target: Handle 0 correctly in transport_get_sectors_6()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / target / target_core_transport.c
blobe2added477b96e41528243078f28cbd4dfd6b889
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized;
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86 unsigned long long starting_lba,
87 enum dma_data_direction data_direction,
88 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
98 int init_se_kmem_caches(void)
100 se_cmd_cache = kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102 if (!se_cmd_cache) {
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
104 goto out;
106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108 0, NULL);
109 if (!se_tmr_req_cache) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
111 " failed\n");
112 goto out;
114 se_sess_cache = kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session), __alignof__(struct se_session),
116 0, NULL);
117 if (!se_sess_cache) {
118 pr_err("kmem_cache_create() for struct se_session"
119 " failed\n");
120 goto out;
122 se_ua_cache = kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua), __alignof__(struct se_ua),
124 0, NULL);
125 if (!se_ua_cache) {
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
127 goto out;
129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration),
131 __alignof__(struct t10_pr_registration), 0, NULL);
132 if (!t10_pr_reg_cache) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
134 " failed\n");
135 goto out;
137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139 0, NULL);
140 if (!t10_alua_lu_gp_cache) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142 " failed\n");
143 goto out;
145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member),
147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148 if (!t10_alua_lu_gp_mem_cache) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150 "cache failed\n");
151 goto out;
153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp),
155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156 if (!t10_alua_tg_pt_gp_cache) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158 "cache failed\n");
159 goto out;
161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member),
164 __alignof__(struct t10_alua_tg_pt_gp_member),
165 0, NULL);
166 if (!t10_alua_tg_pt_gp_mem_cache) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168 "mem_t failed\n");
169 goto out;
172 return 0;
173 out:
174 if (se_cmd_cache)
175 kmem_cache_destroy(se_cmd_cache);
176 if (se_tmr_req_cache)
177 kmem_cache_destroy(se_tmr_req_cache);
178 if (se_sess_cache)
179 kmem_cache_destroy(se_sess_cache);
180 if (se_ua_cache)
181 kmem_cache_destroy(se_ua_cache);
182 if (t10_pr_reg_cache)
183 kmem_cache_destroy(t10_pr_reg_cache);
184 if (t10_alua_lu_gp_cache)
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 if (t10_alua_lu_gp_mem_cache)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 if (t10_alua_tg_pt_gp_cache)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 if (t10_alua_tg_pt_gp_mem_cache)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192 return -ENOMEM;
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
213 * Allocate a new row index for the entry type specified
215 u32 scsi_get_new_index(scsi_index_t type)
217 u32 new_index;
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
225 return new_index;
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
235 EXPORT_SYMBOL(transport_init_queue_obj);
237 static int transport_subsystem_reqmods(void)
239 int ret;
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
257 return 0;
260 int transport_subsystem_check_init(void)
262 int ret;
264 if (sub_api_initialized)
265 return 0;
267 * Request the loading of known TCM subsystem plugins..
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
273 sub_api_initialized = 1;
274 return 0;
277 struct se_session *transport_init_session(void)
279 struct se_session *se_sess;
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
290 return se_sess;
292 EXPORT_SYMBOL(transport_init_session);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
303 unsigned char buf[PR_REG_ISID_LEN];
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
313 if (se_nacl) {
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl->nacl_sess = se_sess;
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
340 EXPORT_SYMBOL(__transport_register_session);
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
352 EXPORT_SYMBOL(transport_register_session);
354 void transport_deregister_session_configfs(struct se_session *se_sess)
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
382 void transport_free_session(struct se_session *se_sess)
384 kmem_cache_free(se_sess_cache, se_sess);
386 EXPORT_SYMBOL(transport_free_session);
388 void transport_deregister_session(struct se_session *se_sess)
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
394 if (!se_tpg) {
395 transport_free_session(se_sess);
396 return;
399 spin_lock_irqsave(&se_tpg->session_lock, flags);
400 list_del(&se_sess->sess_list);
401 se_sess->se_tpg = NULL;
402 se_sess->fabric_sess_ptr = NULL;
403 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
409 se_nacl = se_sess->se_node_acl;
410 if (se_nacl) {
411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 if (se_nacl->dynamic_node_acl) {
413 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
414 se_tpg)) {
415 list_del(&se_nacl->acl_list);
416 se_tpg->num_node_acls--;
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419 core_tpg_wait_for_nacl_pr_ref(se_nacl);
420 core_free_device_list_for_node(se_nacl, se_tpg);
421 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
422 se_nacl);
423 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429 transport_free_session(se_sess);
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg->se_tpg_tfo->get_fabric_name());
434 EXPORT_SYMBOL(transport_deregister_session);
437 * Called with cmd->t_state_lock held.
439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
441 struct se_device *dev;
442 struct se_task *task;
443 unsigned long flags;
445 list_for_each_entry(task, &cmd->t_task_list, t_list) {
446 dev = task->se_dev;
447 if (!dev)
448 continue;
450 if (atomic_read(&task->task_active))
451 continue;
453 if (!atomic_read(&task->task_state_active))
454 continue;
456 spin_lock_irqsave(&dev->execute_task_lock, flags);
457 list_del(&task->t_state_list);
458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
459 cmd->se_tfo->get_task_tag(cmd), dev, task);
460 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
462 atomic_set(&task->task_state_active, 0);
463 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 /* transport_cmd_check_stop():
469 * 'transport_off = 1' determines if t_transport_active should be cleared.
470 * 'transport_off = 2' determines if task_dev_state should be removed.
472 * A non-zero u8 t_state sets cmd->t_state.
473 * Returns 1 when command is stopped, else 0.
475 static int transport_cmd_check_stop(
476 struct se_cmd *cmd,
477 int transport_off,
478 u8 t_state)
480 unsigned long flags;
482 spin_lock_irqsave(&cmd->t_state_lock, flags);
484 * Determine if IOCTL context caller in requesting the stopping of this
485 * command for LUN shutdown purposes.
487 if (atomic_read(&cmd->transport_lun_stop)) {
488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
489 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
490 cmd->se_tfo->get_task_tag(cmd));
492 cmd->deferred_t_state = cmd->t_state;
493 cmd->t_state = TRANSPORT_DEFERRED_CMD;
494 atomic_set(&cmd->t_transport_active, 0);
495 if (transport_off == 2)
496 transport_all_task_dev_remove_state(cmd);
497 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499 complete(&cmd->transport_lun_stop_comp);
500 return 1;
503 * Determine if frontend context caller is requesting the stopping of
504 * this command for frontend exceptions.
506 if (atomic_read(&cmd->t_transport_stop)) {
507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
508 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
509 cmd->se_tfo->get_task_tag(cmd));
511 cmd->deferred_t_state = cmd->t_state;
512 cmd->t_state = TRANSPORT_DEFERRED_CMD;
513 if (transport_off == 2)
514 transport_all_task_dev_remove_state(cmd);
517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
518 * to FE.
520 if (transport_off == 2)
521 cmd->se_lun = NULL;
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
524 complete(&cmd->t_transport_stop_comp);
525 return 1;
527 if (transport_off) {
528 atomic_set(&cmd->t_transport_active, 0);
529 if (transport_off == 2) {
530 transport_all_task_dev_remove_state(cmd);
532 * Clear struct se_cmd->se_lun before the transport_off == 2
533 * handoff to fabric module.
535 cmd->se_lun = NULL;
537 * Some fabric modules like tcm_loop can release
538 * their internally allocated I/O reference now and
539 * struct se_cmd now.
541 if (cmd->se_tfo->check_stop_free != NULL) {
542 spin_unlock_irqrestore(
543 &cmd->t_state_lock, flags);
545 cmd->se_tfo->check_stop_free(cmd);
546 return 1;
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
551 return 0;
552 } else if (t_state)
553 cmd->t_state = t_state;
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
556 return 0;
559 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
561 return transport_cmd_check_stop(cmd, 2, 0);
564 static void transport_lun_remove_cmd(struct se_cmd *cmd)
566 struct se_lun *lun = cmd->se_lun;
567 unsigned long flags;
569 if (!lun)
570 return;
572 spin_lock_irqsave(&cmd->t_state_lock, flags);
573 if (!atomic_read(&cmd->transport_dev_active)) {
574 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
575 goto check_lun;
577 atomic_set(&cmd->transport_dev_active, 0);
578 transport_all_task_dev_remove_state(cmd);
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582 check_lun:
583 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
584 if (atomic_read(&cmd->transport_lun_active)) {
585 list_del(&cmd->se_lun_node);
586 atomic_set(&cmd->transport_lun_active, 0);
587 #if 0
588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
589 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
590 #endif
592 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
595 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
597 transport_lun_remove_cmd(cmd);
599 if (transport_cmd_check_stop_to_fabric(cmd))
600 return;
601 if (remove) {
602 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
603 transport_generic_remove(cmd, 0);
607 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
609 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
611 if (transport_cmd_check_stop_to_fabric(cmd))
612 return;
614 transport_generic_remove(cmd, 0);
617 static void transport_add_cmd_to_queue(
618 struct se_cmd *cmd,
619 int t_state)
621 struct se_device *dev = cmd->se_dev;
622 struct se_queue_obj *qobj = &dev->dev_queue_obj;
623 unsigned long flags;
625 if (t_state) {
626 spin_lock_irqsave(&cmd->t_state_lock, flags);
627 cmd->t_state = t_state;
628 atomic_set(&cmd->t_transport_active, 1);
629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
634 /* If the cmd is already on the list, remove it before we add it */
635 if (!list_empty(&cmd->se_queue_node))
636 list_del(&cmd->se_queue_node);
637 else
638 atomic_inc(&qobj->queue_cnt);
640 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
641 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
642 list_add(&cmd->se_queue_node, &qobj->qobj_list);
643 } else
644 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
645 atomic_set(&cmd->t_transport_queue_active, 1);
646 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648 wake_up_interruptible(&qobj->thread_wq);
651 static struct se_cmd *
652 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
654 struct se_cmd *cmd;
655 unsigned long flags;
657 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658 if (list_empty(&qobj->qobj_list)) {
659 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660 return NULL;
662 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
664 atomic_set(&cmd->t_transport_queue_active, 0);
666 list_del_init(&cmd->se_queue_node);
667 atomic_dec(&qobj->queue_cnt);
668 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 return cmd;
673 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
674 struct se_queue_obj *qobj)
676 unsigned long flags;
678 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
679 if (!atomic_read(&cmd->t_transport_queue_active)) {
680 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
681 return;
683 atomic_set(&cmd->t_transport_queue_active, 0);
684 atomic_dec(&qobj->queue_cnt);
685 list_del_init(&cmd->se_queue_node);
686 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
688 if (atomic_read(&cmd->t_transport_queue_active)) {
689 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
690 cmd->se_tfo->get_task_tag(cmd),
691 atomic_read(&cmd->t_transport_queue_active));
696 * Completion function used by TCM subsystem plugins (such as FILEIO)
697 * for queueing up response from struct se_subsystem_api->do_task()
699 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
701 struct se_task *task = list_entry(cmd->t_task_list.next,
702 struct se_task, t_list);
704 if (good) {
705 cmd->scsi_status = SAM_STAT_GOOD;
706 task->task_scsi_status = GOOD;
707 } else {
708 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
709 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
710 task->task_se_cmd->transport_error_status =
711 PYX_TRANSPORT_ILLEGAL_REQUEST;
714 transport_complete_task(task, good);
716 EXPORT_SYMBOL(transport_complete_sync_cache);
718 /* transport_complete_task():
720 * Called from interrupt and non interrupt context depending
721 * on the transport plugin.
723 void transport_complete_task(struct se_task *task, int success)
725 struct se_cmd *cmd = task->task_se_cmd;
726 struct se_device *dev = task->se_dev;
727 int t_state;
728 unsigned long flags;
729 #if 0
730 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
731 cmd->t_task_cdb[0], dev);
732 #endif
733 if (dev)
734 atomic_inc(&dev->depth_left);
736 spin_lock_irqsave(&cmd->t_state_lock, flags);
737 atomic_set(&task->task_active, 0);
740 * See if any sense data exists, if so set the TASK_SENSE flag.
741 * Also check for any other post completion work that needs to be
742 * done by the plugins.
744 if (dev && dev->transport->transport_complete) {
745 if (dev->transport->transport_complete(task) != 0) {
746 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
747 task->task_sense = 1;
748 success = 1;
753 * See if we are waiting for outstanding struct se_task
754 * to complete for an exception condition
756 if (atomic_read(&task->task_stop)) {
758 * Decrement cmd->t_se_count if this task had
759 * previously thrown its timeout exception handler.
761 if (atomic_read(&task->task_timeout)) {
762 atomic_dec(&cmd->t_se_count);
763 atomic_set(&task->task_timeout, 0);
765 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
767 complete(&task->task_stop_comp);
768 return;
771 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
772 * left counter to determine when the struct se_cmd is ready to be queued to
773 * the processing thread.
775 if (atomic_read(&task->task_timeout)) {
776 if (!atomic_dec_and_test(
777 &cmd->t_task_cdbs_timeout_left)) {
778 spin_unlock_irqrestore(&cmd->t_state_lock,
779 flags);
780 return;
782 t_state = TRANSPORT_COMPLETE_TIMEOUT;
783 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
785 transport_add_cmd_to_queue(cmd, t_state);
786 return;
788 atomic_dec(&cmd->t_task_cdbs_timeout_left);
791 * Decrement the outstanding t_task_cdbs_left count. The last
792 * struct se_task from struct se_cmd will complete itself into the
793 * device queue depending upon int success.
795 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
796 if (!success)
797 cmd->t_tasks_failed = 1;
799 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
800 return;
803 if (!success || cmd->t_tasks_failed) {
804 t_state = TRANSPORT_COMPLETE_FAILURE;
805 if (!task->task_error_status) {
806 task->task_error_status =
807 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
808 cmd->transport_error_status =
809 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
811 } else {
812 atomic_set(&cmd->t_transport_complete, 1);
813 t_state = TRANSPORT_COMPLETE_OK;
815 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
817 transport_add_cmd_to_queue(cmd, t_state);
819 EXPORT_SYMBOL(transport_complete_task);
822 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
823 * struct se_task list are ready to be added to the active execution list
824 * struct se_device
826 * Called with se_dev_t->execute_task_lock called.
828 static inline int transport_add_task_check_sam_attr(
829 struct se_task *task,
830 struct se_task *task_prev,
831 struct se_device *dev)
834 * No SAM Task attribute emulation enabled, add to tail of
835 * execution queue
837 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
838 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
839 return 0;
842 * HEAD_OF_QUEUE attribute for received CDB, which means
843 * the first task that is associated with a struct se_cmd goes to
844 * head of the struct se_device->execute_task_list, and task_prev
845 * after that for each subsequent task
847 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
848 list_add(&task->t_execute_list,
849 (task_prev != NULL) ?
850 &task_prev->t_execute_list :
851 &dev->execute_task_list);
853 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
854 " in execution queue\n",
855 task->task_se_cmd->t_task_cdb[0]);
856 return 1;
859 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
860 * transitioned from Dermant -> Active state, and are added to the end
861 * of the struct se_device->execute_task_list
863 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
864 return 0;
867 /* __transport_add_task_to_execute_queue():
869 * Called with se_dev_t->execute_task_lock called.
871 static void __transport_add_task_to_execute_queue(
872 struct se_task *task,
873 struct se_task *task_prev,
874 struct se_device *dev)
876 int head_of_queue;
878 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
879 atomic_inc(&dev->execute_tasks);
881 if (atomic_read(&task->task_state_active))
882 return;
884 * Determine if this task needs to go to HEAD_OF_QUEUE for the
885 * state list as well. Running with SAM Task Attribute emulation
886 * will always return head_of_queue == 0 here
888 if (head_of_queue)
889 list_add(&task->t_state_list, (task_prev) ?
