2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
22 #include <asm/bitext.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
27 #include <asm/kdebug.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
37 #include <asm/a.out.h>
38 #include <asm/mmu_context.h>
39 #include <asm/io-unit.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/viking.h>
47 #include <asm/tsunami.h>
48 #include <asm/swift.h>
49 #include <asm/turbosparc.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype
;
54 unsigned int hwbug_bitmask
;
58 extern struct resource sparc_iomap
;
60 extern unsigned long last_valid_pfn
;
62 extern unsigned long page_kernel
;
64 pgd_t
*srmmu_swapper_pg_dir
;
67 #define FLUSH_BEGIN(mm)
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
74 BTFIXUPDEF_CALL(void, flush_page_for_dma
, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 int flush_page_for_dma_global
= 1;
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma
, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
86 ctxd_t
*srmmu_ctx_table_phys
;
87 ctxd_t
*srmmu_context_table
;
89 int viking_mxcc_present
;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
99 static inline unsigned long srmmu_swap(unsigned long *addr
, unsigned long value
)
101 __asm__
__volatile__("swap [%2], %0" : "=&r" (value
) : "0" (value
), "r" (addr
));
105 static inline void srmmu_set_pte(pte_t
*ptep
, pte_t pteval
)
107 srmmu_swap((unsigned long *)ptep
, pte_val(pteval
));
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x
)
113 return ((x
& 0xF0000000) != 0);
116 int srmmu_cache_pagetables
;
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 unsigned long srmmu_nocache_size
;
120 unsigned long srmmu_nocache_end
;
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 void *srmmu_nocache_pool
;
129 void *srmmu_nocache_bitmap
;
130 static struct bit_map srmmu_nocache_map
;
132 static unsigned long srmmu_pte_pfn(pte_t pte
)
134 if (srmmu_device_memory(pte_val(pte
))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
142 return (pte_val(pte
) & SRMMU_PTE_PMASK
) >> (PAGE_SHIFT
-4);
145 static struct page
*srmmu_pmd_page(pmd_t pmd
)
148 if (srmmu_device_memory(pmd_val(pmd
)))
150 return pfn_to_page((pmd_val(pmd
) & SRMMU_PTD_PMASK
) >> (PAGE_SHIFT
-4));
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd
)
154 { return srmmu_device_memory(pgd_val(pgd
))?~0:(unsigned long)__nocache_va((pgd_val(pgd
) & SRMMU_PTD_PMASK
) << 4); }
157 static inline int srmmu_pte_none(pte_t pte
)
158 { return !(pte_val(pte
) & 0xFFFFFFF); }
160 static inline int srmmu_pte_present(pte_t pte
)
161 { return ((pte_val(pte
) & SRMMU_ET_MASK
) == SRMMU_ET_PTE
); }
163 static inline int srmmu_pte_read(pte_t pte
)
164 { return !(pte_val(pte
) & SRMMU_NOREAD
); }
166 static inline void srmmu_pte_clear(pte_t
*ptep
)
167 { srmmu_set_pte(ptep
, __pte(0)); }
169 static inline int srmmu_pmd_none(pmd_t pmd
)
170 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
172 static inline int srmmu_pmd_bad(pmd_t pmd
)
173 { return (pmd_val(pmd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
175 static inline int srmmu_pmd_present(pmd_t pmd
)
176 { return ((pmd_val(pmd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
178 static inline void srmmu_pmd_clear(pmd_t
*pmdp
) {
180 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++)
181 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(0));
184 static inline int srmmu_pgd_none(pgd_t pgd
)
185 { return !(pgd_val(pgd
) & 0xFFFFFFF); }
187 static inline int srmmu_pgd_bad(pgd_t pgd
)
188 { return (pgd_val(pgd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
190 static inline int srmmu_pgd_present(pgd_t pgd
)
191 { return ((pgd_val(pgd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
193 static inline void srmmu_pgd_clear(pgd_t
* pgdp
)
194 { srmmu_set_pte((pte_t
*)pgdp
, __pte(0)); }
196 static inline pte_t
srmmu_pte_wrprotect(pte_t pte
)
197 { return __pte(pte_val(pte
) & ~SRMMU_WRITE
);}
199 static inline pte_t
srmmu_pte_mkclean(pte_t pte
)
200 { return __pte(pte_val(pte
) & ~SRMMU_DIRTY
);}
202 static inline pte_t
srmmu_pte_mkold(pte_t pte
)
203 { return __pte(pte_val(pte
) & ~SRMMU_REF
);}
205 static inline pte_t
srmmu_pte_mkwrite(pte_t pte
)
206 { return __pte(pte_val(pte
) | SRMMU_WRITE
);}
208 static inline pte_t
srmmu_pte_mkdirty(pte_t pte
)
209 { return __pte(pte_val(pte
) | SRMMU_DIRTY
);}
211 static inline pte_t
srmmu_pte_mkyoung(pte_t pte
)
212 { return __pte(pte_val(pte
) | SRMMU_REF
);}
215 * Conversion functions: convert a page and protection to a page entry,
216 * and a page entry and page directory to the page they refer to.
218 static pte_t
srmmu_mk_pte(struct page
*page
, pgprot_t pgprot
)
219 { return __pte((page_to_pfn(page
) << (PAGE_SHIFT
-4)) | pgprot_val(pgprot
)); }
221 static pte_t
srmmu_mk_pte_phys(unsigned long page
, pgprot_t pgprot
)
222 { return __pte(((page
) >> 4) | pgprot_val(pgprot
)); }
224 static pte_t
srmmu_mk_pte_io(unsigned long page
, pgprot_t pgprot
, int space
)
225 { return __pte(((page
) >> 4) | (space
<< 28) | pgprot_val(pgprot
)); }
227 /* XXX should we hyper_flush_whole_icache here - Anton */
228 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
229 { srmmu_set_pte((pte_t
*)ctxp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pgdp
) >> 4))); }
231 static inline void srmmu_pgd_set(pgd_t
* pgdp
, pmd_t
* pmdp
)
232 { srmmu_set_pte((pte_t
*)pgdp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pmdp
) >> 4))); }
234 static void srmmu_pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
236 unsigned long ptp
; /* Physical address, shifted right by 4 */
239 ptp
= __nocache_pa((unsigned long) ptep
) >> 4;
240 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
241 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
242 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
246 static void srmmu_pmd_populate(pmd_t
*pmdp
, struct page
*ptep
)
248 unsigned long ptp
; /* Physical address, shifted right by 4 */
251 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
252 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
253 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
254 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
258 static inline pte_t
srmmu_pte_modify(pte_t pte
, pgprot_t newprot
)
259 { return __pte((pte_val(pte
) & SRMMU_CHG_MASK
) | pgprot_val(newprot
)); }
261 /* to find an entry in a top-level page table... */
262 static inline pgd_t
*srmmu_pgd_offset(struct mm_struct
* mm
, unsigned long address
)
263 { return mm
->pgd
+ (address
>> SRMMU_PGDIR_SHIFT
); }
265 /* Find an entry in the second-level page table.. */
266 static inline pmd_t
*srmmu_pmd_offset(pgd_t
* dir
, unsigned long address
)
268 return (pmd_t
*) srmmu_pgd_page(*dir
) +
269 ((address
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
272 /* Find an entry in the third-level page table.. */
273 static inline pte_t
*srmmu_pte_offset(pmd_t
* dir
, unsigned long address
)
277 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
278 return (pte_t
*) pte
+
279 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
282 static unsigned long srmmu_swp_type(swp_entry_t entry
)
284 return (entry
.val
>> SRMMU_SWP_TYPE_SHIFT
) & SRMMU_SWP_TYPE_MASK
;
287 static unsigned long srmmu_swp_offset(swp_entry_t entry
)
289 return (entry
.val
>> SRMMU_SWP_OFF_SHIFT
) & SRMMU_SWP_OFF_MASK
;
292 static swp_entry_t
srmmu_swp_entry(unsigned long type
, unsigned long offset
)
294 return (swp_entry_t
) {
295 (type
& SRMMU_SWP_TYPE_MASK
) << SRMMU_SWP_TYPE_SHIFT
296 | (offset
& SRMMU_SWP_OFF_MASK
) << SRMMU_SWP_OFF_SHIFT
};
300 * size: bytes to allocate in the nocache area.
