drm/i915: Apply display workaround required according to the B-Spec.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blobc41dae5ade3202561c35a8738ad0c5cf6ed3c584
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
444 .find_pll = intel_g4x_find_best_PLL,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll = intel_g4x_find_best_PLL,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll = intel_g4x_find_best_PLL,
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
647 struct drm_device *dev = crtc->dev;
648 struct drm_i915_private *dev_priv = dev->dev_private;
649 const intel_limit_t *limit;
650 int refclk = 120;
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654 refclk = 100;
656 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657 LVDS_CLKB_POWER_UP) {
658 /* LVDS dual channel */
659 if (refclk == 100)
660 limit = &intel_limits_ironlake_dual_lvds_100m;
661 else
662 limit = &intel_limits_ironlake_dual_lvds;
663 } else {
664 if (refclk == 100)
665 limit = &intel_limits_ironlake_single_lvds_100m;
666 else
667 limit = &intel_limits_ironlake_single_lvds;
669 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670 HAS_eDP)
671 limit = &intel_limits_ironlake_display_port;
672 else
673 limit = &intel_limits_ironlake_dac;
675 return limit;
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 const intel_limit_t *limit;
684 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686 LVDS_CLKB_POWER_UP)
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_dual_channel_lvds;
689 else
690 /* LVDS with dual channel */
691 limit = &intel_limits_g4x_single_channel_lvds;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694 limit = &intel_limits_g4x_hdmi;
695 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696 limit = &intel_limits_g4x_sdvo;
697 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698 limit = &intel_limits_g4x_display_port;
699 } else /* The option is for other outputs */
700 limit = &intel_limits_i9xx_sdvo;
702 return limit;
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
707 struct drm_device *dev = crtc->dev;
708 const intel_limit_t *limit;
710 if (HAS_PCH_SPLIT(dev))
711 limit = intel_ironlake_limit(crtc);
712 else if (IS_G4X(dev)) {
713 limit = intel_g4x_limit(crtc);
714 } else if (IS_PINEVIEW(dev)) {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_pineview_lvds;
717 else
718 limit = &intel_limits_pineview_sdvo;
719 } else if (!IS_GEN2(dev)) {
720 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721 limit = &intel_limits_i9xx_lvds;
722 else
723 limit = &intel_limits_i9xx_sdvo;
724 } else {
725 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726 limit = &intel_limits_i8xx_lvds;
727 else
728 limit = &intel_limits_i8xx_dvo;
730 return limit;
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
736 clock->m = clock->m2 + 2;
737 clock->p = clock->p1 * clock->p2;
738 clock->vco = refclk * clock->m / clock->n;
739 clock->dot = clock->vco / clock->p;
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
744 if (IS_PINEVIEW(dev)) {
745 pineview_clock(refclk, clock);
746 return;
748 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749 clock->p = clock->p1 * clock->p2;
750 clock->vco = refclk * clock->m / (clock->n + 2);
751 clock->dot = clock->vco / clock->p;
755 * Returns whether any output on the specified pipe is of the specified type
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
759 struct drm_device *dev = crtc->dev;
760 struct drm_mode_config *mode_config = &dev->mode_config;
761 struct intel_encoder *encoder;
763 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764 if (encoder->base.crtc == crtc && encoder->type == type)
765 return true;
767 return false;
770 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
772 * Returns whether the given set of divisors are valid for a given refclk with
773 * the given connectors.
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
778 const intel_limit_t *limit = intel_limit (crtc);
779 struct drm_device *dev = crtc->dev;
781 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
782 INTELPllInvalid ("p1 out of range\n");
783 if (clock->p < limit->p.min || limit->p.max < clock->p)
784 INTELPllInvalid ("p out of range\n");
785 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
786 INTELPllInvalid ("m2 out of range\n");
787 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
788 INTELPllInvalid ("m1 out of range\n");
789 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790 INTELPllInvalid ("m1 <= m2\n");
791 if (clock->m < limit->m.min || limit->m.max < clock->m)
792 INTELPllInvalid ("m out of range\n");
793 if (clock->n < limit->n.min || limit->n.max < clock->n)
794 INTELPllInvalid ("n out of range\n");
795 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796 INTELPllInvalid ("vco out of range\n");
797 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798 * connector, etc., rather than just a single range.
800 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801 INTELPllInvalid ("dot out of range\n");
803 return true;
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808 int target, int refclk, intel_clock_t *best_clock)
811 struct drm_device *dev = crtc->dev;
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 intel_clock_t clock;
814 int err = target;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817 (I915_READ(LVDS)) != 0) {
819 * For LVDS, if the panel is on, just rely on its current
820 * settings for dual-channel. We haven't figured out how to
821 * reliably set up different single/dual channel state, if we
822 * even can.
824 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825 LVDS_CLKB_POWER_UP)
826 clock.p2 = limit->p2.p2_fast;
827 else
828 clock.p2 = limit->p2.p2_slow;
829 } else {
830 if (target < limit->p2.dot_limit)
831 clock.p2 = limit->p2.p2_slow;
832 else
833 clock.p2 = limit->p2.p2_fast;
836 memset (best_clock, 0, sizeof (*best_clock));
838 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839 clock.m1++) {
840 for (clock.m2 = limit->m2.min;
841 clock.m2 <= limit->m2.max; clock.m2++) {
842 /* m1 is always 0 in Pineview */
843 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844 break;
845 for (clock.n = limit->n.min;
846 clock.n <= limit->n.max; clock.n++) {
847 for (clock.p1 = limit->p1.min;
848 clock.p1 <= limit->p1.max; clock.p1++) {
849 int this_err;
851 intel_clock(dev, refclk, &clock);
853 if (!intel_PLL_is_valid(crtc, &clock))
854 continue;
856 this_err = abs(clock.dot - target);
857 if (this_err < err) {
858 *best_clock = clock;
859 err = this_err;
866 return (err != target);
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *best_clock)
873 struct drm_device *dev = crtc->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 intel_clock_t clock;
876 int max_n;
877 bool found;
878 /* approximately equals target * 0.00585 */
879 int err_most = (target >> 8) + (target >> 9);
880 found = false;
882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883 int lvds_reg;
885 if (HAS_PCH_SPLIT(dev))
886 lvds_reg = PCH_LVDS;
887 else
888 lvds_reg = LVDS;
889 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890 LVDS_CLKB_POWER_UP)
891 clock.p2 = limit->p2.p2_fast;
892 else
893 clock.p2 = limit->p2.p2_slow;
894 } else {
895 if (target < limit->p2.dot_limit)
896 clock.p2 = limit->p2.p2_slow;
897 else
898 clock.p2 = limit->p2.p2_fast;
901 memset(best_clock, 0, sizeof(*best_clock));
902 max_n = limit->n.max;
903 /* based on hardware requirement, prefer smaller n to precision */
904 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905 /* based on hardware requirement, prefere larger m1,m2 */
906 for (clock.m1 = limit->m1.max;
907 clock.m1 >= limit->m1.min; clock.m1--) {
908 for (clock.m2 = limit->m2.max;
909 clock.m2 >= limit->m2.min; clock.m2--) {
910 for (clock.p1 = limit->p1.max;
911 clock.p1 >= limit->p1.min; clock.p1--) {
912 int this_err;
914 intel_clock(dev, refclk, &clock);
915 if (!intel_PLL_is_valid(crtc, &clock))
916 continue;
917 this_err = abs(clock.dot - target) ;
918 if (this_err < err_most) {
919 *best_clock = clock;
920 err_most = this_err;
921 max_n = clock.n;
922 found = true;
928 return found;
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933 int target, int refclk, intel_clock_t *best_clock)
935 struct drm_device *dev = crtc->dev;
936 intel_clock_t clock;
938 if (target < 200000) {
939 clock.n = 1;
940 clock.p1 = 2;
941 clock.p2 = 10;
942 clock.m1 = 12;
943 clock.m2 = 9;
944 } else {
945 clock.n = 2;
946 clock.p1 = 1;
947 clock.p2 = 10;
948 clock.m1 = 14;
949 clock.m2 = 8;
951 intel_clock(dev, refclk, &clock);
952 memcpy(best_clock, &clock, sizeof(intel_clock_t));
953 return true;
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959 int target, int refclk, intel_clock_t *best_clock)
961 intel_clock_t clock;
962 if (target < 200000) {
963 clock.p1 = 2;
964 clock.p2 = 10;
965 clock.n = 2;
966 clock.m1 = 23;
967 clock.m2 = 8;
968 } else {
969 clock.p1 = 1;
970 clock.p2 = 10;
971 clock.n = 1;
972 clock.m1 = 14;
973 clock.m2 = 2;
975 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976 clock.p = (clock.p1 * clock.p2);
977 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978 clock.vco = 0;
979 memcpy(best_clock, &clock, sizeof(intel_clock_t));
980 return true;
984 * intel_wait_for_vblank - wait for vblank on a given pipe
985 * @dev: drm device
986 * @pipe: pipe to wait for
988 * Wait for vblank to occur on a given pipe. Needed for various bits of
989 * mode setting code.
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996 /* Clear existing vblank status. Note this will clear any other
997 * sticky status fields as well.
999 * This races with i915_driver_irq_handler() with the result
1000 * that either function could miss a vblank event. Here it is not
1001 * fatal, as we will either wait upon the next vblank interrupt or
1002 * timeout. Generally speaking intel_wait_for_vblank() is only
1003 * called during modeset at which time the GPU should be idle and
1004 * should *not* be performing page flips and thus not waiting on
1005 * vblanks...
1006 * Currently, the result of us stealing a vblank from the irq
1007 * handler is that a single frame will be skipped during swapbuffers.
1009 I915_WRITE(pipestat_reg,
1010 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012 /* Wait for vblank interrupt bit to set */
1013 if (wait_for(I915_READ(pipestat_reg) &
1014 PIPE_VBLANK_INTERRUPT_STATUS,
1015 50))
1016 DRM_DEBUG_KMS("vblank wait timed out\n");
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
1021 * @dev: drm device
1022 * @pipe: pipe to wait for
1024 * After disabling a pipe, we can't wait for vblank in the usual way,
1025 * spinning on the vblank interrupt status bit, since we won't actually
1026 * see an interrupt when the pipe is disabled.
1028 * On Gen4 and above:
1029 * wait for the pipe register state bit to turn off
1031 * Otherwise:
1032 * wait for the display line value to settle (it usually
1033 * ends up stopping at the start of the next frame).
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1040 if (INTEL_INFO(dev)->gen >= 4) {
1041 int reg = PIPECONF(pipe);
1043 /* Wait for the Pipe State to go off */
1044 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045 100))
1046 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047 } else {
1048 u32 last_line;
1049 int reg = PIPEDSL(pipe);
1050 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1052 /* Wait for the display line to settle */
1053 do {
1054 last_line = I915_READ(reg) & DSL_LINEMASK;
1055 mdelay(5);
1056 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057 time_after(timeout, jiffies));
1058 if (time_after(jiffies, timeout))
1059 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1065 struct drm_device *dev = crtc->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct drm_framebuffer *fb = crtc->fb;
1068 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071 int plane, i;
1072 u32 fbc_ctl, fbc_ctl2;
1074 if (fb->pitch == dev_priv->cfb_pitch &&
1075 obj_priv->fence_reg == dev_priv->cfb_fence &&
1076 intel_crtc->plane == dev_priv->cfb_plane &&
1077 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078 return;
1080 i8xx_disable_fbc(dev);
1082 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1084 if (fb->pitch < dev_priv->cfb_pitch)
1085 dev_priv->cfb_pitch = fb->pitch;
1087 /* FBC_CTL wants 64B units */
1088 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089 dev_priv->cfb_fence = obj_priv->fence_reg;
1090 dev_priv->cfb_plane = intel_crtc->plane;
1091 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1093 /* Clear old tags */
1094 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095 I915_WRITE(FBC_TAG + (i * 4), 0);
1097 /* Set it up... */
1098 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099 if (obj_priv->tiling_mode != I915_TILING_NONE)
1100 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1104 /* enable it... */
1105 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106 if (IS_I945GM(dev))
1107 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110 if (obj_priv->tiling_mode != I915_TILING_NONE)
1111 fbc_ctl |= dev_priv->cfb_fence;
1112 I915_WRITE(FBC_CONTROL, fbc_ctl);
1114 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1118 void i8xx_disable_fbc(struct drm_device *dev)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 u32 fbc_ctl;
1123 /* Disable compression */
1124 fbc_ctl = I915_READ(FBC_CONTROL);
1125 if ((fbc_ctl & FBC_CTL_EN) == 0)
1126 return;
1128 fbc_ctl &= ~FBC_CTL_EN;
1129 I915_WRITE(FBC_CONTROL, fbc_ctl);
1131 /* Wait for compressing bit to clear */
1132 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133 DRM_DEBUG_KMS("FBC idle timed out\n");
1134 return;
1137 DRM_DEBUG_KMS("disabled FBC\n");
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1149 struct drm_device *dev = crtc->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 struct drm_framebuffer *fb = crtc->fb;
1152 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156 unsigned long stall_watermark = 200;
1157 u32 dpfc_ctl;
1159 dpfc_ctl = I915_READ(DPFC_CONTROL);
1160 if (dpfc_ctl & DPFC_CTL_EN) {
1161 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162 dev_priv->cfb_fence == obj_priv->fence_reg &&
1163 dev_priv->cfb_plane == intel_crtc->plane &&
1164 dev_priv->cfb_y == crtc->y)
1165 return;
1167 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168 POSTING_READ(DPFC_CONTROL);
1169 intel_wait_for_vblank(dev, intel_crtc->pipe);
1172 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173 dev_priv->cfb_fence = obj_priv->fence_reg;
1174 dev_priv->cfb_plane = intel_crtc->plane;
1175 dev_priv->cfb_y = crtc->y;
1177 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181 } else {
1182 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1185 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1190 /* enable it... */
1191 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1193 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1196 void g4x_disable_fbc(struct drm_device *dev)
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 dpfc_ctl;
1201 /* Disable compression */
1202 dpfc_ctl = I915_READ(DPFC_CONTROL);
1203 if (dpfc_ctl & DPFC_CTL_EN) {
1204 dpfc_ctl &= ~DPFC_CTL_EN;
1205 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1207 DRM_DEBUG_KMS("disabled FBC\n");
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1215 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1220 struct drm_device *dev = crtc->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 struct drm_framebuffer *fb = crtc->fb;
1223 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227 unsigned long stall_watermark = 200;
1228 u32 dpfc_ctl;
1230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231 if (dpfc_ctl & DPFC_CTL_EN) {
1232 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233 dev_priv->cfb_fence == obj_priv->fence_reg &&
1234 dev_priv->cfb_plane == intel_crtc->plane &&
1235 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236 dev_priv->cfb_y == crtc->y)
1237 return;
1239 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240 POSTING_READ(ILK_DPFC_CONTROL);
1241 intel_wait_for_vblank(dev, intel_crtc->pipe);
1244 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245 dev_priv->cfb_fence = obj_priv->fence_reg;
1246 dev_priv->cfb_plane = intel_crtc->plane;
1247 dev_priv->cfb_offset = obj_priv->gtt_offset;
1248 dev_priv->cfb_y = crtc->y;
1250 dpfc_ctl &= DPFC_RESERVED;
1251 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255 } else {
1256 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1259 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264 /* enable it... */
1265 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1267 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1270 void ironlake_disable_fbc(struct drm_device *dev)
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 u32 dpfc_ctl;
1275 /* Disable compression */
1276 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277 if (dpfc_ctl & DPFC_CTL_EN) {
1278 dpfc_ctl &= ~DPFC_CTL_EN;
1279 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1281 DRM_DEBUG_KMS("disabled FBC\n");
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1289 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1292 bool intel_fbc_enabled(struct drm_device *dev)
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1296 if (!dev_priv->display.fbc_enabled)
1297 return false;
1299 return dev_priv->display.fbc_enabled(dev);
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1304 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1306 if (!dev_priv->display.enable_fbc)
1307 return;
1309 dev_priv->display.enable_fbc(crtc, interval);
1312 void intel_disable_fbc(struct drm_device *dev)
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1316 if (!dev_priv->display.disable_fbc)
1317 return;
1319 dev_priv->display.disable_fbc(dev);
1323 * intel_update_fbc - enable/disable FBC as needed
1324 * @dev: the drm_device
1326 * Set up the framebuffer compression hardware at mode set time. We
1327 * enable it if possible:
1328 * - plane A only (on pre-965)
1329 * - no pixel mulitply/line duplication
1330 * - no alpha buffer discard
1331 * - no dual wide
1332 * - framebuffer <= 2048 in width, 1536 in height
1334 * We can't assume that any compression will take place (worst case),
1335 * so the compressed buffer has to be the same size as the uncompressed
1336 * one. It also must reside (along with the line length buffer) in
1337 * stolen memory.
1339 * We need to enable/disable FBC on a global basis.
1341 static void intel_update_fbc(struct drm_device *dev)
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 struct drm_crtc *crtc = NULL, *tmp_crtc;
1345 struct intel_crtc *intel_crtc;
1346 struct drm_framebuffer *fb;
1347 struct intel_framebuffer *intel_fb;
1348 struct drm_i915_gem_object *obj_priv;
1350 DRM_DEBUG_KMS("\n");
1352 if (!i915_powersave)
1353 return;
1355 if (!I915_HAS_FBC(dev))
1356 return;
1359 * If FBC is already on, we just have to verify that we can
1360 * keep it that way...
1361 * Need to disable if:
1362 * - more than one pipe is active
1363 * - changing FBC params (stride, fence, mode)
1364 * - new fb is too large to fit in compressed buffer
1365 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368 if (tmp_crtc->enabled) {
1369 if (crtc) {
1370 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372 goto out_disable;
1374 crtc = tmp_crtc;
1378 if (!crtc || crtc->fb == NULL) {
1379 DRM_DEBUG_KMS("no output, disabling\n");
1380 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381 goto out_disable;
1384 intel_crtc = to_intel_crtc(crtc);
1385 fb = crtc->fb;
1386 intel_fb = to_intel_framebuffer(fb);
1387 obj_priv = to_intel_bo(intel_fb->obj);
1389 if (intel_fb->obj->size > dev_priv->cfb_size) {
1390 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391 "compression\n");
1392 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393 goto out_disable;
1395 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397 DRM_DEBUG_KMS("mode incompatible with compression, "
1398 "disabling\n");
1399 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400 goto out_disable;
1402 if ((crtc->mode.hdisplay > 2048) ||
1403 (crtc->mode.vdisplay > 1536)) {
1404 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406 goto out_disable;
1408 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411 goto out_disable;
1413 if (obj_priv->tiling_mode != I915_TILING_X) {
1414 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416 goto out_disable;
1419 /* If the kernel debugger is active, always disable compression */
1420 if (in_dbg_master())
1421 goto out_disable;
1423 intel_enable_fbc(crtc, 500);
1424 return;
1426 out_disable:
1427 /* Multiple disables should be harmless */
1428 if (intel_fbc_enabled(dev)) {
1429 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430 intel_disable_fbc(dev);
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436 struct drm_gem_object *obj,
1437 bool pipelined)
1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440 u32 alignment;
1441 int ret;
1443 switch (obj_priv->tiling_mode) {
1444 case I915_TILING_NONE:
1445 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446 alignment = 128 * 1024;
1447 else if (INTEL_INFO(dev)->gen >= 4)
1448 alignment = 4 * 1024;
1449 else
1450 alignment = 64 * 1024;
1451 break;
1452 case I915_TILING_X:
1453 /* pin() will align the object as required by fence */
1454 alignment = 0;
1455 break;
1456 case I915_TILING_Y:
1457 /* FIXME: Is this true? */
1458 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459 return -EINVAL;
1460 default:
1461 BUG();
1464 ret = i915_gem_object_pin(obj, alignment, true);
1465 if (ret)
1466 return ret;
1468 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1469 if (ret)
1470 goto err_unpin;
1472 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473 * fence, whereas 965+ only requires a fence if using
1474 * framebuffer compression. For simplicity, we always install
1475 * a fence as the cost is not that onerous.