890 &task_prev->t_state_list :
891 &dev->state_task_list);
892 else
893 list_add_tail(&task->t_state_list, &dev->state_task_list);
895 atomic_set(&task->task_state_active, 1);
897 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
899 task, dev);
902 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
904 struct se_device *dev;
905 struct se_task *task;
906 unsigned long flags;
908 spin_lock_irqsave(&cmd->t_state_lock, flags);
909 list_for_each_entry(task, &cmd->t_task_list, t_list) {
910 dev = task->se_dev;
912 if (atomic_read(&task->task_state_active))
913 continue;
915 spin_lock(&dev->execute_task_lock);
916 list_add_tail(&task->t_state_list, &dev->state_task_list);
917 atomic_set(&task->task_state_active, 1);
919 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
920 task->task_se_cmd->se_tfo->get_task_tag(
921 task->task_se_cmd), task, dev);
923 spin_unlock(&dev->execute_task_lock);
925 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
928 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
930 struct se_device *dev = cmd->se_dev;
931 struct se_task *task, *task_prev = NULL;
932 unsigned long flags;
934 spin_lock_irqsave(&dev->execute_task_lock, flags);
935 list_for_each_entry(task, &cmd->t_task_list, t_list) {
936 if (atomic_read(&task->task_execute_queue))
937 continue;
939 * __transport_add_task_to_execute_queue() handles the
940 * SAM Task Attribute emulation if enabled
942 __transport_add_task_to_execute_queue(task, task_prev, dev);
943 atomic_set(&task->task_execute_queue, 1);
944 task_prev = task;
946 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
949 /* transport_remove_task_from_execute_queue():
953 void transport_remove_task_from_execute_queue(
954 struct se_task *task,
955 struct se_device *dev)
957 unsigned long flags;
959 if (atomic_read(&task->task_execute_queue) == 0) {
960 dump_stack();
961 return;
964 spin_lock_irqsave(&dev->execute_task_lock, flags);
965 list_del(&task->t_execute_list);
966 atomic_set(&task->task_execute_queue, 0);
967 atomic_dec(&dev->execute_tasks);
968 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
972 * Handle QUEUE_FULL / -EAGAIN status
975 static void target_qf_do_work(struct work_struct *work)
977 struct se_device *dev = container_of(work, struct se_device,
978 qf_work_queue);
979 LIST_HEAD(qf_cmd_list);
980 struct se_cmd *cmd, *cmd_tmp;
982 spin_lock_irq(&dev->qf_cmd_lock);
983 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
984 spin_unlock_irq(&dev->qf_cmd_lock);
986 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
987 list_del(&cmd->se_qf_node);
988 atomic_dec(&dev->dev_qf_count);
989 smp_mb__after_atomic_dec();
991 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
992 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
993 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
994 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
995 : "UNKNOWN");
997 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
998 * has been added to head of queue
1000 transport_add_cmd_to_queue(cmd, cmd->t_state);
1004 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006 switch (cmd->data_direction) {
1007 case DMA_NONE:
1008 return "NONE";
1009 case DMA_FROM_DEVICE:
1010 return "READ";
1011 case DMA_TO_DEVICE:
1012 return "WRITE";
1013 case DMA_BIDIRECTIONAL:
1014 return "BIDI";
1015 default:
1016 break;
1019 return "UNKNOWN";
1022 void transport_dump_dev_state(
1023 struct se_device *dev,
1024 char *b,
1025 int *bl)
1027 *bl += sprintf(b + *bl, "Status: ");
1028 switch (dev->dev_status) {
1029 case TRANSPORT_DEVICE_ACTIVATED:
1030 *bl += sprintf(b + *bl, "ACTIVATED");
1031 break;
1032 case TRANSPORT_DEVICE_DEACTIVATED:
1033 *bl += sprintf(b + *bl, "DEACTIVATED");
1034 break;
1035 case TRANSPORT_DEVICE_SHUTDOWN:
1036 *bl += sprintf(b + *bl, "SHUTDOWN");
1037 break;
1038 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1039 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1040 *bl += sprintf(b + *bl, "OFFLINE");
1041 break;
1042 default:
1043 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1044 break;
1047 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1048 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1049 dev->queue_depth);
1050 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1051 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1052 *bl += sprintf(b + *bl, " ");
1055 /* transport_release_all_cmds():
1059 static void transport_release_all_cmds(struct se_device *dev)
1061 struct se_cmd *cmd, *tcmd;
1062 int bug_out = 0, t_state;
1063 unsigned long flags;
1065 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1066 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1067 se_queue_node) {
1068 t_state = cmd->t_state;
1069 list_del_init(&cmd->se_queue_node);
1070 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1071 flags);
1073 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1074 " t_state: %u directly\n",
1075 cmd->se_tfo->get_task_tag(cmd),
1076 cmd->se_tfo->get_cmd_state(cmd), t_state);
1078 transport_release_fe_cmd(cmd);
1079 bug_out = 1;
1081 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1083 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1084 #if 0
1085 if (bug_out)
1086 BUG();
1087 #endif
1090 void transport_dump_vpd_proto_id(
1091 struct t10_vpd *vpd,
1092 unsigned char *p_buf,
1093 int p_buf_len)
1095 unsigned char buf[VPD_TMP_BUF_SIZE];
1096 int len;
1098 memset(buf, 0, VPD_TMP_BUF_SIZE);
1099 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1101 switch (vpd->protocol_identifier) {
1102 case 0x00:
1103 sprintf(buf+len, "Fibre Channel\n");
1104 break;
1105 case 0x10:
1106 sprintf(buf+len, "Parallel SCSI\n");
1107 break;
1108 case 0x20:
1109 sprintf(buf+len, "SSA\n");
1110 break;
1111 case 0x30:
1112 sprintf(buf+len, "IEEE 1394\n");
1113 break;
1114 case 0x40:
1115 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1116 " Protocol\n");
1117 break;
1118 case 0x50:
1119 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1120 break;
1121 case 0x60:
1122 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1123 break;
1124 case 0x70:
1125 sprintf(buf+len, "Automation/Drive Interface Transport"
1126 " Protocol\n");
1127 break;
1128 case 0x80:
1129 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1130 break;
1131 default:
1132 sprintf(buf+len, "Unknown 0x%02x\n",
1133 vpd->protocol_identifier);
1134 break;
1137 if (p_buf)
1138 strncpy(p_buf, buf, p_buf_len);
1139 else
1140 pr_debug("%s", buf);
1143 void
1144 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1147 * Check if the Protocol Identifier Valid (PIV) bit is set..
1149 * from spc3r23.pdf section 7.5.1
1151 if (page_83[1] & 0x80) {
1152 vpd->protocol_identifier = (page_83[0] & 0xf0);
1153 vpd->protocol_identifier_set = 1;
1154 transport_dump_vpd_proto_id(vpd, NULL, 0);
1157 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1159 int transport_dump_vpd_assoc(
1160 struct t10_vpd *vpd,
1161 unsigned char *p_buf,
1162 int p_buf_len)
1164 unsigned char buf[VPD_TMP_BUF_SIZE];
1165 int ret = 0;
1166 int len;
1168 memset(buf, 0, VPD_TMP_BUF_SIZE);
1169 len = sprintf(buf, "T10 VPD Identifier Association: ");
1171 switch (vpd->association) {
1172 case 0x00:
1173 sprintf(buf+len, "addressed logical unit\n");
1174 break;
1175 case 0x10:
1176 sprintf(buf+len, "target port\n");
1177 break;
1178 case 0x20:
1179 sprintf(buf+len, "SCSI target device\n");
1180 break;
1181 default:
1182 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1183 ret = -EINVAL;
1184 break;
1187 if (p_buf)
1188 strncpy(p_buf, buf, p_buf_len);
1189 else
1190 pr_debug("%s", buf);
1192 return ret;
1195 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1198 * The VPD identification association..
1200 * from spc3r23.pdf Section 7.6.3.1 Table 297
1202 vpd->association = (page_83[1] & 0x30);
1203 return transport_dump_vpd_assoc(vpd, NULL, 0);
1205 EXPORT_SYMBOL(transport_set_vpd_assoc);
1207 int transport_dump_vpd_ident_type(
1208 struct t10_vpd *vpd,
1209 unsigned char *p_buf,
1210 int p_buf_len)
1212 unsigned char buf[VPD_TMP_BUF_SIZE];
1213 int ret = 0;
1214 int len;
1216 memset(buf, 0, VPD_TMP_BUF_SIZE);
1217 len = sprintf(buf, "T10 VPD Identifier Type: ");
1219 switch (vpd->device_identifier_type) {
1220 case 0x00:
1221 sprintf(buf+len, "Vendor specific\n");
1222 break;
1223 case 0x01:
1224 sprintf(buf+len, "T10 Vendor ID based\n");
1225 break;
1226 case 0x02:
1227 sprintf(buf+len, "EUI-64 based\n");
1228 break;
1229 case 0x03:
1230 sprintf(buf+len, "NAA\n");
1231 break;
1232 case 0x04:
1233 sprintf(buf+len, "Relative target port identifier\n");
1234 break;
1235 case 0x08:
1236 sprintf(buf+len, "SCSI name string\n");
1237 break;
1238 default:
1239 sprintf(buf+len, "Unsupported: 0x%02x\n",
1240 vpd->device_identifier_type);
1241 ret = -EINVAL;
1242 break;
1245 if (p_buf) {
1246 if (p_buf_len < strlen(buf)+1)
1247 return -EINVAL;
1248 strncpy(p_buf, buf, p_buf_len);
1249 } else {
1250 pr_debug("%s", buf);
1253 return ret;
1256 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1259 * The VPD identifier type..
1261 * from spc3r23.pdf Section 7.6.3.1 Table 298
1263 vpd->device_identifier_type = (page_83[1] & 0x0f);
1264 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1266 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1268 int transport_dump_vpd_ident(
1269 struct t10_vpd *vpd,
1270 unsigned char *p_buf,
1271 int p_buf_len)
1273 unsigned char buf[VPD_TMP_BUF_SIZE];
1274 int ret = 0;
1276 memset(buf, 0, VPD_TMP_BUF_SIZE);
1278 switch (vpd->device_identifier_code_set) {
1279 case 0x01: /* Binary */
1280 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1281 &vpd->device_identifier[0]);
1282 break;
1283 case 0x02: /* ASCII */
1284 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1285 &vpd->device_identifier[0]);
1286 break;
1287 case 0x03: /* UTF-8 */
1288 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1289 &vpd->device_identifier[0]);
1290 break;
1291 default:
1292 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1293 " 0x%02x", vpd->device_identifier_code_set);
1294 ret = -EINVAL;
1295 break;
1298 if (p_buf)
1299 strncpy(p_buf, buf, p_buf_len);
1300 else
1301 pr_debug("%s", buf);
1303 return ret;
1307 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1309 static const char hex_str[] = "0123456789abcdef";
1310 int j = 0, i = 4; /* offset to start of the identifer */
1313 * The VPD Code Set (encoding)
1315 * from spc3r23.pdf Section 7.6.3.1 Table 296
1317 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1318 switch (vpd->device_identifier_code_set) {
1319 case 0x01: /* Binary */
1320 vpd->device_identifier[j++] =
1321 hex_str[vpd->device_identifier_type];
1322 while (i < (4 + page_83[3])) {
1323 vpd->device_identifier[j++] =
1324 hex_str[(page_83[i] & 0xf0) >> 4];
1325 vpd->device_identifier[j++] =
1326 hex_str[page_83[i] & 0x0f];
1327 i++;
1329 break;
1330 case 0x02: /* ASCII */
1331 case 0x03: /* UTF-8 */
1332 while (i < (4 + page_83[3]))
1333 vpd->device_identifier[j++] = page_83[i++];
1334 break;
1335 default:
1336 break;
1339 return transport_dump_vpd_ident(vpd, NULL, 0);
1341 EXPORT_SYMBOL(transport_set_vpd_ident);
1343 static void core_setup_task_attr_emulation(struct se_device *dev)
1346 * If this device is from Target_Core_Mod/pSCSI, disable the
1347 * SAM Task Attribute emulation.
1349 * This is currently not available in upsream Linux/SCSI Target
1350 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1352 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1353 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1354 return;
1357 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1358 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1359 " device\n", dev->transport->name,
1360 dev->transport->get_device_rev(dev));
1363 static void scsi_dump_inquiry(struct se_device *dev)
1365 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1366 int i, device_type;
1368 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1370 pr_debug(" Vendor: ");
1371 for (i = 0; i < 8; i++)
1372 if (wwn->vendor[i] >= 0x20)
1373 pr_debug("%c", wwn->vendor[i]);
1374 else
1375 pr_debug(" ");
1377 pr_debug(" Model: ");
1378 for (i = 0; i < 16; i++)
1379 if (wwn->model[i] >= 0x20)
1380 pr_debug("%c", wwn->model[i]);
1381 else
1382 pr_debug(" ");
1384 pr_debug(" Revision: ");
1385 for (i = 0; i < 4; i++)
1386 if (wwn->revision[i] >= 0x20)
1387 pr_debug("%c", wwn->revision[i]);
1388 else
1389 pr_debug(" ");
1391 pr_debug("\n");
1393 device_type = dev->transport->get_device_type(dev);
1394 pr_debug(" Type: %s ", scsi_device_type(device_type));
1395 pr_debug(" ANSI SCSI revision: %02x\n",
1396 dev->transport->get_device_rev(dev));
1399 struct se_device *transport_add_device_to_core_hba(
1400 struct se_hba *hba,
1401 struct se_subsystem_api *transport,
1402 struct se_subsystem_dev *se_dev,
1403 u32 device_flags,
1404 void *transport_dev,
1405 struct se_dev_limits *dev_limits,
1406 const char *inquiry_prod,
1407 const char *inquiry_rev)
1409 int force_pt;
1410 struct se_device *dev;
1412 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1413 if (!dev) {
1414 pr_err("Unable to allocate memory for se_dev_t\n");
1415 return NULL;
1418 transport_init_queue_obj(&dev->dev_queue_obj);
1419 dev->dev_flags = device_flags;
1420 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1421 dev->dev_ptr = transport_dev;
1422 dev->se_hba = hba;
1423 dev->se_sub_dev = se_dev;
1424 dev->transport = transport;
1425 atomic_set(&dev->active_cmds, 0);
1426 INIT_LIST_HEAD(&dev->dev_list);
1427 INIT_LIST_HEAD(&dev->dev_sep_list);
1428 INIT_LIST_HEAD(&dev->dev_tmr_list);
1429 INIT_LIST_HEAD(&dev->execute_task_list);
1430 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1431 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1432 INIT_LIST_HEAD(&dev->state_task_list);
1433 INIT_LIST_HEAD(&dev->qf_cmd_list);
1434 spin_lock_init(&dev->execute_task_lock);
1435 spin_lock_init(&dev->delayed_cmd_lock);
1436 spin_lock_init(&dev->ordered_cmd_lock);
1437 spin_lock_init(&dev->state_task_lock);
1438 spin_lock_init(&dev->dev_alua_lock);
1439 spin_lock_init(&dev->dev_reservation_lock);
1440 spin_lock_init(&dev->dev_status_lock);
1441 spin_lock_init(&dev->dev_status_thr_lock);
1442 spin_lock_init(&dev->se_port_lock);
1443 spin_lock_init(&dev->se_tmr_lock);
1444 spin_lock_init(&dev->qf_cmd_lock);
1446 dev->queue_depth = dev_limits->queue_depth;
1447 atomic_set(&dev->depth_left, dev->queue_depth);
1448 atomic_set(&dev->dev_ordered_id, 0);
1450 se_dev_set_default_attribs(dev, dev_limits);
1452 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1453 dev->creation_time = get_jiffies_64();
1454 spin_lock_init(&dev->stats_lock);
1456 spin_lock(&hba->device_lock);
1457 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1458 hba->dev_count++;
1459 spin_unlock(&hba->device_lock);
1461 * Setup the SAM Task Attribute emulation for struct se_device
1463 core_setup_task_attr_emulation(dev);
1465 * Force PR and ALUA passthrough emulation with internal object use.
1467 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1469 * Setup the Reservations infrastructure for struct se_device
1471 core_setup_reservations(dev, force_pt);
1473 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1475 if (core_setup_alua(dev, force_pt) < 0)
1476 goto out;
1479 * Startup the struct se_device processing thread
1481 dev->process_thread = kthread_run(transport_processing_thread, dev,
1482 "LIO_%s", dev->transport->name);
1483 if (IS_ERR(dev->process_thread)) {
1484 pr_err("Unable to create kthread: LIO_%s\n",
1485 dev->transport->name);
1486 goto out;
1489 * Setup work_queue for QUEUE_FULL
1491 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1493 * Preload the initial INQUIRY const values if we are doing
1494 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1495 * passthrough because this is being provided by the backend LLD.
1496 * This is required so that transport_get_inquiry() copies these
1497 * originals once back into DEV_T10_WWN(dev) for the virtual device
1498 * setup.
1500 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1501 if (!inquiry_prod || !inquiry_rev) {
1502 pr_err("All non TCM/pSCSI plugins require"
1503 " INQUIRY consts\n");
1504 goto out;
1507 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1508 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1509 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1511 scsi_dump_inquiry(dev);
1513 return dev;
1514 out:
1515 kthread_stop(dev->process_thread);
1517 spin_lock(&hba->device_lock);
1518 list_del(&dev->dev_list);
1519 hba->dev_count--;
1520 spin_unlock(&hba->device_lock);
1522 se_release_vpd_for_dev(dev);
1524 kfree(dev);
1526 return NULL;
1528 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1530 /* transport_generic_prepare_cdb():
1532 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1533 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1534 * The point of this is since we are mapping iSCSI LUNs to
1535 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1536 * devices and HBAs for a loop.