301 * align: bytes, number to align at.
302 * Returns the virtual address of the allocated area.
304 static unsigned long __srmmu_get_nocache(int size
, int align
)
308 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
309 printk("Size 0x%x too small for nocache request\n", size
);
310 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
312 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
-1)) {
313 printk("Size 0x%x unaligned int nocache request\n", size
);
314 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
-1;
316 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
318 offset
= bit_map_string_get(&srmmu_nocache_map
,
319 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
320 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
322 printk("srmmu: out of nocache %d: %d/%d\n",
323 size
, (int) srmmu_nocache_size
,
324 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
328 return (SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
));
331 unsigned inline long srmmu_get_nocache(int size
, int align
)
335 tmp
= __srmmu_get_nocache(size
, align
);
338 memset((void *)tmp
, 0, size
);
343 void srmmu_free_nocache(unsigned long vaddr
, int size
)
347 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
348 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
349 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
352 if (vaddr
+size
> srmmu_nocache_end
) {
353 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
354 vaddr
, srmmu_nocache_end
);
357 if (size
& (size
-1)) {
358 printk("Size 0x%x is not a power of 2\n", size
);
361 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
362 printk("Size 0x%x is too small\n", size
);
365 if (vaddr
& (size
-1)) {
366 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
370 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
371 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
373 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
376 void srmmu_early_allocate_ptable_skeleton(unsigned long start
, unsigned long end
);
378 extern unsigned long probe_memory(void); /* in fault.c */
381 * Reserve nocache dynamically proportionally to the amount of
382 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
384 void srmmu_nocache_calcsize(void)
386 unsigned long sysmemavail
= probe_memory() / 1024;
387 int srmmu_nocache_npages
;
389 srmmu_nocache_npages
=
390 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
392 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
393 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
394 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
395 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
397 /* anything above 1280 blows up */
398 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
399 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
401 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
402 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
405 void srmmu_nocache_init(void)
407 unsigned int bitmap_bits
;
411 unsigned long paddr
, vaddr
;
412 unsigned long pteval
;
414 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
416 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
417 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
418 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
420 srmmu_nocache_bitmap
= __alloc_bootmem(bitmap_bits
>> 3, SMP_CACHE_BYTES
, 0UL);
421 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
423 srmmu_swapper_pg_dir
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
424 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
425 init_mm
.pgd
= srmmu_swapper_pg_dir
;
427 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
429 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
430 vaddr
= SRMMU_NOCACHE_VADDR
;
432 while (vaddr
< srmmu_nocache_end
) {
433 pgd
= pgd_offset_k(vaddr
);
434 pmd
= srmmu_pmd_offset(__nocache_fix(pgd
), vaddr
);
435 pte
= srmmu_pte_offset(__nocache_fix(pmd
), vaddr
);
437 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
439 if (srmmu_cache_pagetables
)
440 pteval
|= SRMMU_CACHE
;
442 srmmu_set_pte(__nocache_fix(pte
), __pte(pteval
));
452 static inline pgd_t
*srmmu_get_pgd_fast(void)
456 pgd
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
458 pgd_t
*init
= pgd_offset_k(0);
459 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
460 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
461 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
467 static void srmmu_free_pgd_fast(pgd_t
*pgd
)
469 srmmu_free_nocache((unsigned long)pgd
, SRMMU_PGD_TABLE_SIZE
);
472 static pmd_t
*srmmu_pmd_alloc_one(struct mm_struct
*mm
, unsigned long address
)
474 return (pmd_t
*)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
477 static void srmmu_pmd_free(pmd_t
* pmd
)
479 srmmu_free_nocache((unsigned long)pmd
, SRMMU_PMD_TABLE_SIZE
);
483 * Hardware needs alignment to 256 only, but we align to whole page size
484 * to reduce fragmentation problems due to the buddy principle.
485 * XXX Provide actual fragmentation statistics in /proc.
487 * Alignments up to the page size are the same for physical and virtual
488 * addresses of the nocache area.
491 srmmu_pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
493 return (pte_t
*)srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
497 srmmu_pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
501 if ((pte
= (unsigned long)srmmu_pte_alloc_one_kernel(mm
, address
)) == 0)
503 return pfn_to_page( __nocache_pa(pte
) >> PAGE_SHIFT
);
506 static void srmmu_free_pte_fast(pte_t
*pte
)
508 srmmu_free_nocache((unsigned long)pte
, PTE_SIZE
);
511 static void srmmu_pte_free(struct page
*pte
)
515 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
518 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
519 p
= (unsigned long) __nocache_va(p
); /* Nocached virtual */
520 srmmu_free_nocache(p
, PTE_SIZE
);
525 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
527 struct ctx_list
*ctxp
;
529 ctxp
= ctx_free
.next
;
530 if(ctxp
!= &ctx_free
) {
531 remove_from_ctx_list(ctxp
);
532 add_to_used_ctxlist(ctxp
);
533 mm
->context
= ctxp
->ctx_number
;
537 ctxp
= ctx_used
.next
;
538 if(ctxp
->ctx_mm
== old_mm
)
540 if(ctxp
== &ctx_used
)
541 panic("out of mmu contexts");
542 flush_cache_mm(ctxp
->ctx_mm
);
543 flush_tlb_mm(ctxp
->ctx_mm
);
544 remove_from_ctx_list(ctxp
);
545 add_to_used_ctxlist(ctxp
);
546 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
548 mm
->context
= ctxp
->ctx_number
;
551 static inline void free_context(int context
)
553 struct ctx_list
*ctx_old
;
555 ctx_old
= ctx_list_pool
+ context
;
556 remove_from_ctx_list(ctx_old
);
557 add_to_free_ctxlist(ctx_old
);
561 static void srmmu_switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
562 struct task_struct
*tsk
, int cpu
)
564 if(mm
->context
== NO_CONTEXT
) {
565 spin_lock(&srmmu_context_spinlock
);
566 alloc_context(old_mm
, mm
);
567 spin_unlock(&srmmu_context_spinlock
);
568 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
572 hyper_flush_whole_icache();
574 srmmu_set_context(mm
->context
);
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr
,
579 unsigned long virt_addr
, int bus_type
)
586 physaddr
&= PAGE_MASK
;
587 pgdp
= pgd_offset_k(virt_addr
);
588 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
589 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
590 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
593 * I need to test whether this is consistent over all
594 * sun4m's. The bus_type represents the upper 4 bits of
595 * 36-bit physical address on the I/O space lines...
