Linux 2.6.35-rc1
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mincore.c
blob9ac42dc6d7b61481b1eedb8e12b463bd151b1f92
1 /*
2 * linux/mm/mincore.c
4 * Copyright (C) 1994-2006 Linus Torvalds
5 */
7 /*
8 * The mincore() system call.
9 */
10 #include <linux/pagemap.h>
11 #include <linux/gfp.h>
12 #include <linux/mm.h>
13 #include <linux/mman.h>
14 #include <linux/syscalls.h>
15 #include <linux/swap.h>
16 #include <linux/swapops.h>
17 #include <linux/hugetlb.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgtable.h>
22 static void mincore_hugetlb_page_range(struct vm_area_struct *vma,
23 unsigned long addr, unsigned long end,
24 unsigned char *vec)
26 #ifdef CONFIG_HUGETLB_PAGE
27 struct hstate *h;
29 h = hstate_vma(vma);
30 while (1) {
31 unsigned char present;
32 pte_t *ptep;
34 * Huge pages are always in RAM for now, but
35 * theoretically it needs to be checked.
37 ptep = huge_pte_offset(current->mm,
38 addr & huge_page_mask(h));
39 present = ptep && !huge_pte_none(huge_ptep_get(ptep));
40 while (1) {
41 *vec = present;
42 vec++;
43 addr += PAGE_SIZE;
44 if (addr == end)
45 return;
46 /* check hugepage border */
47 if (!(addr & ~huge_page_mask(h)))
48 break;
51 #else
52 BUG();
53 #endif
57 * Later we can get more picky about what "in core" means precisely.
58 * For now, simply check to see if the page is in the page cache,
59 * and is up to date; i.e. that no page-in operation would be required
60 * at this time if an application were to map and access this page.
62 static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff)
64 unsigned char present = 0;
65 struct page *page;
68 * When tmpfs swaps out a page from a file, any process mapping that
69 * file will not get a swp_entry_t in its pte, but rather it is like
70 * any other file mapping (ie. marked !present and faulted in with
71 * tmpfs's .fault). So swapped out tmpfs mappings are tested here.
73 * However when tmpfs moves the page from pagecache and into swapcache,
74 * it is still in core, but the find_get_page below won't find it.
75 * No big deal, but make a note of it.
77 page = find_get_page(mapping, pgoff);
78 if (page) {
79 present = PageUptodate(page);
80 page_cache_release(page);
83 return present;
86 static void mincore_unmapped_range(struct vm_area_struct *vma,
87 unsigned long addr, unsigned long end,
88 unsigned char *vec)
90 unsigned long nr = (end - addr) >> PAGE_SHIFT;
91 int i;
93 if (vma->vm_file) {
94 pgoff_t pgoff;
96 pgoff = linear_page_index(vma, addr);
97 for (i = 0; i < nr; i++, pgoff++)
98 vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
99 } else {
100 for (i = 0; i < nr; i++)
101 vec[i] = 0;
105 static void mincore_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
106 unsigned long addr, unsigned long end,
107 unsigned char *vec)
109 unsigned long next;
110 spinlock_t *ptl;
111 pte_t *ptep;
113 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
114 do {
115 pte_t pte = *ptep;
116 pgoff_t pgoff;
118 next = addr + PAGE_SIZE;
119 if (pte_none(pte))
120 mincore_unmapped_range(vma, addr, next, vec);
121 else if (pte_present(pte))
122 *vec = 1;
123 else if (pte_file(pte)) {
124 pgoff = pte_to_pgoff(pte);
125 *vec = mincore_page(vma->vm_file->f_mapping, pgoff);
126 } else { /* pte is a swap entry */
127 swp_entry_t entry = pte_to_swp_entry(pte);
129 if (is_migration_entry(entry)) {
130 /* migration entries are always uptodate */
131 *vec = 1;
132 } else {
133 #ifdef CONFIG_SWAP
134 pgoff = entry.val;
135 *vec = mincore_page(&swapper_space, pgoff);
136 #else
137 WARN_ON(1);
138 *vec = 1;
139 #endif
142 vec++;
143 } while (ptep++, addr = next, addr != end);
144 pte_unmap_unlock(ptep - 1, ptl);
147 static void mincore_pmd_range(struct vm_area_struct *vma, pud_t *pud,
148 unsigned long addr, unsigned long end,
149 unsigned char *vec)
151 unsigned long next;
152 pmd_t *pmd;
154 pmd = pmd_offset(pud, addr);
155 do {
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
158 mincore_unmapped_range(vma, addr, next, vec);
159 else
160 mincore_pte_range(vma, pmd, addr, next, vec);