1538 static inline void transport_generic_prepare_cdb(
1539 unsigned char *cdb)
1541 switch (cdb[0]) {
1542 case READ_10: /* SBC - RDProtect */
1543 case READ_12: /* SBC - RDProtect */
1544 case READ_16: /* SBC - RDProtect */
1545 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1546 case VERIFY: /* SBC - VRProtect */
1547 case VERIFY_16: /* SBC - VRProtect */
1548 case WRITE_VERIFY: /* SBC - VRProtect */
1549 case WRITE_VERIFY_12: /* SBC - VRProtect */
1550 break;
1551 default:
1552 cdb[1] &= 0x1f; /* clear logical unit number */
1553 break;
1557 static struct se_task *
1558 transport_generic_get_task(struct se_cmd *cmd,
1559 enum dma_data_direction data_direction)
1561 struct se_task *task;
1562 struct se_device *dev = cmd->se_dev;
1564 task = dev->transport->alloc_task(cmd->t_task_cdb);
1565 if (!task) {
1566 pr_err("Unable to allocate struct se_task\n");
1567 return NULL;
1570 INIT_LIST_HEAD(&task->t_list);
1571 INIT_LIST_HEAD(&task->t_execute_list);
1572 INIT_LIST_HEAD(&task->t_state_list);
1573 init_completion(&task->task_stop_comp);
1574 task->task_se_cmd = cmd;
1575 task->se_dev = dev;
1576 task->task_data_direction = data_direction;
1578 return task;
1581 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1584 * Used by fabric modules containing a local struct se_cmd within their
1585 * fabric dependent per I/O descriptor.
1587 void transport_init_se_cmd(
1588 struct se_cmd *cmd,
1589 struct target_core_fabric_ops *tfo,
1590 struct se_session *se_sess,
1591 u32 data_length,
1592 int data_direction,
1593 int task_attr,
1594 unsigned char *sense_buffer)
1596 INIT_LIST_HEAD(&cmd->se_lun_node);
1597 INIT_LIST_HEAD(&cmd->se_delayed_node);
1598 INIT_LIST_HEAD(&cmd->se_ordered_node);
1599 INIT_LIST_HEAD(&cmd->se_qf_node);
1600 INIT_LIST_HEAD(&cmd->se_queue_node);
1602 INIT_LIST_HEAD(&cmd->t_task_list);
1603 init_completion(&cmd->transport_lun_fe_stop_comp);
1604 init_completion(&cmd->transport_lun_stop_comp);
1605 init_completion(&cmd->t_transport_stop_comp);
1606 spin_lock_init(&cmd->t_state_lock);
1607 atomic_set(&cmd->transport_dev_active, 1);
1609 cmd->se_tfo = tfo;
1610 cmd->se_sess = se_sess;
1611 cmd->data_length = data_length;
1612 cmd->data_direction = data_direction;
1613 cmd->sam_task_attr = task_attr;
1614 cmd->sense_buffer = sense_buffer;
1616 EXPORT_SYMBOL(transport_init_se_cmd);
1618 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1621 * Check if SAM Task Attribute emulation is enabled for this
1622 * struct se_device storage object
1624 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625 return 0;
1627 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628 pr_debug("SAM Task Attribute ACA"
1629 " emulation is not supported\n");
1630 return -EINVAL;
1633 * Used to determine when ORDERED commands should go from
1634 * Dormant to Active status.
1636 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637 smp_mb__after_atomic_inc();
1638 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639 cmd->se_ordered_id, cmd->sam_task_attr,
1640 cmd->se_dev->transport->name);
1641 return 0;
1644 void transport_free_se_cmd(
1645 struct se_cmd *se_cmd)
1647 if (se_cmd->se_tmr_req)
1648 core_tmr_release_req(se_cmd->se_tmr_req);
1650 * Check and free any extended CDB buffer that was allocated
1652 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653 kfree(se_cmd->t_task_cdb);
1655 EXPORT_SYMBOL(transport_free_se_cmd);
1657 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1659 /* transport_generic_allocate_tasks():
1661 * Called from fabric RX Thread.
1663 int transport_generic_allocate_tasks(
1664 struct se_cmd *cmd,
1665 unsigned char *cdb)
1667 int ret;
1669 transport_generic_prepare_cdb(cdb);
1672 * This is needed for early exceptions.
1674 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1677 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678 * for VARIABLE_LENGTH_CMD
1680 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681 pr_err("Received SCSI CDB with command_size: %d that"
1682 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684 return -EINVAL;
1687 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688 * allocate the additional extended CDB buffer now.. Otherwise
1689 * setup the pointer from __t_task_cdb to t_task_cdb.
1691 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693 GFP_KERNEL);
1694 if (!cmd->t_task_cdb) {
1695 pr_err("Unable to allocate cmd->t_task_cdb"
1696 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697 scsi_command_size(cdb),
1698 (unsigned long)sizeof(cmd->__t_task_cdb));
1699 return -ENOMEM;
1701 } else
1702 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1704 * Copy the original CDB into cmd->
1706 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1708 * Setup the received CDB based on SCSI defined opcodes and
1709 * perform unit attention, persistent reservations and ALUA
1710 * checks for virtual device backends. The cmd->t_task_cdb
1711 * pointer is expected to be setup before we reach this point.
1713 ret = transport_generic_cmd_sequencer(cmd, cdb);
1714 if (ret < 0)
1715 return ret;
1717 * Check for SAM Task Attribute Emulation
1719 if (transport_check_alloc_task_attr(cmd) < 0) {
1720 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722 return -EINVAL;
1724 spin_lock(&cmd->se_lun->lun_sep_lock);
1725 if (cmd->se_lun->lun_sep)
1726 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727 spin_unlock(&cmd->se_lun->lun_sep_lock);
1728 return 0;
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1736 int transport_generic_handle_cdb(
1737 struct se_cmd *cmd)
1739 if (!cmd->se_lun) {
1740 dump_stack();
1741 pr_err("cmd->se_lun is NULL\n");
1742 return -EINVAL;
1745 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1746 return 0;
1748 EXPORT_SYMBOL(transport_generic_handle_cdb);
1750 static void transport_generic_request_failure(struct se_cmd *,
1751 struct se_device *, int, int);
1753 * Used by fabric module frontends to queue tasks directly.
1754 * Many only be used from process context only
1756 int transport_handle_cdb_direct(
1757 struct se_cmd *cmd)
1759 int ret;
1761 if (!cmd->se_lun) {
1762 dump_stack();
1763 pr_err("cmd->se_lun is NULL\n");
1764 return -EINVAL;
1766 if (in_interrupt()) {
1767 dump_stack();
1768 pr_err("transport_generic_handle_cdb cannot be called"
1769 " from interrupt context\n");
1770 return -EINVAL;
1773 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775 * in existing usage to ensure that outstanding descriptors are handled
1776 * correctly during shutdown via transport_generic_wait_for_tasks()
1778 * Also, we don't take cmd->t_state_lock here as we only expect
1779 * this to be called for initial descriptor submission.
1781 cmd->t_state = TRANSPORT_NEW_CMD;
1782 atomic_set(&cmd->t_transport_active, 1);
1784 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785 * so follow TRANSPORT_NEW_CMD processing thread context usage
1786 * and call transport_generic_request_failure() if necessary..
1788 ret = transport_generic_new_cmd(cmd);
1789 if (ret == -EAGAIN)
1790 return 0;
1791 else if (ret < 0) {
1792 cmd->transport_error_status = ret;
1793 transport_generic_request_failure(cmd, NULL, 0,
1794 (cmd->data_direction != DMA_TO_DEVICE));
1796 return 0;
1798 EXPORT_SYMBOL(transport_handle_cdb_direct);
1801 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803 * complete setup in TCM process context w/ TFO->new_cmd_map().
1805 int transport_generic_handle_cdb_map(
1806 struct se_cmd *cmd)
1808 if (!cmd->se_lun) {
1809 dump_stack();
1810 pr_err("cmd->se_lun is NULL\n");
1811 return -EINVAL;
1814 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1815 return 0;
1817 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1819 /* transport_generic_handle_data():
1823 int transport_generic_handle_data(
1824 struct se_cmd *cmd)
1827 * For the software fabric case, then we assume the nexus is being
1828 * failed/shutdown when signals are pending from the kthread context
1829 * caller, so we return a failure. For the HW target mode case running
1830 * in interrupt code, the signal_pending() check is skipped.
1832 if (!in_interrupt() && signal_pending(current))
1833 return -EPERM;
1835 * If the received CDB has aleady been ABORTED by the generic
1836 * target engine, we now call transport_check_aborted_status()
1837 * to queue any delated TASK_ABORTED status for the received CDB to the
1838 * fabric module as we are expecting no further incoming DATA OUT
1839 * sequences at this point.
1841 if (transport_check_aborted_status(cmd, 1) != 0)
1842 return 0;
1844 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1845 return 0;
1847 EXPORT_SYMBOL(transport_generic_handle_data);
1849 /* transport_generic_handle_tmr():
1853 int transport_generic_handle_tmr(
1854 struct se_cmd *cmd)
1857 * This is needed for early exceptions.
1859 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1861 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1862 return 0;
1864 EXPORT_SYMBOL(transport_generic_handle_tmr);
1866 void transport_generic_free_cmd_intr(
1867 struct se_cmd *cmd)
1869 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1871 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1873 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1875 struct se_task *task, *task_tmp;
1876 unsigned long flags;
1877 int ret = 0;
1879 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880 cmd->se_tfo->get_task_tag(cmd));
1883 * No tasks remain in the execution queue
1885 spin_lock_irqsave(&cmd->t_state_lock, flags);
1886 list_for_each_entry_safe(task, task_tmp,
1887 &cmd->t_task_list, t_list) {
1888 pr_debug("task_no[%d] - Processing task %p\n",
1889 task->task_no, task);
1891 * If the struct se_task has not been sent and is not active,
1892 * remove the struct se_task from the execution queue.
1894 if (!atomic_read(&task->task_sent) &&
1895 !atomic_read(&task->task_active)) {
1896 spin_unlock_irqrestore(&cmd->t_state_lock,
1897 flags);
1898 transport_remove_task_from_execute_queue(task,
1899 task->se_dev);
1901 pr_debug("task_no[%d] - Removed from execute queue\n",
1902 task->task_no);
1903 spin_lock_irqsave(&cmd->t_state_lock, flags);
1904 continue;
1908 * If the struct se_task is active, sleep until it is returned
1909 * from the plugin.
1911 if (atomic_read(&task->task_active)) {
1912 atomic_set(&task->task_stop, 1);
1913 spin_unlock_irqrestore(&cmd->t_state_lock,
1914 flags);
1916 pr_debug("task_no[%d] - Waiting to complete\n",
1917 task->task_no);
1918 wait_for_completion(&task->task_stop_comp);
1919 pr_debug("task_no[%d] - Stopped successfully\n",
1920 task->task_no);
1922 spin_lock_irqsave(&cmd->t_state_lock, flags);
1923 atomic_dec(&cmd->t_task_cdbs_left);
1925 atomic_set(&task->task_active, 0);
1926 atomic_set(&task->task_stop, 0);
1927 } else {
1928 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1929 ret++;
1932 __transport_stop_task_timer(task, &flags);
1934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1936 return ret;
1940 * Handle SAM-esque emulation for generic transport request failures.
1942 static void transport_generic_request_failure(
1943 struct se_cmd *cmd,
1944 struct se_device *dev,
1945 int complete,
1946 int sc)
1948 int ret = 0;
1950 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952 cmd->t_task_cdb[0]);
1953 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954 " %d/%d transport_error_status: %d\n",
1955 cmd->se_tfo->get_cmd_state(cmd),
1956 cmd->t_state, cmd->deferred_t_state,
1957 cmd->transport_error_status);
1958 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960 " t_transport_active: %d t_transport_stop: %d"
1961 " t_transport_sent: %d\n", cmd->t_task_list_num,
1962 atomic_read(&cmd->t_task_cdbs_left),
1963 atomic_read(&cmd->t_task_cdbs_sent),
1964 atomic_read(&cmd->t_task_cdbs_ex_left),
1965 atomic_read(&cmd->t_transport_active),
1966 atomic_read(&cmd->t_transport_stop),
1967 atomic_read(&cmd->t_transport_sent));
1969 transport_stop_all_task_timers(cmd);
1971 if (dev)
1972 atomic_inc(&dev->depth_left);
1974 * For SAM Task Attribute emulation for failed struct se_cmd
1976 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977 transport_complete_task_attr(cmd);
1979 if (complete) {
1980 transport_direct_request_timeout(cmd);
1981 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1984 switch (cmd->transport_error_status) {
1985 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1986 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1987 break;
1988 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1989 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1990 break;
1991 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1992 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1993 break;
1994 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1995 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1996 break;
1997 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1998 if (!sc)
1999 transport_new_cmd_failure(cmd);
2001 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002 * we force this session to fall back to session
2003 * recovery.
2005 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2006 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2008 goto check_stop;
2009 case PYX_TRANSPORT_LU_COMM_FAILURE:
2010 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2011 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2012 break;
2013 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2014 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2015 break;
2016 case PYX_TRANSPORT_WRITE_PROTECTED:
2017 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2018 break;
2019 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2021 * No SENSE Data payload for this case, set SCSI Status
2022 * and queue the response to $FABRIC_MOD.
2024 * Uses linux/include/scsi/scsi.h SAM status codes defs
2026 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2028 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2030 * CONFLICT STATUS.
2032 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2034 if (cmd->se_sess &&
2035 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2036 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2037 cmd->orig_fe_lun, 0x2C,
2038 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2040 ret = cmd->se_tfo->queue_status(cmd);
2041 if (ret == -EAGAIN)
2042 goto queue_full;
2043 goto check_stop;
2044 case PYX_TRANSPORT_USE_SENSE_REASON:
2046 * struct se_cmd->scsi_sense_reason already set
2048 break;
2049 default:
2050 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2051 cmd->t_task_cdb[0],
2052 cmd->transport_error_status);
2053 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2054 break;
2057 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2058 * make the call to transport_send_check_condition_and_sense()
2059 * directly. Otherwise expect the fabric to make the call to
2060 * transport_send_check_condition_and_sense() after handling
2061 * possible unsoliticied write data payloads.
2063 if (!sc && !cmd->se_tfo->new_cmd_map)
2064 transport_new_cmd_failure(cmd);
2065 else {
2066 ret = transport_send_check_condition_and_sense(cmd,
2067 cmd->scsi_sense_reason, 0);
2068 if (ret == -EAGAIN)
2069 goto queue_full;
2072 check_stop:
2073 transport_lun_remove_cmd(cmd);
2074 if (!transport_cmd_check_stop_to_fabric(cmd))
2076 return;
2078 queue_full:
2079 cmd->t_state = TRANSPORT_COMPLETE_OK;
2080 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2083 static void transport_direct_request_timeout(struct se_cmd *cmd)
2085 unsigned long flags;
2087 spin_lock_irqsave(&cmd->t_state_lock, flags);
2088 if (!atomic_read(&cmd->t_transport_timeout)) {
2089 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2090 return;
2092 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094 return;
2097 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2098 &cmd->t_se_count);
2099 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2102 static void transport_generic_request_timeout(struct se_cmd *cmd)
2104 unsigned long flags;
2107 * Reset cmd->t_se_count to allow transport_generic_remove()
2108 * to allow last call to free memory resources.
2110 spin_lock_irqsave(&cmd->t_state_lock, flags);
2111 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2112 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2114 atomic_sub(tmp, &cmd->t_se_count);
2116 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2118 transport_generic_remove(cmd, 0);
2121 static inline u32 transport_lba_21(unsigned char *cdb)
2123 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2126 static inline u32 transport_lba_32(unsigned char *cdb)
2128 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2131 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2133 unsigned int __v1, __v2;
2135 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2136 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2138 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2142 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2144 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2146 unsigned int __v1, __v2;
2148 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2149 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2151 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2154 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2156 unsigned long flags;
2158 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2159 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2160 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2164 * Called from interrupt context.
2166 static void transport_task_timeout_handler(unsigned long data)
2168 struct se_task *task = (struct se_task *)data;
2169 struct se_cmd *cmd = task->task_se_cmd;
2170 unsigned long flags;
2172 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2174 spin_lock_irqsave(&cmd->t_state_lock, flags);
2175 if (task->task_flags & TF_STOP) {
2176 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2177 return;
2179 task->task_flags &= ~TF_RUNNING;
2182 * Determine if transport_complete_task() has already been called.
2184 if (!atomic_read(&task->task_active)) {
2185 pr_debug("transport task: %p cmd: %p timeout task_active"
2186 " == 0\n", task, cmd);
2187 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188 return;
2191 atomic_inc(&cmd->t_se_count);
2192 atomic_inc(&cmd->t_transport_timeout);
2193 cmd->t_tasks_failed = 1;
2195 atomic_set(&task->task_timeout, 1);
2196 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2197 task->task_scsi_status = 1;
2199 if (atomic_read(&task->task_stop)) {
2200 pr_debug("transport task: %p cmd: %p timeout task_stop"
2201 " == 1\n", task, cmd);
2202 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2203 complete(&task->task_stop_comp);
2204 return;
2207 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2208 pr_debug("transport task: %p cmd: %p timeout non zero"
2209 " t_task_cdbs_left\n", task, cmd);
2210 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2211 return;
2213 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2214 task, cmd);
2216 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2217 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2219 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2223 * Called with cmd->t_state_lock held.
2225 static void transport_start_task_timer(struct se_task *task)
2227 struct se_device *dev = task->se_dev;
2228 int timeout;
2230 if (task->task_flags & TF_RUNNING)
2231 return;
2233 * If the task_timeout is disabled, exit now.