597 tmp
|= (bus_type
<< 28);
599 __flush_page_to_ram(virt_addr
);
600 srmmu_set_pte(ptep
, __pte(tmp
));
603 static void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
604 unsigned long xva
, unsigned int len
)
608 srmmu_mapioaddr(xpa
, xva
, bus
);
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
621 pgdp
= pgd_offset_k(virt_addr
);
622 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
623 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
625 /* No need to flush uncacheable page. */
626 srmmu_pte_clear(ptep
);
629 static void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
633 srmmu_unmapioaddr(virt_addr
);
634 virt_addr
+= PAGE_SIZE
;
640 * On the SRMMU we do not have the problems with limited tlb entries
641 * for mapping kernel pages, so we just take things from the free page
642 * pool. As a side effect we are putting a little too much pressure
643 * on the gfp() subsystem. This setup also makes the logic of the
644 * iommu mapping code a lot easier as we can transparently handle
645 * mappings on the kernel stack without any special code as we did
648 struct thread_info
*srmmu_alloc_thread_info(void)
650 struct thread_info
*ret
;
652 ret
= (struct thread_info
*)__get_free_pages(GFP_KERNEL
,
654 #ifdef CONFIG_DEBUG_STACK_USAGE
656 memset(ret
, 0, PAGE_SIZE
<< THREAD_INFO_ORDER
);
657 #endif /* DEBUG_STACK_USAGE */
662 static void srmmu_free_thread_info(struct thread_info
*ti
)
664 free_pages((unsigned long)ti
, THREAD_INFO_ORDER
);
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
670 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
671 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
672 extern void tsunami_flush_page_to_ram(unsigned long page
);
673 extern void tsunami_flush_page_for_dma(unsigned long page
);
674 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
679 extern void tsunami_setup_blockops(void);
682 * Workaround, until we find what's going on with Swift. When low on memory,
683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684 * out it is already in page tables/ fault again on the same instruction.
685 * I really don't understand it, have checked it and contexts
686 * are right, flush_tlb_all is done as well, and it faults again...
689 * The following code is a deadwood that may be necessary when
690 * we start to make precise page flushes again. --zaitcev
692 static void swift_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
695 static unsigned long last
;
697 /* unsigned int n; */
699 if (address
== last
) {
700 val
= srmmu_hwprobe(address
);
701 if (val
!= 0 && pte_val(pte
) != val
) {
702 printk("swift_update_mmu_cache: "
703 "addr %lx put %08x probed %08x from %p\n",
704 address
, pte_val(pte
), val
,
705 __builtin_return_address(0));
706 srmmu_flush_whole_tlb();
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
716 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
717 unsigned long start
, unsigned long end
);
718 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
719 extern void swift_flush_page_to_ram(unsigned long page
);
720 extern void swift_flush_page_for_dma(unsigned long page
);
721 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
724 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
725 unsigned long start
, unsigned long end
);
726 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
728 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
734 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
735 cctx
= srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
738 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
739 srmmu_set_context(ctx1
);
740 swift_flush_page(page
);
741 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
742 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
743 srmmu_set_context(cctx
);
745 /* Rm. prot. bits from virt. c. */
746 /* swift_flush_cache_all(); */
747 /* swift_flush_cache_page(vma, page); */
748 swift_flush_page(page
);
750 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
751 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
752 /* same as above: srmmu_flush_tlb_page() */
759 * The following are all MBUS based SRMMU modules, and therefore could
760 * be found in a multiprocessor configuration. On the whole, these
761 * chips seems to be much more touchy about DVMA and page tables
762 * with respect to cache coherency.
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
768 volatile unsigned long cypress_sucks
;
769 unsigned long faddr
, tagval
;
771 flush_user_windows();
772 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
773 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
775 "r" (faddr
), "r" (0x40000),
776 "i" (ASI_M_DATAC_TAG
));
778 /* If modified and valid, kick it. */
779 if((tagval
& 0x60) == 0x60)
780 cypress_sucks
= *(unsigned long *)(0xf0020000 + faddr
);
784 static void cypress_flush_cache_mm(struct mm_struct
*mm
)
786 register unsigned long a
, b
, c
, d
, e
, f
, g
;
787 unsigned long flags
, faddr
;
791 flush_user_windows();
792 local_irq_save(flags
);
793 octx
= srmmu_get_context();
794 srmmu_set_context(mm
->context
);
795 a
= 0x20; b
= 0x40; c
= 0x60;
796 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
798 faddr
= (0x10000 - 0x100);
803 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
804 "sta %%g0, [%0 + %2] %1\n\t"
805 "sta %%g0, [%0 + %3] %1\n\t"
806 "sta %%g0, [%0 + %4] %1\n\t"
807 "sta %%g0, [%0 + %5] %1\n\t"
808 "sta %%g0, [%0 + %6] %1\n\t"
809 "sta %%g0, [%0 + %7] %1\n\t"
810 "sta %%g0, [%0 + %8] %1\n\t" : :
811 "r" (faddr
), "i" (ASI_M_FLUSH_CTX
),
812 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
813 "r" (e
), "r" (f
), "r" (g
));
815 srmmu_set_context(octx
);
816 local_irq_restore(flags
);
820 static void cypress_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
822 struct mm_struct
*mm
= vma
->vm_mm
;
823 register unsigned long a
, b
, c
, d
, e
, f
, g
;
824 unsigned long flags
, faddr
;
828 flush_user_windows();
829 local_irq_save(flags
);
830 octx
= srmmu_get_context();
831 srmmu_set_context(mm
->context
);
832 a
= 0x20; b
= 0x40; c
= 0x60;
833 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
835 start
&= SRMMU_REAL_PMD_MASK
;
837 faddr
= (start
+ (0x10000 - 0x100));
842 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
843 "sta %%g0, [%0 + %2] %1\n\t"
844 "sta %%g0, [%0 + %3] %1\n\t"
845 "sta %%g0, [%0 + %4] %1\n\t"
846 "sta %%g0, [%0 + %5] %1\n\t"
847 "sta %%g0, [%0 + %6] %1\n\t"
848 "sta %%g0, [%0 + %7] %1\n\t"
849 "sta %%g0, [%0 + %8] %1\n\t" : :
851 "i" (ASI_M_FLUSH_SEG
),
852 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
853 "r" (e
), "r" (f
), "r" (g
));
854 } while (faddr
!= start
);
855 start
+= SRMMU_REAL_PMD_SIZE
;
857 srmmu_set_context(octx
);
858 local_irq_restore(flags
);
862 static void cypress_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
864 register unsigned long a
, b
, c
, d
, e
, f
, g
;
865 struct mm_struct
*mm
= vma
->vm_mm
;
866 unsigned long flags
, line
;
870 flush_user_windows();
871 local_irq_save(flags
);
872 octx
= srmmu_get_context();
873 srmmu_set_context(mm
->context
);
874 a
= 0x20; b
= 0x40; c
= 0x60;
875 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
878 line
= (page
+ PAGE_SIZE
) - 0x100;
883 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
884 "sta %%g0, [%0 + %2] %1\n\t"
885 "sta %%g0, [%0 + %3] %1\n\t"
886 "sta %%g0, [%0 + %4] %1\n\t"
887 "sta %%g0, [%0 + %5] %1\n\t"
888 "sta %%g0, [%0 + %6] %1\n\t"
889 "sta %%g0, [%0 + %7] %1\n\t"
890 "sta %%g0, [%0 + %8] %1\n\t" : :
892 "i" (ASI_M_FLUSH_PAGE
),
893 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
894 "r" (e
), "r" (f
), "r" (g
));
895 } while(line
!= page
);
896 srmmu_set_context(octx
);
897 local_irq_restore(flags
);
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page
)
904 register unsigned long a
, b
, c
, d
, e
, f
, g
;
907 a
= 0x20; b
= 0x40; c
= 0x60; d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
909 line
= (page
+ PAGE_SIZE
) - 0x100;
914 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
915 "sta %%g0, [%0 + %2] %1\n\t"
916 "sta %%g0, [%0 + %3] %1\n\t"
917 "sta %%g0, [%0 + %4] %1\n\t"
918 "sta %%g0, [%0 + %5] %1\n\t"
919 "sta %%g0, [%0 + %6] %1\n\t"
920 "sta %%g0, [%0 + %7] %1\n\t"
921 "sta %%g0, [%0 + %8] %1\n\t" : :
923 "i" (ASI_M_FLUSH_PAGE
),
924 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
925 "r" (e
), "r" (f
), "r" (g
));
926 } while(line
!= page
);
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page
)
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935 * are stored. It does not have an onboard icache of any sort, therefore
936 * no flush is necessary.