1477 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478 obj_priv->tiling_mode != I915_TILING_NONE) {
1479 ret = i915_gem_object_get_fence_reg(obj, false);
1480 if (ret)
1481 goto err_unpin;
1484 return 0;
1486 err_unpin:
1487 i915_gem_object_unpin(obj);
1488 return ret;
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1492 static int
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494 int x, int y, enum mode_set_atomic state)
1496 struct drm_device *dev = crtc->dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499 struct intel_framebuffer *intel_fb;
1500 struct drm_i915_gem_object *obj_priv;
1501 struct drm_gem_object *obj;
1502 int plane = intel_crtc->plane;
1503 unsigned long Start, Offset;
1504 u32 dspcntr;
1505 u32 reg;
1507 switch (plane) {
1508 case 0:
1509 case 1:
1510 break;
1511 default:
1512 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1513 return -EINVAL;
1516 intel_fb = to_intel_framebuffer(fb);
1517 obj = intel_fb->obj;
1518 obj_priv = to_intel_bo(obj);
1520 reg = DSPCNTR(plane);
1521 dspcntr = I915_READ(reg);
1522 /* Mask out pixel format bits in case we change it */
1523 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524 switch (fb->bits_per_pixel) {
1525 case 8:
1526 dspcntr |= DISPPLANE_8BPP;
1527 break;
1528 case 16:
1529 if (fb->depth == 15)
1530 dspcntr |= DISPPLANE_15_16BPP;
1531 else
1532 dspcntr |= DISPPLANE_16BPP;
1533 break;
1534 case 24:
1535 case 32:
1536 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537 break;
1538 default:
1539 DRM_ERROR("Unknown color depth\n");
1540 return -EINVAL;
1542 if (INTEL_INFO(dev)->gen >= 4) {
1543 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544 dspcntr |= DISPPLANE_TILED;
1545 else
1546 dspcntr &= ~DISPPLANE_TILED;
1549 if (HAS_PCH_SPLIT(dev))
1550 /* must disable */
1551 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1553 I915_WRITE(reg, dspcntr);
1555 Start = obj_priv->gtt_offset;
1556 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1558 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559 Start, Offset, x, y, fb->pitch);
1560 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561 if (INTEL_INFO(dev)->gen >= 4) {
1562 I915_WRITE(DSPSURF(plane), Start);
1563 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564 I915_WRITE(DSPADDR(plane), Offset);
1565 } else
1566 I915_WRITE(DSPADDR(plane), Start + Offset);
1567 POSTING_READ(reg);
1569 intel_update_fbc(dev);
1570 intel_increase_pllclock(crtc);
1572 return 0;
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577 struct drm_framebuffer *old_fb)
1579 struct drm_device *dev = crtc->dev;
1580 struct drm_i915_master_private *master_priv;
1581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582 int ret;
1584 /* no fb bound */
1585 if (!crtc->fb) {
1586 DRM_DEBUG_KMS("No FB bound\n");
1587 return 0;
1590 switch (intel_crtc->plane) {
1591 case 0:
1592 case 1:
1593 break;
1594 default:
1595 return -EINVAL;
1598 mutex_lock(&dev->struct_mutex);
1599 ret = intel_pin_and_fence_fb_obj(dev,
1600 to_intel_framebuffer(crtc->fb)->obj,
1601 false);
1602 if (ret != 0) {
1603 mutex_unlock(&dev->struct_mutex);
1604 return ret;
1607 if (old_fb) {
1608 struct drm_i915_private *dev_priv = dev->dev_private;
1609 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1612 wait_event(dev_priv->pending_flip_queue,
1613 atomic_read(&obj_priv->pending_flip) == 0);
1616 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1617 LEAVE_ATOMIC_MODE_SET);
1618 if (ret) {
1619 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1620 mutex_unlock(&dev->struct_mutex);
1621 return ret;
1624 if (old_fb)
1625 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1627 mutex_unlock(&dev->struct_mutex);
1629 if (!dev->primary->master)
1630 return 0;
1632 master_priv = dev->primary->master->driver_priv;
1633 if (!master_priv->sarea_priv)
1634 return 0;
1636 if (intel_crtc->pipe) {
1637 master_priv->sarea_priv->pipeB_x = x;
1638 master_priv->sarea_priv->pipeB_y = y;
1639 } else {
1640 master_priv->sarea_priv->pipeA_x = x;
1641 master_priv->sarea_priv->pipeA_y = y;
1644 return 0;
1647 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1649 struct drm_device *dev = crtc->dev;
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 u32 dpa_ctl;
1653 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1654 dpa_ctl = I915_READ(DP_A);
1655 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1657 if (clock < 200000) {
1658 u32 temp;
1659 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1660 /* workaround for 160Mhz:
1661 1) program 0x4600c bits 15:0 = 0x8124
1662 2) program 0x46010 bit 0 = 1
1663 3) program 0x46034 bit 24 = 1
1664 4) program 0x64000 bit 14 = 1
1666 temp = I915_READ(0x4600c);
1667 temp &= 0xffff0000;
1668 I915_WRITE(0x4600c, temp | 0x8124);
1670 temp = I915_READ(0x46010);
1671 I915_WRITE(0x46010, temp | 1);
1673 temp = I915_READ(0x46034);
1674 I915_WRITE(0x46034, temp | (1 << 24));
1675 } else {
1676 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1678 I915_WRITE(DP_A, dpa_ctl);
1680 POSTING_READ(DP_A);
1681 udelay(500);
1684 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1686 struct drm_device *dev = crtc->dev;
1687 struct drm_i915_private *dev_priv = dev->dev_private;
1688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689 int pipe = intel_crtc->pipe;
1690 u32 reg, temp;
1692 /* enable normal train */
1693 reg = FDI_TX_CTL(pipe);
1694 temp = I915_READ(reg);
1695 temp &= ~FDI_LINK_TRAIN_NONE;
1696 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1697 I915_WRITE(reg, temp);
1699 reg = FDI_RX_CTL(pipe);
1700 temp = I915_READ(reg);
1701 if (HAS_PCH_CPT(dev)) {
1702 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1703 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1704 } else {
1705 temp &= ~FDI_LINK_TRAIN_NONE;
1706 temp |= FDI_LINK_TRAIN_NONE;
1708 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1710 /* wait one idle pattern time */
1711 POSTING_READ(reg);
1712 udelay(1000);
1715 /* The FDI link training functions for ILK/Ibexpeak. */
1716 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1718 struct drm_device *dev = crtc->dev;
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1721 int pipe = intel_crtc->pipe;
1722 u32 reg, temp, tries;
1724 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1725 for train result */
1726 reg = FDI_RX_IMR(pipe);
1727 temp = I915_READ(reg);
1728 temp &= ~FDI_RX_SYMBOL_LOCK;
1729 temp &= ~FDI_RX_BIT_LOCK;
1730 I915_WRITE(reg, temp);
1731 I915_READ(reg);
1732 udelay(150);
1734 /* enable CPU FDI TX and PCH FDI RX */
1735 reg = FDI_TX_CTL(pipe);
1736 temp = I915_READ(reg);
1737 temp &= ~(7 << 19);
1738 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1739 temp &= ~FDI_LINK_TRAIN_NONE;
1740 temp |= FDI_LINK_TRAIN_PATTERN_1;
1741 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1743 reg = FDI_RX_CTL(pipe);
1744 temp = I915_READ(reg);
1745 temp &= ~FDI_LINK_TRAIN_NONE;
1746 temp |= FDI_LINK_TRAIN_PATTERN_1;
1747 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1749 POSTING_READ(reg);
1750 udelay(150);
1752 /* Ironlake workaround, enable clock pointer after FDI enable*/
1753 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1755 reg = FDI_RX_IIR(pipe);
1756 for (tries = 0; tries < 5; tries++) {
1757 temp = I915_READ(reg);
1758 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1760 if ((temp & FDI_RX_BIT_LOCK)) {
1761 DRM_DEBUG_KMS("FDI train 1 done.\n");
1762 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1763 break;
1766 if (tries == 5)
1767 DRM_ERROR("FDI train 1 fail!\n");
1769 /* Train 2 */
1770 reg = FDI_TX_CTL(pipe);
1771 temp = I915_READ(reg);
1772 temp &= ~FDI_LINK_TRAIN_NONE;
1773 temp |= FDI_LINK_TRAIN_PATTERN_2;
1774 I915_WRITE(reg, temp);
1776 reg = FDI_RX_CTL(pipe);
1777 temp = I915_READ(reg);
1778 temp &= ~FDI_LINK_TRAIN_NONE;
1779 temp |= FDI_LINK_TRAIN_PATTERN_2;
1780 I915_WRITE(reg, temp);
1782 POSTING_READ(reg);
1783 udelay(150);
1785 reg = FDI_RX_IIR(pipe);
1786 for (tries = 0; tries < 5; tries++) {
1787 temp = I915_READ(reg);
1788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1790 if (temp & FDI_RX_SYMBOL_LOCK) {
1791 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1792 DRM_DEBUG_KMS("FDI train 2 done.\n");
1793 break;
1796 if (tries == 5)
1797 DRM_ERROR("FDI train 2 fail!\n");
1799 DRM_DEBUG_KMS("FDI train done\n");
1803 static const int const snb_b_fdi_train_param [] = {
1804 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1805 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1806 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1807 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1810 /* The FDI link training functions for SNB/Cougarpoint. */
1811 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1813 struct drm_device *dev = crtc->dev;
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1816 int pipe = intel_crtc->pipe;
1817 u32 reg, temp, i;
1819 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1820 for train result */
1821 reg = FDI_RX_IMR(pipe);
1822 temp = I915_READ(reg);
1823 temp &= ~FDI_RX_SYMBOL_LOCK;
1824 temp &= ~FDI_RX_BIT_LOCK;
1825 I915_WRITE(reg, temp);
1827 POSTING_READ(reg);
1828 udelay(150);
1830 /* enable CPU FDI TX and PCH FDI RX */
1831 reg = FDI_TX_CTL(pipe);
1832 temp = I915_READ(reg);
1833 temp &= ~(7 << 19);
1834 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1835 temp &= ~FDI_LINK_TRAIN_NONE;
1836 temp |= FDI_LINK_TRAIN_PATTERN_1;
1837 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1838 /* SNB-B */
1839 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1840 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1842 reg = FDI_RX_CTL(pipe);
1843 temp = I915_READ(reg);
1844 if (HAS_PCH_CPT(dev)) {
1845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1847 } else {
1848 temp &= ~FDI_LINK_TRAIN_NONE;
1849 temp |= FDI_LINK_TRAIN_PATTERN_1;
1851 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1853 POSTING_READ(reg);
1854 udelay(150);
1856 for (i = 0; i < 4; i++ ) {
1857 reg = FDI_TX_CTL(pipe);
1858 temp = I915_READ(reg);
1859 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1860 temp |= snb_b_fdi_train_param[i];
1861 I915_WRITE(reg, temp);
1863 POSTING_READ(reg);
1864 udelay(500);
1866 reg = FDI_RX_IIR(pipe);
1867 temp = I915_READ(reg);
1868 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1870 if (temp & FDI_RX_BIT_LOCK) {
1871 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1872 DRM_DEBUG_KMS("FDI train 1 done.\n");
1873 break;
1876 if (i == 4)
1877 DRM_ERROR("FDI train 1 fail!\n");
1879 /* Train 2 */
1880 reg = FDI_TX_CTL(pipe);
1881 temp = I915_READ(reg);
1882 temp &= ~FDI_LINK_TRAIN_NONE;
1883 temp |= FDI_LINK_TRAIN_PATTERN_2;
1884 if (IS_GEN6(dev)) {
1885 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1886 /* SNB-B */
1887 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1889 I915_WRITE(reg, temp);
1891 reg = FDI_RX_CTL(pipe);
1892 temp = I915_READ(reg);
1893 if (HAS_PCH_CPT(dev)) {
1894 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1895 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1896 } else {
1897 temp &= ~FDI_LINK_TRAIN_NONE;
1898 temp |= FDI_LINK_TRAIN_PATTERN_2;
1900 I915_WRITE(reg, temp);
1902 POSTING_READ(reg);
1903 udelay(150);
1905 for (i = 0; i < 4; i++ ) {
1906 reg = FDI_TX_CTL(pipe);
1907 temp = I915_READ(reg);
1908 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1909 temp |= snb_b_fdi_train_param[i];
1910 I915_WRITE(reg, temp);
1912 POSTING_READ(reg);
1913 udelay(500);
1915 reg = FDI_RX_IIR(pipe);
1916 temp = I915_READ(reg);
1917 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1919 if (temp & FDI_RX_SYMBOL_LOCK) {
1920 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1921 DRM_DEBUG_KMS("FDI train 2 done.\n");
1922 break;
1925 if (i == 4)
1926 DRM_ERROR("FDI train 2 fail!\n");
1928 DRM_DEBUG_KMS("FDI train done.\n");
1931 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1933 struct drm_device *dev = crtc->dev;
1934 struct drm_i915_private *dev_priv = dev->dev_private;
1935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1936 int pipe = intel_crtc->pipe;
1937 u32 reg, temp;
1939 /* Write the TU size bits so error detection works */
1940 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1941 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1943 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1944 reg = FDI_RX_CTL(pipe);
1945 temp = I915_READ(reg);
1946 temp &= ~((0x7 << 19) | (0x7 << 16));
1947 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1948 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1949 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1951 POSTING_READ(reg);
1952 udelay(200);
1954 /* Switch from Rawclk to PCDclk */
1955 temp = I915_READ(reg);
1956 I915_WRITE(reg, temp | FDI_PCDCLK);
1958 POSTING_READ(reg);
1959 udelay(200);
1961 /* Enable CPU FDI TX PLL, always on for Ironlake */
1962 reg = FDI_TX_CTL(pipe);
1963 temp = I915_READ(reg);
1964 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1965 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1967 POSTING_READ(reg);
1968 udelay(100);
1972 static void intel_flush_display_plane(struct drm_device *dev,
1973 int plane)
1975 struct drm_i915_private *dev_priv = dev->dev_private;
1976 u32 reg = DSPADDR(plane);
1977 I915_WRITE(reg, I915_READ(reg));
1981 * When we disable a pipe, we need to clear any pending scanline wait events
1982 * to avoid hanging the ring, which we assume we are waiting on.
1984 static void intel_clear_scanline_wait(struct drm_device *dev)
1986 struct drm_i915_private *dev_priv = dev->dev_private;
1987 u32 tmp;
1989 if (IS_GEN2(dev))
1990 /* Can't break the hang on i8xx */
1991 return;
1993 tmp = I915_READ(PRB0_CTL);
1994 if (tmp & RING_WAIT) {
1995 I915_WRITE(PRB0_CTL, tmp);
1996 POSTING_READ(PRB0_CTL);
2000 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2002 struct drm_i915_gem_object *obj_priv;
2003 struct drm_i915_private *dev_priv;
2005 if (crtc->fb == NULL)
2006 return;
2008 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2009 dev_priv = crtc->dev->dev_private;
2010 wait_event(dev_priv->pending_flip_queue,
2011 atomic_read(&obj_priv->pending_flip) == 0);
2014 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2016 struct drm_device *dev = crtc->dev;
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2019 int pipe = intel_crtc->pipe;
2020 int plane = intel_crtc->plane;
2021 u32 reg, temp;
2023 if (intel_crtc->active)
2024 return;
2026 intel_crtc->active = true;
2027 intel_update_watermarks(dev);
2029 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2030 temp = I915_READ(PCH_LVDS);
2031 if ((temp & LVDS_PORT_EN) == 0)
2032 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2035 ironlake_fdi_enable(crtc);
2037 /* Enable panel fitting for LVDS */
2038 if (dev_priv->pch_pf_size &&
2039 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2040 /* Force use of hard-coded filter coefficients
2041 * as some pre-programmed values are broken,
2042 * e.g. x201.
2044 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2045 PF_ENABLE | PF_FILTER_MED_3x3);
2046 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2047 dev_priv->pch_pf_pos);
2048 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2049 dev_priv->pch_pf_size);
2052 /* Enable CPU pipe */
2053 reg = PIPECONF(pipe);
2054 temp = I915_READ(reg);
2055 if ((temp & PIPECONF_ENABLE) == 0) {
2056 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2057 POSTING_READ(reg);
2058 intel_wait_for_vblank(dev, intel_crtc->pipe);
2061 /* configure and enable CPU plane */
2062 reg = DSPCNTR(plane);
2063 temp = I915_READ(reg);
2064 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2065 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2066 intel_flush_display_plane(dev, plane);
2069 /* For PCH output, training FDI link */
2070 if (IS_GEN6(dev))
2071 gen6_fdi_link_train(crtc);
2072 else
2073 ironlake_fdi_link_train(crtc);
2075 /* enable PCH DPLL */
2076 reg = PCH_DPLL(pipe);
2077 temp = I915_READ(reg);
2078 if ((temp & DPLL_VCO_ENABLE) == 0) {
2079 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2080 POSTING_READ(reg);
2081 udelay(200);
2084 if (HAS_PCH_CPT(dev)) {
2085 /* Be sure PCH DPLL SEL is set */
2086 temp = I915_READ(PCH_DPLL_SEL);
2087 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2088 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2089 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2090 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2091 I915_WRITE(PCH_DPLL_SEL, temp);
2094 /* set transcoder timing */
2095 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2096 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2097 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2099 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2100 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2101 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2103 intel_fdi_normal_train(crtc);
2105 /* For PCH DP, enable TRANS_DP_CTL */
2106 if (HAS_PCH_CPT(dev) &&
2107 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2108 reg = TRANS_DP_CTL(pipe);
2109 temp = I915_READ(reg);
2110 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2111 TRANS_DP_SYNC_MASK);
2112 temp |= (TRANS_DP_OUTPUT_ENABLE |
2113 TRANS_DP_ENH_FRAMING);
2115 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2116 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2117 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2118 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2120 switch (intel_trans_dp_port_sel(crtc)) {
2121 case PCH_DP_B:
2122 temp |= TRANS_DP_PORT_SEL_B;
2123 break;
2124 case PCH_DP_C:
2125 temp |= TRANS_DP_PORT_SEL_C;
2126 break;
2127 case PCH_DP_D:
2128 temp |= TRANS_DP_PORT_SEL_D;
2129 break;
2130 default:
2131 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2132 temp |= TRANS_DP_PORT_SEL_B;
2133 break;
2136 I915_WRITE(reg, temp);
2139 /* enable PCH transcoder */
2140 reg = TRANSCONF(pipe);
2141 temp = I915_READ(reg);
2143 * make the BPC in transcoder be consistent with
2144 * that in pipeconf reg.