2235 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2236 if (!timeout)
2237 return;
2239 init_timer(&task->task_timer);
2240 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2241 task->task_timer.data = (unsigned long) task;
2242 task->task_timer.function = transport_task_timeout_handler;
2244 task->task_flags |= TF_RUNNING;
2245 add_timer(&task->task_timer);
2246 #if 0
2247 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2248 " %d\n", task->task_se_cmd, task, timeout);
2249 #endif
2253 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2255 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2257 struct se_cmd *cmd = task->task_se_cmd;
2259 if (!task->task_flags & TF_RUNNING)
2260 return;
2262 task->task_flags |= TF_STOP;
2263 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2265 del_timer_sync(&task->task_timer);
2267 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2268 task->task_flags &= ~TF_RUNNING;
2269 task->task_flags &= ~TF_STOP;
2272 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2274 struct se_task *task = NULL, *task_tmp;
2275 unsigned long flags;
2277 spin_lock_irqsave(&cmd->t_state_lock, flags);
2278 list_for_each_entry_safe(task, task_tmp,
2279 &cmd->t_task_list, t_list)
2280 __transport_stop_task_timer(task, &flags);
2281 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2284 static inline int transport_tcq_window_closed(struct se_device *dev)
2286 if (dev->dev_tcq_window_closed++ <
2287 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2288 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2289 } else
2290 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2292 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2293 return 0;
2297 * Called from Fabric Module context from transport_execute_tasks()
2299 * The return of this function determins if the tasks from struct se_cmd
2300 * get added to the execution queue in transport_execute_tasks(),
2301 * or are added to the delayed or ordered lists here.
2303 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2305 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2306 return 1;
2308 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2309 * to allow the passed struct se_cmd list of tasks to the front of the list.
2311 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2312 atomic_inc(&cmd->se_dev->dev_hoq_count);
2313 smp_mb__after_atomic_inc();
2314 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2315 " 0x%02x, se_ordered_id: %u\n",
2316 cmd->t_task_cdb[0],
2317 cmd->se_ordered_id);
2318 return 1;
2319 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2320 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2321 list_add_tail(&cmd->se_ordered_node,
2322 &cmd->se_dev->ordered_cmd_list);
2323 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2325 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2326 smp_mb__after_atomic_inc();
2328 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2329 " list, se_ordered_id: %u\n",
2330 cmd->t_task_cdb[0],
2331 cmd->se_ordered_id);
2333 * Add ORDERED command to tail of execution queue if
2334 * no other older commands exist that need to be
2335 * completed first.
2337 if (!atomic_read(&cmd->se_dev->simple_cmds))
2338 return 1;
2339 } else {
2341 * For SIMPLE and UNTAGGED Task Attribute commands
2343 atomic_inc(&cmd->se_dev->simple_cmds);
2344 smp_mb__after_atomic_inc();
2347 * Otherwise if one or more outstanding ORDERED task attribute exist,
2348 * add the dormant task(s) built for the passed struct se_cmd to the
2349 * execution queue and become in Active state for this struct se_device.
2351 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2353 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2354 * will be drained upon completion of HEAD_OF_QUEUE task.
2356 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2357 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2358 list_add_tail(&cmd->se_delayed_node,
2359 &cmd->se_dev->delayed_cmd_list);
2360 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2362 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2363 " delayed CMD list, se_ordered_id: %u\n",
2364 cmd->t_task_cdb[0], cmd->sam_task_attr,
2365 cmd->se_ordered_id);
2367 * Return zero to let transport_execute_tasks() know
2368 * not to add the delayed tasks to the execution list.
2370 return 0;
2373 * Otherwise, no ORDERED task attributes exist..
2375 return 1;
2379 * Called from fabric module context in transport_generic_new_cmd() and
2380 * transport_generic_process_write()
2382 static int transport_execute_tasks(struct se_cmd *cmd)
2384 int add_tasks;
2386 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2387 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2388 transport_generic_request_failure(cmd, NULL, 0, 1);
2389 return 0;
2393 * Call transport_cmd_check_stop() to see if a fabric exception
2394 * has occurred that prevents execution.
2396 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2398 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2399 * attribute for the tasks of the received struct se_cmd CDB
2401 add_tasks = transport_execute_task_attr(cmd);
2402 if (!add_tasks)
2403 goto execute_tasks;
2405 * This calls transport_add_tasks_from_cmd() to handle
2406 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2407 * (if enabled) in __transport_add_task_to_execute_queue() and
2408 * transport_add_task_check_sam_attr().
2410 transport_add_tasks_from_cmd(cmd);
2413 * Kick the execution queue for the cmd associated struct se_device
2414 * storage object.
2416 execute_tasks:
2417 __transport_execute_tasks(cmd->se_dev);
2418 return 0;
2422 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2423 * from struct se_device->execute_task_list and
2425 * Called from transport_processing_thread()
2427 static int __transport_execute_tasks(struct se_device *dev)
2429 int error;
2430 struct se_cmd *cmd = NULL;
2431 struct se_task *task = NULL;
2432 unsigned long flags;
2435 * Check if there is enough room in the device and HBA queue to send
2436 * struct se_tasks to the selected transport.
2438 check_depth:
2439 if (!atomic_read(&dev->depth_left))
2440 return transport_tcq_window_closed(dev);
2442 dev->dev_tcq_window_closed = 0;
2444 spin_lock_irq(&dev->execute_task_lock);
2445 if (list_empty(&dev->execute_task_list)) {
2446 spin_unlock_irq(&dev->execute_task_lock);
2447 return 0;
2449 task = list_first_entry(&dev->execute_task_list,
2450 struct se_task, t_execute_list);
2451 list_del(&task->t_execute_list);
2452 atomic_set(&task->task_execute_queue, 0);
2453 atomic_dec(&dev->execute_tasks);
2454 spin_unlock_irq(&dev->execute_task_lock);
2456 atomic_dec(&dev->depth_left);
2458 cmd = task->task_se_cmd;
2460 spin_lock_irqsave(&cmd->t_state_lock, flags);
2461 atomic_set(&task->task_active, 1);
2462 atomic_set(&task->task_sent, 1);
2463 atomic_inc(&cmd->t_task_cdbs_sent);
2465 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2466 cmd->t_task_list_num)
2467 atomic_set(&cmd->transport_sent, 1);
2469 transport_start_task_timer(task);
2470 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2472 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2473 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2474 * struct se_subsystem_api->do_task() caller below.
2476 if (cmd->transport_emulate_cdb) {
2477 error = cmd->transport_emulate_cdb(cmd);
2478 if (error != 0) {
2479 cmd->transport_error_status = error;
2480 atomic_set(&task->task_active, 0);
2481 atomic_set(&cmd->transport_sent, 0);
2482 transport_stop_tasks_for_cmd(cmd);
2483 transport_generic_request_failure(cmd, dev, 0, 1);
2484 goto check_depth;
2487 * Handle the successful completion for transport_emulate_cdb()
2488 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2489 * Otherwise the caller is expected to complete the task with
2490 * proper status.
2492 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2493 cmd->scsi_status = SAM_STAT_GOOD;
2494 task->task_scsi_status = GOOD;
2495 transport_complete_task(task, 1);
2497 } else {
2499 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2500 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2501 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2502 * LUN emulation code.
2504 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2505 * call ->do_task() directly and let the underlying TCM subsystem plugin
2506 * code handle the CDB emulation.
2508 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2509 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2510 error = transport_emulate_control_cdb(task);
2511 else
2512 error = dev->transport->do_task(task);
2514 if (error != 0) {
2515 cmd->transport_error_status = error;
2516 atomic_set(&task->task_active, 0);
2517 atomic_set(&cmd->transport_sent, 0);
2518 transport_stop_tasks_for_cmd(cmd);
2519 transport_generic_request_failure(cmd, dev, 0, 1);
2523 goto check_depth;
2525 return 0;
2528 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2530 unsigned long flags;
2532 * Any unsolicited data will get dumped for failed command inside of
2533 * the fabric plugin
2535 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2536 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2537 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2541 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2543 static inline u32 transport_get_sectors_6(
2544 unsigned char *cdb,
2545 struct se_cmd *cmd,
2546 int *ret)
2548 struct se_device *dev = cmd->se_dev;
2551 * Assume TYPE_DISK for non struct se_device objects.
2552 * Use 8-bit sector value.
2554 if (!dev)
2555 goto type_disk;
2558 * Use 24-bit allocation length for TYPE_TAPE.
2560 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2561 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2564 * Everything else assume TYPE_DISK Sector CDB location.
2565 * Use 8-bit sector value. SBC-3 says:
2567 * A TRANSFER LENGTH field set to zero specifies that 256
2568 * logical blocks shall be written. Any other value
2569 * specifies the number of logical blocks that shall be
2570 * written.
2572 type_disk:
2573 return cdb[4] ? : 256;
2576 static inline u32 transport_get_sectors_10(
2577 unsigned char *cdb,
2578 struct se_cmd *cmd,
2579 int *ret)
2581 struct se_device *dev = cmd->se_dev;
2584 * Assume TYPE_DISK for non struct se_device objects.
2585 * Use 16-bit sector value.
2587 if (!dev)
2588 goto type_disk;
2591 * XXX_10 is not defined in SSC, throw an exception
2593 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2594 *ret = -EINVAL;
2595 return 0;
2599 * Everything else assume TYPE_DISK Sector CDB location.
2600 * Use 16-bit sector value.
2602 type_disk:
2603 return (u32)(cdb[7] << 8) + cdb[8];
2606 static inline u32 transport_get_sectors_12(
2607 unsigned char *cdb,
2608 struct se_cmd *cmd,
2609 int *ret)
2611 struct se_device *dev = cmd->se_dev;
2614 * Assume TYPE_DISK for non struct se_device objects.
2615 * Use 32-bit sector value.
2617 if (!dev)
2618 goto type_disk;
2621 * XXX_12 is not defined in SSC, throw an exception
2623 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2624 *ret = -EINVAL;
2625 return 0;
2629 * Everything else assume TYPE_DISK Sector CDB location.
2630 * Use 32-bit sector value.
2632 type_disk:
2633 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2636 static inline u32 transport_get_sectors_16(
2637 unsigned char *cdb,
2638 struct se_cmd *cmd,
2639 int *ret)
2641 struct se_device *dev = cmd->se_dev;
2644 * Assume TYPE_DISK for non struct se_device objects.
2645 * Use 32-bit sector value.
2647 if (!dev)
2648 goto type_disk;
2651 * Use 24-bit allocation length for TYPE_TAPE.
2653 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2654 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2656 type_disk:
2657 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2658 (cdb[12] << 8) + cdb[13];
2662 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2664 static inline u32 transport_get_sectors_32(
2665 unsigned char *cdb,
2666 struct se_cmd *cmd,
2667 int *ret)
2670 * Assume TYPE_DISK for non struct se_device objects.
2671 * Use 32-bit sector value.
2673 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2674 (cdb[30] << 8) + cdb[31];
2678 static inline u32 transport_get_size(
2679 u32 sectors,
2680 unsigned char *cdb,
2681 struct se_cmd *cmd)
2683 struct se_device *dev = cmd->se_dev;
2685 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2686 if (cdb[1] & 1) { /* sectors */
2687 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2688 } else /* bytes */
2689 return sectors;
2691 #if 0
2692 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2693 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2694 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2695 dev->transport->name);
2696 #endif
2697 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2700 static void transport_xor_callback(struct se_cmd *cmd)
2702 unsigned char *buf, *addr;
2703 struct scatterlist *sg;
2704 unsigned int offset;
2705 int i;
2706 int count;
2708 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2710 * 1) read the specified logical block(s);
2711 * 2) transfer logical blocks from the data-out buffer;
2712 * 3) XOR the logical blocks transferred from the data-out buffer with
2713 * the logical blocks read, storing the resulting XOR data in a buffer;
2714 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2715 * blocks transferred from the data-out buffer; and
2716 * 5) transfer the resulting XOR data to the data-in buffer.
2718 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2719 if (!buf) {
2720 pr_err("Unable to allocate xor_callback buf\n");
2721 return;
2724 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2725 * into the locally allocated *buf
2727 sg_copy_to_buffer(cmd->t_data_sg,
2728 cmd->t_data_nents,
2729 buf,
2730 cmd->data_length);
2733 * Now perform the XOR against the BIDI read memory located at
2734 * cmd->t_mem_bidi_list
2737 offset = 0;
2738 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2739 addr = kmap_atomic(sg_page(sg), KM_USER0);
2740 if (!addr)
2741 goto out;
2743 for (i = 0; i < sg->length; i++)
2744 *(addr + sg->offset + i) ^= *(buf + offset + i);
2746 offset += sg->length;
2747 kunmap_atomic(addr, KM_USER0);
2750 out:
2751 kfree(buf);
2755 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2757 static int transport_get_sense_data(struct se_cmd *cmd)
2759 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2760 struct se_device *dev;
2761 struct se_task *task = NULL, *task_tmp;
2762 unsigned long flags;
2763 u32 offset = 0;
2765 WARN_ON(!cmd->se_lun);
2767 spin_lock_irqsave(&cmd->t_state_lock, flags);
2768 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2769 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2770 return 0;
2773 list_for_each_entry_safe(task, task_tmp,
2774 &cmd->t_task_list, t_list) {
2776 if (!task->task_sense)
2777 continue;
2779 dev = task->se_dev;
2780 if (!dev)
2781 continue;
2783 if (!dev->transport->get_sense_buffer) {
2784 pr_err("dev->transport->get_sense_buffer"
2785 " is NULL\n");
2786 continue;
2789 sense_buffer = dev->transport->get_sense_buffer(task);
2790 if (!sense_buffer) {
2791 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2792 " sense buffer for task with sense\n",
2793 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2794 continue;
2796 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2798 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2799 TRANSPORT_SENSE_BUFFER);
2801 memcpy(&buffer[offset], sense_buffer,
2802 TRANSPORT_SENSE_BUFFER);
2803 cmd->scsi_status = task->task_scsi_status;
2804 /* Automatically padded */
2805 cmd->scsi_sense_length =
2806 (TRANSPORT_SENSE_BUFFER + offset);
2808 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2809 " and sense\n",
2810 dev->se_hba->hba_id, dev->transport->name,
2811 cmd->scsi_status);
2812 return 0;
2814 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2816 return -1;
2819 static int
2820 transport_handle_reservation_conflict(struct se_cmd *cmd)
2822 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2823 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2824 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2825 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2827 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2828 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2829 * CONFLICT STATUS.
2831 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2833 if (cmd->se_sess &&
2834 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2835 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2836 cmd->orig_fe_lun, 0x2C,
2837 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2838 return -EINVAL;
2841 static inline long long transport_dev_end_lba(struct se_device *dev)
2843 return dev->transport->get_blocks(dev) + 1;
2846 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2848 struct se_device *dev = cmd->se_dev;
2849 u32 sectors;
2851 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2852 return 0;
2854 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2856 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2857 pr_err("LBA: %llu Sectors: %u exceeds"
2858 " transport_dev_end_lba(): %llu\n",
2859 cmd->t_task_lba, sectors,
2860 transport_dev_end_lba(dev));
2861 return -EINVAL;
2864 return 0;
2867 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2870 * Determine if the received WRITE_SAME is used to for direct
2871 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2872 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2873 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2875 int passthrough = (dev->transport->transport_type ==
2876 TRANSPORT_PLUGIN_PHBA_PDEV);
2878 if (!passthrough) {
2879 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2880 pr_err("WRITE_SAME PBDATA and LBDATA"
2881 " bits not supported for Block Discard"
2882 " Emulation\n");
2883 return -ENOSYS;
2886 * Currently for the emulated case we only accept
2887 * tpws with the UNMAP=1 bit set.
2889 if (!(flags[0] & 0x08)) {
2890 pr_err("WRITE_SAME w/o UNMAP bit not"
2891 " supported for Block Discard Emulation\n");
2892 return -ENOSYS;
2896 return 0;
2899 /* transport_generic_cmd_sequencer():
2901 * Generic Command Sequencer that should work for most DAS transport
2902 * drivers.
2904 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2905 * RX Thread.
2907 * FIXME: Need to support other SCSI OPCODES where as well.
2909 static int transport_generic_cmd_sequencer(
2910 struct se_cmd *cmd,
2911 unsigned char *cdb)
2913 struct se_device *dev = cmd->se_dev;
2914 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2915 int ret = 0, sector_ret = 0, passthrough;
2916 u32 sectors = 0, size = 0, pr_reg_type = 0;
2917 u16 service_action;
2918 u8 alua_ascq = 0;
2920 * Check for an existing UNIT ATTENTION condition
2922 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2923 cmd->transport_wait_for_tasks =
2924 &transport_nop_wait_for_tasks;
2925 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2926 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2927 return -EINVAL;
2930 * Check status of Asymmetric Logical Unit Assignment port
2932 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2933 if (ret != 0) {
2934 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2936 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2937 * The ALUA additional sense code qualifier (ASCQ) is determined
2938 * by the ALUA primary or secondary access state..