938 static void cypress_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
942 static void cypress_flush_tlb_all(void)
944 srmmu_flush_whole_tlb();
947 static void cypress_flush_tlb_mm(struct mm_struct
*mm
)
950 __asm__
__volatile__(
951 "lda [%0] %3, %%g5\n\t"
952 "sta %2, [%0] %3\n\t"
953 "sta %%g0, [%1] %4\n\t"
954 "sta %%g5, [%0] %3\n"
956 : "r" (SRMMU_CTX_REG
), "r" (0x300), "r" (mm
->context
),
957 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
962 static void cypress_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
964 struct mm_struct
*mm
= vma
->vm_mm
;
968 start
&= SRMMU_PGDIR_MASK
;
969 size
= SRMMU_PGDIR_ALIGN(end
) - start
;
970 __asm__
__volatile__(
971 "lda [%0] %5, %%g5\n\t"
974 "subcc %3, %4, %3\n\t"
976 " sta %%g0, [%2 + %3] %6\n\t"
977 "sta %%g5, [%0] %5\n"
979 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (start
| 0x200),
980 "r" (size
), "r" (SRMMU_PGDIR_SIZE
), "i" (ASI_M_MMUREGS
),
981 "i" (ASI_M_FLUSH_PROBE
)
986 static void cypress_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
988 struct mm_struct
*mm
= vma
->vm_mm
;
991 __asm__
__volatile__(
992 "lda [%0] %3, %%g5\n\t"
993 "sta %1, [%0] %3\n\t"
994 "sta %%g0, [%2] %4\n\t"
995 "sta %%g5, [%0] %3\n"
997 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (page
& PAGE_MASK
),
998 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
1006 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
1008 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1009 extern void viking_flush_page_to_ram(unsigned long page
);
1010 extern void viking_flush_page_for_dma(unsigned long page
);
1011 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
1012 extern void viking_flush_page(unsigned long page
);
1013 extern void viking_mxcc_flush_page(unsigned long page
);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
1016 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1018 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
1019 unsigned long page
);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
1025 unsigned long page
);
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page
);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page
);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
1039 extern void hypersparc_setup_blockops(void);
1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043 * kernel mappings are done with one single contiguous chunk of
1044 * ram. On small ram machines (classics mainly) we only get
1045 * around 8mb mapped for us.
1048 void __init
early_pgtable_allocfail(char *type
)
1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
1054 void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
, unsigned long end
)
1060 while(start
< end
) {
1061 pgdp
= pgd_offset_k(start
);
1062 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1063 pmdp
= (pmd_t
*) __srmmu_get_nocache(
1064 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1066 early_pgtable_allocfail("pmd");
1067 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1068 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1070 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1071 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1072 ptep
= (pte_t
*)__srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
1074 early_pgtable_allocfail("pte");
1075 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1076 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1078 if (start
> (0xffffffffUL
- PMD_SIZE
))
1080 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1084 void __init
srmmu_allocate_ptable_skeleton(unsigned long start
, unsigned long end
)
1090 while(start
< end
) {
1091 pgdp
= pgd_offset_k(start
);
1092 if(srmmu_pgd_none(*pgdp
)) {
1093 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1095 early_pgtable_allocfail("pmd");
1096 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
1097 srmmu_pgd_set(pgdp
, pmdp
);
1099 pmdp
= srmmu_pmd_offset(pgdp
, start
);
1100 if(srmmu_pmd_none(*pmdp
)) {
1101 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1104 early_pgtable_allocfail("pte");
1105 memset(ptep
, 0, PTE_SIZE
);
1106 srmmu_pmd_set(pmdp
, ptep
);
1108 if (start
> (0xffffffffUL
- PMD_SIZE
))
1110 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1115 * This is much cleaner than poking around physical address space
1116 * looking at the prom's page table directly which is what most
1117 * other OS's do. Yuck... this is much better.
1119 void __init
srmmu_inherit_prom_mappings(unsigned long start
,unsigned long end
)
1124 int what
= 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1125 unsigned long prompte
;
1127 while(start
<= end
) {
1129 break; /* probably wrap around */
1130 if(start
== 0xfef00000)
1131 start
= KADB_DEBUGGER_BEGVM
;
1132 if(!(prompte
= srmmu_hwprobe(start
))) {
1137 /* A red snapper, see what it really is. */
1140 if(!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
1141 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_REAL_PMD_SIZE
) == prompte
)
1145 if(!(start
& ~(SRMMU_PGDIR_MASK
))) {
1146 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_PGDIR_SIZE
) ==
1151 pgdp
= pgd_offset_k(start
);
1153 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(prompte
);
1154 start
+= SRMMU_PGDIR_SIZE
;
1157 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1158 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1160 early_pgtable_allocfail("pmd");
1161 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1162 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1164 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1165 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1166 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1169 early_pgtable_allocfail("pte");
1170 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1171 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1175 * We bend the rule where all 16 PTPs in a pmd_t point
1176 * inside the same PTE page, and we leak a perfectly
1177 * good hardware PTE piece. Alternatives seem worse.