2146 temp &= ~PIPE_BPC_MASK;
2147 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2148 I915_WRITE(reg, temp | TRANS_ENABLE);
2149 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2150 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2152 intel_crtc_load_lut(crtc);
2153 intel_update_fbc(dev);
2154 intel_crtc_update_cursor(crtc, true);
2157 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2159 struct drm_device *dev = crtc->dev;
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162 int pipe = intel_crtc->pipe;
2163 int plane = intel_crtc->plane;
2164 u32 reg, temp;
2166 if (!intel_crtc->active)
2167 return;
2169 intel_crtc_wait_for_pending_flips(crtc);
2170 drm_vblank_off(dev, pipe);
2171 intel_crtc_update_cursor(crtc, false);
2173 /* Disable display plane */
2174 reg = DSPCNTR(plane);
2175 temp = I915_READ(reg);
2176 if (temp & DISPLAY_PLANE_ENABLE) {
2177 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2178 intel_flush_display_plane(dev, plane);
2181 if (dev_priv->cfb_plane == plane &&
2182 dev_priv->display.disable_fbc)
2183 dev_priv->display.disable_fbc(dev);
2185 /* disable cpu pipe, disable after all planes disabled */
2186 reg = PIPECONF(pipe);
2187 temp = I915_READ(reg);
2188 if (temp & PIPECONF_ENABLE) {
2189 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2190 POSTING_READ(reg);
2191 /* wait for cpu pipe off, pipe state */
2192 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2195 /* Disable PF */
2196 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2197 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2199 /* disable CPU FDI tx and PCH FDI rx */
2200 reg = FDI_TX_CTL(pipe);
2201 temp = I915_READ(reg);
2202 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2203 POSTING_READ(reg);
2205 reg = FDI_RX_CTL(pipe);
2206 temp = I915_READ(reg);
2207 temp &= ~(0x7 << 16);
2208 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2209 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2211 POSTING_READ(reg);
2212 udelay(100);
2214 /* Ironlake workaround, disable clock pointer after downing FDI */
2215 if (HAS_PCH_IBX(dev))
2216 I915_WRITE(FDI_RX_CHICKEN(pipe),
2217 I915_READ(FDI_RX_CHICKEN(pipe) &
2218 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2220 /* still set train pattern 1 */
2221 reg = FDI_TX_CTL(pipe);
2222 temp = I915_READ(reg);
2223 temp &= ~FDI_LINK_TRAIN_NONE;
2224 temp |= FDI_LINK_TRAIN_PATTERN_1;
2225 I915_WRITE(reg, temp);
2227 reg = FDI_RX_CTL(pipe);
2228 temp = I915_READ(reg);
2229 if (HAS_PCH_CPT(dev)) {
2230 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2231 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2232 } else {
2233 temp &= ~FDI_LINK_TRAIN_NONE;
2234 temp |= FDI_LINK_TRAIN_PATTERN_1;
2236 /* BPC in FDI rx is consistent with that in PIPECONF */
2237 temp &= ~(0x07 << 16);
2238 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2239 I915_WRITE(reg, temp);
2241 POSTING_READ(reg);
2242 udelay(100);
2244 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2245 temp = I915_READ(PCH_LVDS);
2246 if (temp & LVDS_PORT_EN) {
2247 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2248 POSTING_READ(PCH_LVDS);
2249 udelay(100);
2253 /* disable PCH transcoder */
2254 reg = TRANSCONF(plane);
2255 temp = I915_READ(reg);
2256 if (temp & TRANS_ENABLE) {
2257 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2258 /* wait for PCH transcoder off, transcoder state */
2259 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2260 DRM_ERROR("failed to disable transcoder\n");
2263 if (HAS_PCH_CPT(dev)) {
2264 /* disable TRANS_DP_CTL */
2265 reg = TRANS_DP_CTL(pipe);
2266 temp = I915_READ(reg);
2267 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2268 I915_WRITE(reg, temp);
2270 /* disable DPLL_SEL */
2271 temp = I915_READ(PCH_DPLL_SEL);
2272 if (pipe == 0)
2273 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2274 else
2275 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2276 I915_WRITE(PCH_DPLL_SEL, temp);
2279 /* disable PCH DPLL */
2280 reg = PCH_DPLL(pipe);
2281 temp = I915_READ(reg);
2282 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2284 /* Switch from PCDclk to Rawclk */
2285 reg = FDI_RX_CTL(pipe);
2286 temp = I915_READ(reg);
2287 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2289 /* Disable CPU FDI TX PLL */
2290 reg = FDI_TX_CTL(pipe);
2291 temp = I915_READ(reg);
2292 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2294 POSTING_READ(reg);
2295 udelay(100);
2297 reg = FDI_RX_CTL(pipe);
2298 temp = I915_READ(reg);
2299 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2301 /* Wait for the clocks to turn off. */
2302 POSTING_READ(reg);
2303 udelay(100);
2305 intel_crtc->active = false;
2306 intel_update_watermarks(dev);
2307 intel_update_fbc(dev);
2308 intel_clear_scanline_wait(dev);
2311 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314 int pipe = intel_crtc->pipe;
2315 int plane = intel_crtc->plane;
2317 /* XXX: When our outputs are all unaware of DPMS modes other than off
2318 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2320 switch (mode) {
2321 case DRM_MODE_DPMS_ON:
2322 case DRM_MODE_DPMS_STANDBY:
2323 case DRM_MODE_DPMS_SUSPEND:
2324 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2325 ironlake_crtc_enable(crtc);
2326 break;
2328 case DRM_MODE_DPMS_OFF:
2329 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2330 ironlake_crtc_disable(crtc);
2331 break;
2335 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2337 if (!enable && intel_crtc->overlay) {
2338 struct drm_device *dev = intel_crtc->base.dev;
2340 mutex_lock(&dev->struct_mutex);
2341 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2342 mutex_unlock(&dev->struct_mutex);
2345 /* Let userspace switch the overlay on again. In most cases userspace
2346 * has to recompute where to put it anyway.
2350 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2352 struct drm_device *dev = crtc->dev;
2353 struct drm_i915_private *dev_priv = dev->dev_private;
2354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2355 int pipe = intel_crtc->pipe;
2356 int plane = intel_crtc->plane;
2357 u32 reg, temp;
2359 if (intel_crtc->active)
2360 return;
2362 intel_crtc->active = true;
2363 intel_update_watermarks(dev);
2365 /* Enable the DPLL */
2366 reg = DPLL(pipe);
2367 temp = I915_READ(reg);
2368 if ((temp & DPLL_VCO_ENABLE) == 0) {
2369 I915_WRITE(reg, temp);
2371 /* Wait for the clocks to stabilize. */
2372 POSTING_READ(reg);
2373 udelay(150);
2375 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2377 /* Wait for the clocks to stabilize. */
2378 POSTING_READ(reg);
2379 udelay(150);
2381 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2383 /* Wait for the clocks to stabilize. */
2384 POSTING_READ(reg);
2385 udelay(150);
2388 /* Enable the pipe */
2389 reg = PIPECONF(pipe);
2390 temp = I915_READ(reg);
2391 if ((temp & PIPECONF_ENABLE) == 0)
2392 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2394 /* Enable the plane */
2395 reg = DSPCNTR(plane);
2396 temp = I915_READ(reg);
2397 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2398 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2399 intel_flush_display_plane(dev, plane);
2402 intel_crtc_load_lut(crtc);
2403 intel_update_fbc(dev);
2405 /* Give the overlay scaler a chance to enable if it's on this pipe */
2406 intel_crtc_dpms_overlay(intel_crtc, true);
2407 intel_crtc_update_cursor(crtc, true);
2410 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2412 struct drm_device *dev = crtc->dev;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2415 int pipe = intel_crtc->pipe;
2416 int plane = intel_crtc->plane;
2417 u32 reg, temp;
2419 if (!intel_crtc->active)
2420 return;
2422 /* Give the overlay scaler a chance to disable if it's on this pipe */
2423 intel_crtc_wait_for_pending_flips(crtc);
2424 drm_vblank_off(dev, pipe);
2425 intel_crtc_dpms_overlay(intel_crtc, false);
2426 intel_crtc_update_cursor(crtc, false);
2428 if (dev_priv->cfb_plane == plane &&
2429 dev_priv->display.disable_fbc)
2430 dev_priv->display.disable_fbc(dev);
2432 /* Disable display plane */
2433 reg = DSPCNTR(plane);
2434 temp = I915_READ(reg);
2435 if (temp & DISPLAY_PLANE_ENABLE) {
2436 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2437 /* Flush the plane changes */
2438 intel_flush_display_plane(dev, plane);
2440 /* Wait for vblank for the disable to take effect */
2441 if (IS_GEN2(dev))
2442 intel_wait_for_vblank(dev, pipe);
2445 /* Don't disable pipe A or pipe A PLLs if needed */
2446 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2447 goto done;
2449 /* Next, disable display pipes */
2450 reg = PIPECONF(pipe);
2451 temp = I915_READ(reg);
2452 if (temp & PIPECONF_ENABLE) {
2453 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2455 /* Wait for the pipe to turn off */
2456 POSTING_READ(reg);
2457 intel_wait_for_pipe_off(dev, pipe);
2460 reg = DPLL(pipe);
2461 temp = I915_READ(reg);
2462 if (temp & DPLL_VCO_ENABLE) {
2463 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2465 /* Wait for the clocks to turn off. */
2466 POSTING_READ(reg);
2467 udelay(150);
2470 done:
2471 intel_crtc->active = false;
2472 intel_update_fbc(dev);
2473 intel_update_watermarks(dev);
2474 intel_clear_scanline_wait(dev);
2477 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2479 /* XXX: When our outputs are all unaware of DPMS modes other than off
2480 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2482 switch (mode) {
2483 case DRM_MODE_DPMS_ON:
2484 case DRM_MODE_DPMS_STANDBY:
2485 case DRM_MODE_DPMS_SUSPEND:
2486 i9xx_crtc_enable(crtc);
2487 break;
2488 case DRM_MODE_DPMS_OFF:
2489 i9xx_crtc_disable(crtc);
2490 break;
2495 * Sets the power management mode of the pipe and plane.
2497 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2499 struct drm_device *dev = crtc->dev;
2500 struct drm_i915_private *dev_priv = dev->dev_private;
2501 struct drm_i915_master_private *master_priv;
2502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503 int pipe = intel_crtc->pipe;
2504 bool enabled;
2506 if (intel_crtc->dpms_mode == mode)
2507 return;
2509 intel_crtc->dpms_mode = mode;
2511 dev_priv->display.dpms(crtc, mode);
2513 if (!dev->primary->master)
2514 return;
2516 master_priv = dev->primary->master->driver_priv;
2517 if (!master_priv->sarea_priv)
2518 return;
2520 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2522 switch (pipe) {
2523 case 0:
2524 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2525 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2526 break;
2527 case 1:
2528 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2529 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2530 break;
2531 default:
2532 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2533 break;
2537 static void intel_crtc_disable(struct drm_crtc *crtc)
2539 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2540 struct drm_device *dev = crtc->dev;
2542 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2544 if (crtc->fb) {
2545 mutex_lock(&dev->struct_mutex);
2546 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2547 mutex_unlock(&dev->struct_mutex);
2551 /* Prepare for a mode set.
2553 * Note we could be a lot smarter here. We need to figure out which outputs
2554 * will be enabled, which disabled (in short, how the config will changes)
2555 * and perform the minimum necessary steps to accomplish that, e.g. updating
2556 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2557 * panel fitting is in the proper state, etc.
2559 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2561 i9xx_crtc_disable(crtc);
2564 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2566 i9xx_crtc_enable(crtc);
2569 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2571 ironlake_crtc_disable(crtc);
2574 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2576 ironlake_crtc_enable(crtc);
2579 void intel_encoder_prepare (struct drm_encoder *encoder)
2581 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2582 /* lvds has its own version of prepare see intel_lvds_prepare */
2583 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2586 void intel_encoder_commit (struct drm_encoder *encoder)
2588 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2589 /* lvds has its own version of commit see intel_lvds_commit */
2590 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2593 void intel_encoder_destroy(struct drm_encoder *encoder)
2595 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2597 drm_encoder_cleanup(encoder);
2598 kfree(intel_encoder);
2601 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2602 struct drm_display_mode *mode,
2603 struct drm_display_mode *adjusted_mode)
2605 struct drm_device *dev = crtc->dev;
2607 if (HAS_PCH_SPLIT(dev)) {
2608 /* FDI link clock is fixed at 2.7G */
2609 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2610 return false;
2613 /* XXX some encoders set the crtcinfo, others don't.
2614 * Obviously we need some form of conflict resolution here...
2616 if (adjusted_mode->crtc_htotal == 0)
2617 drm_mode_set_crtcinfo(adjusted_mode, 0);
2619 return true;
2622 static int i945_get_display_clock_speed(struct drm_device *dev)
2624 return 400000;
2627 static int i915_get_display_clock_speed(struct drm_device *dev)
2629 return 333000;
2632 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2634 return 200000;
2637 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2639 u16 gcfgc = 0;
2641 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2643 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2644 return 133000;
2645 else {
2646 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2647 case GC_DISPLAY_CLOCK_333_MHZ:
2648 return 333000;
2649 default:
2650 case GC_DISPLAY_CLOCK_190_200_MHZ:
2651 return 190000;
2656 static int i865_get_display_clock_speed(struct drm_device *dev)
2658 return 266000;
2661 static int i855_get_display_clock_speed(struct drm_device *dev)
2663 u16 hpllcc = 0;
2664 /* Assume that the hardware is in the high speed state. This
2665 * should be the default.
2667 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2668 case GC_CLOCK_133_200:
2669 case GC_CLOCK_100_200:
2670 return 200000;
2671 case GC_CLOCK_166_250:
2672 return 250000;
2673 case GC_CLOCK_100_133:
2674 return 133000;
2677 /* Shouldn't happen */
2678 return 0;
2681 static int i830_get_display_clock_speed(struct drm_device *dev)
2683 return 133000;
2686 struct fdi_m_n {
2687 u32 tu;
2688 u32 gmch_m;
2689 u32 gmch_n;
2690 u32 link_m;
2691 u32 link_n;
2694 static void
2695 fdi_reduce_ratio(u32 *num, u32 *den)
2697 while (*num > 0xffffff || *den > 0xffffff) {
2698 *num >>= 1;
2699 *den >>= 1;
2703 #define DATA_N 0x800000
2704 #define LINK_N 0x80000
2706 static void
2707 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2708 int link_clock, struct fdi_m_n *m_n)
2710 u64 temp;
2712 m_n->tu = 64; /* default size */
2714 temp = (u64) DATA_N * pixel_clock;
2715 temp = div_u64(temp, link_clock);
2716 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2717 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2718 m_n->gmch_n = DATA_N;
2719 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2721 temp = (u64) LINK_N * pixel_clock;
2722 m_n->link_m = div_u64(temp, link_clock);
2723 m_n->link_n = LINK_N;
2724 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2728 struct intel_watermark_params {
2729 unsigned long fifo_size;
2730 unsigned long max_wm;
2731 unsigned long default_wm;
2732 unsigned long guard_size;
2733 unsigned long cacheline_size;
2736 /* Pineview has different values for various configs */
2737 static struct intel_watermark_params pineview_display_wm = {
2738 PINEVIEW_DISPLAY_FIFO,
2739 PINEVIEW_MAX_WM,
2740 PINEVIEW_DFT_WM,
2741 PINEVIEW_GUARD_WM,
2742 PINEVIEW_FIFO_LINE_SIZE
2744 static struct intel_watermark_params pineview_display_hplloff_wm = {
2745 PINEVIEW_DISPLAY_FIFO,
2746 PINEVIEW_MAX_WM,
2747 PINEVIEW_DFT_HPLLOFF_WM,
2748 PINEVIEW_GUARD_WM,
2749 PINEVIEW_FIFO_LINE_SIZE
2751 static struct intel_watermark_params pineview_cursor_wm = {
2752 PINEVIEW_CURSOR_FIFO,
2753 PINEVIEW_CURSOR_MAX_WM,
2754 PINEVIEW_CURSOR_DFT_WM,
2755 PINEVIEW_CURSOR_GUARD_WM,
2756 PINEVIEW_FIFO_LINE_SIZE,
2758 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2759 PINEVIEW_CURSOR_FIFO,
2760 PINEVIEW_CURSOR_MAX_WM,
2761 PINEVIEW_CURSOR_DFT_WM,
2762 PINEVIEW_CURSOR_GUARD_WM,
2763 PINEVIEW_FIFO_LINE_SIZE
2765 static struct intel_watermark_params g4x_wm_info = {
2766 G4X_FIFO_SIZE,
2767 G4X_MAX_WM,
2768 G4X_MAX_WM,
2770 G4X_FIFO_LINE_SIZE,
2772 static struct intel_watermark_params g4x_cursor_wm_info = {
2773 I965_CURSOR_FIFO,
2774 I965_CURSOR_MAX_WM,
2775 I965_CURSOR_DFT_WM,
2777 G4X_FIFO_LINE_SIZE,
2779 static struct intel_watermark_params i965_cursor_wm_info = {
2780 I965_CURSOR_FIFO,
2781 I965_CURSOR_MAX_WM,
2782 I965_CURSOR_DFT_WM,
2784 I915_FIFO_LINE_SIZE,
2786 static struct intel_watermark_params i945_wm_info = {
2787 I945_FIFO_SIZE,
2788 I915_MAX_WM,
2791 I915_FIFO_LINE_SIZE
2793 static struct intel_watermark_params i915_wm_info = {
2794 I915_FIFO_SIZE,
2795 I915_MAX_WM,
2798 I915_FIFO_LINE_SIZE
2800 static struct intel_watermark_params i855_wm_info = {
2801 I855GM_FIFO_SIZE,
2802 I915_MAX_WM,
2805 I830_FIFO_LINE_SIZE
2807 static struct intel_watermark_params i830_wm_info = {
2808 I830_FIFO_SIZE,
2809 I915_MAX_WM,
2812 I830_FIFO_LINE_SIZE
2815 static struct intel_watermark_params ironlake_display_wm_info = {
2816 ILK_DISPLAY_FIFO,
2817 ILK_DISPLAY_MAXWM,
2818 ILK_DISPLAY_DFTWM,
2820 ILK_FIFO_LINE_SIZE
2823 static struct intel_watermark_params ironlake_cursor_wm_info = {
2824 ILK_CURSOR_FIFO,
2825 ILK_CURSOR_MAXWM,
2826 ILK_CURSOR_DFTWM,
2828 ILK_FIFO_LINE_SIZE
2831 static struct intel_watermark_params ironlake_display_srwm_info = {
2832 ILK_DISPLAY_SR_FIFO,
2833 ILK_DISPLAY_MAX_SRWM,
2834 ILK_DISPLAY_DFT_SRWM,
2836 ILK_FIFO_LINE_SIZE
2839 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2840 ILK_CURSOR_SR_FIFO,
2841 ILK_CURSOR_MAX_SRWM,
2842 ILK_CURSOR_DFT_SRWM,
2844 ILK_FIFO_LINE_SIZE
2848 * intel_calculate_wm - calculate watermark level
2849 * @clock_in_khz: pixel clock
2850 * @wm: chip FIFO params
2851 * @pixel_size: display pixel size
2852 * @latency_ns: memory latency for the platform
2854 * Calculate the watermark level (the level at which the display plane will
2855 * start fetching from memory again). Each chip has a different display
2856 * FIFO size and allocation, so the caller needs to figure that out and pass
2857 * in the correct intel_watermark_params structure.