2940 if (ret > 0) {
2941 #if 0
2942 pr_debug("[%s]: ALUA TG Port not available,"
2943 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2944 cmd->se_tfo->get_fabric_name(), alua_ascq);
2945 #endif
2946 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2947 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2948 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2949 return -EINVAL;
2951 goto out_invalid_cdb_field;
2954 * Check status for SPC-3 Persistent Reservations
2956 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2957 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2958 cmd, cdb, pr_reg_type) != 0)
2959 return transport_handle_reservation_conflict(cmd);
2961 * This means the CDB is allowed for the SCSI Initiator port
2962 * when said port is *NOT* holding the legacy SPC-2 or
2963 * SPC-3 Persistent Reservation.
2967 switch (cdb[0]) {
2968 case READ_6:
2969 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2970 if (sector_ret)
2971 goto out_unsupported_cdb;
2972 size = transport_get_size(sectors, cdb, cmd);
2973 cmd->transport_split_cdb = &split_cdb_XX_6;
2974 cmd->t_task_lba = transport_lba_21(cdb);
2975 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2976 break;
2977 case READ_10:
2978 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2979 if (sector_ret)
2980 goto out_unsupported_cdb;
2981 size = transport_get_size(sectors, cdb, cmd);
2982 cmd->transport_split_cdb = &split_cdb_XX_10;
2983 cmd->t_task_lba = transport_lba_32(cdb);
2984 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2985 break;
2986 case READ_12:
2987 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2988 if (sector_ret)
2989 goto out_unsupported_cdb;
2990 size = transport_get_size(sectors, cdb, cmd);
2991 cmd->transport_split_cdb = &split_cdb_XX_12;
2992 cmd->t_task_lba = transport_lba_32(cdb);
2993 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2994 break;
2995 case READ_16:
2996 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2997 if (sector_ret)
2998 goto out_unsupported_cdb;
2999 size = transport_get_size(sectors, cdb, cmd);
3000 cmd->transport_split_cdb = &split_cdb_XX_16;
3001 cmd->t_task_lba = transport_lba_64(cdb);
3002 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3003 break;
3004 case WRITE_6:
3005 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3006 if (sector_ret)
3007 goto out_unsupported_cdb;
3008 size = transport_get_size(sectors, cdb, cmd);
3009 cmd->transport_split_cdb = &split_cdb_XX_6;
3010 cmd->t_task_lba = transport_lba_21(cdb);
3011 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3012 break;
3013 case WRITE_10:
3014 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3015 if (sector_ret)
3016 goto out_unsupported_cdb;
3017 size = transport_get_size(sectors, cdb, cmd);
3018 cmd->transport_split_cdb = &split_cdb_XX_10;
3019 cmd->t_task_lba = transport_lba_32(cdb);
3020 cmd->t_tasks_fua = (cdb[1] & 0x8);
3021 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3022 break;
3023 case WRITE_12:
3024 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3025 if (sector_ret)
3026 goto out_unsupported_cdb;
3027 size = transport_get_size(sectors, cdb, cmd);
3028 cmd->transport_split_cdb = &split_cdb_XX_12;
3029 cmd->t_task_lba = transport_lba_32(cdb);
3030 cmd->t_tasks_fua = (cdb[1] & 0x8);
3031 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3032 break;
3033 case WRITE_16:
3034 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3035 if (sector_ret)
3036 goto out_unsupported_cdb;
3037 size = transport_get_size(sectors, cdb, cmd);
3038 cmd->transport_split_cdb = &split_cdb_XX_16;
3039 cmd->t_task_lba = transport_lba_64(cdb);
3040 cmd->t_tasks_fua = (cdb[1] & 0x8);
3041 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3042 break;
3043 case XDWRITEREAD_10:
3044 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3045 !(cmd->t_tasks_bidi))
3046 goto out_invalid_cdb_field;
3047 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3048 if (sector_ret)
3049 goto out_unsupported_cdb;
3050 size = transport_get_size(sectors, cdb, cmd);
3051 cmd->transport_split_cdb = &split_cdb_XX_10;
3052 cmd->t_task_lba = transport_lba_32(cdb);
3053 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3054 passthrough = (dev->transport->transport_type ==
3055 TRANSPORT_PLUGIN_PHBA_PDEV);
3057 * Skip the remaining assignments for TCM/PSCSI passthrough
3059 if (passthrough)
3060 break;
3062 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3064 cmd->transport_complete_callback = &transport_xor_callback;
3065 cmd->t_tasks_fua = (cdb[1] & 0x8);
3066 break;
3067 case VARIABLE_LENGTH_CMD:
3068 service_action = get_unaligned_be16(&cdb[8]);
3070 * Determine if this is TCM/PSCSI device and we should disable
3071 * internal emulation for this CDB.
3073 passthrough = (dev->transport->transport_type ==
3074 TRANSPORT_PLUGIN_PHBA_PDEV);
3076 switch (service_action) {
3077 case XDWRITEREAD_32:
3078 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3079 if (sector_ret)
3080 goto out_unsupported_cdb;
3081 size = transport_get_size(sectors, cdb, cmd);
3083 * Use WRITE_32 and READ_32 opcodes for the emulated
3084 * XDWRITE_READ_32 logic.
3086 cmd->transport_split_cdb = &split_cdb_XX_32;
3087 cmd->t_task_lba = transport_lba_64_ext(cdb);
3088 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3091 * Skip the remaining assignments for TCM/PSCSI passthrough
3093 if (passthrough)
3094 break;
3097 * Setup BIDI XOR callback to be run during
3098 * transport_generic_complete_ok()
3100 cmd->transport_complete_callback = &transport_xor_callback;
3101 cmd->t_tasks_fua = (cdb[10] & 0x8);
3102 break;
3103 case WRITE_SAME_32:
3104 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3105 if (sector_ret)
3106 goto out_unsupported_cdb;
3108 if (sectors)
3109 size = transport_get_size(1, cdb, cmd);
3110 else {
3111 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3112 " supported\n");
3113 goto out_invalid_cdb_field;
3116 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3117 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3119 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3120 goto out_invalid_cdb_field;
3122 break;
3123 default:
3124 pr_err("VARIABLE_LENGTH_CMD service action"
3125 " 0x%04x not supported\n", service_action);
3126 goto out_unsupported_cdb;
3128 break;
3129 case MAINTENANCE_IN:
3130 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3131 /* MAINTENANCE_IN from SCC-2 */
3133 * Check for emulated MI_REPORT_TARGET_PGS.
3135 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3136 cmd->transport_emulate_cdb =
3137 (su_dev->t10_alua.alua_type ==
3138 SPC3_ALUA_EMULATED) ?
3139 core_emulate_report_target_port_groups :
3140 NULL;
3142 size = (cdb[6] << 24) | (cdb[7] << 16) |
3143 (cdb[8] << 8) | cdb[9];
3144 } else {
3145 /* GPCMD_SEND_KEY from multi media commands */
3146 size = (cdb[8] << 8) + cdb[9];
3148 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3149 break;
3150 case MODE_SELECT:
3151 size = cdb[4];
3152 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153 break;
3154 case MODE_SELECT_10:
3155 size = (cdb[7] << 8) + cdb[8];
3156 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3157 break;
3158 case MODE_SENSE:
3159 size = cdb[4];
3160 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3161 break;
3162 case MODE_SENSE_10:
3163 case GPCMD_READ_BUFFER_CAPACITY:
3164 case GPCMD_SEND_OPC:
3165 case LOG_SELECT:
3166 case LOG_SENSE:
3167 size = (cdb[7] << 8) + cdb[8];
3168 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3169 break;
3170 case READ_BLOCK_LIMITS:
3171 size = READ_BLOCK_LEN;
3172 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3173 break;
3174 case GPCMD_GET_CONFIGURATION:
3175 case GPCMD_READ_FORMAT_CAPACITIES:
3176 case GPCMD_READ_DISC_INFO:
3177 case GPCMD_READ_TRACK_RZONE_INFO:
3178 size = (cdb[7] << 8) + cdb[8];
3179 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3180 break;
3181 case PERSISTENT_RESERVE_IN:
3182 case PERSISTENT_RESERVE_OUT:
3183 cmd->transport_emulate_cdb =
3184 (su_dev->t10_pr.res_type ==
3185 SPC3_PERSISTENT_RESERVATIONS) ?
3186 core_scsi3_emulate_pr : NULL;
3187 size = (cdb[7] << 8) + cdb[8];
3188 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3189 break;
3190 case GPCMD_MECHANISM_STATUS:
3191 case GPCMD_READ_DVD_STRUCTURE:
3192 size = (cdb[8] << 8) + cdb[9];
3193 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3194 break;
3195 case READ_POSITION:
3196 size = READ_POSITION_LEN;
3197 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3198 break;
3199 case MAINTENANCE_OUT:
3200 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3201 /* MAINTENANCE_OUT from SCC-2
3203 * Check for emulated MO_SET_TARGET_PGS.
3205 if (cdb[1] == MO_SET_TARGET_PGS) {
3206 cmd->transport_emulate_cdb =
3207 (su_dev->t10_alua.alua_type ==
3208 SPC3_ALUA_EMULATED) ?
3209 core_emulate_set_target_port_groups :
3210 NULL;
3213 size = (cdb[6] << 24) | (cdb[7] << 16) |
3214 (cdb[8] << 8) | cdb[9];
3215 } else {
3216 /* GPCMD_REPORT_KEY from multi media commands */
3217 size = (cdb[8] << 8) + cdb[9];
3219 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3220 break;
3221 case INQUIRY:
3222 size = (cdb[3] << 8) + cdb[4];
3224 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3225 * See spc4r17 section 5.3
3227 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3228 cmd->sam_task_attr = MSG_HEAD_TAG;
3229 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3230 break;
3231 case READ_BUFFER:
3232 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3233 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3234 break;
3235 case READ_CAPACITY:
3236 size = READ_CAP_LEN;
3237 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3238 break;
3239 case READ_MEDIA_SERIAL_NUMBER:
3240 case SECURITY_PROTOCOL_IN:
3241 case SECURITY_PROTOCOL_OUT:
3242 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3243 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3244 break;
3245 case SERVICE_ACTION_IN:
3246 case ACCESS_CONTROL_IN:
3247 case ACCESS_CONTROL_OUT:
3248 case EXTENDED_COPY:
3249 case READ_ATTRIBUTE:
3250 case RECEIVE_COPY_RESULTS:
3251 case WRITE_ATTRIBUTE:
3252 size = (cdb[10] << 24) | (cdb[11] << 16) |
3253 (cdb[12] << 8) | cdb[13];
3254 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3255 break;
3256 case RECEIVE_DIAGNOSTIC:
3257 case SEND_DIAGNOSTIC:
3258 size = (cdb[3] << 8) | cdb[4];
3259 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3260 break;
3261 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3262 #if 0
3263 case GPCMD_READ_CD:
3264 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3265 size = (2336 * sectors);
3266 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3267 break;
3268 #endif
3269 case READ_TOC:
3270 size = cdb[8];
3271 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3272 break;
3273 case REQUEST_SENSE:
3274 size = cdb[4];
3275 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3276 break;
3277 case READ_ELEMENT_STATUS:
3278 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3279 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3280 break;
3281 case WRITE_BUFFER:
3282 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3283 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3284 break;
3285 case RESERVE:
3286 case RESERVE_10:
3288 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3289 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3291 if (cdb[0] == RESERVE_10)
3292 size = (cdb[7] << 8) | cdb[8];
3293 else
3294 size = cmd->data_length;
3297 * Setup the legacy emulated handler for SPC-2 and
3298 * >= SPC-3 compatible reservation handling (CRH=1)
3299 * Otherwise, we assume the underlying SCSI logic is
3300 * is running in SPC_PASSTHROUGH, and wants reservations
3301 * emulation disabled.
3303 cmd->transport_emulate_cdb =
3304 (su_dev->t10_pr.res_type !=
3305 SPC_PASSTHROUGH) ?
3306 core_scsi2_emulate_crh : NULL;
3307 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3308 break;
3309 case RELEASE:
3310 case RELEASE_10:
3312 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3313 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3315 if (cdb[0] == RELEASE_10)
3316 size = (cdb[7] << 8) | cdb[8];
3317 else
3318 size = cmd->data_length;
3320 cmd->transport_emulate_cdb =
3321 (su_dev->t10_pr.res_type !=
3322 SPC_PASSTHROUGH) ?
3323 core_scsi2_emulate_crh : NULL;
3324 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3325 break;
3326 case SYNCHRONIZE_CACHE:
3327 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3329 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3331 if (cdb[0] == SYNCHRONIZE_CACHE) {
3332 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3333 cmd->t_task_lba = transport_lba_32(cdb);
3334 } else {
3335 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3336 cmd->t_task_lba = transport_lba_64(cdb);
3338 if (sector_ret)
3339 goto out_unsupported_cdb;
3341 size = transport_get_size(sectors, cdb, cmd);
3342 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3345 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3347 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3348 break;
3350 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3351 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3353 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3355 * Check to ensure that LBA + Range does not exceed past end of
3356 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3358 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3359 if (transport_cmd_get_valid_sectors(cmd) < 0)
3360 goto out_invalid_cdb_field;
3362 break;
3363 case UNMAP:
3364 size = get_unaligned_be16(&cdb[7]);
3365 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3366 break;
3367 case WRITE_SAME_16:
3368 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3369 if (sector_ret)
3370 goto out_unsupported_cdb;
3372 if (sectors)
3373 size = transport_get_size(1, cdb, cmd);
3374 else {
3375 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3376 goto out_invalid_cdb_field;
3379 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3380 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3382 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3383 goto out_invalid_cdb_field;
3384 break;
3385 case WRITE_SAME:
3386 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3387 if (sector_ret)
3388 goto out_unsupported_cdb;
3390 if (sectors)
3391 size = transport_get_size(1, cdb, cmd);
3392 else {
3393 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3394 goto out_invalid_cdb_field;
3397 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3398 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3400 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3401 * of byte 1 bit 3 UNMAP instead of original reserved field
3403 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3404 goto out_invalid_cdb_field;
3405 break;
3406 case ALLOW_MEDIUM_REMOVAL:
3407 case GPCMD_CLOSE_TRACK:
3408 case ERASE:
3409 case INITIALIZE_ELEMENT_STATUS:
3410 case GPCMD_LOAD_UNLOAD:
3411 case REZERO_UNIT:
3412 case SEEK_10:
3413 case GPCMD_SET_SPEED:
3414 case SPACE:
3415 case START_STOP:
3416 case TEST_UNIT_READY:
3417 case VERIFY:
3418 case WRITE_FILEMARKS:
3419 case MOVE_MEDIUM:
3420 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3421 break;
3422 case REPORT_LUNS:
3423 cmd->transport_emulate_cdb =
3424 transport_core_report_lun_response;
3425 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3427 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3428 * See spc4r17 section 5.3
3430 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3431 cmd->sam_task_attr = MSG_HEAD_TAG;
3432 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3433 break;
3434 default:
3435 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3436 " 0x%02x, sending CHECK_CONDITION.\n",
3437 cmd->se_tfo->get_fabric_name(), cdb[0]);
3438 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3439 goto out_unsupported_cdb;
3442 if (size != cmd->data_length) {
3443 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3444 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3445 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3446 cmd->data_length, size, cdb[0]);
3448 cmd->cmd_spdtl = size;
3450 if (cmd->data_direction == DMA_TO_DEVICE) {
3451 pr_err("Rejecting underflow/overflow"
3452 " WRITE data\n");
3453 goto out_invalid_cdb_field;
3456 * Reject READ_* or WRITE_* with overflow/underflow for
3457 * type SCF_SCSI_DATA_SG_IO_CDB.
3459 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3460 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3461 " CDB on non 512-byte sector setup subsystem"
3462 " plugin: %s\n", dev->transport->name);
3463 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3464 goto out_invalid_cdb_field;
3467 if (size > cmd->data_length) {
3468 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3469 cmd->residual_count = (size - cmd->data_length);
3470 } else {
3471 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3472 cmd->residual_count = (cmd->data_length - size);
3474 cmd->data_length = size;
3477 /* Let's limit control cdbs to a page, for simplicity's sake. */
3478 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3479 size > PAGE_SIZE)
3480 goto out_invalid_cdb_field;
3482 transport_set_supported_SAM_opcode(cmd);
3483 return ret;
3485 out_unsupported_cdb:
3486 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3487 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3488 return -EINVAL;
3489 out_invalid_cdb_field:
3490 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3491 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3492 return -EINVAL;
3496 * Called from transport_generic_complete_ok() and
3497 * transport_generic_request_failure() to determine which dormant/delayed
3498 * and ordered cmds need to have their tasks added to the execution queue.