1179 unsigned int x
; /* Index of HW PMD in soft cluster */
1180 x
= (start
>> PMD_SHIFT
) & 15;
1181 *(unsigned long *)__nocache_fix(&pmdp
->pmdv
[x
]) = prompte
;
1182 start
+= SRMMU_REAL_PMD_SIZE
;
1185 ptep
= srmmu_pte_offset(__nocache_fix(pmdp
), start
);
1186 *(pte_t
*)__nocache_fix(ptep
) = __pte(prompte
);
1191 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1193 /* Create a third-level SRMMU 16MB page mapping. */
1194 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
1196 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
1197 unsigned long big_pte
;
1199 big_pte
= KERNEL_PTE(phys_base
>> 4);
1200 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
1203 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1204 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
1206 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
1207 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
1208 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
1209 /* Map "low" memory only */
1210 const unsigned long min_vaddr
= PAGE_OFFSET
;
1211 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
1213 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
1216 if (vend
> max_vaddr
|| vend
< min_vaddr
)
1219 while(vstart
< vend
) {
1220 do_large_mapping(vstart
, pstart
);
1221 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
1226 static inline void memprobe_error(char *msg
)
1229 prom_printf("Halting now...\n");
1233 static inline void map_kernel(void)
1237 if (phys_base
> 0) {
1238 do_large_mapping(PAGE_OFFSET
, phys_base
);
1241 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
1242 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
1245 BTFIXUPSET_SIMM13(user_ptrs_per_pgd
, PAGE_OFFSET
/ SRMMU_PGDIR_SIZE
);
1248 /* Paging initialization on the Sparc Reference MMU. */
1249 extern void sparc_context_init(int);
1251 void (*poke_srmmu
)(void) __initdata
= NULL
;
1253 extern unsigned long bootmem_init(unsigned long *pages_avail
);
1255 void __init
srmmu_paging_init(void)
1262 unsigned long pages_avail
;
1264 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
1266 if (sparc_cpu_model
== sun4d
)
1267 num_contexts
= 65536; /* We know it is Viking */
1269 /* Find the number of contexts on the srmmu. */
1270 cpunode
= prom_getchild(prom_root_node
);
1272 while(cpunode
!= 0) {
1273 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1274 if(!strcmp(node_str
, "cpu")) {
1275 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
1278 cpunode
= prom_getsibling(cpunode
);
1283 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1288 last_valid_pfn
= bootmem_init(&pages_avail
);
1290 srmmu_nocache_calcsize();
1291 srmmu_nocache_init();
1292 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM
-PAGE_SIZE
));
1295 /* ctx table has to be physically aligned to its size */
1296 srmmu_context_table
= (ctxd_t
*)__srmmu_get_nocache(num_contexts
*sizeof(ctxd_t
), num_contexts
*sizeof(ctxd_t
));
1297 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa((unsigned long)srmmu_context_table
);
1299 for(i
= 0; i
< num_contexts
; i
++)
1300 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
1303 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
1305 /* Stop from hanging here... */
1306 local_flush_tlb_all();
1312 #ifdef CONFIG_SUN_IO
1313 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
1314 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
1317 srmmu_allocate_ptable_skeleton(
1318 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
1319 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
1321 pgd
= pgd_offset_k(PKMAP_BASE
);
1322 pmd
= srmmu_pmd_offset(pgd
, PKMAP_BASE
);
1323 pte
= srmmu_pte_offset(pmd
, PKMAP_BASE
);
1324 pkmap_page_table
= pte
;
1329 sparc_context_init(num_contexts
);
1334 unsigned long zones_size
[MAX_NR_ZONES
];
1335 unsigned long zholes_size
[MAX_NR_ZONES
];
1336 unsigned long npages
;
1339 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1340 zones_size
[znum
] = zholes_size
[znum
] = 0;
1342 npages
= max_low_pfn
- pfn_base
;
1344 zones_size
[ZONE_DMA
] = npages
;
1345 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
1347 npages
= highend_pfn
- max_low_pfn
;
1348 zones_size
[ZONE_HIGHMEM
] = npages
;
1349 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
1351 free_area_init_node(0, &contig_page_data
, zones_size
,
1352 pfn_base
, zholes_size
);
1356 static void srmmu_mmu_info(struct seq_file
*m
)
1361 "nocache total\t: %ld\n"
1362 "nocache used\t: %d\n",
1366 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1369 static void srmmu_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
1373 static void srmmu_destroy_context(struct mm_struct
*mm
)
1376 if(mm
->context
!= NO_CONTEXT
) {
1378 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1380 spin_lock(&srmmu_context_spinlock
);
1381 free_context(mm
->context
);
1382 spin_unlock(&srmmu_context_spinlock
);
1383 mm
->context
= NO_CONTEXT
;
1387 /* Init various srmmu chip types. */
1388 static void __init
srmmu_is_bad(void)
1390 prom_printf("Could not determine SRMMU chip type.\n");
1394 static void __init
init_vac_layout(void)
1396 int nd
, cache_lines
;
1400 unsigned long max_size
= 0;
1401 unsigned long min_line_size
= 0x10000000;
1404 nd
= prom_getchild(prom_root_node
);
1405 while((nd
= prom_getsibling(nd
)) != 0) {
1406 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1407 if(!strcmp(node_str
, "cpu")) {
1408 vac_line_size
= prom_getint(nd
, "cache-line-size");
1409 if (vac_line_size
== -1) {
1410 prom_printf("can't determine cache-line-size, "
1414 cache_lines
= prom_getint(nd
, "cache-nlines");
1415 if (cache_lines
== -1) {
1416 prom_printf("can't determine cache-nlines, halting.\n");
1420 vac_cache_size
= cache_lines
* vac_line_size
;
1422 if(vac_cache_size
> max_size
)
1423 max_size
= vac_cache_size
;
1424 if(vac_line_size
< min_line_size
)
1425 min_line_size
= vac_line_size
;
1426 //FIXME: cpus not contiguous!!
1428 if (cpu
>= NR_CPUS
|| !cpu_online(cpu
))
1436 prom_printf("No CPU nodes found, halting.\n");
1440 vac_cache_size
= max_size
;
1441 vac_line_size
= min_line_size
;
1443 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444 (int)vac_cache_size
, (int)vac_line_size
);
1447 static void __init
poke_hypersparc(void)
1449 volatile unsigned long clear
;
1450 unsigned long mreg
= srmmu_get_mmureg();
1452 hyper_flush_unconditional_combined();
1454 mreg
&= ~(HYPERSPARC_CWENABLE
);
1455 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1456 mreg
|= (HYPERSPARC_CMODE
);
1458 srmmu_set_mmureg(mreg
);
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461 hyper_clear_all_tags();
1464 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1465 hyper_flush_whole_icache();
1466 clear
= srmmu_get_faddr();
1467 clear
= srmmu_get_fstatus();
1470 static void __init
init_hypersparc(void)
1472 srmmu_name
= "ROSS HyperSparc";
1473 srmmu_modtype
= HyperSparc
;
1479 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1480 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1481 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1482 BTFIXUPSET_CALL(flush_cache_all
, hypersparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1483 BTFIXUPSET_CALL(flush_cache_mm
, hypersparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1484 BTFIXUPSET_CALL(flush_cache_range
, hypersparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1485 BTFIXUPSET_CALL(flush_cache_page
, hypersparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1487 BTFIXUPSET_CALL(flush_tlb_all
, hypersparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1488 BTFIXUPSET_CALL(flush_tlb_mm
, hypersparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1489 BTFIXUPSET_CALL(flush_tlb_range
, hypersparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1490 BTFIXUPSET_CALL(flush_tlb_page
, hypersparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1492 BTFIXUPSET_CALL(__flush_page_to_ram
, hypersparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1493 BTFIXUPSET_CALL(flush_sig_insns
, hypersparc_flush_sig_insns
, BTFIXUPCALL_NORM
);
1494 BTFIXUPSET_CALL(flush_page_for_dma
, hypersparc_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1497 poke_srmmu
= poke_hypersparc
;
1499 hypersparc_setup_blockops();
1502 static void __init
poke_cypress(void)
1504 unsigned long mreg
= srmmu_get_mmureg();
1505 unsigned long faddr
, tagval
;
1506 volatile unsigned long cypress_sucks
;
1507 volatile unsigned long clear
;
1509 clear
= srmmu_get_faddr();
1510 clear
= srmmu_get_fstatus();
1512 if (!(mreg
& CYPRESS_CENABLE
)) {
1513 for(faddr
= 0x0; faddr
< 0x10000; faddr
+= 20) {
1514 __asm__
__volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515 "sta %%g0, [%0] %2\n\t" : :
1516 "r" (faddr
), "r" (0x40000),
1517 "i" (ASI_M_DATAC_TAG
));
1520 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
1521 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
1523 "r" (faddr
), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG
));
1526 /* If modified and valid, kick it. */
1527 if((tagval
& 0x60) == 0x60)
1528 cypress_sucks
= *(unsigned long *)
1529 (0xf0020000 + faddr
);
1533 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1534 clear
= srmmu_get_faddr();
1535 clear
= srmmu_get_fstatus();
1537 mreg
|= (CYPRESS_CENABLE
| CYPRESS_CMODE
);
1538 srmmu_set_mmureg(mreg
);
1541 static void __init
init_cypress_common(void)
1545 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1546 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1547 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1548 BTFIXUPSET_CALL(flush_cache_all
, cypress_flush_cache_all
, BTFIXUPCALL_NORM
);
1549 BTFIXUPSET_CALL(flush_cache_mm
, cypress_flush_cache_mm
, BTFIXUPCALL_NORM
);
1550 BTFIXUPSET_CALL(flush_cache_range
, cypress_flush_cache_range
, BTFIXUPCALL_NORM
);
1551 BTFIXUPSET_CALL(flush_cache_page
, cypress_flush_cache_page
, BTFIXUPCALL_NORM
);
1553 BTFIXUPSET_CALL(flush_tlb_all
, cypress_flush_tlb_all
, BTFIXUPCALL_NORM
);
1554 BTFIXUPSET_CALL(flush_tlb_mm
, cypress_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1555 BTFIXUPSET_CALL(flush_tlb_page
, cypress_flush_tlb_page
, BTFIXUPCALL_NORM
);
1556 BTFIXUPSET_CALL(flush_tlb_range
, cypress_flush_tlb_range
, BTFIXUPCALL_NORM
);
1559 BTFIXUPSET_CALL(__flush_page_to_ram
, cypress_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1560 BTFIXUPSET_CALL(flush_sig_insns
, cypress_flush_sig_insns
, BTFIXUPCALL_NOP
);
1561 BTFIXUPSET_CALL(flush_page_for_dma
, cypress_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1563 poke_srmmu
= poke_cypress
;
1566 static void __init
init_cypress_604(void)
1568 srmmu_name
= "ROSS Cypress-604(UP)";
1569 srmmu_modtype
= Cypress
;
1570 init_cypress_common();
1573 static void __init
init_cypress_605(unsigned long mrev
)
1575 srmmu_name
= "ROSS Cypress-605(MP)";
1577 srmmu_modtype
= Cypress_vE
;
1578 hwbug_bitmask
|= HWBUG_COPYBACK_BROKEN
;
1581 srmmu_modtype
= Cypress_vD
;
1582 hwbug_bitmask
|= HWBUG_ASIFLUSH_BROKEN
;
1584 srmmu_modtype
= Cypress
;
1587 init_cypress_common();
1590 static void __init
poke_swift(void)
1594 /* Clear any crap from the cache or else... */
1595 swift_flush_cache_all();
1597 /* Enable I & D caches */
1598 mreg
= srmmu_get_mmureg();
1599 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1601 * The Swift branch folding logic is completely broken. At
1602 * trap time, if things are just right, if can mistakenly
1603 * think that a trap is coming from kernel mode when in fact
1604 * it is coming from user mode (it mis-executes the branch in
1605 * the trap code). So you see things like crashme completely
1606 * hosing your machine which is completely unacceptable. Turn
1607 * this shit off... nice job Fujitsu.
1609 mreg
&= ~(SWIFT_BF
);
1610 srmmu_set_mmureg(mreg
);
1613 #define SWIFT_MASKID_ADDR 0x10003018
1614 static void __init
init_swift(void)
1616 unsigned long swift_rev
;
1618 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1619 "srl %0, 0x18, %0\n\t" :
1621 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1622 srmmu_name
= "Fujitsu Swift";
1628 srmmu_modtype
= Swift_lots_o_bugs
;
1629 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1631 * Gee george, I wonder why Sun is so hush hush about
1632 * this hardware bug... really braindamage stuff going
1633 * on here. However I think we can find a way to avoid
1634 * all of the workaround overhead under Linux. Basically,
1635 * any page fault can cause kernel pages to become user
1636 * accessible (the mmu gets confused and clears some of
1637 * the ACC bits in kernel ptes). Aha, sounds pretty
1638 * horrible eh? But wait, after extensive testing it appears
1639 * that if you use pgd_t level large kernel pte's (like the
1640 * 4MB pages on the Pentium) the bug does not get tripped
1641 * at all. This avoids almost all of the major overhead.
1642 * Welcome to a world where your vendor tells you to,
1643 * "apply this kernel patch" instead of "sorry for the
1644 * broken hardware, send it back and we'll give you
1645 * properly functioning parts"
1650 srmmu_modtype
= Swift_bad_c
;
1651 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1653 * You see Sun allude to this hardware bug but never
1654 * admit things directly, they'll say things like,
1655 * "the Swift chip cache problems" or similar.
1659 srmmu_modtype
= Swift_ok
;
1663 BTFIXUPSET_CALL(flush_cache_all
, swift_flush_cache_all
, BTFIXUPCALL_NORM
);
1664 BTFIXUPSET_CALL(flush_cache_mm
, swift_flush_cache_mm
, BTFIXUPCALL_NORM
);
1665 BTFIXUPSET_CALL(flush_cache_page
, swift_flush_cache_page
, BTFIXUPCALL_NORM
);
1666 BTFIXUPSET_CALL(flush_cache_range
, swift_flush_cache_range
, BTFIXUPCALL_NORM
);
1669 BTFIXUPSET_CALL(flush_tlb_all
, swift_flush_tlb_all
, BTFIXUPCALL_NORM
);
1670 BTFIXUPSET_CALL(flush_tlb_mm
, swift_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1671 BTFIXUPSET_CALL(flush_tlb_page
, swift_flush_tlb_page
, BTFIXUPCALL_NORM
);
1672 BTFIXUPSET_CALL(flush_tlb_range
, swift_flush_tlb_range
, BTFIXUPCALL_NORM
);
1674 BTFIXUPSET_CALL(__flush_page_to_ram
, swift_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1675 BTFIXUPSET_CALL(flush_sig_insns
, swift_flush_sig_insns
, BTFIXUPCALL_NORM
);
1676 BTFIXUPSET_CALL(flush_page_for_dma
, swift_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1678 BTFIXUPSET_CALL(update_mmu_cache
, swift_update_mmu_cache
, BTFIXUPCALL_NORM
);
1680 flush_page_for_dma_global
= 0;
1683 * Are you now convinced that the Swift is one of the
1684 * biggest VLSI abortions of all time? Bravo Fujitsu!
1685 * Fujitsu, the !#?!%$'d up processor people. I bet if
1686 * you examined the microcode of the Swift you'd find
1687 * XXX's all over the place.