2859 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2860 * on the pixel size. When it reaches the watermark level, it'll start
2861 * fetching FIFO line sized based chunks from memory until the FIFO fills
2862 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2863 * will occur, and a display engine hang could result.
2865 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2866 struct intel_watermark_params *wm,
2867 int pixel_size,
2868 unsigned long latency_ns)
2870 long entries_required, wm_size;
2873 * Note: we need to make sure we don't overflow for various clock &
2874 * latency values.
2875 * clocks go from a few thousand to several hundred thousand.
2876 * latency is usually a few thousand
2878 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2879 1000;
2880 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2882 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2884 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2886 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2888 /* Don't promote wm_size to unsigned... */
2889 if (wm_size > (long)wm->max_wm)
2890 wm_size = wm->max_wm;
2891 if (wm_size <= 0)
2892 wm_size = wm->default_wm;
2893 return wm_size;
2896 struct cxsr_latency {
2897 int is_desktop;
2898 int is_ddr3;
2899 unsigned long fsb_freq;
2900 unsigned long mem_freq;
2901 unsigned long display_sr;
2902 unsigned long display_hpll_disable;
2903 unsigned long cursor_sr;
2904 unsigned long cursor_hpll_disable;
2907 static const struct cxsr_latency cxsr_latency_table[] = {
2908 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2909 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2910 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2911 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2912 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2914 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2915 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2916 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2917 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2918 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2920 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2921 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2922 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2923 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2924 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2926 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2927 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2928 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2929 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2930 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2932 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2933 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2934 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2935 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2936 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2938 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2939 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2940 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2941 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2942 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2945 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2946 int is_ddr3,
2947 int fsb,
2948 int mem)
2950 const struct cxsr_latency *latency;
2951 int i;
2953 if (fsb == 0 || mem == 0)
2954 return NULL;
2956 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2957 latency = &cxsr_latency_table[i];
2958 if (is_desktop == latency->is_desktop &&
2959 is_ddr3 == latency->is_ddr3 &&
2960 fsb == latency->fsb_freq && mem == latency->mem_freq)
2961 return latency;
2964 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2966 return NULL;
2969 static void pineview_disable_cxsr(struct drm_device *dev)
2971 struct drm_i915_private *dev_priv = dev->dev_private;
2973 /* deactivate cxsr */
2974 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2978 * Latency for FIFO fetches is dependent on several factors:
2979 * - memory configuration (speed, channels)
2980 * - chipset
2981 * - current MCH state
2982 * It can be fairly high in some situations, so here we assume a fairly
2983 * pessimal value. It's a tradeoff between extra memory fetches (if we
2984 * set this value too high, the FIFO will fetch frequently to stay full)
2985 * and power consumption (set it too low to save power and we might see
2986 * FIFO underruns and display "flicker").
2988 * A value of 5us seems to be a good balance; safe for very low end
2989 * platforms but not overly aggressive on lower latency configs.
2991 static const int latency_ns = 5000;
2993 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 uint32_t dsparb = I915_READ(DSPARB);
2997 int size;
2999 size = dsparb & 0x7f;
3000 if (plane)
3001 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3003 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3004 plane ? "B" : "A", size);
3006 return size;
3009 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3011 struct drm_i915_private *dev_priv = dev->dev_private;
3012 uint32_t dsparb = I915_READ(DSPARB);
3013 int size;
3015 size = dsparb & 0x1ff;
3016 if (plane)
3017 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3018 size >>= 1; /* Convert to cachelines */
3020 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3021 plane ? "B" : "A", size);
3023 return size;
3026 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3028 struct drm_i915_private *dev_priv = dev->dev_private;
3029 uint32_t dsparb = I915_READ(DSPARB);
3030 int size;
3032 size = dsparb & 0x7f;
3033 size >>= 2; /* Convert to cachelines */
3035 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3036 plane ? "B" : "A",
3037 size);
3039 return size;
3042 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 uint32_t dsparb = I915_READ(DSPARB);
3046 int size;
3048 size = dsparb & 0x7f;
3049 size >>= 1; /* Convert to cachelines */
3051 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3052 plane ? "B" : "A", size);
3054 return size;
3057 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3058 int planeb_clock, int sr_hdisplay, int unused,
3059 int pixel_size)
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 const struct cxsr_latency *latency;
3063 u32 reg;
3064 unsigned long wm;
3065 int sr_clock;
3067 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3068 dev_priv->fsb_freq, dev_priv->mem_freq);
3069 if (!latency) {
3070 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3071 pineview_disable_cxsr(dev);
3072 return;
3075 if (!planea_clock || !planeb_clock) {
3076 sr_clock = planea_clock ? planea_clock : planeb_clock;
3078 /* Display SR */
3079 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3080 pixel_size, latency->display_sr);
3081 reg = I915_READ(DSPFW1);
3082 reg &= ~DSPFW_SR_MASK;
3083 reg |= wm << DSPFW_SR_SHIFT;
3084 I915_WRITE(DSPFW1, reg);
3085 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3087 /* cursor SR */
3088 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3089 pixel_size, latency->cursor_sr);
3090 reg = I915_READ(DSPFW3);
3091 reg &= ~DSPFW_CURSOR_SR_MASK;
3092 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3093 I915_WRITE(DSPFW3, reg);
3095 /* Display HPLL off SR */
3096 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3097 pixel_size, latency->display_hpll_disable);
3098 reg = I915_READ(DSPFW3);
3099 reg &= ~DSPFW_HPLL_SR_MASK;
3100 reg |= wm & DSPFW_HPLL_SR_MASK;
3101 I915_WRITE(DSPFW3, reg);
3103 /* cursor HPLL off SR */
3104 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3105 pixel_size, latency->cursor_hpll_disable);
3106 reg = I915_READ(DSPFW3);
3107 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3108 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3109 I915_WRITE(DSPFW3, reg);
3110 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3112 /* activate cxsr */
3113 I915_WRITE(DSPFW3,
3114 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3115 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3116 } else {
3117 pineview_disable_cxsr(dev);
3118 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3122 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3123 int planeb_clock, int sr_hdisplay, int sr_htotal,
3124 int pixel_size)
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 int total_size, cacheline_size;
3128 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3129 struct intel_watermark_params planea_params, planeb_params;
3130 unsigned long line_time_us;
3131 int sr_clock, sr_entries = 0, entries_required;
3133 /* Create copies of the base settings for each pipe */
3134 planea_params = planeb_params = g4x_wm_info;
3136 /* Grab a couple of global values before we overwrite them */
3137 total_size = planea_params.fifo_size;
3138 cacheline_size = planea_params.cacheline_size;
3141 * Note: we need to make sure we don't overflow for various clock &
3142 * latency values.
3143 * clocks go from a few thousand to several hundred thousand.
3144 * latency is usually a few thousand
3146 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3147 1000;
3148 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3149 planea_wm = entries_required + planea_params.guard_size;
3151 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3152 1000;
3153 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3154 planeb_wm = entries_required + planeb_params.guard_size;
3156 cursora_wm = cursorb_wm = 16;
3157 cursor_sr = 32;
3159 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3161 /* Calc sr entries for one plane configs */
3162 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3163 /* self-refresh has much higher latency */
3164 static const int sr_latency_ns = 12000;
3166 sr_clock = planea_clock ? planea_clock : planeb_clock;
3167 line_time_us = ((sr_htotal * 1000) / sr_clock);
3169 /* Use ns/us then divide to preserve precision */
3170 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3171 pixel_size * sr_hdisplay;
3172 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3174 entries_required = (((sr_latency_ns / line_time_us) +
3175 1000) / 1000) * pixel_size * 64;
3176 entries_required = DIV_ROUND_UP(entries_required,
3177 g4x_cursor_wm_info.cacheline_size);
3178 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3180 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3181 cursor_sr = g4x_cursor_wm_info.max_wm;
3182 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3183 "cursor %d\n", sr_entries, cursor_sr);
3185 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3186 } else {
3187 /* Turn off self refresh if both pipes are enabled */
3188 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3189 & ~FW_BLC_SELF_EN);
3192 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3193 planea_wm, planeb_wm, sr_entries);
3195 planea_wm &= 0x3f;
3196 planeb_wm &= 0x3f;
3198 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3199 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3200 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3201 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3202 (cursora_wm << DSPFW_CURSORA_SHIFT));
3203 /* HPLL off in SR has some issues on G4x... disable it */
3204 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3205 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3208 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3209 int planeb_clock, int sr_hdisplay, int sr_htotal,
3210 int pixel_size)
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 unsigned long line_time_us;
3214 int sr_clock, sr_entries, srwm = 1;
3215 int cursor_sr = 16;
3217 /* Calc sr entries for one plane configs */
3218 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3219 /* self-refresh has much higher latency */
3220 static const int sr_latency_ns = 12000;
3222 sr_clock = planea_clock ? planea_clock : planeb_clock;
3223 line_time_us = ((sr_htotal * 1000) / sr_clock);
3225 /* Use ns/us then divide to preserve precision */
3226 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3227 pixel_size * sr_hdisplay;
3228 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3229 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3230 srwm = I965_FIFO_SIZE - sr_entries;
3231 if (srwm < 0)
3232 srwm = 1;
3233 srwm &= 0x1ff;
3235 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3236 pixel_size * 64;
3237 sr_entries = DIV_ROUND_UP(sr_entries,
3238 i965_cursor_wm_info.cacheline_size);
3239 cursor_sr = i965_cursor_wm_info.fifo_size -
3240 (sr_entries + i965_cursor_wm_info.guard_size);
3242 if (cursor_sr > i965_cursor_wm_info.max_wm)
3243 cursor_sr = i965_cursor_wm_info.max_wm;
3245 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3246 "cursor %d\n", srwm, cursor_sr);
3248 if (IS_CRESTLINE(dev))
3249 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3250 } else {
3251 /* Turn off self refresh if both pipes are enabled */
3252 if (IS_CRESTLINE(dev))
3253 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3254 & ~FW_BLC_SELF_EN);
3257 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3258 srwm);
3260 /* 965 has limitations... */
3261 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3262 (8 << 0));
3263 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3264 /* update cursor SR watermark */
3265 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3268 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3269 int planeb_clock, int sr_hdisplay, int sr_htotal,
3270 int pixel_size)
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273 uint32_t fwater_lo;
3274 uint32_t fwater_hi;
3275 int total_size, cacheline_size, cwm, srwm = 1;
3276 int planea_wm, planeb_wm;
3277 struct intel_watermark_params planea_params, planeb_params;
3278 unsigned long line_time_us;
3279 int sr_clock, sr_entries = 0;
3281 /* Create copies of the base settings for each pipe */
3282 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3283 planea_params = planeb_params = i945_wm_info;
3284 else if (!IS_GEN2(dev))
3285 planea_params = planeb_params = i915_wm_info;
3286 else
3287 planea_params = planeb_params = i855_wm_info;
3289 /* Grab a couple of global values before we overwrite them */
3290 total_size = planea_params.fifo_size;
3291 cacheline_size = planea_params.cacheline_size;
3293 /* Update per-plane FIFO sizes */
3294 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3295 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3297 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3298 pixel_size, latency_ns);
3299 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3300 pixel_size, latency_ns);
3301 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3304 * Overlay gets an aggressive default since video jitter is bad.
3306 cwm = 2;
3308 /* Calc sr entries for one plane configs */
3309 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3310 (!planea_clock || !planeb_clock)) {
3311 /* self-refresh has much higher latency */
3312 static const int sr_latency_ns = 6000;
3314 sr_clock = planea_clock ? planea_clock : planeb_clock;
3315 line_time_us = ((sr_htotal * 1000) / sr_clock);
3317 /* Use ns/us then divide to preserve precision */
3318 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3319 pixel_size * sr_hdisplay;
3320 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3321 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3322 srwm = total_size - sr_entries;
3323 if (srwm < 0)
3324 srwm = 1;
3326 if (IS_I945G(dev) || IS_I945GM(dev))
3327 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3328 else if (IS_I915GM(dev)) {
3329 /* 915M has a smaller SRWM field */
3330 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3331 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3333 } else {
3334 /* Turn off self refresh if both pipes are enabled */
3335 if (IS_I945G(dev) || IS_I945GM(dev)) {
3336 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3337 & ~FW_BLC_SELF_EN);
3338 } else if (IS_I915GM(dev)) {
3339 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3343 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3344 planea_wm, planeb_wm, cwm, srwm);
3346 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3347 fwater_hi = (cwm & 0x1f);
3349 /* Set request length to 8 cachelines per fetch */
3350 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3351 fwater_hi = fwater_hi | (1 << 8);
3353 I915_WRITE(FW_BLC, fwater_lo);
3354 I915_WRITE(FW_BLC2, fwater_hi);
3357 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3358 int unused2, int unused3, int pixel_size)
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3361 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3362 int planea_wm;
3364 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3366 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3367 pixel_size, latency_ns);
3368 fwater_lo |= (3<<8) | planea_wm;
3370 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3372 I915_WRITE(FW_BLC, fwater_lo);
3375 #define ILK_LP0_PLANE_LATENCY 700
3376 #define ILK_LP0_CURSOR_LATENCY 1300
3378 static bool ironlake_compute_wm0(struct drm_device *dev,
3379 int pipe,
3380 int *plane_wm,
3381 int *cursor_wm)
3383 struct drm_crtc *crtc;
3384 int htotal, hdisplay, clock, pixel_size = 0;
3385 int line_time_us, line_count, entries;
3387 crtc = intel_get_crtc_for_pipe(dev, pipe);
3388 if (crtc->fb == NULL || !crtc->enabled)
3389 return false;
3391 htotal = crtc->mode.htotal;
3392 hdisplay = crtc->mode.hdisplay;
3393 clock = crtc->mode.clock;
3394 pixel_size = crtc->fb->bits_per_pixel / 8;
3396 /* Use the small buffer method to calculate plane watermark */
3397 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3398 entries = DIV_ROUND_UP(entries,
3399 ironlake_display_wm_info.cacheline_size);
3400 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3401 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3402 *plane_wm = ironlake_display_wm_info.max_wm;
3404 /* Use the large buffer method to calculate cursor watermark */
3405 line_time_us = ((htotal * 1000) / clock);
3406 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3407 entries = line_count * 64 * pixel_size;
3408 entries = DIV_ROUND_UP(entries,
3409 ironlake_cursor_wm_info.cacheline_size);
3410 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3411 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3412 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3414 return true;
3417 static void ironlake_update_wm(struct drm_device *dev,
3418 int planea_clock, int planeb_clock,
3419 int sr_hdisplay, int sr_htotal,
3420 int pixel_size)
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 int plane_wm, cursor_wm, enabled;
3424 int tmp;
3426 enabled = 0;
3427 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3428 I915_WRITE(WM0_PIPEA_ILK,
3429 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3430 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3431 " plane %d, " "cursor: %d\n",
3432 plane_wm, cursor_wm);
3433 enabled++;
3436 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3437 I915_WRITE(WM0_PIPEB_ILK,
3438 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3439 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3440 " plane %d, cursor: %d\n",
3441 plane_wm, cursor_wm);
3442 enabled++;
3446 * Calculate and update the self-refresh watermark only when one
3447 * display plane is used.
3449 tmp = 0;
3450 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3451 unsigned long line_time_us;
3452 int small, large, plane_fbc;
3453 int sr_clock, entries;
3454 int line_count, line_size;
3455 /* Read the self-refresh latency. The unit is 0.5us */
3456 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3458 sr_clock = planea_clock ? planea_clock : planeb_clock;
3459 line_time_us = (sr_htotal * 1000) / sr_clock;
3461 /* Use ns/us then divide to preserve precision */
3462 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3463 / 1000;
3464 line_size = sr_hdisplay * pixel_size;
3466 /* Use the minimum of the small and large buffer method for primary */
3467 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3468 large = line_count * line_size;
3470 entries = DIV_ROUND_UP(min(small, large),
3471 ironlake_display_srwm_info.cacheline_size);
3473 plane_fbc = entries * 64;
3474 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3476 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3477 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3478 plane_wm = ironlake_display_srwm_info.max_wm;
3480 /* calculate the self-refresh watermark for display cursor */
3481 entries = line_count * pixel_size * 64;
3482 entries = DIV_ROUND_UP(entries,
3483 ironlake_cursor_srwm_info.cacheline_size);
3485 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3486 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3487 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3489 /* configure watermark and enable self-refresh */
3490 tmp = (WM1_LP_SR_EN |
3491 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3492 (plane_fbc << WM1_LP_FBC_SHIFT) |
3493 (plane_wm << WM1_LP_SR_SHIFT) |
3494 cursor_wm);
3495 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3496 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3498 I915_WRITE(WM1_LP_ILK, tmp);
3499 /* XXX setup WM2 and WM3 */
3503 * intel_update_watermarks - update FIFO watermark values based on current modes
3505 * Calculate watermark values for the various WM regs based on current mode
3506 * and plane configuration.
3508 * There are several cases to deal with here:
3509 * - normal (i.e. non-self-refresh)
3510 * - self-refresh (SR) mode
3511 * - lines are large relative to FIFO size (buffer can hold up to 2)
3512 * - lines are small relative to FIFO size (buffer can hold more than 2
3513 * lines), so need to account for TLB latency
3515 * The normal calculation is:
3516 * watermark = dotclock * bytes per pixel * latency
3517 * where latency is platform & configuration dependent (we assume pessimal
3518 * values here).
3520 * The SR calculation is:
3521 * watermark = (trunc(latency/line time)+1) * surface width *
3522 * bytes per pixel
3523 * where
3524 * line time = htotal / dotclock
3525 * surface width = hdisplay for normal plane and 64 for cursor
3526 * and latency is assumed to be high, as above.
3528 * The final value programmed to the register should always be rounded up,
3529 * and include an extra 2 entries to account for clock crossings.
3531 * We don't use the sprite, so we can ignore that. And on Crestline we have
3532 * to set the non-SR watermarks to 8.