3500 static void transport_complete_task_attr(struct se_cmd *cmd)
3502 struct se_device *dev = cmd->se_dev;
3503 struct se_cmd *cmd_p, *cmd_tmp;
3504 int new_active_tasks = 0;
3506 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3507 atomic_dec(&dev->simple_cmds);
3508 smp_mb__after_atomic_dec();
3509 dev->dev_cur_ordered_id++;
3510 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3511 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3512 cmd->se_ordered_id);
3513 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3514 atomic_dec(&dev->dev_hoq_count);
3515 smp_mb__after_atomic_dec();
3516 dev->dev_cur_ordered_id++;
3517 pr_debug("Incremented dev_cur_ordered_id: %u for"
3518 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3519 cmd->se_ordered_id);
3520 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3521 spin_lock(&dev->ordered_cmd_lock);
3522 list_del(&cmd->se_ordered_node);
3523 atomic_dec(&dev->dev_ordered_sync);
3524 smp_mb__after_atomic_dec();
3525 spin_unlock(&dev->ordered_cmd_lock);
3527 dev->dev_cur_ordered_id++;
3528 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3529 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3532 * Process all commands up to the last received
3533 * ORDERED task attribute which requires another blocking
3534 * boundary
3536 spin_lock(&dev->delayed_cmd_lock);
3537 list_for_each_entry_safe(cmd_p, cmd_tmp,
3538 &dev->delayed_cmd_list, se_delayed_node) {
3540 list_del(&cmd_p->se_delayed_node);
3541 spin_unlock(&dev->delayed_cmd_lock);
3543 pr_debug("Calling add_tasks() for"
3544 " cmd_p: 0x%02x Task Attr: 0x%02x"
3545 " Dormant -> Active, se_ordered_id: %u\n",
3546 cmd_p->t_task_cdb[0],
3547 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3549 transport_add_tasks_from_cmd(cmd_p);
3550 new_active_tasks++;
3552 spin_lock(&dev->delayed_cmd_lock);
3553 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3554 break;
3556 spin_unlock(&dev->delayed_cmd_lock);
3558 * If new tasks have become active, wake up the transport thread
3559 * to do the processing of the Active tasks.
3561 if (new_active_tasks != 0)
3562 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3565 static int transport_complete_qf(struct se_cmd *cmd)
3567 int ret = 0;
3569 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3570 return cmd->se_tfo->queue_status(cmd);
3572 switch (cmd->data_direction) {
3573 case DMA_FROM_DEVICE:
3574 ret = cmd->se_tfo->queue_data_in(cmd);
3575 break;
3576 case DMA_TO_DEVICE:
3577 if (cmd->t_bidi_data_sg) {
3578 ret = cmd->se_tfo->queue_data_in(cmd);
3579 if (ret < 0)
3580 return ret;
3582 /* Fall through for DMA_TO_DEVICE */
3583 case DMA_NONE:
3584 ret = cmd->se_tfo->queue_status(cmd);
3585 break;
3586 default:
3587 break;
3590 return ret;
3593 static void transport_handle_queue_full(
3594 struct se_cmd *cmd,
3595 struct se_device *dev,
3596 int (*qf_callback)(struct se_cmd *))
3598 spin_lock_irq(&dev->qf_cmd_lock);
3599 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3600 cmd->transport_qf_callback = qf_callback;
3601 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3602 atomic_inc(&dev->dev_qf_count);
3603 smp_mb__after_atomic_inc();
3604 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3606 schedule_work(&cmd->se_dev->qf_work_queue);
3609 static void transport_generic_complete_ok(struct se_cmd *cmd)
3611 int reason = 0, ret;
3613 * Check if we need to move delayed/dormant tasks from cmds on the
3614 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3615 * Attribute.
3617 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3618 transport_complete_task_attr(cmd);
3620 * Check to schedule QUEUE_FULL work, or execute an existing
3621 * cmd->transport_qf_callback()
3623 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3624 schedule_work(&cmd->se_dev->qf_work_queue);
3626 if (cmd->transport_qf_callback) {
3627 ret = cmd->transport_qf_callback(cmd);
3628 if (ret < 0)
3629 goto queue_full;
3631 cmd->transport_qf_callback = NULL;
3632 goto done;
3635 * Check if we need to retrieve a sense buffer from
3636 * the struct se_cmd in question.
3638 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3639 if (transport_get_sense_data(cmd) < 0)
3640 reason = TCM_NON_EXISTENT_LUN;
3643 * Only set when an struct se_task->task_scsi_status returned
3644 * a non GOOD status.
3646 if (cmd->scsi_status) {
3647 ret = transport_send_check_condition_and_sense(
3648 cmd, reason, 1);
3649 if (ret == -EAGAIN)
3650 goto queue_full;
3652 transport_lun_remove_cmd(cmd);
3653 transport_cmd_check_stop_to_fabric(cmd);
3654 return;
3658 * Check for a callback, used by amongst other things
3659 * XDWRITE_READ_10 emulation.
3661 if (cmd->transport_complete_callback)
3662 cmd->transport_complete_callback(cmd);
3664 switch (cmd->data_direction) {
3665 case DMA_FROM_DEVICE:
3666 spin_lock(&cmd->se_lun->lun_sep_lock);
3667 if (cmd->se_lun->lun_sep) {
3668 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3669 cmd->data_length;
3671 spin_unlock(&cmd->se_lun->lun_sep_lock);
3673 ret = cmd->se_tfo->queue_data_in(cmd);
3674 if (ret == -EAGAIN)
3675 goto queue_full;
3676 break;
3677 case DMA_TO_DEVICE:
3678 spin_lock(&cmd->se_lun->lun_sep_lock);
3679 if (cmd->se_lun->lun_sep) {
3680 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3681 cmd->data_length;
3683 spin_unlock(&cmd->se_lun->lun_sep_lock);
3685 * Check if we need to send READ payload for BIDI-COMMAND
3687 if (cmd->t_bidi_data_sg) {
3688 spin_lock(&cmd->se_lun->lun_sep_lock);
3689 if (cmd->se_lun->lun_sep) {
3690 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3691 cmd->data_length;
3693 spin_unlock(&cmd->se_lun->lun_sep_lock);
3694 ret = cmd->se_tfo->queue_data_in(cmd);
3695 if (ret == -EAGAIN)
3696 goto queue_full;
3697 break;
3699 /* Fall through for DMA_TO_DEVICE */
3700 case DMA_NONE:
3701 ret = cmd->se_tfo->queue_status(cmd);
3702 if (ret == -EAGAIN)
3703 goto queue_full;
3704 break;
3705 default:
3706 break;
3709 done:
3710 transport_lun_remove_cmd(cmd);
3711 transport_cmd_check_stop_to_fabric(cmd);
3712 return;
3714 queue_full:
3715 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3716 " data_direction: %d\n", cmd, cmd->data_direction);
3717 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3720 static void transport_free_dev_tasks(struct se_cmd *cmd)
3722 struct se_task *task, *task_tmp;
3723 unsigned long flags;
3725 spin_lock_irqsave(&cmd->t_state_lock, flags);
3726 list_for_each_entry_safe(task, task_tmp,
3727 &cmd->t_task_list, t_list) {
3728 if (atomic_read(&task->task_active))
3729 continue;
3731 kfree(task->task_sg_bidi);
3732 kfree(task->task_sg);
3734 list_del(&task->t_list);
3736 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3737 if (task->se_dev)
3738 task->se_dev->transport->free_task(task);
3739 else
3740 pr_err("task[%u] - task->se_dev is NULL\n",
3741 task->task_no);
3742 spin_lock_irqsave(&cmd->t_state_lock, flags);
3744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3747 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3749 struct scatterlist *sg;
3750 int count;
3752 for_each_sg(sgl, sg, nents, count)
3753 __free_page(sg_page(sg));
3755 kfree(sgl);
3758 static inline void transport_free_pages(struct se_cmd *cmd)
3760 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3761 return;
3763 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3764 cmd->t_data_sg = NULL;
3765 cmd->t_data_nents = 0;
3767 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3768 cmd->t_bidi_data_sg = NULL;
3769 cmd->t_bidi_data_nents = 0;
3772 static inline void transport_release_tasks(struct se_cmd *cmd)
3774 transport_free_dev_tasks(cmd);
3777 static inline int transport_dec_and_check(struct se_cmd *cmd)
3779 unsigned long flags;
3781 spin_lock_irqsave(&cmd->t_state_lock, flags);
3782 if (atomic_read(&cmd->t_fe_count)) {
3783 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3784 spin_unlock_irqrestore(&cmd->t_state_lock,
3785 flags);
3786 return 1;
3790 if (atomic_read(&cmd->t_se_count)) {
3791 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3792 spin_unlock_irqrestore(&cmd->t_state_lock,
3793 flags);
3794 return 1;
3797 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3799 return 0;
3802 static void transport_release_fe_cmd(struct se_cmd *cmd)
3804 unsigned long flags;
3806 if (transport_dec_and_check(cmd))
3807 return;
3809 spin_lock_irqsave(&cmd->t_state_lock, flags);
3810 if (!atomic_read(&cmd->transport_dev_active)) {
3811 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3812 goto free_pages;
3814 atomic_set(&cmd->transport_dev_active, 0);
3815 transport_all_task_dev_remove_state(cmd);
3816 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3818 transport_release_tasks(cmd);
3819 free_pages:
3820 transport_free_pages(cmd);
3821 transport_free_se_cmd(cmd);
3822 cmd->se_tfo->release_cmd(cmd);
3825 static int
3826 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3828 unsigned long flags;
3830 if (transport_dec_and_check(cmd)) {
3831 if (session_reinstatement) {
3832 spin_lock_irqsave(&cmd->t_state_lock, flags);
3833 transport_all_task_dev_remove_state(cmd);
3834 spin_unlock_irqrestore(&cmd->t_state_lock,
3835 flags);
3837 return 1;
3840 spin_lock_irqsave(&cmd->t_state_lock, flags);
3841 if (!atomic_read(&cmd->transport_dev_active)) {
3842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3843 goto free_pages;
3845 atomic_set(&cmd->transport_dev_active, 0);
3846 transport_all_task_dev_remove_state(cmd);
3847 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3849 transport_release_tasks(cmd);
3851 free_pages:
3852 transport_free_pages(cmd);
3853 transport_release_cmd(cmd);
3854 return 0;
3858 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3859 * allocating in the core.
3860 * @cmd: Associated se_cmd descriptor
3861 * @mem: SGL style memory for TCM WRITE / READ
3862 * @sg_mem_num: Number of SGL elements
3863 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3864 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3866 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3867 * of parameters.
3869 int transport_generic_map_mem_to_cmd(
3870 struct se_cmd *cmd,
3871 struct scatterlist *sgl,
3872 u32 sgl_count,
3873 struct scatterlist *sgl_bidi,
3874 u32 sgl_bidi_count)
3876 if (!sgl || !sgl_count)
3877 return 0;
3879 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3880 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3882 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3883 * scatterlists already have been set to follow what the fabric
3884 * passes for the original expected data transfer length.
3886 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3887 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3888 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3889 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3890 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3891 return -EINVAL;
3894 cmd->t_data_sg = sgl;
3895 cmd->t_data_nents = sgl_count;
3897 if (sgl_bidi && sgl_bidi_count) {
3898 cmd->t_bidi_data_sg = sgl_bidi;
3899 cmd->t_bidi_data_nents = sgl_bidi_count;
3901 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3904 return 0;
3906 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3908 static int transport_new_cmd_obj(struct se_cmd *cmd)
3910 struct se_device *dev = cmd->se_dev;
3911 int set_counts = 1, rc, task_cdbs;
3914 * Setup any BIDI READ tasks and memory from
3915 * cmd->t_mem_bidi_list so the READ struct se_tasks
3916 * are queued first for the non pSCSI passthrough case.
3918 if (cmd->t_bidi_data_sg &&
3919 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3920 rc = transport_allocate_tasks(cmd,
3921 cmd->t_task_lba,
3922 DMA_FROM_DEVICE,
3923 cmd->t_bidi_data_sg,
3924 cmd->t_bidi_data_nents);
3925 if (rc <= 0) {
3926 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3927 cmd->scsi_sense_reason =
3928 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3929 return -EINVAL;
3931 atomic_inc(&cmd->t_fe_count);
3932 atomic_inc(&cmd->t_se_count);
3933 set_counts = 0;
3936 * Setup the tasks and memory from cmd->t_mem_list
3937 * Note for BIDI transfers this will contain the WRITE payload
3939 task_cdbs = transport_allocate_tasks(cmd,
3940 cmd->t_task_lba,
3941 cmd->data_direction,
3942 cmd->t_data_sg,
3943 cmd->t_data_nents);
3944 if (task_cdbs <= 0) {
3945 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3946 cmd->scsi_sense_reason =
3947 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3948 return -EINVAL;
3951 if (set_counts) {
3952 atomic_inc(&cmd->t_fe_count);
3953 atomic_inc(&cmd->t_se_count);
3956 cmd->t_task_list_num = task_cdbs;
3958 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3959 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3960 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3961 return 0;
3964 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3966 struct scatterlist *sg = cmd->t_data_sg;
3968 BUG_ON(!sg);
3970 * We need to take into account a possible offset here for fabrics like
3971 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3972 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3974 return kmap(sg_page(sg)) + sg->offset;
3976 EXPORT_SYMBOL(transport_kmap_first_data_page);
3978 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3980 kunmap(sg_page(cmd->t_data_sg));
3982 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3984 static int
3985 transport_generic_get_mem(struct se_cmd *cmd)
3987 u32 length = cmd->data_length;
3988 unsigned int nents;
3989 struct page *page;
3990 int i = 0;
3992 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3993 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3994 if (!cmd->t_data_sg)
3995 return -ENOMEM;
3997 cmd->t_data_nents = nents;
3998 sg_init_table(cmd->t_data_sg, nents);
4000 while (length) {
4001 u32 page_len = min_t(u32, length, PAGE_SIZE);
4002 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4003 if (!page)
4004 goto out;
4006 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
4007 length -= page_len;
4008 i++;
4010 return 0;
4012 out:
4013 while (i >= 0) {
4014 __free_page(sg_page(&cmd->t_data_sg[i]));
4015 i--;
4017 kfree(cmd->t_data_sg);
4018 cmd->t_data_sg = NULL;
4019 return -ENOMEM;
4022 /* Reduce sectors if they are too long for the device */
4023 static inline sector_t transport_limit_task_sectors(
4024 struct se_device *dev,
4025 unsigned long long lba,
4026 sector_t sectors)
4028 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4030 if (dev->transport->get_device_type(dev) == TYPE_DISK)
4031 if ((lba + sectors) > transport_dev_end_lba(dev))
4032 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4034 return sectors;
4039 * This function can be used by HW target mode drivers to create a linked
4040 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4041 * This is intended to be called during the completion path by TCM Core
4042 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4044 void transport_do_task_sg_chain(struct se_cmd *cmd)
4046 struct scatterlist *sg_first = NULL;
4047 struct scatterlist *sg_prev = NULL;
4048 int sg_prev_nents = 0;
4049 struct scatterlist *sg;
4050 struct se_task *task;
4051 u32 chained_nents = 0;
4052 int i;
4054 BUG_ON(!cmd->se_tfo->task_sg_chaining);
4057 * Walk the struct se_task list and setup scatterlist chains
4058 * for each contiguously allocated struct se_task->task_sg[].
4060 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4061 if (!task->task_sg)
4062 continue;
4064 if (!sg_first) {
4065 sg_first = task->task_sg;
4066 chained_nents = task->task_sg_nents;
4067 } else {
4068 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4069 chained_nents += task->task_sg_nents;
4072 * For the padded tasks, use the extra SGL vector allocated
4073 * in transport_allocate_data_tasks() for the sg_prev_nents
4074 * offset into sg_chain() above.. The last task of a
4075 * multi-task list, or a single task will not have
4076 * task->task_sg_padded set..
4078 if (task->task_padded_sg)
4079 sg_prev_nents = (task->task_sg_nents + 1);
4080 else
4081 sg_prev_nents = task->task_sg_nents;
4083 sg_prev = task->task_sg;
4086 * Setup the starting pointer and total t_tasks_sg_linked_no including
4087 * padding SGs for linking and to mark the end.