1689 poke_srmmu
= poke_swift
;
1692 static void turbosparc_flush_cache_all(void)
1694 flush_user_windows();
1695 turbosparc_idflash_clear();
1698 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1706 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1708 FLUSH_BEGIN(vma
->vm_mm
)
1709 flush_user_windows();
1710 turbosparc_idflash_clear();
1714 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1716 FLUSH_BEGIN(vma
->vm_mm
)
1717 flush_user_windows();
1718 if (vma
->vm_flags
& VM_EXEC
)
1719 turbosparc_flush_icache();
1720 turbosparc_flush_dcache();
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1725 static void turbosparc_flush_page_to_ram(unsigned long page
)
1727 #ifdef TURBOSPARC_WRITEBACK
1728 volatile unsigned long clear
;
1730 if (srmmu_hwprobe(page
))
1731 turbosparc_flush_page_cache(page
);
1732 clear
= srmmu_get_fstatus();
1736 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1740 static void turbosparc_flush_page_for_dma(unsigned long page
)
1742 turbosparc_flush_dcache();
1745 static void turbosparc_flush_tlb_all(void)
1747 srmmu_flush_whole_tlb();
1750 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1753 srmmu_flush_whole_tlb();
1757 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1759 FLUSH_BEGIN(vma
->vm_mm
)
1760 srmmu_flush_whole_tlb();
1764 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1766 FLUSH_BEGIN(vma
->vm_mm
)
1767 srmmu_flush_whole_tlb();
1772 static void __init
poke_turbosparc(void)
1774 unsigned long mreg
= srmmu_get_mmureg();
1775 unsigned long ccreg
;
1777 /* Clear any crap from the cache or else... */
1778 turbosparc_flush_cache_all();
1779 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* Temporarily disable I & D caches */
1780 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1781 srmmu_set_mmureg(mreg
);
1783 ccreg
= turbosparc_get_ccreg();
1785 #ifdef TURBOSPARC_WRITEBACK
1786 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1787 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1788 /* Write-back D-cache, emulate VLSI
1789 * abortion number three, not number one */
1791 /* For now let's play safe, optimize later */
1792 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1793 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1794 ccreg
&= ~(TURBOSPARC_uS2
);
1795 /* Emulate VLSI abortion number three, not number one */
1798 switch (ccreg
& 7) {
1799 case 0: /* No SE cache */
1800 case 7: /* Test mode */
1803 ccreg
|= (TURBOSPARC_SCENABLE
);
1805 turbosparc_set_ccreg (ccreg
);
1807 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1808 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1809 srmmu_set_mmureg(mreg
);
1812 static void __init
init_turbosparc(void)
1814 srmmu_name
= "Fujitsu TurboSparc";
1815 srmmu_modtype
= TurboSparc
;
1817 BTFIXUPSET_CALL(flush_cache_all
, turbosparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1818 BTFIXUPSET_CALL(flush_cache_mm
, turbosparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1819 BTFIXUPSET_CALL(flush_cache_page
, turbosparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1820 BTFIXUPSET_CALL(flush_cache_range
, turbosparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1822 BTFIXUPSET_CALL(flush_tlb_all
, turbosparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1823 BTFIXUPSET_CALL(flush_tlb_mm
, turbosparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1824 BTFIXUPSET_CALL(flush_tlb_page
, turbosparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1825 BTFIXUPSET_CALL(flush_tlb_range
, turbosparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1827 BTFIXUPSET_CALL(__flush_page_to_ram
, turbosparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1829 BTFIXUPSET_CALL(flush_sig_insns
, turbosparc_flush_sig_insns
, BTFIXUPCALL_NOP
);
1830 BTFIXUPSET_CALL(flush_page_for_dma
, turbosparc_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1832 poke_srmmu
= poke_turbosparc
;
1835 static void __init
poke_tsunami(void)
1837 unsigned long mreg
= srmmu_get_mmureg();
1839 tsunami_flush_icache();
1840 tsunami_flush_dcache();
1841 mreg
&= ~TSUNAMI_ITD
;
1842 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1843 srmmu_set_mmureg(mreg
);
1846 static void __init
init_tsunami(void)
1849 * Tsunami's pretty sane, Sun and TI actually got it
1850 * somewhat right this time. Fujitsu should have
1851 * taken some lessons from them.
1854 srmmu_name
= "TI Tsunami";
1855 srmmu_modtype
= Tsunami
;
1857 BTFIXUPSET_CALL(flush_cache_all
, tsunami_flush_cache_all
, BTFIXUPCALL_NORM
);
1858 BTFIXUPSET_CALL(flush_cache_mm
, tsunami_flush_cache_mm
, BTFIXUPCALL_NORM
);
1859 BTFIXUPSET_CALL(flush_cache_page
, tsunami_flush_cache_page
, BTFIXUPCALL_NORM
);
1860 BTFIXUPSET_CALL(flush_cache_range
, tsunami_flush_cache_range
, BTFIXUPCALL_NORM
);
1863 BTFIXUPSET_CALL(flush_tlb_all
, tsunami_flush_tlb_all
, BTFIXUPCALL_NORM
);
1864 BTFIXUPSET_CALL(flush_tlb_mm
, tsunami_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1865 BTFIXUPSET_CALL(flush_tlb_page
, tsunami_flush_tlb_page
, BTFIXUPCALL_NORM
);
1866 BTFIXUPSET_CALL(flush_tlb_range
, tsunami_flush_tlb_range
, BTFIXUPCALL_NORM
);
1868 BTFIXUPSET_CALL(__flush_page_to_ram
, tsunami_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1869 BTFIXUPSET_CALL(flush_sig_insns
, tsunami_flush_sig_insns
, BTFIXUPCALL_NORM
);
1870 BTFIXUPSET_CALL(flush_page_for_dma
, tsunami_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1872 poke_srmmu
= poke_tsunami
;
1874 tsunami_setup_blockops();
1877 static void __init
poke_viking(void)
1879 unsigned long mreg
= srmmu_get_mmureg();
1880 static int smp_catch
;
1882 if(viking_mxcc_present
) {
1883 unsigned long mxcc_control
= mxcc_get_creg();
1885 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1886 mxcc_control
&= ~(MXCC_CTL_RRC
);
1887 mxcc_set_creg(mxcc_control
);
1890 * We don't need memory parity checks.
1891 * XXX This is a mess, have to dig out later. ecd.
1892 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1895 /* We do cache ptables on MXCC. */
1896 mreg
|= VIKING_TCENABLE
;
1898 unsigned long bpreg
;
1900 mreg
&= ~(VIKING_TCENABLE
);
1902 /* Must disable mixed-cmd mode here for other cpu's. */
1903 bpreg
= viking_get_bpreg();
1904 bpreg
&= ~(VIKING_ACTION_MIX
);
1905 viking_set_bpreg(bpreg
);
1907 /* Just in case PROM does something funny. */
1912 mreg
|= VIKING_SPENABLE
;
1913 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1914 mreg
|= VIKING_SBENABLE
;
1915 mreg
&= ~(VIKING_ACENABLE
);
1916 srmmu_set_mmureg(mreg
);
1919 /* Avoid unnecessary cross calls. */
1920 BTFIXUPCOPY_CALL(flush_cache_all
, local_flush_cache_all
);
1921 BTFIXUPCOPY_CALL(flush_cache_mm
, local_flush_cache_mm
);
1922 BTFIXUPCOPY_CALL(flush_cache_range
, local_flush_cache_range
);
1923 BTFIXUPCOPY_CALL(flush_cache_page
, local_flush_cache_page
);
1924 BTFIXUPCOPY_CALL(__flush_page_to_ram
, local_flush_page_to_ram
);
1925 BTFIXUPCOPY_CALL(flush_sig_insns
, local_flush_sig_insns
);
1926 BTFIXUPCOPY_CALL(flush_page_for_dma
, local_flush_page_for_dma
);
1931 static void __init
init_viking(void)
1933 unsigned long mreg
= srmmu_get_mmureg();
1935 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1936 if(mreg
& VIKING_MMODE
) {
1937 srmmu_name
= "TI Viking";
1938 viking_mxcc_present
= 0;
1941 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1942 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1943 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1946 * We need this to make sure old viking takes no hits
1947 * on it's cache for dma snoops to workaround the
1948 * "load from non-cacheable memory" interrupt bug.
1949 * This is only necessary because of the new way in
1950 * which we use the IOMMU.