3534 static void intel_update_watermarks(struct drm_device *dev)
3536 struct drm_i915_private *dev_priv = dev->dev_private;
3537 struct drm_crtc *crtc;
3538 int sr_hdisplay = 0;
3539 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3540 int enabled = 0, pixel_size = 0;
3541 int sr_htotal = 0;
3543 if (!dev_priv->display.update_wm)
3544 return;
3546 /* Get the clock config from both planes */
3547 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3549 if (intel_crtc->active) {
3550 enabled++;
3551 if (intel_crtc->plane == 0) {
3552 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3553 intel_crtc->pipe, crtc->mode.clock);
3554 planea_clock = crtc->mode.clock;
3555 } else {
3556 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3557 intel_crtc->pipe, crtc->mode.clock);
3558 planeb_clock = crtc->mode.clock;
3560 sr_hdisplay = crtc->mode.hdisplay;
3561 sr_clock = crtc->mode.clock;
3562 sr_htotal = crtc->mode.htotal;
3563 if (crtc->fb)
3564 pixel_size = crtc->fb->bits_per_pixel / 8;
3565 else
3566 pixel_size = 4; /* by default */
3570 if (enabled <= 0)
3571 return;
3573 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3574 sr_hdisplay, sr_htotal, pixel_size);
3577 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3578 struct drm_display_mode *mode,
3579 struct drm_display_mode *adjusted_mode,
3580 int x, int y,
3581 struct drm_framebuffer *old_fb)
3583 struct drm_device *dev = crtc->dev;
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3586 int pipe = intel_crtc->pipe;
3587 int plane = intel_crtc->plane;
3588 u32 fp_reg, dpll_reg;
3589 int refclk, num_connectors = 0;
3590 intel_clock_t clock, reduced_clock;
3591 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3592 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3593 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3594 struct intel_encoder *has_edp_encoder = NULL;
3595 struct drm_mode_config *mode_config = &dev->mode_config;
3596 struct intel_encoder *encoder;
3597 const intel_limit_t *limit;
3598 int ret;
3599 struct fdi_m_n m_n = {0};
3600 u32 reg, temp;
3601 int target_clock;
3603 drm_vblank_pre_modeset(dev, pipe);
3605 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3606 if (encoder->base.crtc != crtc)
3607 continue;
3609 switch (encoder->type) {
3610 case INTEL_OUTPUT_LVDS:
3611 is_lvds = true;
3612 break;
3613 case INTEL_OUTPUT_SDVO:
3614 case INTEL_OUTPUT_HDMI:
3615 is_sdvo = true;
3616 if (encoder->needs_tv_clock)
3617 is_tv = true;
3618 break;
3619 case INTEL_OUTPUT_DVO:
3620 is_dvo = true;
3621 break;
3622 case INTEL_OUTPUT_TVOUT:
3623 is_tv = true;
3624 break;
3625 case INTEL_OUTPUT_ANALOG:
3626 is_crt = true;
3627 break;
3628 case INTEL_OUTPUT_DISPLAYPORT:
3629 is_dp = true;
3630 break;
3631 case INTEL_OUTPUT_EDP:
3632 has_edp_encoder = encoder;
3633 break;
3636 num_connectors++;
3639 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3640 refclk = dev_priv->lvds_ssc_freq * 1000;
3641 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3642 refclk / 1000);
3643 } else if (!IS_GEN2(dev)) {
3644 refclk = 96000;
3645 if (HAS_PCH_SPLIT(dev) &&
3646 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3647 refclk = 120000; /* 120Mhz refclk */
3648 } else {
3649 refclk = 48000;
3653 * Returns a set of divisors for the desired target clock with the given
3654 * refclk, or FALSE. The returned values represent the clock equation:
3655 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3657 limit = intel_limit(crtc);
3658 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3659 if (!ok) {
3660 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3661 drm_vblank_post_modeset(dev, pipe);
3662 return -EINVAL;
3665 /* Ensure that the cursor is valid for the new mode before changing... */
3666 intel_crtc_update_cursor(crtc, true);
3668 if (is_lvds && dev_priv->lvds_downclock_avail) {
3669 has_reduced_clock = limit->find_pll(limit, crtc,
3670 dev_priv->lvds_downclock,
3671 refclk,
3672 &reduced_clock);
3673 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3675 * If the different P is found, it means that we can't
3676 * switch the display clock by using the FP0/FP1.
3677 * In such case we will disable the LVDS downclock
3678 * feature.
3680 DRM_DEBUG_KMS("Different P is found for "
3681 "LVDS clock/downclock\n");
3682 has_reduced_clock = 0;
3685 /* SDVO TV has fixed PLL values depend on its clock range,
3686 this mirrors vbios setting. */
3687 if (is_sdvo && is_tv) {
3688 if (adjusted_mode->clock >= 100000
3689 && adjusted_mode->clock < 140500) {
3690 clock.p1 = 2;
3691 clock.p2 = 10;
3692 clock.n = 3;
3693 clock.m1 = 16;
3694 clock.m2 = 8;
3695 } else if (adjusted_mode->clock >= 140500
3696 && adjusted_mode->clock <= 200000) {
3697 clock.p1 = 1;
3698 clock.p2 = 10;
3699 clock.n = 6;
3700 clock.m1 = 12;
3701 clock.m2 = 8;
3705 /* FDI link */
3706 if (HAS_PCH_SPLIT(dev)) {
3707 int lane = 0, link_bw, bpp;
3708 /* CPU eDP doesn't require FDI link, so just set DP M/N
3709 according to current link config */
3710 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3711 target_clock = mode->clock;
3712 intel_edp_link_config(has_edp_encoder,
3713 &lane, &link_bw);
3714 } else {
3715 /* [e]DP over FDI requires target mode clock
3716 instead of link clock */
3717 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3718 target_clock = mode->clock;
3719 else
3720 target_clock = adjusted_mode->clock;
3722 /* FDI is a binary signal running at ~2.7GHz, encoding
3723 * each output octet as 10 bits. The actual frequency
3724 * is stored as a divider into a 100MHz clock, and the
3725 * mode pixel clock is stored in units of 1KHz.
3726 * Hence the bw of each lane in terms of the mode signal
3727 * is:
3729 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3732 /* determine panel color depth */
3733 temp = I915_READ(PIPECONF(pipe));
3734 temp &= ~PIPE_BPC_MASK;
3735 if (is_lvds) {
3736 /* the BPC will be 6 if it is 18-bit LVDS panel */
3737 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3738 temp |= PIPE_8BPC;
3739 else
3740 temp |= PIPE_6BPC;
3741 } else if (has_edp_encoder) {
3742 switch (dev_priv->edp.bpp/3) {
3743 case 8:
3744 temp |= PIPE_8BPC;
3745 break;
3746 case 10:
3747 temp |= PIPE_10BPC;
3748 break;
3749 case 6:
3750 temp |= PIPE_6BPC;
3751 break;
3752 case 12:
3753 temp |= PIPE_12BPC;
3754 break;
3756 } else
3757 temp |= PIPE_8BPC;
3758 I915_WRITE(PIPECONF(pipe), temp);
3760 switch (temp & PIPE_BPC_MASK) {
3761 case PIPE_8BPC:
3762 bpp = 24;
3763 break;
3764 case PIPE_10BPC:
3765 bpp = 30;
3766 break;
3767 case PIPE_6BPC:
3768 bpp = 18;
3769 break;
3770 case PIPE_12BPC:
3771 bpp = 36;
3772 break;
3773 default:
3774 DRM_ERROR("unknown pipe bpc value\n");
3775 bpp = 24;
3778 if (!lane) {
3780 * Account for spread spectrum to avoid
3781 * oversubscribing the link. Max center spread
3782 * is 2.5%; use 5% for safety's sake.
3784 u32 bps = target_clock * bpp * 21 / 20;
3785 lane = bps / (link_bw * 8) + 1;
3788 intel_crtc->fdi_lanes = lane;
3790 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3793 /* Ironlake: try to setup display ref clock before DPLL
3794 * enabling. This is only under driver's control after
3795 * PCH B stepping, previous chipset stepping should be
3796 * ignoring this setting.
3798 if (HAS_PCH_SPLIT(dev)) {
3799 temp = I915_READ(PCH_DREF_CONTROL);
3800 /* Always enable nonspread source */
3801 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3802 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3803 temp &= ~DREF_SSC_SOURCE_MASK;
3804 temp |= DREF_SSC_SOURCE_ENABLE;
3805 I915_WRITE(PCH_DREF_CONTROL, temp);
3807 POSTING_READ(PCH_DREF_CONTROL);
3808 udelay(200);
3810 if (has_edp_encoder) {
3811 if (dev_priv->lvds_use_ssc) {
3812 temp |= DREF_SSC1_ENABLE;
3813 I915_WRITE(PCH_DREF_CONTROL, temp);
3815 POSTING_READ(PCH_DREF_CONTROL);
3816 udelay(200);
3818 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3820 /* Enable CPU source on CPU attached eDP */
3821 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3822 if (dev_priv->lvds_use_ssc)
3823 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3824 else
3825 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3826 } else {
3827 /* Enable SSC on PCH eDP if needed */
3828 if (dev_priv->lvds_use_ssc) {
3829 DRM_ERROR("enabling SSC on PCH\n");
3830 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3833 I915_WRITE(PCH_DREF_CONTROL, temp);
3834 POSTING_READ(PCH_DREF_CONTROL);
3835 udelay(200);
3839 if (IS_PINEVIEW(dev)) {
3840 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3841 if (has_reduced_clock)
3842 fp2 = (1 << reduced_clock.n) << 16 |
3843 reduced_clock.m1 << 8 | reduced_clock.m2;
3844 } else {
3845 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3846 if (has_reduced_clock)
3847 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3848 reduced_clock.m2;
3851 dpll = 0;
3852 if (!HAS_PCH_SPLIT(dev))
3853 dpll = DPLL_VGA_MODE_DIS;
3855 if (!IS_GEN2(dev)) {
3856 if (is_lvds)
3857 dpll |= DPLLB_MODE_LVDS;
3858 else
3859 dpll |= DPLLB_MODE_DAC_SERIAL;
3860 if (is_sdvo) {
3861 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3862 if (pixel_multiplier > 1) {
3863 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3864 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3865 else if (HAS_PCH_SPLIT(dev))
3866 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3868 dpll |= DPLL_DVO_HIGH_SPEED;
3870 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3871 dpll |= DPLL_DVO_HIGH_SPEED;
3873 /* compute bitmask from p1 value */
3874 if (IS_PINEVIEW(dev))
3875 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3876 else {
3877 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3878 /* also FPA1 */
3879 if (HAS_PCH_SPLIT(dev))
3880 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3881 if (IS_G4X(dev) && has_reduced_clock)
3882 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3884 switch (clock.p2) {
3885 case 5:
3886 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3887 break;
3888 case 7:
3889 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3890 break;
3891 case 10:
3892 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3893 break;
3894 case 14:
3895 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3896 break;
3898 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3899 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3900 } else {
3901 if (is_lvds) {
3902 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3903 } else {
3904 if (clock.p1 == 2)
3905 dpll |= PLL_P1_DIVIDE_BY_TWO;
3906 else
3907 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3908 if (clock.p2 == 4)
3909 dpll |= PLL_P2_DIVIDE_BY_4;
3913 if (is_sdvo && is_tv)
3914 dpll |= PLL_REF_INPUT_TVCLKINBC;
3915 else if (is_tv)
3916 /* XXX: just matching BIOS for now */
3917 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3918 dpll |= 3;
3919 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3920 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3921 else
3922 dpll |= PLL_REF_INPUT_DREFCLK;
3924 /* setup pipeconf */
3925 pipeconf = I915_READ(PIPECONF(pipe));
3927 /* Set up the display plane register */
3928 dspcntr = DISPPLANE_GAMMA_ENABLE;
3930 /* Ironlake's plane is forced to pipe, bit 24 is to
3931 enable color space conversion */
3932 if (!HAS_PCH_SPLIT(dev)) {
3933 if (pipe == 0)
3934 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3935 else
3936 dspcntr |= DISPPLANE_SEL_PIPE_B;
3939 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3940 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3941 * core speed.
3943 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3944 * pipe == 0 check?
3946 if (mode->clock >
3947 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3948 pipeconf |= PIPECONF_DOUBLE_WIDE;
3949 else
3950 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3953 dspcntr |= DISPLAY_PLANE_ENABLE;
3954 pipeconf |= PIPECONF_ENABLE;
3955 dpll |= DPLL_VCO_ENABLE;
3957 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3958 drm_mode_debug_printmodeline(mode);
3960 /* assign to Ironlake registers */
3961 if (HAS_PCH_SPLIT(dev)) {
3962 fp_reg = PCH_FP0(pipe);
3963 dpll_reg = PCH_DPLL(pipe);
3964 } else {
3965 fp_reg = FP0(pipe);
3966 dpll_reg = DPLL(pipe);
3969 /* PCH eDP needs FDI, but CPU eDP does not */
3970 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3971 I915_WRITE(fp_reg, fp);
3972 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3974 POSTING_READ(dpll_reg);
3975 udelay(150);
3978 /* enable transcoder DPLL */
3979 if (HAS_PCH_CPT(dev)) {
3980 temp = I915_READ(PCH_DPLL_SEL);
3981 if (pipe == 0)
3982 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3983 else
3984 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3985 I915_WRITE(PCH_DPLL_SEL, temp);
3987 POSTING_READ(PCH_DPLL_SEL);
3988 udelay(150);
3991 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3992 * This is an exception to the general rule that mode_set doesn't turn
3993 * things on.
3995 if (is_lvds) {
3996 reg = LVDS;
3997 if (HAS_PCH_SPLIT(dev))
3998 reg = PCH_LVDS;
4000 temp = I915_READ(reg);
4001 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4002 if (pipe == 1) {
4003 if (HAS_PCH_CPT(dev))
4004 temp |= PORT_TRANS_B_SEL_CPT;
4005 else
4006 temp |= LVDS_PIPEB_SELECT;
4007 } else {
4008 if (HAS_PCH_CPT(dev))
4009 temp &= ~PORT_TRANS_SEL_MASK;
4010 else
4011 temp &= ~LVDS_PIPEB_SELECT;
4013 /* set the corresponsding LVDS_BORDER bit */
4014 temp |= dev_priv->lvds_border_bits;
4015 /* Set the B0-B3 data pairs corresponding to whether we're going to
4016 * set the DPLLs for dual-channel mode or not.
4018 if (clock.p2 == 7)
4019 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4020 else
4021 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4023 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4024 * appropriately here, but we need to look more thoroughly into how
4025 * panels behave in the two modes.
4027 /* set the dithering flag on non-PCH LVDS as needed */
4028 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4029 if (dev_priv->lvds_dither)
4030 temp |= LVDS_ENABLE_DITHER;
4031 else
4032 temp &= ~LVDS_ENABLE_DITHER;
4034 I915_WRITE(reg, temp);
4037 /* set the dithering flag and clear for anything other than a panel. */
4038 if (HAS_PCH_SPLIT(dev)) {
4039 pipeconf &= ~PIPECONF_DITHER_EN;
4040 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4041 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4042 pipeconf |= PIPECONF_DITHER_EN;
4043 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4047 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4048 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4049 } else if (HAS_PCH_SPLIT(dev)) {
4050 /* For non-DP output, clear any trans DP clock recovery setting.*/
4051 if (pipe == 0) {
4052 I915_WRITE(TRANSA_DATA_M1, 0);
4053 I915_WRITE(TRANSA_DATA_N1, 0);
4054 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4055 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4056 } else {
4057 I915_WRITE(TRANSB_DATA_M1, 0);
4058 I915_WRITE(TRANSB_DATA_N1, 0);
4059 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4060 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4064 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4065 I915_WRITE(fp_reg, fp);
4066 I915_WRITE(dpll_reg, dpll);
4068 /* Wait for the clocks to stabilize. */
4069 POSTING_READ(dpll_reg);
4070 udelay(150);
4072 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4073 temp = 0;
4074 if (is_sdvo) {
4075 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4076 if (temp > 1)
4077 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4078 else
4079 temp = 0;
4081 I915_WRITE(DPLL_MD(pipe), temp);
4082 } else {
4083 /* write it again -- the BIOS does, after all */
4084 I915_WRITE(dpll_reg, dpll);
4087 /* Wait for the clocks to stabilize. */
4088 POSTING_READ(dpll_reg);
4089 udelay(150);
4092 intel_crtc->lowfreq_avail = false;
4093 if (is_lvds && has_reduced_clock && i915_powersave) {
4094 I915_WRITE(fp_reg + 4, fp2);
4095 intel_crtc->lowfreq_avail = true;
4096 if (HAS_PIPE_CXSR(dev)) {
4097 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4098 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4100 } else {
4101 I915_WRITE(fp_reg + 4, fp);
4102 if (HAS_PIPE_CXSR(dev)) {
4103 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4104 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4108 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4109 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4110 /* the chip adds 2 halflines automatically */
4111 adjusted_mode->crtc_vdisplay -= 1;
4112 adjusted_mode->crtc_vtotal -= 1;
4113 adjusted_mode->crtc_vblank_start -= 1;
4114 adjusted_mode->crtc_vblank_end -= 1;
4115 adjusted_mode->crtc_vsync_end -= 1;
4116 adjusted_mode->crtc_vsync_start -= 1;
4117 } else
4118 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4120 I915_WRITE(HTOTAL(pipe),
4121 (adjusted_mode->crtc_hdisplay - 1) |
4122 ((adjusted_mode->crtc_htotal - 1) << 16));
4123 I915_WRITE(HBLANK(pipe),
4124 (adjusted_mode->crtc_hblank_start - 1) |
4125 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4126 I915_WRITE(HSYNC(pipe),
4127 (adjusted_mode->crtc_hsync_start - 1) |
4128 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4130 I915_WRITE(VTOTAL(pipe),
4131 (adjusted_mode->crtc_vdisplay - 1) |
4132 ((adjusted_mode->crtc_vtotal - 1) << 16));
4133 I915_WRITE(VBLANK(pipe),
4134 (adjusted_mode->crtc_vblank_start - 1) |
4135 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4136 I915_WRITE(VSYNC(pipe),
4137 (adjusted_mode->crtc_vsync_start - 1) |
4138 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4140 /* pipesrc and dspsize control the size that is scaled from,
4141 * which should always be the user's requested size.
4143 if (!HAS_PCH_SPLIT(dev)) {
4144 I915_WRITE(DSPSIZE(plane),
4145 ((mode->vdisplay - 1) << 16) |
4146 (mode->hdisplay - 1));
4147 I915_WRITE(DSPPOS(plane), 0);
4149 I915_WRITE(PIPESRC(pipe),
4150 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4152 if (HAS_PCH_SPLIT(dev)) {
4153 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4154 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4155 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4156 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4158 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4159 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4163 I915_WRITE(PIPECONF(pipe), pipeconf);
4164 POSTING_READ(PIPECONF(pipe));
4166 intel_wait_for_vblank(dev, pipe);
4168 if (IS_GEN5(dev)) {
4169 /* enable address swizzle for tiling buffer */
4170 temp = I915_READ(DISP_ARB_CTL);
4171 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4174 I915_WRITE(DSPCNTR(plane), dspcntr);
4176 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4178 intel_update_watermarks(dev);
4180 drm_vblank_post_modeset(dev, pipe);
4182 return ret;
4185 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4186 void intel_crtc_load_lut(struct drm_crtc *crtc)
4188 struct drm_device *dev = crtc->dev;
4189 struct drm_i915_private *dev_priv = dev->dev_private;
4190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4191 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4192 int i;
4194 /* The clocks have to be on to load the palette. */
4195 if (!crtc->enabled)
4196 return;
4198 /* use legacy palette for Ironlake */
4199 if (HAS_PCH_SPLIT(dev))
4200 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4201 LGC_PALETTE_B;
4203 for (i = 0; i < 256; i++) {
4204 I915_WRITE(palreg + 4 * i,
4205 (intel_crtc->lut_r[i] << 16) |
4206 (intel_crtc->lut_g[i] << 8) |
4207 intel_crtc->lut_b[i]);
4211 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4213 struct drm_device *dev = crtc->dev;
4214 struct drm_i915_private *dev_priv = dev->dev_private;
4215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4216 bool visible = base != 0;
4217 u32 cntl;
4219 if (intel_crtc->cursor_visible == visible)
4220 return;
4222 cntl = I915_READ(CURACNTR);
4223 if (visible) {
4224 /* On these chipsets we can only modify the base whilst
4225 * the cursor is disabled.