4089 cmd->t_tasks_sg_chained = sg_first;
4090 cmd->t_tasks_sg_chained_no = chained_nents;
4092 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4093 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4094 cmd->t_tasks_sg_chained_no);
4096 for_each_sg(cmd->t_tasks_sg_chained, sg,
4097 cmd->t_tasks_sg_chained_no, i) {
4099 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4100 i, sg, sg_page(sg), sg->length, sg->offset);
4101 if (sg_is_chain(sg))
4102 pr_debug("SG: %p sg_is_chain=1\n", sg);
4103 if (sg_is_last(sg))
4104 pr_debug("SG: %p sg_is_last=1\n", sg);
4107 EXPORT_SYMBOL(transport_do_task_sg_chain);
4110 * Break up cmd into chunks transport can handle
4112 static int transport_allocate_data_tasks(
4113 struct se_cmd *cmd,
4114 unsigned long long lba,
4115 enum dma_data_direction data_direction,
4116 struct scatterlist *sgl,
4117 unsigned int sgl_nents)
4119 unsigned char *cdb = NULL;
4120 struct se_task *task;
4121 struct se_device *dev = cmd->se_dev;
4122 unsigned long flags;
4123 int task_count, i, ret;
4124 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4125 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4126 struct scatterlist *sg;
4127 struct scatterlist *cmd_sg;
4129 WARN_ON(cmd->data_length % sector_size);
4130 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4131 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4133 cmd_sg = sgl;
4134 for (i = 0; i < task_count; i++) {
4135 unsigned int task_size, task_sg_nents_padded;
4136 int count;
4138 task = transport_generic_get_task(cmd, data_direction);
4139 if (!task)
4140 return -ENOMEM;
4142 task->task_lba = lba;
4143 task->task_sectors = min(sectors, dev_max_sectors);
4144 task->task_size = task->task_sectors * sector_size;
4146 cdb = dev->transport->get_cdb(task);
4147 BUG_ON(!cdb);
4149 memcpy(cdb, cmd->t_task_cdb,
4150 scsi_command_size(cmd->t_task_cdb));
4152 /* Update new cdb with updated lba/sectors */
4153 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4155 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4156 * in order to calculate the number per task SGL entries
4158 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4160 * Check if the fabric module driver is requesting that all
4161 * struct se_task->task_sg[] be chained together.. If so,
4162 * then allocate an extra padding SG entry for linking and
4163 * marking the end of the chained SGL for every task except
4164 * the last one for (task_count > 1) operation, or skipping
4165 * the extra padding for the (task_count == 1) case.
4167 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4168 task_sg_nents_padded = (task->task_sg_nents + 1);
4169 task->task_padded_sg = 1;
4170 } else
4171 task_sg_nents_padded = task->task_sg_nents;
4173 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4174 task_sg_nents_padded, GFP_KERNEL);
4175 if (!task->task_sg) {
4176 cmd->se_dev->transport->free_task(task);
4177 return -ENOMEM;
4180 sg_init_table(task->task_sg, task_sg_nents_padded);
4182 task_size = task->task_size;
4184 /* Build new sgl, only up to task_size */
4185 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4186 if (cmd_sg->length > task_size)
4187 break;
4189 *sg = *cmd_sg;
4190 task_size -= cmd_sg->length;
4191 cmd_sg = sg_next(cmd_sg);
4194 lba += task->task_sectors;
4195 sectors -= task->task_sectors;
4197 spin_lock_irqsave(&cmd->t_state_lock, flags);
4198 list_add_tail(&task->t_list, &cmd->t_task_list);
4199 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4202 * Now perform the memory map of task->task_sg[] into backend
4203 * subsystem memory..
4205 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4206 if (atomic_read(&task->task_sent))
4207 continue;
4208 if (!dev->transport->map_data_SG)
4209 continue;
4211 ret = dev->transport->map_data_SG(task);
4212 if (ret < 0)
4213 return 0;
4216 return task_count;
4219 static int
4220 transport_allocate_control_task(struct se_cmd *cmd)
4222 struct se_device *dev = cmd->se_dev;
4223 unsigned char *cdb;
4224 struct se_task *task;
4225 unsigned long flags;
4226 int ret = 0;
4228 task = transport_generic_get_task(cmd, cmd->data_direction);
4229 if (!task)
4230 return -ENOMEM;
4232 cdb = dev->transport->get_cdb(task);
4233 BUG_ON(!cdb);
4234 memcpy(cdb, cmd->t_task_cdb,
4235 scsi_command_size(cmd->t_task_cdb));
4237 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4238 GFP_KERNEL);
4239 if (!task->task_sg) {
4240 cmd->se_dev->transport->free_task(task);
4241 return -ENOMEM;
4244 memcpy(task->task_sg, cmd->t_data_sg,
4245 sizeof(struct scatterlist) * cmd->t_data_nents);
4246 task->task_size = cmd->data_length;
4247 task->task_sg_nents = cmd->t_data_nents;
4249 spin_lock_irqsave(&cmd->t_state_lock, flags);
4250 list_add_tail(&task->t_list, &cmd->t_task_list);
4251 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4253 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4254 if (dev->transport->map_control_SG)
4255 ret = dev->transport->map_control_SG(task);
4256 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4257 if (dev->transport->cdb_none)
4258 ret = dev->transport->cdb_none(task);
4259 } else {
4260 pr_err("target: Unknown control cmd type!\n");
4261 BUG();
4264 /* Success! Return number of tasks allocated */
4265 if (ret == 0)
4266 return 1;
4267 return ret;
4270 static u32 transport_allocate_tasks(
4271 struct se_cmd *cmd,
4272 unsigned long long lba,
4273 enum dma_data_direction data_direction,
4274 struct scatterlist *sgl,
4275 unsigned int sgl_nents)
4277 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4278 if (transport_cmd_get_valid_sectors(cmd) < 0)
4279 return -EINVAL;
4281 return transport_allocate_data_tasks(cmd, lba, data_direction,
4282 sgl, sgl_nents);
4283 } else
4284 return transport_allocate_control_task(cmd);
4289 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4291 * Allocate storage transport resources from a set of values predefined
4292 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4293 * Any non zero return here is treated as an "out of resource' op here.
4296 * Generate struct se_task(s) and/or their payloads for this CDB.
4298 int transport_generic_new_cmd(struct se_cmd *cmd)
4300 int ret = 0;
4303 * Determine is the TCM fabric module has already allocated physical
4304 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4305 * beforehand.
4307 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4308 cmd->data_length) {
4309 ret = transport_generic_get_mem(cmd);
4310 if (ret < 0)
4311 return ret;
4314 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4315 * control or data CDB types, and perform the map to backend subsystem
4316 * code from SGL memory allocated here by transport_generic_get_mem(), or
4317 * via pre-existing SGL memory setup explictly by fabric module code with
4318 * transport_generic_map_mem_to_cmd().
4320 ret = transport_new_cmd_obj(cmd);
4321 if (ret < 0)
4322 return ret;
4324 * For WRITEs, let the fabric know its buffer is ready..
4325 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4326 * will be added to the struct se_device execution queue after its WRITE
4327 * data has arrived. (ie: It gets handled by the transport processing
4328 * thread a second time)
4330 if (cmd->data_direction == DMA_TO_DEVICE) {
4331 transport_add_tasks_to_state_queue(cmd);
4332 return transport_generic_write_pending(cmd);
4335 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4336 * to the execution queue.
4338 transport_execute_tasks(cmd);
4339 return 0;
4341 EXPORT_SYMBOL(transport_generic_new_cmd);
4343 /* transport_generic_process_write():
4347 void transport_generic_process_write(struct se_cmd *cmd)
4349 transport_execute_tasks(cmd);
4351 EXPORT_SYMBOL(transport_generic_process_write);
4353 static int transport_write_pending_qf(struct se_cmd *cmd)
4355 return cmd->se_tfo->write_pending(cmd);
4358 /* transport_generic_write_pending():
4362 static int transport_generic_write_pending(struct se_cmd *cmd)
4364 unsigned long flags;
4365 int ret;
4367 spin_lock_irqsave(&cmd->t_state_lock, flags);
4368 cmd->t_state = TRANSPORT_WRITE_PENDING;
4369 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4371 if (cmd->transport_qf_callback) {
4372 ret = cmd->transport_qf_callback(cmd);
4373 if (ret == -EAGAIN)
4374 goto queue_full;
4375 else if (ret < 0)
4376 return ret;
4378 cmd->transport_qf_callback = NULL;
4379 return 0;
4383 * Clear the se_cmd for WRITE_PENDING status in order to set
4384 * cmd->t_transport_active=0 so that transport_generic_handle_data
4385 * can be called from HW target mode interrupt code. This is safe
4386 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4387 * because the se_cmd->se_lun pointer is not being cleared.
4389 transport_cmd_check_stop(cmd, 1, 0);
4392 * Call the fabric write_pending function here to let the
4393 * frontend know that WRITE buffers are ready.
4395 ret = cmd->se_tfo->write_pending(cmd);
4396 if (ret == -EAGAIN)
4397 goto queue_full;
4398 else if (ret < 0)
4399 return ret;
4401 return PYX_TRANSPORT_WRITE_PENDING;
4403 queue_full:
4404 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4405 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4406 transport_handle_queue_full(cmd, cmd->se_dev,
4407 transport_write_pending_qf);
4408 return ret;
4411 void transport_release_cmd(struct se_cmd *cmd)
4413 BUG_ON(!cmd->se_tfo);
4415 transport_free_se_cmd(cmd);
4416 cmd->se_tfo->release_cmd(cmd);
4418 EXPORT_SYMBOL(transport_release_cmd);
4420 /* transport_generic_free_cmd():
4422 * Called from processing frontend to release storage engine resources
4424 void transport_generic_free_cmd(
4425 struct se_cmd *cmd,
4426 int wait_for_tasks,
4427 int session_reinstatement)
4429 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4430 transport_release_cmd(cmd);
4431 else {
4432 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4434 if (cmd->se_lun) {
4435 #if 0
4436 pr_debug("cmd: %p ITT: 0x%08x contains"
4437 " cmd->se_lun\n", cmd,
4438 cmd->se_tfo->get_task_tag(cmd));
4439 #endif
4440 transport_lun_remove_cmd(cmd);
4443 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4444 cmd->transport_wait_for_tasks(cmd, 0, 0);
4446 transport_free_dev_tasks(cmd);
4448 transport_generic_remove(cmd, session_reinstatement);
4451 EXPORT_SYMBOL(transport_generic_free_cmd);
4453 static void transport_nop_wait_for_tasks(
4454 struct se_cmd *cmd,
4455 int remove_cmd,
4456 int session_reinstatement)
4458 return;
4461 /* transport_lun_wait_for_tasks():
4463 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4464 * an struct se_lun to be successfully shutdown.
4466 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4468 unsigned long flags;
4469 int ret;
4471 * If the frontend has already requested this struct se_cmd to
4472 * be stopped, we can safely ignore this struct se_cmd.
4474 spin_lock_irqsave(&cmd->t_state_lock, flags);
4475 if (atomic_read(&cmd->t_transport_stop)) {
4476 atomic_set(&cmd->transport_lun_stop, 0);
4477 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4478 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4479 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4480 transport_cmd_check_stop(cmd, 1, 0);
4481 return -EPERM;
4483 atomic_set(&cmd->transport_lun_fe_stop, 1);
4484 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4486 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4488 ret = transport_stop_tasks_for_cmd(cmd);
4490 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4491 " %d\n", cmd, cmd->t_task_list_num, ret);
4492 if (!ret) {
4493 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4494 cmd->se_tfo->get_task_tag(cmd));
4495 wait_for_completion(&cmd->transport_lun_stop_comp);
4496 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4497 cmd->se_tfo->get_task_tag(cmd));
4499 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4501 return 0;
4504 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4506 struct se_cmd *cmd = NULL;
4507 unsigned long lun_flags, cmd_flags;
4509 * Do exception processing and return CHECK_CONDITION status to the
4510 * Initiator Port.
4512 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4513 while (!list_empty(&lun->lun_cmd_list)) {
4514 cmd = list_first_entry(&lun->lun_cmd_list,
4515 struct se_cmd, se_lun_node);
4516 list_del(&cmd->se_lun_node);
4518 atomic_set(&cmd->transport_lun_active, 0);
4520 * This will notify iscsi_target_transport.c:
4521 * transport_cmd_check_stop() that a LUN shutdown is in
4522 * progress for the iscsi_cmd_t.
4524 spin_lock(&cmd->t_state_lock);
4525 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4526 "_lun_stop for ITT: 0x%08x\n",
4527 cmd->se_lun->unpacked_lun,
4528 cmd->se_tfo->get_task_tag(cmd));
4529 atomic_set(&cmd->transport_lun_stop, 1);
4530 spin_unlock(&cmd->t_state_lock);
4532 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4534 if (!cmd->se_lun) {
4535 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4536 cmd->se_tfo->get_task_tag(cmd),
4537 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4538 BUG();
4541 * If the Storage engine still owns the iscsi_cmd_t, determine
4542 * and/or stop its context.
4544 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4545 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4546 cmd->se_tfo->get_task_tag(cmd));
4548 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4549 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4550 continue;
4553 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4554 "_wait_for_tasks(): SUCCESS\n",
4555 cmd->se_lun->unpacked_lun,
4556 cmd->se_tfo->get_task_tag(cmd));
4558 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4559 if (!atomic_read(&cmd->transport_dev_active)) {
4560 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4561 goto check_cond;
4563 atomic_set(&cmd->transport_dev_active, 0);
4564 transport_all_task_dev_remove_state(cmd);
4565 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4567 transport_free_dev_tasks(cmd);
4569 * The Storage engine stopped this struct se_cmd before it was
4570 * send to the fabric frontend for delivery back to the
4571 * Initiator Node. Return this SCSI CDB back with an
4572 * CHECK_CONDITION status.
4574 check_cond:
4575 transport_send_check_condition_and_sense(cmd,
4576 TCM_NON_EXISTENT_LUN, 0);
4578 * If the fabric frontend is waiting for this iscsi_cmd_t to
4579 * be released, notify the waiting thread now that LU has
4580 * finished accessing it.
4582 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4583 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4584 pr_debug("SE_LUN[%d] - Detected FE stop for"
4585 " struct se_cmd: %p ITT: 0x%08x\n",
4586 lun->unpacked_lun,
4587 cmd, cmd->se_tfo->get_task_tag(cmd));
4589 spin_unlock_irqrestore(&cmd->t_state_lock,
4590 cmd_flags);
4591 transport_cmd_check_stop(cmd, 1, 0);
4592 complete(&cmd->transport_lun_fe_stop_comp);
4593 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4594 continue;
4596 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4597 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4599 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4600 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4602 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4605 static int transport_clear_lun_thread(void *p)
4607 struct se_lun *lun = (struct se_lun *)p;
4609 __transport_clear_lun_from_sessions(lun);
4610 complete(&lun->lun_shutdown_comp);
4612 return 0;
4615 int transport_clear_lun_from_sessions(struct se_lun *lun)
4617 struct task_struct *kt;
4619 kt = kthread_run(transport_clear_lun_thread, lun,
4620 "tcm_cl_%u", lun->unpacked_lun);
4621 if (IS_ERR(kt)) {
4622 pr_err("Unable to start clear_lun thread\n");
4623 return PTR_ERR(kt);
4625 wait_for_completion(&lun->lun_shutdown_comp);
4627 return 0;
4630 /* transport_generic_wait_for_tasks():
4632 * Called from frontend or passthrough context to wait for storage engine
4633 * to pause and/or release frontend generated struct se_cmd.
4635 static void transport_generic_wait_for_tasks(
4636 struct se_cmd *cmd,
4637 int remove_cmd,
4638 int session_reinstatement)
4640 unsigned long flags;
4642 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4643 return;
4645 spin_lock_irqsave(&cmd->t_state_lock, flags);
4647 * If we are already stopped due to an external event (ie: LUN shutdown)
4648 * sleep until the connection can have the passed struct se_cmd back.
4649 * The cmd->transport_lun_stopped_sem will be upped by
4650 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4651 * has completed its operation on the struct se_cmd.
4653 if (atomic_read(&cmd->transport_lun_stop)) {
4655 pr_debug("wait_for_tasks: Stopping"
4656 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4657 "_stop_comp); for ITT: 0x%08x\n",
4658 cmd->se_tfo->get_task_tag(cmd));
4660 * There is a special case for WRITES where a FE exception +
4661 * LUN shutdown means ConfigFS context is still sleeping on
4662 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4663 * We go ahead and up transport_lun_stop_comp just to be sure
4664 * here.
4666 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4667 complete(&cmd->transport_lun_stop_comp);
4668 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4669 spin_lock_irqsave(&cmd->t_state_lock, flags);
4671 transport_all_task_dev_remove_state(cmd);
4673 * At this point, the frontend who was the originator of this
4674 * struct se_cmd, now owns the structure and can be released through
4675 * normal means below.
4677 pr_debug("wait_for_tasks: Stopped"
4678 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4679 "stop_comp); for ITT: 0x%08x\n",
4680 cmd->se_tfo->get_task_tag(cmd));
4682 atomic_set(&cmd->transport_lun_stop, 0);
4684 if (!atomic_read(&cmd->t_transport_active) ||
4685 atomic_read(&cmd->t_transport_aborted))
4686 goto remove;
4688 atomic_set(&cmd->t_transport_stop, 1);
4690 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4691 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4692 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4693 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4694 cmd->deferred_t_state);
4696 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4698 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4700 wait_for_completion(&cmd->t_transport_stop_comp);
4702 spin_lock_irqsave(&cmd->t_state_lock, flags);
4703 atomic_set(&cmd->t_transport_active, 0);
4704 atomic_set(&cmd->t_transport_stop, 0);
4706 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4707 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4708 cmd->se_tfo->get_task_tag(cmd));
4709 remove:
4710 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4711 if (!remove_cmd)
4712 return;
4714 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4717 static int transport_get_sense_codes(
4718 struct se_cmd *cmd,
4719 u8 *asc,
4720 u8 *ascq)
4722 *asc = cmd->scsi_asc;
4723 *ascq = cmd->scsi_ascq;
4725 return 0;
4728 static int transport_set_sense_codes(
4729 struct se_cmd *cmd,
4730 u8 asc,
4731 u8 ascq)
4733 cmd->scsi_asc = asc;
4734 cmd->scsi_ascq = ascq;
4736 return 0;
4739 int transport_send_check_condition_and_sense(
4740 struct se_cmd *cmd,
4741 u8 reason,
4742 int from_transport)
4744 unsigned char *buffer = cmd->sense_buffer;
4745 unsigned long flags;
4746 int offset;
4747 u8 asc = 0, ascq = 0;
4749 spin_lock_irqsave(&cmd->t_state_lock, flags);
4750 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4751 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4752 return 0;
4754 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4755 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4757 if (!reason && from_transport)
4758 goto after_reason;
4760 if (!from_transport)
4761 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4763 * Data Segment and SenseLength of the fabric response PDU.
