302 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1303 struct queue_limits *limits)
1305 unsigned flush = 0;
1308 * Copy table's limits to the DM device's request_queue
1310 q->limits = *limits;
1312 if (!dm_table_supports_discards(t))
1313 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1314 else
1315 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1317 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1318 flush |= REQ_FLUSH;
1319 if (dm_table_supports_flush(t, REQ_FUA))
1320 flush |= REQ_FUA;
1322 blk_queue_flush(q, flush);
1324 if (!dm_table_discard_zeroes_data(t))
1325 q->limits.discard_zeroes_data = 0;
1327 dm_table_set_integrity(t);
1330 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1331 * visible to other CPUs because, once the flag is set, incoming bios
1332 * are processed by request-based dm, which refers to the queue
1333 * settings.
1334 * Until the flag set, bios are passed to bio-based dm and queued to
1335 * md->deferred where queue settings are not needed yet.
1336 * Those bios are passed to request-based dm at the resume time.
1338 smp_mb();
1339 if (dm_table_request_based(t))
1340 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1343 unsigned int dm_table_get_num_targets(struct dm_table *t)
1345 return t->num_targets;
1348 struct list_head *dm_table_get_devices(struct dm_table *t)
1350 return &t->devices;
1353 fmode_t dm_table_get_mode(struct dm_table *t)
1355 return t->mode;
1357 EXPORT_SYMBOL(dm_table_get_mode);
1359 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1361 int i = t->num_targets;
1362 struct dm_target *ti = t->targets;
1364 while (i--) {
1365 if (postsuspend) {
1366 if (ti->type->postsuspend)
1367 ti->type->postsuspend(ti);
1368 } else if (ti->type->presuspend)
1369 ti->type->presuspend(ti);
1371 ti++;
1375 void dm_table_presuspend_targets(struct dm_table *t)
1377 if (!t)
1378 return;
1380 suspend_targets(t, 0);
1383 void dm_table_postsuspend_targets(struct dm_table *t)
1385 if (!t)
1386 return;
1388 suspend_targets(t, 1);
1391 int dm_table_resume_targets(struct dm_table *t)
1393 int i, r = 0;
1395 for (i = 0; i < t->num_targets; i++) {
1396 struct dm_target *ti = t->targets + i;
1398 if (!ti->type->preresume)
1399 continue;
1401 r = ti->type->preresume(ti);
1402 if (r)
1403 return r;
1406 for (i = 0; i < t->num_targets; i++) {
1407 struct dm_target *ti = t->targets + i;
1409 if (ti->type->resume)
1410 ti->type->resume(ti);
1413 return 0;
1416 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1418 list_add(&cb->list, &t->target_callbacks);
1420 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1422 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1424 struct dm_dev_internal *dd;
1425 struct list_head *devices = dm_table_get_devices(t);
1426 struct dm_target_callbacks *cb;
1427 int r = 0;
1429 list_for_each_entry(dd, devices, list) {
1430 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1431 char b[BDEVNAME_SIZE];
1433 if (likely(q))
1434 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1435 else
1436 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1437 dm_device_name(t->md),
1438 bdevname(dd->dm_dev.bdev, b));
1441 list_for_each_entry(cb, &t->target_callbacks, list)
1442 if (cb->congested_fn)
1443 r |= cb->congested_fn(cb, bdi_bits);
1445 return r;
1448 int dm_table_any_busy_target(struct dm_table *t)
1450 unsigned i;
1451 struct dm_target *ti;
1453 for (i = 0; i < t->num_targets; i++) {
1454 ti = t->targets + i;
1455 if (ti->type->busy && ti->type->busy(ti))
1456 return 1;
1459 return 0;
1462 struct mapped_device *dm_table_get_md(struct dm_table *t)
1464 return t->md;
1466 EXPORT_SYMBOL(dm_table_get_md);
1468 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1469 sector_t start, sector_t len, void *data)
1471 struct request_queue *q = bdev_get_queue(dev->bdev);
1473 return q && blk_queue_discard(q);
1476 bool dm_table_supports_discards(struct dm_table *t)
1478 struct dm_target *ti;
1479 unsigned i = 0;
1482 * Unless any target used by the table set discards_supported,
1483 * require at least one underlying device to support discards.
1484 * t->devices includes internal dm devices such as mirror logs
1485 * so we need to use iterate_devices here, which targets
1486 * supporting discard selectively must provide.
1488 while (i < dm_table_get_num_targets(t)) {
1489 ti = dm_table_get_target(t, i++);
1491 if (!ti->num_discard_requests)
1492 continue;
1494 if (ti->discards_supported)
1495 return 1;
1497 if (ti->type->iterate_devices &&
1498 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1499 return 1;
1502 return 0;