4227 I915_WRITE(CURABASE, base);
4229 cntl &= ~(CURSOR_FORMAT_MASK);
4230 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4231 cntl |= CURSOR_ENABLE |
4232 CURSOR_GAMMA_ENABLE |
4233 CURSOR_FORMAT_ARGB;
4234 } else
4235 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4236 I915_WRITE(CURACNTR, cntl);
4238 intel_crtc->cursor_visible = visible;
4241 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4243 struct drm_device *dev = crtc->dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4246 int pipe = intel_crtc->pipe;
4247 bool visible = base != 0;
4249 if (intel_crtc->cursor_visible != visible) {
4250 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4251 if (base) {
4252 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4253 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4254 cntl |= pipe << 28; /* Connect to correct pipe */
4255 } else {
4256 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4257 cntl |= CURSOR_MODE_DISABLE;
4259 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4261 intel_crtc->cursor_visible = visible;
4263 /* and commit changes on next vblank */
4264 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4267 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4268 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4269 bool on)
4271 struct drm_device *dev = crtc->dev;
4272 struct drm_i915_private *dev_priv = dev->dev_private;
4273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4274 int pipe = intel_crtc->pipe;
4275 int x = intel_crtc->cursor_x;
4276 int y = intel_crtc->cursor_y;
4277 u32 base, pos;
4278 bool visible;
4280 pos = 0;
4282 if (on && crtc->enabled && crtc->fb) {
4283 base = intel_crtc->cursor_addr;
4284 if (x > (int) crtc->fb->width)
4285 base = 0;
4287 if (y > (int) crtc->fb->height)
4288 base = 0;
4289 } else
4290 base = 0;
4292 if (x < 0) {
4293 if (x + intel_crtc->cursor_width < 0)
4294 base = 0;
4296 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4297 x = -x;
4299 pos |= x << CURSOR_X_SHIFT;
4301 if (y < 0) {
4302 if (y + intel_crtc->cursor_height < 0)
4303 base = 0;
4305 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4306 y = -y;
4308 pos |= y << CURSOR_Y_SHIFT;
4310 visible = base != 0;
4311 if (!visible && !intel_crtc->cursor_visible)
4312 return;
4314 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4315 if (IS_845G(dev) || IS_I865G(dev))
4316 i845_update_cursor(crtc, base);
4317 else
4318 i9xx_update_cursor(crtc, base);
4320 if (visible)
4321 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4324 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4325 struct drm_file *file_priv,
4326 uint32_t handle,
4327 uint32_t width, uint32_t height)
4329 struct drm_device *dev = crtc->dev;
4330 struct drm_i915_private *dev_priv = dev->dev_private;
4331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4332 struct drm_gem_object *bo;
4333 struct drm_i915_gem_object *obj_priv;
4334 uint32_t addr;
4335 int ret;
4337 DRM_DEBUG_KMS("\n");
4339 /* if we want to turn off the cursor ignore width and height */
4340 if (!handle) {
4341 DRM_DEBUG_KMS("cursor off\n");
4342 addr = 0;
4343 bo = NULL;
4344 mutex_lock(&dev->struct_mutex);
4345 goto finish;
4348 /* Currently we only support 64x64 cursors */
4349 if (width != 64 || height != 64) {
4350 DRM_ERROR("we currently only support 64x64 cursors\n");
4351 return -EINVAL;
4354 bo = drm_gem_object_lookup(dev, file_priv, handle);
4355 if (!bo)
4356 return -ENOENT;
4358 obj_priv = to_intel_bo(bo);
4360 if (bo->size < width * height * 4) {
4361 DRM_ERROR("buffer is to small\n");
4362 ret = -ENOMEM;
4363 goto fail;
4366 /* we only need to pin inside GTT if cursor is non-phy */
4367 mutex_lock(&dev->struct_mutex);
4368 if (!dev_priv->info->cursor_needs_physical) {
4369 ret = i915_gem_object_pin(bo, PAGE_SIZE, true);
4370 if (ret) {
4371 DRM_ERROR("failed to pin cursor bo\n");
4372 goto fail_locked;
4375 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4376 if (ret) {
4377 DRM_ERROR("failed to move cursor bo into the GTT\n");
4378 goto fail_unpin;
4381 addr = obj_priv->gtt_offset;
4382 } else {
4383 int align = IS_I830(dev) ? 16 * 1024 : 256;
4384 ret = i915_gem_attach_phys_object(dev, bo,
4385 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4386 align);
4387 if (ret) {
4388 DRM_ERROR("failed to attach phys object\n");
4389 goto fail_locked;
4391 addr = obj_priv->phys_obj->handle->busaddr;
4394 if (IS_GEN2(dev))
4395 I915_WRITE(CURSIZE, (height << 12) | width);
4397 finish:
4398 if (intel_crtc->cursor_bo) {
4399 if (dev_priv->info->cursor_needs_physical) {
4400 if (intel_crtc->cursor_bo != bo)
4401 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4402 } else
4403 i915_gem_object_unpin(intel_crtc->cursor_bo);
4404 drm_gem_object_unreference(intel_crtc->cursor_bo);
4407 mutex_unlock(&dev->struct_mutex);
4409 intel_crtc->cursor_addr = addr;
4410 intel_crtc->cursor_bo = bo;
4411 intel_crtc->cursor_width = width;
4412 intel_crtc->cursor_height = height;
4414 intel_crtc_update_cursor(crtc, true);
4416 return 0;
4417 fail_unpin:
4418 i915_gem_object_unpin(bo);
4419 fail_locked:
4420 mutex_unlock(&dev->struct_mutex);
4421 fail:
4422 drm_gem_object_unreference_unlocked(bo);
4423 return ret;
4426 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430 intel_crtc->cursor_x = x;
4431 intel_crtc->cursor_y = y;
4433 intel_crtc_update_cursor(crtc, true);
4435 return 0;
4438 /** Sets the color ramps on behalf of RandR */
4439 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4440 u16 blue, int regno)
4442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4444 intel_crtc->lut_r[regno] = red >> 8;
4445 intel_crtc->lut_g[regno] = green >> 8;
4446 intel_crtc->lut_b[regno] = blue >> 8;
4449 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4450 u16 *blue, int regno)
4452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4454 *red = intel_crtc->lut_r[regno] << 8;
4455 *green = intel_crtc->lut_g[regno] << 8;
4456 *blue = intel_crtc->lut_b[regno] << 8;
4459 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4460 u16 *blue, uint32_t start, uint32_t size)
4462 int end = (start + size > 256) ? 256 : start + size, i;
4463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4465 for (i = start; i < end; i++) {
4466 intel_crtc->lut_r[i] = red[i] >> 8;
4467 intel_crtc->lut_g[i] = green[i] >> 8;
4468 intel_crtc->lut_b[i] = blue[i] >> 8;
4471 intel_crtc_load_lut(crtc);
4475 * Get a pipe with a simple mode set on it for doing load-based monitor
4476 * detection.
4478 * It will be up to the load-detect code to adjust the pipe as appropriate for
4479 * its requirements. The pipe will be connected to no other encoders.
4481 * Currently this code will only succeed if there is a pipe with no encoders
4482 * configured for it. In the future, it could choose to temporarily disable
4483 * some outputs to free up a pipe for its use.
4485 * \return crtc, or NULL if no pipes are available.
4488 /* VESA 640x480x72Hz mode to set on the pipe */
4489 static struct drm_display_mode load_detect_mode = {
4490 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4491 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4494 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4495 struct drm_connector *connector,
4496 struct drm_display_mode *mode,
4497 int *dpms_mode)
4499 struct intel_crtc *intel_crtc;
4500 struct drm_crtc *possible_crtc;
4501 struct drm_crtc *supported_crtc =NULL;
4502 struct drm_encoder *encoder = &intel_encoder->base;
4503 struct drm_crtc *crtc = NULL;
4504 struct drm_device *dev = encoder->dev;
4505 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4506 struct drm_crtc_helper_funcs *crtc_funcs;
4507 int i = -1;
4510 * Algorithm gets a little messy:
4511 * - if the connector already has an assigned crtc, use it (but make
4512 * sure it's on first)
4513 * - try to find the first unused crtc that can drive this connector,
4514 * and use that if we find one
4515 * - if there are no unused crtcs available, try to use the first
4516 * one we found that supports the connector
4519 /* See if we already have a CRTC for this connector */
4520 if (encoder->crtc) {
4521 crtc = encoder->crtc;
4522 /* Make sure the crtc and connector are running */
4523 intel_crtc = to_intel_crtc(crtc);
4524 *dpms_mode = intel_crtc->dpms_mode;
4525 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4526 crtc_funcs = crtc->helper_private;
4527 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4528 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4530 return crtc;
4533 /* Find an unused one (if possible) */
4534 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4535 i++;
4536 if (!(encoder->possible_crtcs & (1 << i)))
4537 continue;
4538 if (!possible_crtc->enabled) {
4539 crtc = possible_crtc;
4540 break;
4542 if (!supported_crtc)
4543 supported_crtc = possible_crtc;
4547 * If we didn't find an unused CRTC, don't use any.
4549 if (!crtc) {
4550 return NULL;
4553 encoder->crtc = crtc;
4554 connector->encoder = encoder;
4555 intel_encoder->load_detect_temp = true;
4557 intel_crtc = to_intel_crtc(crtc);
4558 *dpms_mode = intel_crtc->dpms_mode;
4560 if (!crtc->enabled) {
4561 if (!mode)
4562 mode = &load_detect_mode;
4563 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4564 } else {
4565 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4566 crtc_funcs = crtc->helper_private;
4567 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4570 /* Add this connector to the crtc */
4571 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4572 encoder_funcs->commit(encoder);
4574 /* let the connector get through one full cycle before testing */
4575 intel_wait_for_vblank(dev, intel_crtc->pipe);
4577 return crtc;
4580 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4581 struct drm_connector *connector, int dpms_mode)
4583 struct drm_encoder *encoder = &intel_encoder->base;
4584 struct drm_device *dev = encoder->dev;
4585 struct drm_crtc *crtc = encoder->crtc;
4586 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4587 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4589 if (intel_encoder->load_detect_temp) {
4590 encoder->crtc = NULL;
4591 connector->encoder = NULL;
4592 intel_encoder->load_detect_temp = false;
4593 crtc->enabled = drm_helper_crtc_in_use(crtc);
4594 drm_helper_disable_unused_functions(dev);
4597 /* Switch crtc and encoder back off if necessary */
4598 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4599 if (encoder->crtc == crtc)
4600 encoder_funcs->dpms(encoder, dpms_mode);
4601 crtc_funcs->dpms(crtc, dpms_mode);
4605 /* Returns the clock of the currently programmed mode of the given pipe. */
4606 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4610 int pipe = intel_crtc->pipe;
4611 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4612 u32 fp;
4613 intel_clock_t clock;
4615 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4616 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4617 else
4618 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4620 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4621 if (IS_PINEVIEW(dev)) {
4622 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4623 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4624 } else {
4625 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4626 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4629 if (!IS_GEN2(dev)) {
4630 if (IS_PINEVIEW(dev))
4631 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4632 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4633 else
4634 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4635 DPLL_FPA01_P1_POST_DIV_SHIFT);
4637 switch (dpll & DPLL_MODE_MASK) {
4638 case DPLLB_MODE_DAC_SERIAL:
4639 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4640 5 : 10;
4641 break;
4642 case DPLLB_MODE_LVDS:
4643 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4644 7 : 14;
4645 break;
4646 default:
4647 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4648 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4649 return 0;
4652 /* XXX: Handle the 100Mhz refclk */
4653 intel_clock(dev, 96000, &clock);
4654 } else {
4655 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4657 if (is_lvds) {
4658 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4659 DPLL_FPA01_P1_POST_DIV_SHIFT);
4660 clock.p2 = 14;
4662 if ((dpll & PLL_REF_INPUT_MASK) ==
4663 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4664 /* XXX: might not be 66MHz */
4665 intel_clock(dev, 66000, &clock);
4666 } else
4667 intel_clock(dev, 48000, &clock);
4668 } else {
4669 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4670 clock.p1 = 2;
4671 else {
4672 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4673 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4675 if (dpll & PLL_P2_DIVIDE_BY_4)
4676 clock.p2 = 4;
4677 else
4678 clock.p2 = 2;
4680 intel_clock(dev, 48000, &clock);
4684 /* XXX: It would be nice to validate the clocks, but we can't reuse
4685 * i830PllIsValid() because it relies on the xf86_config connector
4686 * configuration being accurate, which it isn't necessarily.
4689 return clock.dot;
4692 /** Returns the currently programmed mode of the given pipe. */
4693 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4694 struct drm_crtc *crtc)
4696 struct drm_i915_private *dev_priv = dev->dev_private;
4697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4698 int pipe = intel_crtc->pipe;
4699 struct drm_display_mode *mode;
4700 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4701 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4702 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4703 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4705 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4706 if (!mode)
4707 return NULL;
4709 mode->clock = intel_crtc_clock_get(dev, crtc);
4710 mode->hdisplay = (htot & 0xffff) + 1;
4711 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4712 mode->hsync_start = (hsync & 0xffff) + 1;
4713 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4714 mode->vdisplay = (vtot & 0xffff) + 1;
4715 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4716 mode->vsync_start = (vsync & 0xffff) + 1;
4717 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4719 drm_mode_set_name(mode);
4720 drm_mode_set_crtcinfo(mode, 0);
4722 return mode;
4725 #define GPU_IDLE_TIMEOUT 500 /* ms */
4727 /* When this timer fires, we've been idle for awhile */
4728 static void intel_gpu_idle_timer(unsigned long arg)
4730 struct drm_device *dev = (struct drm_device *)arg;
4731 drm_i915_private_t *dev_priv = dev->dev_private;
4733 dev_priv->busy = false;
4735 queue_work(dev_priv->wq, &dev_priv->idle_work);
4738 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4740 static void intel_crtc_idle_timer(unsigned long arg)
4742 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4743 struct drm_crtc *crtc = &intel_crtc->base;
4744 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4746 intel_crtc->busy = false;
4748 queue_work(dev_priv->wq, &dev_priv->idle_work);
4751 static void intel_increase_pllclock(struct drm_crtc *crtc)
4753 struct drm_device *dev = crtc->dev;
4754 drm_i915_private_t *dev_priv = dev->dev_private;
4755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4756 int pipe = intel_crtc->pipe;
4757 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4758 int dpll = I915_READ(dpll_reg);
4760 if (HAS_PCH_SPLIT(dev))
4761 return;
4763 if (!dev_priv->lvds_downclock_avail)
4764 return;
4766 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4767 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4769 /* Unlock panel regs */
4770 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4771 PANEL_UNLOCK_REGS);
4773 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4774 I915_WRITE(dpll_reg, dpll);
4775 dpll = I915_READ(dpll_reg);
4776 intel_wait_for_vblank(dev, pipe);
4777 dpll = I915_READ(dpll_reg);
4778 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4779 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4781 /* ...and lock them again */
4782 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4785 /* Schedule downclock */
4786 mod_timer(&intel_crtc->idle_timer, jiffies +
4787 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4790 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4792 struct drm_device *dev = crtc->dev;
4793 drm_i915_private_t *dev_priv = dev->dev_private;
4794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4795 int pipe = intel_crtc->pipe;
4796 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4797 int dpll = I915_READ(dpll_reg);
4799 if (HAS_PCH_SPLIT(dev))
4800 return;
4802 if (!dev_priv->lvds_downclock_avail)
4803 return;
4806 * Since this is called by a timer, we should never get here in
4807 * the manual case.
4809 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4810 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4812 /* Unlock panel regs */
4813 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4814 PANEL_UNLOCK_REGS);
4816 dpll |= DISPLAY_RATE_SELECT_FPA1;
4817 I915_WRITE(dpll_reg, dpll);
4818 dpll = I915_READ(dpll_reg);
4819 intel_wait_for_vblank(dev, pipe);
4820 dpll = I915_READ(dpll_reg);
4821 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4822 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4824 /* ...and lock them again */
4825 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4831 * intel_idle_update - adjust clocks for idleness
4832 * @work: work struct
4834 * Either the GPU or display (or both) went idle. Check the busy status
4835 * here and adjust the CRTC and GPU clocks as necessary.
4837 static void intel_idle_update(struct work_struct *work)
4839 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4840 idle_work);
4841 struct drm_device *dev = dev_priv->dev;
4842 struct drm_crtc *crtc;
4843 struct intel_crtc *intel_crtc;
4844 int enabled = 0;
4846 if (!i915_powersave)
4847 return;
4849 mutex_lock(&dev->struct_mutex);
4851 i915_update_gfx_val(dev_priv);
4853 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4854 /* Skip inactive CRTCs */
4855 if (!crtc->fb)
4856 continue;
4858 enabled++;
4859 intel_crtc = to_intel_crtc(crtc);
4860 if (!intel_crtc->busy)
4861 intel_decrease_pllclock(crtc);
4864 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4865 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4866 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4869 mutex_unlock(&dev->struct_mutex);
4873 * intel_mark_busy - mark the GPU and possibly the display busy
4874 * @dev: drm device
4875 * @obj: object we're operating on
4877 * Callers can use this function to indicate that the GPU is busy processing
4878 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4879 * buffer), we'll also mark the display as busy, so we know to increase its
4880 * clock frequency.