161 vec += (next - addr) >> PAGE_SHIFT;
162 } while (pmd++, addr = next, addr != end);
165 static void mincore_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
166 unsigned long addr, unsigned long end,
167 unsigned char *vec)
169 unsigned long next;
170 pud_t *pud;
172 pud = pud_offset(pgd, addr);
173 do {
174 next = pud_addr_end(addr, end);
175 if (pud_none_or_clear_bad(pud))
176 mincore_unmapped_range(vma, addr, next, vec);
177 else
178 mincore_pmd_range(vma, pud, addr, next, vec);
179 vec += (next - addr) >> PAGE_SHIFT;
180 } while (pud++, addr = next, addr != end);
183 static void mincore_page_range(struct vm_area_struct *vma,
184 unsigned long addr, unsigned long end,
185 unsigned char *vec)
187 unsigned long next;
188 pgd_t *pgd;
190 pgd = pgd_offset(vma->vm_mm, addr);
191 do {
192 next = pgd_addr_end(addr, end);
193 if (pgd_none_or_clear_bad(pgd))
194 mincore_unmapped_range(vma, addr, next, vec);
195 else
196 mincore_pud_range(vma, pgd, addr, next, vec);
197 vec += (next - addr) >> PAGE_SHIFT;
198 } while (pgd++, addr = next, addr != end);
202 * Do a chunk of "sys_mincore()". We've already checked
203 * all the arguments, we hold the mmap semaphore: we should
204 * just return the amount of info we're asked for.
206 static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec)
208 struct vm_area_struct *vma;
209 unsigned long end;
211 vma = find_vma(current->mm, addr);
212 if (!vma || addr < vma->vm_start)
213 return -ENOMEM;
215 end = min(vma->vm_end, addr + (pages << PAGE_SHIFT));
217 if (is_vm_hugetlb_page(vma)) {
218 mincore_hugetlb_page_range(vma, addr, end, vec);
219 return (end - addr) >> PAGE_SHIFT;
222 end = pmd_addr_end(addr, end);
224 if (is_vm_hugetlb_page(vma))
225 mincore_hugetlb_page_range(vma, addr, end, vec);
226 else
227 mincore_page_range(vma, addr, end, vec);
229 return (end - addr) >> PAGE_SHIFT;
233 * The mincore(2) system call.
235 * mincore() returns the memory residency status of the pages in the
236 * current process's address space specified by [addr, addr + len).
237 * The status is returned in a vector of bytes. The least significant
238 * bit of each byte is 1 if the referenced page is in memory, otherwise
239 * it is zero.
241 * Because the status of a page can change after mincore() checks it
242 * but before it returns to the application, the returned vector may
243 * contain stale information. Only locked pages are guaranteed to
244 * remain in memory.
246 * return values:
247 * zero - success
248 * -EFAULT - vec points to an illegal address
249 * -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE
250 * -ENOMEM - Addresses in the range [addr, addr + len] are
251 * invalid for the address space of this process, or
252 * specify one or more pages which are not currently
253 * mapped
254 * -EAGAIN - A kernel resource was temporarily unavailable.
256 SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
257 unsigned char __user *, vec)
259 long retval;
260 unsigned long pages;
261 unsigned char *tmp;
263 /* Check the start address: needs to be page-aligned.. */
264 if (start & ~PAGE_CACHE_MASK)
265 return -EINVAL;
267 /* ..and we need to be passed a valid user-space range */
268 if (!access_ok(VERIFY_READ, (void __user *) start, len))
269 return -ENOMEM;
271 /* This also avoids any overflows on PAGE_CACHE_ALIGN */
272 pages = len >> PAGE_SHIFT;
273 pages += (len & ~PAGE_MASK) != 0;
275 if (!access_ok(VERIFY_WRITE, vec, pages))
276 return -EFAULT;
278 tmp = (void *) __get_free_page(GFP_USER);
279 if (!tmp)
280 return -EAGAIN;
282 retval = 0;
283 while (pages) {
285 * Do at most PAGE_SIZE entries per iteration, due to
286 * the temporary buffer size.
288 down_read(&current->mm->mmap_sem);
289 retval = do_mincore(start, min(pages, PAGE_SIZE), tmp);
290 up_read(&current->mm->mmap_sem);
292 if (retval <= 0)
293 break;
294 if (copy_to_user(vec, tmp, retval)) {
295 retval = -EFAULT;
296 break;
298 pages -= retval;
299 vec += retval;
300 start += retval << PAGE_SHIFT;
301 retval = 0;
303 free_page((unsigned long) tmp);
304 return retval;