4765 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4766 * from include/scsi/scsi_cmnd.h
4768 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4769 TRANSPORT_SENSE_BUFFER);
4771 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4772 * SENSE KEY values from include/scsi/scsi.h
4774 switch (reason) {
4775 case TCM_NON_EXISTENT_LUN:
4776 /* CURRENT ERROR */
4777 buffer[offset] = 0x70;
4778 /* ILLEGAL REQUEST */
4779 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4780 /* LOGICAL UNIT NOT SUPPORTED */
4781 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4782 break;
4783 case TCM_UNSUPPORTED_SCSI_OPCODE:
4784 case TCM_SECTOR_COUNT_TOO_MANY:
4785 /* CURRENT ERROR */
4786 buffer[offset] = 0x70;
4787 /* ILLEGAL REQUEST */
4788 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4789 /* INVALID COMMAND OPERATION CODE */
4790 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4791 break;
4792 case TCM_UNKNOWN_MODE_PAGE:
4793 /* CURRENT ERROR */
4794 buffer[offset] = 0x70;
4795 /* ILLEGAL REQUEST */
4796 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4797 /* INVALID FIELD IN CDB */
4798 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4799 break;
4800 case TCM_CHECK_CONDITION_ABORT_CMD:
4801 /* CURRENT ERROR */
4802 buffer[offset] = 0x70;
4803 /* ABORTED COMMAND */
4804 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4805 /* BUS DEVICE RESET FUNCTION OCCURRED */
4806 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4807 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4808 break;
4809 case TCM_INCORRECT_AMOUNT_OF_DATA:
4810 /* CURRENT ERROR */
4811 buffer[offset] = 0x70;
4812 /* ABORTED COMMAND */
4813 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4814 /* WRITE ERROR */
4815 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4816 /* NOT ENOUGH UNSOLICITED DATA */
4817 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4818 break;
4819 case TCM_INVALID_CDB_FIELD:
4820 /* CURRENT ERROR */
4821 buffer[offset] = 0x70;
4822 /* ABORTED COMMAND */
4823 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4824 /* INVALID FIELD IN CDB */
4825 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4826 break;
4827 case TCM_INVALID_PARAMETER_LIST:
4828 /* CURRENT ERROR */
4829 buffer[offset] = 0x70;
4830 /* ABORTED COMMAND */
4831 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4832 /* INVALID FIELD IN PARAMETER LIST */
4833 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4834 break;
4835 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4836 /* CURRENT ERROR */
4837 buffer[offset] = 0x70;
4838 /* ABORTED COMMAND */
4839 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4840 /* WRITE ERROR */
4841 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4842 /* UNEXPECTED_UNSOLICITED_DATA */
4843 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4844 break;
4845 case TCM_SERVICE_CRC_ERROR:
4846 /* CURRENT ERROR */
4847 buffer[offset] = 0x70;
4848 /* ABORTED COMMAND */
4849 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4850 /* PROTOCOL SERVICE CRC ERROR */
4851 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4852 /* N/A */
4853 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4854 break;
4855 case TCM_SNACK_REJECTED:
4856 /* CURRENT ERROR */
4857 buffer[offset] = 0x70;
4858 /* ABORTED COMMAND */
4859 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4860 /* READ ERROR */
4861 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4862 /* FAILED RETRANSMISSION REQUEST */
4863 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4864 break;
4865 case TCM_WRITE_PROTECTED:
4866 /* CURRENT ERROR */
4867 buffer[offset] = 0x70;
4868 /* DATA PROTECT */
4869 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4870 /* WRITE PROTECTED */
4871 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4872 break;
4873 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4874 /* CURRENT ERROR */
4875 buffer[offset] = 0x70;
4876 /* UNIT ATTENTION */
4877 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4878 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4879 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4880 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4881 break;
4882 case TCM_CHECK_CONDITION_NOT_READY:
4883 /* CURRENT ERROR */
4884 buffer[offset] = 0x70;
4885 /* Not Ready */
4886 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4887 transport_get_sense_codes(cmd, &asc, &ascq);
4888 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4889 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4890 break;
4891 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4892 default:
4893 /* CURRENT ERROR */
4894 buffer[offset] = 0x70;
4895 /* ILLEGAL REQUEST */
4896 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4897 /* LOGICAL UNIT COMMUNICATION FAILURE */
4898 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4899 break;
4902 * This code uses linux/include/scsi/scsi.h SAM status codes!
4904 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4906 * Automatically padded, this value is encoded in the fabric's
4907 * data_length response PDU containing the SCSI defined sense data.
4909 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4911 after_reason:
4912 return cmd->se_tfo->queue_status(cmd);
4914 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4916 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4918 int ret = 0;
4920 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4921 if (!send_status ||
4922 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4923 return 1;
4924 #if 0
4925 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4926 " status for CDB: 0x%02x ITT: 0x%08x\n",
4927 cmd->t_task_cdb[0],
4928 cmd->se_tfo->get_task_tag(cmd));
4929 #endif
4930 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4931 cmd->se_tfo->queue_status(cmd);
4932 ret = 1;
4934 return ret;
4936 EXPORT_SYMBOL(transport_check_aborted_status);
4938 void transport_send_task_abort(struct se_cmd *cmd)
4940 unsigned long flags;
4942 spin_lock_irqsave(&cmd->t_state_lock, flags);
4943 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4944 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4945 return;
4947 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4950 * If there are still expected incoming fabric WRITEs, we wait
4951 * until until they have completed before sending a TASK_ABORTED
4952 * response. This response with TASK_ABORTED status will be
4953 * queued back to fabric module by transport_check_aborted_status().
4955 if (cmd->data_direction == DMA_TO_DEVICE) {
4956 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4957 atomic_inc(&cmd->t_transport_aborted);
4958 smp_mb__after_atomic_inc();
4959 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4960 transport_new_cmd_failure(cmd);
4961 return;
4964 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4965 #if 0
4966 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4967 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4968 cmd->se_tfo->get_task_tag(cmd));
4969 #endif
4970 cmd->se_tfo->queue_status(cmd);
4973 /* transport_generic_do_tmr():
4977 int transport_generic_do_tmr(struct se_cmd *cmd)
4979 struct se_device *dev = cmd->se_dev;
4980 struct se_tmr_req *tmr = cmd->se_tmr_req;
4981 int ret;
4983 switch (tmr->function) {
4984 case TMR_ABORT_TASK:
4985 tmr->response = TMR_FUNCTION_REJECTED;
4986 break;
4987 case TMR_ABORT_TASK_SET:
4988 case TMR_CLEAR_ACA:
4989 case TMR_CLEAR_TASK_SET:
4990 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4991 break;
4992 case TMR_LUN_RESET:
4993 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4994 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4995 TMR_FUNCTION_REJECTED;
4996 break;
4997 case TMR_TARGET_WARM_RESET:
4998 tmr->response = TMR_FUNCTION_REJECTED;
4999 break;
5000 case TMR_TARGET_COLD_RESET:
5001 tmr->response = TMR_FUNCTION_REJECTED;
5002 break;
5003 default:
5004 pr_err("Uknown TMR function: 0x%02x.\n",
5005 tmr->function);
5006 tmr->response = TMR_FUNCTION_REJECTED;
5007 break;
5010 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5011 cmd->se_tfo->queue_tm_rsp(cmd);
5013 transport_cmd_check_stop(cmd, 2, 0);
5014 return 0;
5018 * Called with spin_lock_irq(&dev->execute_task_lock); held
5021 static struct se_task *
5022 transport_get_task_from_state_list(struct se_device *dev)
5024 struct se_task *task;
5026 if (list_empty(&dev->state_task_list))
5027 return NULL;
5029 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5030 break;
5032 list_del(&task->t_state_list);
5033 atomic_set(&task->task_state_active, 0);
5035 return task;
5038 static void transport_processing_shutdown(struct se_device *dev)
5040 struct se_cmd *cmd;
5041 struct se_task *task;
5042 unsigned long flags;
5044 * Empty the struct se_device's struct se_task state list.
5046 spin_lock_irqsave(&dev->execute_task_lock, flags);
5047 while ((task = transport_get_task_from_state_list(dev))) {
5048 if (!task->task_se_cmd) {
5049 pr_err("task->task_se_cmd is NULL!\n");
5050 continue;
5052 cmd = task->task_se_cmd;
5054 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5056 spin_lock_irqsave(&cmd->t_state_lock, flags);
5058 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5059 " i_state: %d, t_state/def_t_state:"
5060 " %d/%d cdb: 0x%02x\n", cmd, task,
5061 cmd->se_tfo->get_task_tag(cmd),
5062 cmd->se_tfo->get_cmd_state(cmd),
5063 cmd->t_state, cmd->deferred_t_state,
5064 cmd->t_task_cdb[0]);
5065 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5066 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5067 " t_transport_stop: %d t_transport_sent: %d\n",
5068 cmd->se_tfo->get_task_tag(cmd),
5069 cmd->t_task_list_num,
5070 atomic_read(&cmd->t_task_cdbs_left),
5071 atomic_read(&cmd->t_task_cdbs_sent),
5072 atomic_read(&cmd->t_transport_active),
5073 atomic_read(&cmd->t_transport_stop),
5074 atomic_read(&cmd->t_transport_sent));
5076 if (atomic_read(&task->task_active)) {
5077 atomic_set(&task->task_stop, 1);
5078 spin_unlock_irqrestore(
5079 &cmd->t_state_lock, flags);
5081 pr_debug("Waiting for task: %p to shutdown for dev:"
5082 " %p\n", task, dev);
5083 wait_for_completion(&task->task_stop_comp);
5084 pr_debug("Completed task: %p shutdown for dev: %p\n",
5085 task, dev);
5087 spin_lock_irqsave(&cmd->t_state_lock, flags);
5088 atomic_dec(&cmd->t_task_cdbs_left);
5090 atomic_set(&task->task_active, 0);
5091 atomic_set(&task->task_stop, 0);
5092 } else {
5093 if (atomic_read(&task->task_execute_queue) != 0)
5094 transport_remove_task_from_execute_queue(task, dev);
5096 __transport_stop_task_timer(task, &flags);
5098 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5099 spin_unlock_irqrestore(
5100 &cmd->t_state_lock, flags);
5102 pr_debug("Skipping task: %p, dev: %p for"
5103 " t_task_cdbs_ex_left: %d\n", task, dev,
5104 atomic_read(&cmd->t_task_cdbs_ex_left));
5106 spin_lock_irqsave(&dev->execute_task_lock, flags);
5107 continue;
5110 if (atomic_read(&cmd->t_transport_active)) {
5111 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5112 " %p\n", task, dev);
5114 if (atomic_read(&cmd->t_fe_count)) {
5115 spin_unlock_irqrestore(
5116 &cmd->t_state_lock, flags);
5117 transport_send_check_condition_and_sense(
5118 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5120 transport_remove_cmd_from_queue(cmd,
5121 &cmd->se_dev->dev_queue_obj);
5123 transport_lun_remove_cmd(cmd);
5124 transport_cmd_check_stop(cmd, 1, 0);
5125 } else {
5126 spin_unlock_irqrestore(
5127 &cmd->t_state_lock, flags);
5129 transport_remove_cmd_from_queue(cmd,
5130 &cmd->se_dev->dev_queue_obj);
5132 transport_lun_remove_cmd(cmd);
5134 if (transport_cmd_check_stop(cmd, 1, 0))
5135 transport_generic_remove(cmd, 0);
5138 spin_lock_irqsave(&dev->execute_task_lock, flags);
5139 continue;
5141 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5142 task, dev);
5144 if (atomic_read(&cmd->t_fe_count)) {
5145 spin_unlock_irqrestore(
5146 &cmd->t_state_lock, flags);
5147 transport_send_check_condition_and_sense(cmd,
5148 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5149 transport_remove_cmd_from_queue(cmd,
5150 &cmd->se_dev->dev_queue_obj);
5152 transport_lun_remove_cmd(cmd);
5153 transport_cmd_check_stop(cmd, 1, 0);
5154 } else {
5155 spin_unlock_irqrestore(
5156 &cmd->t_state_lock, flags);
5158 transport_remove_cmd_from_queue(cmd,
5159 &cmd->se_dev->dev_queue_obj);
5160 transport_lun_remove_cmd(cmd);
5162 if (transport_cmd_check_stop(cmd, 1, 0))
5163 transport_generic_remove(cmd, 0);
5166 spin_lock_irqsave(&dev->execute_task_lock, flags);
5168 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5170 * Empty the struct se_device's struct se_cmd list.
5172 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5174 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5175 cmd, cmd->t_state);
5177 if (atomic_read(&cmd->t_fe_count)) {
5178 transport_send_check_condition_and_sense(cmd,
5179 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5181 transport_lun_remove_cmd(cmd);
5182 transport_cmd_check_stop(cmd, 1, 0);
5183 } else {
5184 transport_lun_remove_cmd(cmd);
5185 if (transport_cmd_check_stop(cmd, 1, 0))
5186 transport_generic_remove(cmd, 0);
5191 /* transport_processing_thread():
5195 static int transport_processing_thread(void *param)
5197 int ret;
5198 struct se_cmd *cmd;
5199 struct se_device *dev = (struct se_device *) param;
5201 set_user_nice(current, -20);
5203 while (!kthread_should_stop()) {
5204 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5205 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5206 kthread_should_stop());
5207 if (ret < 0)
5208 goto out;
5210 spin_lock_irq(&dev->dev_status_lock);
5211 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5212 spin_unlock_irq(&dev->dev_status_lock);
5213 transport_processing_shutdown(dev);
5214 continue;
5216 spin_unlock_irq(&dev->dev_status_lock);
5218 get_cmd:
5219 __transport_execute_tasks(dev);
5221 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5222 if (!cmd)
5223 continue;
5225 switch (cmd->t_state) {
5226 case TRANSPORT_NEW_CMD_MAP:
5227 if (!cmd->se_tfo->new_cmd_map) {
5228 pr_err("cmd->se_tfo->new_cmd_map is"
5229 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5230 BUG();
5232 ret = cmd->se_tfo->new_cmd_map(cmd);
5233 if (ret < 0) {
5234 cmd->transport_error_status = ret;
5235 transport_generic_request_failure(cmd, NULL,
5236 0, (cmd->data_direction !=
5237 DMA_TO_DEVICE));
5238 break;
5240 /* Fall through */
5241 case TRANSPORT_NEW_CMD:
5242 ret = transport_generic_new_cmd(cmd);
5243 if (ret == -EAGAIN)
5244 break;
5245 else if (ret < 0) {
5246 cmd->transport_error_status = ret;
5247 transport_generic_request_failure(cmd, NULL,
5248 0, (cmd->data_direction !=
5249 DMA_TO_DEVICE));
5251 break;
5252 case TRANSPORT_PROCESS_WRITE:
5253 transport_generic_process_write(cmd);
5254 break;
5255 case TRANSPORT_COMPLETE_OK:
5256 transport_stop_all_task_timers(cmd);
5257 transport_generic_complete_ok(cmd);
5258 break;
5259 case TRANSPORT_REMOVE:
5260 transport_generic_remove(cmd, 0);
5261 break;
5262 case TRANSPORT_FREE_CMD_INTR:
5263 transport_generic_free_cmd(cmd, 0, 0);
5264 break;
5265 case TRANSPORT_PROCESS_TMR:
5266 transport_generic_do_tmr(cmd);
5267 break;
5268 case TRANSPORT_COMPLETE_FAILURE:
5269 transport_generic_request_failure(cmd, NULL, 1, 1);
5270 break;
5271 case TRANSPORT_COMPLETE_TIMEOUT:
5272 transport_stop_all_task_timers(cmd);
5273 transport_generic_request_timeout(cmd);
5274 break;
5275 case TRANSPORT_COMPLETE_QF_WP:
5276 transport_generic_write_pending(cmd);
5277 break;
5278 default:
5279 pr_err("Unknown t_state: %d deferred_t_state:"
5280 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5281 " %u\n", cmd->t_state, cmd->deferred_t_state,
5282 cmd->se_tfo->get_task_tag(cmd),
5283 cmd->se_tfo->get_cmd_state(cmd),
5284 cmd->se_lun->unpacked_lun);
5285 BUG();
5288 goto get_cmd;
5291 out:
5292 transport_release_all_cmds(dev);
5293 dev->process_thread = NULL;
5294 return 0;