4882 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4884 drm_i915_private_t *dev_priv = dev->dev_private;
4885 struct drm_crtc *crtc = NULL;
4886 struct intel_framebuffer *intel_fb;
4887 struct intel_crtc *intel_crtc;
4889 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4890 return;
4892 if (!dev_priv->busy) {
4893 if (IS_I945G(dev) || IS_I945GM(dev)) {
4894 u32 fw_blc_self;
4896 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4897 fw_blc_self = I915_READ(FW_BLC_SELF);
4898 fw_blc_self &= ~FW_BLC_SELF_EN;
4899 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4901 dev_priv->busy = true;
4902 } else
4903 mod_timer(&dev_priv->idle_timer, jiffies +
4904 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4906 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4907 if (!crtc->fb)
4908 continue;
4910 intel_crtc = to_intel_crtc(crtc);
4911 intel_fb = to_intel_framebuffer(crtc->fb);
4912 if (intel_fb->obj == obj) {
4913 if (!intel_crtc->busy) {
4914 if (IS_I945G(dev) || IS_I945GM(dev)) {
4915 u32 fw_blc_self;
4917 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4918 fw_blc_self = I915_READ(FW_BLC_SELF);
4919 fw_blc_self &= ~FW_BLC_SELF_EN;
4920 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4922 /* Non-busy -> busy, upclock */
4923 intel_increase_pllclock(crtc);
4924 intel_crtc->busy = true;
4925 } else {
4926 /* Busy -> busy, put off timer */
4927 mod_timer(&intel_crtc->idle_timer, jiffies +
4928 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4934 static void intel_crtc_destroy(struct drm_crtc *crtc)
4936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4937 struct drm_device *dev = crtc->dev;
4938 struct intel_unpin_work *work;
4939 unsigned long flags;
4941 spin_lock_irqsave(&dev->event_lock, flags);
4942 work = intel_crtc->unpin_work;
4943 intel_crtc->unpin_work = NULL;
4944 spin_unlock_irqrestore(&dev->event_lock, flags);
4946 if (work) {
4947 cancel_work_sync(&work->work);
4948 kfree(work);
4951 drm_crtc_cleanup(crtc);
4953 kfree(intel_crtc);
4956 static void intel_unpin_work_fn(struct work_struct *__work)
4958 struct intel_unpin_work *work =
4959 container_of(__work, struct intel_unpin_work, work);
4961 mutex_lock(&work->dev->struct_mutex);
4962 i915_gem_object_unpin(work->old_fb_obj);
4963 drm_gem_object_unreference(work->pending_flip_obj);
4964 drm_gem_object_unreference(work->old_fb_obj);
4965 mutex_unlock(&work->dev->struct_mutex);
4966 kfree(work);
4969 static void do_intel_finish_page_flip(struct drm_device *dev,
4970 struct drm_crtc *crtc)
4972 drm_i915_private_t *dev_priv = dev->dev_private;
4973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4974 struct intel_unpin_work *work;
4975 struct drm_i915_gem_object *obj_priv;
4976 struct drm_pending_vblank_event *e;
4977 struct timeval now;
4978 unsigned long flags;
4980 /* Ignore early vblank irqs */
4981 if (intel_crtc == NULL)
4982 return;
4984 spin_lock_irqsave(&dev->event_lock, flags);
4985 work = intel_crtc->unpin_work;
4986 if (work == NULL || !work->pending) {
4987 spin_unlock_irqrestore(&dev->event_lock, flags);
4988 return;
4991 intel_crtc->unpin_work = NULL;
4992 drm_vblank_put(dev, intel_crtc->pipe);
4994 if (work->event) {
4995 e = work->event;
4996 do_gettimeofday(&now);
4997 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4998 e->event.tv_sec = now.tv_sec;
4999 e->event.tv_usec = now.tv_usec;
5000 list_add_tail(&e->base.link,
5001 &e->base.file_priv->event_list);
5002 wake_up_interruptible(&e->base.file_priv->event_wait);
5005 spin_unlock_irqrestore(&dev->event_lock, flags);
5007 obj_priv = to_intel_bo(work->old_fb_obj);
5008 atomic_clear_mask(1 << intel_crtc->plane,
5009 &obj_priv->pending_flip.counter);
5010 if (atomic_read(&obj_priv->pending_flip) == 0)
5011 wake_up(&dev_priv->pending_flip_queue);
5012 schedule_work(&work->work);
5014 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5017 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5019 drm_i915_private_t *dev_priv = dev->dev_private;
5020 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5022 do_intel_finish_page_flip(dev, crtc);
5025 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5027 drm_i915_private_t *dev_priv = dev->dev_private;
5028 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5030 do_intel_finish_page_flip(dev, crtc);
5033 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5035 drm_i915_private_t *dev_priv = dev->dev_private;
5036 struct intel_crtc *intel_crtc =
5037 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5038 unsigned long flags;
5040 spin_lock_irqsave(&dev->event_lock, flags);
5041 if (intel_crtc->unpin_work) {
5042 if ((++intel_crtc->unpin_work->pending) > 1)
5043 DRM_ERROR("Prepared flip multiple times\n");
5044 } else {
5045 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5047 spin_unlock_irqrestore(&dev->event_lock, flags);
5050 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5051 struct drm_framebuffer *fb,
5052 struct drm_pending_vblank_event *event)
5054 struct drm_device *dev = crtc->dev;
5055 struct drm_i915_private *dev_priv = dev->dev_private;
5056 struct intel_framebuffer *intel_fb;
5057 struct drm_i915_gem_object *obj_priv;
5058 struct drm_gem_object *obj;
5059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 struct intel_unpin_work *work;
5061 unsigned long flags, offset;
5062 int pipe = intel_crtc->pipe;
5063 u32 pf, pipesrc;
5064 int ret;
5066 work = kzalloc(sizeof *work, GFP_KERNEL);
5067 if (work == NULL)
5068 return -ENOMEM;
5070 work->event = event;
5071 work->dev = crtc->dev;
5072 intel_fb = to_intel_framebuffer(crtc->fb);
5073 work->old_fb_obj = intel_fb->obj;
5074 INIT_WORK(&work->work, intel_unpin_work_fn);
5076 /* We borrow the event spin lock for protecting unpin_work */
5077 spin_lock_irqsave(&dev->event_lock, flags);
5078 if (intel_crtc->unpin_work) {
5079 spin_unlock_irqrestore(&dev->event_lock, flags);
5080 kfree(work);
5082 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5083 return -EBUSY;
5085 intel_crtc->unpin_work = work;
5086 spin_unlock_irqrestore(&dev->event_lock, flags);
5088 intel_fb = to_intel_framebuffer(fb);
5089 obj = intel_fb->obj;
5091 mutex_lock(&dev->struct_mutex);
5092 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5093 if (ret)
5094 goto cleanup_work;
5096 /* Reference the objects for the scheduled work. */
5097 drm_gem_object_reference(work->old_fb_obj);
5098 drm_gem_object_reference(obj);
5100 crtc->fb = fb;
5102 ret = drm_vblank_get(dev, intel_crtc->pipe);
5103 if (ret)
5104 goto cleanup_objs;
5106 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5107 u32 flip_mask;
5109 /* Can't queue multiple flips, so wait for the previous
5110 * one to finish before executing the next.
5112 ret = BEGIN_LP_RING(2);
5113 if (ret)
5114 goto cleanup_objs;
5116 if (intel_crtc->plane)
5117 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5118 else
5119 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5120 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5121 OUT_RING(MI_NOOP);
5122 ADVANCE_LP_RING();
5125 work->pending_flip_obj = obj;
5126 obj_priv = to_intel_bo(obj);
5128 work->enable_stall_check = true;
5130 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5131 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5133 ret = BEGIN_LP_RING(4);
5134 if (ret)
5135 goto cleanup_objs;
5137 /* Block clients from rendering to the new back buffer until
5138 * the flip occurs and the object is no longer visible.
5140 atomic_add(1 << intel_crtc->plane,
5141 &to_intel_bo(work->old_fb_obj)->pending_flip);
5143 switch (INTEL_INFO(dev)->gen) {
5144 case 2:
5145 OUT_RING(MI_DISPLAY_FLIP |
5146 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5147 OUT_RING(fb->pitch);
5148 OUT_RING(obj_priv->gtt_offset + offset);
5149 OUT_RING(MI_NOOP);
5150 break;
5152 case 3:
5153 OUT_RING(MI_DISPLAY_FLIP_I915 |
5154 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5155 OUT_RING(fb->pitch);
5156 OUT_RING(obj_priv->gtt_offset + offset);
5157 OUT_RING(MI_NOOP);
5158 break;
5160 case 4:
5161 case 5:
5162 /* i965+ uses the linear or tiled offsets from the
5163 * Display Registers (which do not change across a page-flip)
5164 * so we need only reprogram the base address.
5166 OUT_RING(MI_DISPLAY_FLIP |
5167 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5168 OUT_RING(fb->pitch);
5169 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5171 /* XXX Enabling the panel-fitter across page-flip is so far
5172 * untested on non-native modes, so ignore it for now.
5173 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5175 pf = 0;
5176 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5177 OUT_RING(pf | pipesrc);
5178 break;
5180 case 6:
5181 OUT_RING(MI_DISPLAY_FLIP |
5182 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5183 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5184 OUT_RING(obj_priv->gtt_offset);
5186 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5187 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5188 OUT_RING(pf | pipesrc);
5189 break;
5191 ADVANCE_LP_RING();
5193 mutex_unlock(&dev->struct_mutex);
5195 trace_i915_flip_request(intel_crtc->plane, obj);
5197 return 0;
5199 cleanup_objs:
5200 drm_gem_object_unreference(work->old_fb_obj);
5201 drm_gem_object_unreference(obj);
5202 cleanup_work:
5203 mutex_unlock(&dev->struct_mutex);
5205 spin_lock_irqsave(&dev->event_lock, flags);
5206 intel_crtc->unpin_work = NULL;
5207 spin_unlock_irqrestore(&dev->event_lock, flags);
5209 kfree(work);
5211 return ret;
5214 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5215 .dpms = intel_crtc_dpms,
5216 .mode_fixup = intel_crtc_mode_fixup,
5217 .mode_set = intel_crtc_mode_set,
5218 .mode_set_base = intel_pipe_set_base,
5219 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5220 .load_lut = intel_crtc_load_lut,
5221 .disable = intel_crtc_disable,
5224 static const struct drm_crtc_funcs intel_crtc_funcs = {
5225 .cursor_set = intel_crtc_cursor_set,
5226 .cursor_move = intel_crtc_cursor_move,
5227 .gamma_set = intel_crtc_gamma_set,
5228 .set_config = drm_crtc_helper_set_config,
5229 .destroy = intel_crtc_destroy,
5230 .page_flip = intel_crtc_page_flip,
5234 static void intel_crtc_init(struct drm_device *dev, int pipe)
5236 drm_i915_private_t *dev_priv = dev->dev_private;
5237 struct intel_crtc *intel_crtc;
5238 int i;
5240 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5241 if (intel_crtc == NULL)
5242 return;
5244 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5246 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5247 for (i = 0; i < 256; i++) {
5248 intel_crtc->lut_r[i] = i;
5249 intel_crtc->lut_g[i] = i;
5250 intel_crtc->lut_b[i] = i;
5253 /* Swap pipes & planes for FBC on pre-965 */
5254 intel_crtc->pipe = pipe;
5255 intel_crtc->plane = pipe;
5256 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5257 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5258 intel_crtc->plane = !pipe;
5261 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5262 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5263 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5264 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5266 intel_crtc->cursor_addr = 0;
5267 intel_crtc->dpms_mode = -1;
5268 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5270 if (HAS_PCH_SPLIT(dev)) {
5271 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5272 intel_helper_funcs.commit = ironlake_crtc_commit;
5273 } else {
5274 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5275 intel_helper_funcs.commit = i9xx_crtc_commit;
5278 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5280 intel_crtc->busy = false;
5282 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5283 (unsigned long)intel_crtc);
5286 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5287 struct drm_file *file_priv)
5289 drm_i915_private_t *dev_priv = dev->dev_private;
5290 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5291 struct drm_mode_object *drmmode_obj;
5292 struct intel_crtc *crtc;
5294 if (!dev_priv) {
5295 DRM_ERROR("called with no initialization\n");
5296 return -EINVAL;
5299 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5300 DRM_MODE_OBJECT_CRTC);
5302 if (!drmmode_obj) {
5303 DRM_ERROR("no such CRTC id\n");
5304 return -EINVAL;
5307 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5308 pipe_from_crtc_id->pipe = crtc->pipe;
5310 return 0;
5313 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5315 struct intel_encoder *encoder;
5316 int index_mask = 0;
5317 int entry = 0;
5319 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5320 if (type_mask & encoder->clone_mask)
5321 index_mask |= (1 << entry);
5322 entry++;
5325 return index_mask;
5328 static void intel_setup_outputs(struct drm_device *dev)
5330 struct drm_i915_private *dev_priv = dev->dev_private;
5331 struct intel_encoder *encoder;
5332 bool dpd_is_edp = false;
5334 if (IS_MOBILE(dev) && !IS_I830(dev))
5335 intel_lvds_init(dev);
5337 if (HAS_PCH_SPLIT(dev)) {
5338 dpd_is_edp = intel_dpd_is_edp(dev);
5340 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5341 intel_dp_init(dev, DP_A);
5343 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5344 intel_dp_init(dev, PCH_DP_D);
5347 intel_crt_init(dev);
5349 if (HAS_PCH_SPLIT(dev)) {
5350 int found;
5352 if (I915_READ(HDMIB) & PORT_DETECTED) {
5353 /* PCH SDVOB multiplex with HDMIB */
5354 found = intel_sdvo_init(dev, PCH_SDVOB);
5355 if (!found)
5356 intel_hdmi_init(dev, HDMIB);
5357 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5358 intel_dp_init(dev, PCH_DP_B);
5361 if (I915_READ(HDMIC) & PORT_DETECTED)
5362 intel_hdmi_init(dev, HDMIC);
5364 if (I915_READ(HDMID) & PORT_DETECTED)
5365 intel_hdmi_init(dev, HDMID);
5367 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5368 intel_dp_init(dev, PCH_DP_C);
5370 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5371 intel_dp_init(dev, PCH_DP_D);
5373 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5374 bool found = false;
5376 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5377 DRM_DEBUG_KMS("probing SDVOB\n");
5378 found = intel_sdvo_init(dev, SDVOB);
5379 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5380 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5381 intel_hdmi_init(dev, SDVOB);
5384 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5385 DRM_DEBUG_KMS("probing DP_B\n");
5386 intel_dp_init(dev, DP_B);
5390 /* Before G4X SDVOC doesn't have its own detect register */
5392 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5393 DRM_DEBUG_KMS("probing SDVOC\n");
5394 found = intel_sdvo_init(dev, SDVOC);
5397 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5399 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5400 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5401 intel_hdmi_init(dev, SDVOC);
5403 if (SUPPORTS_INTEGRATED_DP(dev)) {
5404 DRM_DEBUG_KMS("probing DP_C\n");
5405 intel_dp_init(dev, DP_C);
5409 if (SUPPORTS_INTEGRATED_DP(dev) &&
5410 (I915_READ(DP_D) & DP_DETECTED)) {
5411 DRM_DEBUG_KMS("probing DP_D\n");
5412 intel_dp_init(dev, DP_D);
5414 } else if (IS_GEN2(dev))
5415 intel_dvo_init(dev);
5417 if (SUPPORTS_TV(dev))
5418 intel_tv_init(dev);
5420 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5421 encoder->base.possible_crtcs = encoder->crtc_mask;
5422 encoder->base.possible_clones =
5423 intel_encoder_clones(dev, encoder->clone_mask);
5427 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5429 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5431 drm_framebuffer_cleanup(fb);
5432 drm_gem_object_unreference_unlocked(intel_fb->obj);
5434 kfree(intel_fb);
5437 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5438 struct drm_file *file_priv,
5439 unsigned int *handle)
5441 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5442 struct drm_gem_object *object = intel_fb->obj;
5444 return drm_gem_handle_create(file_priv, object, handle);
5447 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5448 .destroy = intel_user_framebuffer_destroy,
5449 .create_handle = intel_user_framebuffer_create_handle,
5452 int intel_framebuffer_init(struct drm_device *dev,
5453 struct intel_framebuffer *intel_fb,
5454 struct drm_mode_fb_cmd *mode_cmd,
5455 struct drm_gem_object *obj)
5457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5458 int ret;
5460 if (obj_priv->tiling_mode == I915_TILING_Y)
5461 return -EINVAL;
5463 if (mode_cmd->pitch & 63)
5464 return -EINVAL;
5466 switch (mode_cmd->bpp) {
5467 case 8:
5468 case 16:
5469 case 24:
5470 case 32:
5471 break;
5472 default:
5473 return -EINVAL;
5476 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5477 if (ret) {
5478 DRM_ERROR("framebuffer init failed %d\n", ret);
5479 return ret;
5482 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5483 intel_fb->obj = obj;
5484 return 0;
5487 static struct drm_framebuffer *
5488 intel_user_framebuffer_create(struct drm_device *dev,
5489 struct drm_file *filp,
5490 struct drm_mode_fb_cmd *mode_cmd)
5492 struct drm_gem_object *obj;
5493 struct intel_framebuffer *intel_fb;
5494 int ret;
5496 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5497 if (!obj)
5498 return ERR_PTR(-ENOENT);
5500 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5501 if (!intel_fb)
5502 return ERR_PTR(-ENOMEM);
5504 ret = intel_framebuffer_init(dev, intel_fb,
5505 mode_cmd, obj);
5506 if (ret) {
5507 drm_gem_object_unreference_unlocked(obj);
5508 kfree(intel_fb);
5509 return ERR_PTR(ret);
5512 return &intel_fb->base;
5515 static const struct drm_mode_config_funcs intel_mode_funcs = {
5516 .fb_create = intel_user_framebuffer_create,
5517 .output_poll_changed = intel_fb_output_poll_changed,
5520 static struct drm_gem_object *
5521 intel_alloc_context_page(struct drm_device *dev)
5523 struct drm_gem_object *ctx;
5524 int ret;
5526 ctx = i915_gem_alloc_object(dev, 4096);
5527 if (!ctx) {
5528 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5529 return NULL;
5532 mutex_lock(&dev->struct_mutex);
5533 ret = i915_gem_object_pin(ctx, 4096, true);
5534 if (ret) {
5535 DRM_ERROR("failed to pin power context: %d\n", ret);
5536 goto err_unref;
5539 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5540 if (ret) {
5541 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5542 goto err_unpin;
5544 mutex_unlock(&dev->struct_mutex);
5546 return ctx;
5548 err_unpin:
5549 i915_gem_object_unpin(ctx);
5550 err_unref:
5551 drm_gem_object_unreference(ctx);
5552 mutex_unlock(&dev->struct_mutex);
5553 return NULL;
5556 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5558 struct drm_i915_private *dev_priv = dev->dev_private;
5559 u16 rgvswctl;
5561 rgvswctl = I915_READ16(MEMSWCTL);
5562 if (rgvswctl & MEMCTL_CMD_STS) {
5563 DRM_DEBUG("gpu busy, RCS change rejected\n");
5564 return false; /* still busy with another command */
5567 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5568 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5569 I915_WRITE16(MEMSWCTL, rgvswctl);
5570 POSTING_READ16(MEMSWCTL);
5572 rgvswctl |= MEMCTL_CMD_STS;
5573 I915_WRITE16(MEMSWCTL, rgvswctl);
5575 return true;
5578 void ironlake_enable_drps(struct drm_device *dev)
5580 struct drm_i915_private *dev_priv = dev->dev_private;
5581 u32 rgvmodectl = I915_READ(MEMMODECTL);
5582 u8 fmax, fmin, fstart, vstart;
5584 /* Enable temp reporting */
5585 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5586 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5588 /* 100ms RC evaluation intervals */
5589 I915_WRITE(RCUPEI, 100000);
5590 I915_WRITE(RCDNEI, 100000);
5592 /* Set max/min thresholds to 90ms and 80ms respectively */
5593 I915_WRITE(RCBMAXAVG, 90000);
5594 I915_WRITE(RCBMINAVG, 80000);
5596 I915_WRITE(MEMIHYST, 1);
5598 /* Set up min, max, and cur for interrupt handling */
5599 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5600 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5601 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5602 MEMMODE_FSTART_SHIFT;
5604 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5605 PXVFREQ_PX_SHIFT;
5607 dev_priv->fmax = fmax; /* IPS callback will increase this */
5608 dev_priv->fstart = fstart;
5610 dev_priv->max_delay = fstart;
5611 dev_priv->min_delay = fmin;
5612 dev_priv->cur_delay = fstart;
5614 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5615 fmax, fmin, fstart);
5617 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5620 * Interrupts will be enabled in ironlake_irq_postinstall
5623 I915_WRITE(VIDSTART, vstart);
5624 POSTING_READ(VIDSTART);
5626 rgvmodectl |= MEMMODE_SWMODE_EN;
5627 I915_WRITE(MEMMODECTL, rgvmodectl);
5629 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5630 DRM_ERROR("stuck trying to change perf mode\n");
5631 msleep(1);
5633 ironlake_set_drps(dev, fstart);
5635 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5636 I915_READ(0x112e0);
5637 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5638 dev_priv->last_count2 = I915_READ(0x112f4);
5639 getrawmonotonic(&dev_priv->last_time2);
5642 void ironlake_disable_drps(struct drm_device *dev)
5644 struct drm_i915_private *dev_priv = dev->dev_private;
5645 u16 rgvswctl = I915_READ16(MEMSWCTL);
5647 /* Ack interrupts, disable EFC interrupt */
5648 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5649 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5650 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5651 I915_WRITE(DEIIR, DE_PCU_EVENT);
5652 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5654 /* Go back to the starting frequency */
5655 ironlake_set_drps(dev, dev_priv->fstart);
5656 msleep(1);
5657 rgvswctl |= MEMCTL_CMD_STS;
5658 I915_WRITE(MEMSWCTL, rgvswctl);
5659 msleep(1);
5663 static unsigned long intel_pxfreq(u32 vidfreq)
5665 unsigned long freq;
5666 int div = (vidfreq & 0x3f0000) >> 16;
5667 int post = (vidfreq & 0x3000) >> 12;
5668 int pre = (vidfreq & 0x7);
5670 if (!pre)
5671 return 0;
5673 freq = ((div * 133333) / ((1<<post) * pre));
5675 return freq;
5678 void intel_init_emon(struct drm_device *dev)
5680 struct drm_i915_private *dev_priv = dev->dev_private;
5681 u32 lcfuse;
5682 u8 pxw[16];
5683 int i;
5685 /* Disable to program */
5686 I915_WRITE(ECR, 0);
5687 POSTING_READ(ECR);
5689 /* Program energy weights for various events */
5690 I915_WRITE(SDEW, 0x15040d00);
5691 I915_WRITE(CSIEW0, 0x007f0000);
5692 I915_WRITE(CSIEW1, 0x1e220004);
5693 I915_WRITE(CSIEW2, 0x04000004);
5695 for (i = 0; i < 5; i++)
5696 I915_WRITE(PEW + (i * 4), 0);
5697 for (i = 0; i < 3; i++)
5698 I915_WRITE(DEW + (i * 4), 0);
5700 /* Program P-state weights to account for frequency power adjustment */
5701 for (i = 0; i < 16; i++) {
5702 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5703 unsigned long freq = intel_pxfreq(pxvidfreq);
5704 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5705 PXVFREQ_PX_SHIFT;
5706 unsigned long val;
5708 val = vid * vid;
5709 val *= (freq / 1000);
5710 val *= 255;
5711 val /= (127*127*900);
5712 if (val > 0xff)
5713 DRM_ERROR("bad pxval: %ld\n", val);
5714 pxw[i] = val;
5716 /* Render standby states get 0 weight */
5717 pxw[14] = 0;
5718 pxw[15] = 0;
5720 for (i = 0; i < 4; i++) {
5721 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5722 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5723 I915_WRITE(PXW + (i * 4), val);
5726 /* Adjust magic regs to magic values (more experimental results) */
5727 I915_WRITE(OGW0, 0);
5728 I915_WRITE(OGW1, 0);
5729 I915_WRITE(EG0, 0x00007f00);
5730 I915_WRITE(EG1, 0x0000000e);
5731 I915_WRITE(EG2, 0x000e0000);
5732 I915_WRITE(EG3, 0x68000300);
5733 I915_WRITE(EG4, 0x42000000);
5734 I915_WRITE(EG5, 0x00140031);
5735 I915_WRITE(EG6, 0);
5736 I915_WRITE(EG7, 0);
5738 for (i = 0; i < 8; i++)
5739 I915_WRITE(PXWL + (i * 4), 0);
5741 /* Enable PMON + select events */
5742 I915_WRITE(ECR, 0x80000019);
5744 lcfuse = I915_READ(LCFUSE02);
5746 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5749 void intel_init_clock_gating(struct drm_device *dev)
5751 struct drm_i915_private *dev_priv = dev->dev_private;
5754 * Disable clock gating reported to work incorrectly according to the
5755 * specs, but enable as much else as we can.
5757 if (HAS_PCH_SPLIT(dev)) {
5758 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5760 if (IS_GEN5(dev)) {
5761 /* Required for FBC */
5762 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5763 /* Required for CxSR */
5764 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5766 I915_WRITE(PCH_3DCGDIS0,
5767 MARIUNIT_CLOCK_GATE_DISABLE |
5768 SVSMUNIT_CLOCK_GATE_DISABLE);
5771 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5774 * On Ibex Peak and Cougar Point, we need to disable clock
5775 * gating for the panel power sequencer or it will fail to
5776 * start up when no ports are active.
5778 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5781 * According to the spec the following bits should be set in
5782 * order to enable memory self-refresh
5783 * The bit 22/21 of 0x42004
5784 * The bit 5 of 0x42020
5785 * The bit 15 of 0x45000
5787 if (IS_GEN5(dev)) {
5788 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5789 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5790 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5791 I915_WRITE(ILK_DSPCLK_GATE,
5792 (I915_READ(ILK_DSPCLK_GATE) |
5793 ILK_DPARB_CLK_GATE));
5794 I915_WRITE(DISP_ARB_CTL,
5795 (I915_READ(DISP_ARB_CTL) |
5796 DISP_FBC_WM_DIS));
5797 I915_WRITE(WM3_LP_ILK, 0);
5798 I915_WRITE(WM2_LP_ILK, 0);
5799 I915_WRITE(WM1_LP_ILK, 0);
5802 * Based on the document from hardware guys the following bits
5803 * should be set unconditionally in order to enable FBC.
5804 * The bit 22 of 0x42000
5805 * The bit 22 of 0x42004
5806 * The bit 7,8,9 of 0x42020.
5808 if (IS_IRONLAKE_M(dev)) {
5809 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5810 I915_READ(ILK_DISPLAY_CHICKEN1) |
5811 ILK_FBCQ_DIS);
5812 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5813 I915_READ(ILK_DISPLAY_CHICKEN2) |
5814 ILK_DPARB_GATE);
5815 I915_WRITE(ILK_DSPCLK_GATE,
5816 I915_READ(ILK_DSPCLK_GATE) |
5817 ILK_DPFC_DIS1 |
5818 ILK_DPFC_DIS2 |
5819 ILK_CLK_FBC);
5822 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5823 I915_READ(ILK_DISPLAY_CHICKEN2) |
5824 ILK_ELPIN_409_SELECT);
5826 if (IS_GEN5(dev)) {
5827 I915_WRITE(_3D_CHICKEN2,
5828 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5829 _3D_CHICKEN2_WM_READ_PIPELINED);
5831 return;
5832 } else if (IS_G4X(dev)) {
5833 uint32_t dspclk_gate;
5834 I915_WRITE(RENCLK_GATE_D1, 0);
5835 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5836 GS_UNIT_CLOCK_GATE_DISABLE |
5837 CL_UNIT_CLOCK_GATE_DISABLE);
5838 I915_WRITE(RAMCLK_GATE_D, 0);
5839 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5840 OVRUNIT_CLOCK_GATE_DISABLE |
5841 OVCUNIT_CLOCK_GATE_DISABLE;
5842 if (IS_GM45(dev))
5843 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5844 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5845 } else if (IS_CRESTLINE(dev)) {
5846 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5847 I915_WRITE(RENCLK_GATE_D2, 0);
5848 I915_WRITE(DSPCLK_GATE_D, 0);
5849 I915_WRITE(RAMCLK_GATE_D, 0);
5850 I915_WRITE16(DEUC, 0);
5851 } else if (IS_BROADWATER(dev)) {
5852 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5853 I965_RCC_CLOCK_GATE_DISABLE |
5854 I965_RCPB_CLOCK_GATE_DISABLE |
5855 I965_ISC_CLOCK_GATE_DISABLE |
5856 I965_FBC_CLOCK_GATE_DISABLE);
5857 I915_WRITE(RENCLK_GATE_D2, 0);
5858 } else if (IS_GEN3(dev)) {
5859 u32 dstate = I915_READ(D_STATE);
5861 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5862 DSTATE_DOT_CLOCK_GATING;
5863 I915_WRITE(D_STATE, dstate);
5864 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5865 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5866 } else if (IS_I830(dev)) {
5867 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5871 * GPU can automatically power down the render unit if given a page
5872 * to save state.
5874 if (IS_IRONLAKE_M(dev)) {
5875 if (dev_priv->renderctx == NULL)
5876 dev_priv->renderctx = intel_alloc_context_page(dev);
5877 if (dev_priv->renderctx) {
5878 struct drm_i915_gem_object *obj_priv;
5879 obj_priv = to_intel_bo(dev_priv->renderctx);
5880 if (obj_priv) {
5881 if (BEGIN_LP_RING(4) == 0) {
5882 OUT_RING(MI_SET_CONTEXT);
5883 OUT_RING(obj_priv->gtt_offset |
5884 MI_MM_SPACE_GTT |
5885 MI_SAVE_EXT_STATE_EN |
5886 MI_RESTORE_EXT_STATE_EN |
5887 MI_RESTORE_INHIBIT);
5888 OUT_RING(MI_NOOP);
5889 OUT_RING(MI_FLUSH);
5890 ADVANCE_LP_RING();
5893 } else
5894 DRM_DEBUG_KMS("Failed to allocate render context."
5895 "Disable RC6\n");
5898 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5899 struct drm_i915_gem_object *obj_priv = NULL;
5901 if (dev_priv->pwrctx) {
5902 obj_priv = to_intel_bo(dev_priv->pwrctx);
5903 } else {
5904 struct drm_gem_object *pwrctx;
5906 pwrctx = intel_alloc_context_page(dev);
5907 if (pwrctx) {
5908 dev_priv->pwrctx = pwrctx;
5909 obj_priv = to_intel_bo(pwrctx);
5913 if (obj_priv) {
5914 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5915 I915_WRITE(MCHBAR_RENDER_STANDBY,
5916 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5921 /* Set up chip specific display functions */
5922 static void intel_init_display(struct drm_device *dev)
5924 struct drm_i915_private *dev_priv = dev->dev_private;
5926 /* We always want a DPMS function */
5927 if (HAS_PCH_SPLIT(dev))
5928 dev_priv->display.dpms = ironlake_crtc_dpms;
5929 else
5930 dev_priv->display.dpms = i9xx_crtc_dpms;
5932 if (I915_HAS_FBC(dev)) {
5933 if (IS_IRONLAKE_M(dev)) {
5934 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5935 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5936 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5937 } else if (IS_GM45(dev)) {
5938 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5939 dev_priv->display.enable_fbc = g4x_enable_fbc;
5940 dev_priv->display.disable_fbc = g4x_disable_fbc;
5941 } else if (IS_CRESTLINE(dev)) {
5942 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5943 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5944 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5946 /* 855GM needs testing */
5949 /* Returns the core display clock speed */
5950 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5951 dev_priv->display.get_display_clock_speed =
5952 i945_get_display_clock_speed;
5953 else if (IS_I915G(dev))
5954 dev_priv->display.get_display_clock_speed =
5955 i915_get_display_clock_speed;
5956 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5957 dev_priv->display.get_display_clock_speed =
5958 i9xx_misc_get_display_clock_speed;
5959 else if (IS_I915GM(dev))
5960 dev_priv->display.get_display_clock_speed =
5961 i915gm_get_display_clock_speed;
5962 else if (IS_I865G(dev))
5963 dev_priv->display.get_display_clock_speed =
5964 i865_get_display_clock_speed;
5965 else if (IS_I85X(dev))
5966 dev_priv->display.get_display_clock_speed =
5967 i855_get_display_clock_speed;
5968 else /* 852, 830 */
5969 dev_priv->display.get_display_clock_speed =
5970 i830_get_display_clock_speed;
5972 /* For FIFO watermark updates */
5973 if (HAS_PCH_SPLIT(dev)) {
5974 if (IS_GEN5(dev)) {
5975 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5976 dev_priv->display.update_wm = ironlake_update_wm;
5977 else {
5978 DRM_DEBUG_KMS("Failed to get proper latency. "
5979 "Disable CxSR\n");
5980 dev_priv->display.update_wm = NULL;
5982 } else
5983 dev_priv->display.update_wm = NULL;
5984 } else if (IS_PINEVIEW(dev)) {
5985 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5986 dev_priv->is_ddr3,
5987 dev_priv->fsb_freq,
5988 dev_priv->mem_freq)) {
5989 DRM_INFO("failed to find known CxSR latency "
5990 "(found ddr%s fsb freq %d, mem freq %d), "
5991 "disabling CxSR\n",
5992 (dev_priv->is_ddr3 == 1) ? "3": "2",
5993 dev_priv->fsb_freq, dev_priv->mem_freq);
5994 /* Disable CxSR and never update its watermark again */
5995 pineview_disable_cxsr(dev);
5996 dev_priv->display.update_wm = NULL;
5997 } else
5998 dev_priv->display.update_wm = pineview_update_wm;
5999 } else if (IS_G4X(dev))
6000 dev_priv->display.update_wm = g4x_update_wm;
6001 else if (IS_GEN4(dev))
6002 dev_priv->display.update_wm = i965_update_wm;
6003 else if (IS_GEN3(dev)) {
6004 dev_priv->display.update_wm = i9xx_update_wm;
6005 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6006 } else if (IS_I85X(dev)) {
6007 dev_priv->display.update_wm = i9xx_update_wm;
6008 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6009 } else {
6010 dev_priv->display.update_wm = i830_update_wm;
6011 if (IS_845G(dev))
6012 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6013 else
6014 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6019 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6020 * resume, or other times. This quirk makes sure that's the case for
6021 * affected systems.
6023 static void quirk_pipea_force (struct drm_device *dev)
6025 struct drm_i915_private *dev_priv = dev->dev_private;
6027 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6028 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6031 struct intel_quirk {
6032 int device;
6033 int subsystem_vendor;
6034 int subsystem_device;
6035 void (*hook)(struct drm_device *dev);
6038 struct intel_quirk intel_quirks[] = {
6039 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6040 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6041 /* HP Mini needs pipe A force quirk (LP: #322104) */
6042 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6044 /* Thinkpad R31 needs pipe A force quirk */
6045 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6046 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6047 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6049 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6050 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6051 /* ThinkPad X40 needs pipe A force quirk */
6053 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6054 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6056 /* 855 & before need to leave pipe A & dpll A up */
6057 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6058 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6061 static void intel_init_quirks(struct drm_device *dev)
6063 struct pci_dev *d = dev->pdev;
6064 int i;
6066 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6067 struct intel_quirk *q = &intel_quirks[i];
6069 if (d->device == q->device &&
6070 (d->subsystem_vendor == q->subsystem_vendor ||
6071 q->subsystem_vendor == PCI_ANY_ID) &&
6072 (d->subsystem_device == q->subsystem_device ||
6073 q->subsystem_device == PCI_ANY_ID))
6074 q->hook(dev);
6078 /* Disable the VGA plane that we never use */
6079 static void i915_disable_vga(struct drm_device *dev)
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 u8 sr1;
6083 u32 vga_reg;
6085 if (HAS_PCH_SPLIT(dev))
6086 vga_reg = CPU_VGACNTRL;
6087 else
6088 vga_reg = VGACNTRL;
6090 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6091 outb(1, VGA_SR_INDEX);
6092 sr1 = inb(VGA_SR_DATA);
6093 outb(sr1 | 1<<5, VGA_SR_DATA);
6094 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6095 udelay(300);
6097 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6098 POSTING_READ(vga_reg);
6101 void intel_modeset_init(struct drm_device *dev)
6103 struct drm_i915_private *dev_priv = dev->dev_private;
6104 int i;
6106 drm_mode_config_init(dev);
6108 dev->mode_config.min_width = 0;
6109 dev->mode_config.min_height = 0;
6111 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6113 intel_init_quirks(dev);
6115 intel_init_display(dev);
6117 if (IS_GEN2(dev)) {
6118 dev->mode_config.max_width = 2048;
6119 dev->mode_config.max_height = 2048;
6120 } else if (IS_GEN3(dev)) {
6121 dev->mode_config.max_width = 4096;
6122 dev->mode_config.max_height = 4096;
6123 } else {
6124 dev->mode_config.max_width = 8192;
6125 dev->mode_config.max_height = 8192;
6128 /* set memory base */
6129 if (IS_GEN2(dev))
6130 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6131 else
6132 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6134 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6135 dev_priv->num_pipe = 2;
6136 else
6137 dev_priv->num_pipe = 1;
6138 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6139 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6141 for (i = 0; i < dev_priv->num_pipe; i++) {
6142 intel_crtc_init(dev, i);
6145 intel_setup_outputs(dev);
6147 intel_init_clock_gating(dev);
6149 /* Just disable it once at startup */
6150 i915_disable_vga(dev);
6152 if (IS_IRONLAKE_M(dev)) {
6153 ironlake_enable_drps(dev);
6154 intel_init_emon(dev);
6157 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6158 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6159 (unsigned long)dev);
6161 intel_setup_overlay(dev);
6164 void intel_modeset_cleanup(struct drm_device *dev)
6166 struct drm_i915_private *dev_priv = dev->dev_private;
6167 struct drm_crtc *crtc;
6168 struct intel_crtc *intel_crtc;
6170 drm_kms_helper_poll_fini(dev);
6171 mutex_lock(&dev->struct_mutex);
6173 intel_unregister_dsm_handler();
6176 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6177 /* Skip inactive CRTCs */
6178 if (!crtc->fb)
6179 continue;
6181 intel_crtc = to_intel_crtc(crtc);
6182 intel_increase_pllclock(crtc);
6185 if (dev_priv->display.disable_fbc)
6186 dev_priv->display.disable_fbc(dev);
6188 if (dev_priv->renderctx) {
6189 struct drm_i915_gem_object *obj_priv;
6191 obj_priv = to_intel_bo(dev_priv->renderctx);
6192 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6193 I915_READ(CCID);
6194 i915_gem_object_unpin(dev_priv->renderctx);
6195 drm_gem_object_unreference(dev_priv->renderctx);
6198 if (dev_priv->pwrctx) {
6199 struct drm_i915_gem_object *obj_priv;
6201 obj_priv = to_intel_bo(dev_priv->pwrctx);
6202 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6203 I915_READ(PWRCTXA);
6204 i915_gem_object_unpin(dev_priv->pwrctx);
6205 drm_gem_object_unreference(dev_priv->pwrctx);
6208 if (IS_IRONLAKE_M(dev))
6209 ironlake_disable_drps(dev);
6211 mutex_unlock(&dev->struct_mutex);
6213 /* Disable the irq before mode object teardown, for the irq might
6214 * enqueue unpin/hotplug work. */
6215 drm_irq_uninstall(dev);
6216 cancel_work_sync(&dev_priv->hotplug_work);
6218 /* Shut off idle work before the crtcs get freed. */
6219 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6220 intel_crtc = to_intel_crtc(crtc);
6221 del_timer_sync(&intel_crtc->idle_timer);
6223 del_timer_sync(&dev_priv->idle_timer);
6224 cancel_work_sync(&dev_priv->idle_work);
6226 drm_mode_config_cleanup(dev);
6230 * Return which encoder is currently attached for connector.
6232 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6234 return &intel_attached_encoder(connector)->base;
6237 void intel_connector_attach_encoder(struct intel_connector *connector,
6238 struct intel_encoder *encoder)
6240 connector->encoder = encoder;
6241 drm_mode_connector_attach_encoder(&connector->base,
6242 &encoder->base);
6246 * set vga decode state - true == enable VGA decode
6248 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6250 struct drm_i915_private *dev_priv = dev->dev_private;
6251 u16 gmch_ctrl;
6253 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6254 if (state)
6255 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6256 else
6257 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6258 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6259 return 0;