1952 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page
, BTFIXUPCALL_NORM
);
1954 flush_page_for_dma_global
= 0;
1956 srmmu_name
= "TI Viking/MXCC";
1957 viking_mxcc_present
= 1;
1959 srmmu_cache_pagetables
= 1;
1961 /* MXCC vikings lack the DMA snooping bug. */
1962 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1965 BTFIXUPSET_CALL(flush_cache_all
, viking_flush_cache_all
, BTFIXUPCALL_NORM
);
1966 BTFIXUPSET_CALL(flush_cache_mm
, viking_flush_cache_mm
, BTFIXUPCALL_NORM
);
1967 BTFIXUPSET_CALL(flush_cache_page
, viking_flush_cache_page
, BTFIXUPCALL_NORM
);
1968 BTFIXUPSET_CALL(flush_cache_range
, viking_flush_cache_range
, BTFIXUPCALL_NORM
);
1971 if (sparc_cpu_model
== sun4d
) {
1972 BTFIXUPSET_CALL(flush_tlb_all
, sun4dsmp_flush_tlb_all
, BTFIXUPCALL_NORM
);
1973 BTFIXUPSET_CALL(flush_tlb_mm
, sun4dsmp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1974 BTFIXUPSET_CALL(flush_tlb_page
, sun4dsmp_flush_tlb_page
, BTFIXUPCALL_NORM
);
1975 BTFIXUPSET_CALL(flush_tlb_range
, sun4dsmp_flush_tlb_range
, BTFIXUPCALL_NORM
);
1979 BTFIXUPSET_CALL(flush_tlb_all
, viking_flush_tlb_all
, BTFIXUPCALL_NORM
);
1980 BTFIXUPSET_CALL(flush_tlb_mm
, viking_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1981 BTFIXUPSET_CALL(flush_tlb_page
, viking_flush_tlb_page
, BTFIXUPCALL_NORM
);
1982 BTFIXUPSET_CALL(flush_tlb_range
, viking_flush_tlb_range
, BTFIXUPCALL_NORM
);
1985 BTFIXUPSET_CALL(__flush_page_to_ram
, viking_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1986 BTFIXUPSET_CALL(flush_sig_insns
, viking_flush_sig_insns
, BTFIXUPCALL_NOP
);
1988 poke_srmmu
= poke_viking
;
1991 /* Probe for the srmmu chip version. */
1992 static void __init
get_srmmu_type(void)
1994 unsigned long mreg
, psr
;
1995 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1997 srmmu_modtype
= SRMMU_INVAL_MOD
;
2000 mreg
= srmmu_get_mmureg(); psr
= get_psr();
2001 mod_typ
= (mreg
& 0xf0000000) >> 28;
2002 mod_rev
= (mreg
& 0x0f000000) >> 24;
2003 psr_typ
= (psr
>> 28) & 0xf;
2004 psr_vers
= (psr
>> 24) & 0xf;
2006 /* First, check for HyperSparc or Cypress. */
2010 /* UP or MP Hypersparc */
2015 /* Uniprocessor Cypress */
2021 /* _REALLY OLD_ Cypress MP chips... */
2025 /* MP Cypress mmu/cache-controller */
2026 init_cypress_605(mod_rev
);
2029 /* Some other Cypress revision, assume a 605. */
2030 init_cypress_605(mod_rev
);
2037 * Now Fujitsu TurboSparc. It might happen that it is
2038 * in Swift emulation mode, so we will check later...
2040 if (psr_typ
== 0 && psr_vers
== 5) {
2045 /* Next check for Fujitsu Swift. */
2046 if(psr_typ
== 0 && psr_vers
== 4) {
2050 /* Look if it is not a TurboSparc emulating Swift... */
2051 cpunode
= prom_getchild(prom_root_node
);
2052 while((cpunode
= prom_getsibling(cpunode
)) != 0) {
2053 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
2054 if(!strcmp(node_str
, "cpu")) {
2055 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
2056 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
2068 /* Now the Viking family of srmmu. */
2071 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
2076 /* Finally the Tsunami. */
2077 if(psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
2086 /* don't laugh, static pagetables */
2087 static void srmmu_check_pgt_cache(int low
, int high
)
2091 extern unsigned long spwin_mmu_patchme
, fwin_mmu_patchme
,
2092 tsetup_mmu_patchme
, rtrap_mmu_patchme
;
2094 extern unsigned long spwin_srmmu_stackchk
, srmmu_fwin_stackchk
,
2095 tsetup_srmmu_stackchk
, srmmu_rett_stackchk
;
2097 extern unsigned long srmmu_fault
;
2099 #define PATCH_BRANCH(insn, dest) do { \
2102 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2105 static void __init
patch_window_trap_handlers(void)
2107 unsigned long *iaddr
, *daddr
;
2109 PATCH_BRANCH(spwin_mmu_patchme
, spwin_srmmu_stackchk
);
2110 PATCH_BRANCH(fwin_mmu_patchme
, srmmu_fwin_stackchk
);
2111 PATCH_BRANCH(tsetup_mmu_patchme
, tsetup_srmmu_stackchk
);
2112 PATCH_BRANCH(rtrap_mmu_patchme
, srmmu_rett_stackchk
);
2113 PATCH_BRANCH(sparc_ttable
[SP_TRAP_TFLT
].inst_three
, srmmu_fault
);
2114 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DFLT
].inst_three
, srmmu_fault
);
2115 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DACC
].inst_three
, srmmu_fault
);
2119 /* Local cross-calls. */
2120 static void smp_flush_page_for_dma(unsigned long page
)
2122 xc1((smpfunc_t
) BTFIXUP_CALL(local_flush_page_for_dma
), page
);
2123 local_flush_page_for_dma(page
);
2128 static pte_t
srmmu_pgoff_to_pte(unsigned long pgoff
)
2130 return __pte((pgoff
<< SRMMU_PTE_FILE_SHIFT
) | SRMMU_FILE
);
2133 static unsigned long srmmu_pte_to_pgoff(pte_t pte
)
2135 return pte_val(pte
) >> SRMMU_PTE_FILE_SHIFT
;
2138 static pgprot_t
srmmu_pgprot_noncached(pgprot_t prot
)
2140 prot
&= ~__pgprot(SRMMU_CACHE
);
2145 /* Load up routines and constants for sun4m and sun4d mmu */
2146 void __init
ld_mmu_srmmu(void)
2148 extern void ld_mmu_iommu(void);
2149 extern void ld_mmu_iounit(void);
2150 extern void ___xchg32_sun4md(void);
2152 BTFIXUPSET_SIMM13(pgdir_shift
, SRMMU_PGDIR_SHIFT
);
2153 BTFIXUPSET_SETHI(pgdir_size
, SRMMU_PGDIR_SIZE
);
2154 BTFIXUPSET_SETHI(pgdir_mask
, SRMMU_PGDIR_MASK
);
2156 BTFIXUPSET_SIMM13(ptrs_per_pmd
, SRMMU_PTRS_PER_PMD
);
2157 BTFIXUPSET_SIMM13(ptrs_per_pgd
, SRMMU_PTRS_PER_PGD
);
2159 BTFIXUPSET_INT(page_none
, pgprot_val(SRMMU_PAGE_NONE
));
2160 BTFIXUPSET_INT(page_shared
, pgprot_val(SRMMU_PAGE_SHARED
));
2161 BTFIXUPSET_INT(page_copy
, pgprot_val(SRMMU_PAGE_COPY
));
2162 BTFIXUPSET_INT(page_readonly
, pgprot_val(SRMMU_PAGE_RDONLY
));
2163 BTFIXUPSET_INT(page_kernel
, pgprot_val(SRMMU_PAGE_KERNEL
));
2164 page_kernel
= pgprot_val(SRMMU_PAGE_KERNEL
);
2167 BTFIXUPSET_CALL(pgprot_noncached
, srmmu_pgprot_noncached
, BTFIXUPCALL_NORM
);
2169 BTFIXUPSET_CALL(___xchg32
, ___xchg32_sun4md
, BTFIXUPCALL_SWAPG1G2
);
2171 BTFIXUPSET_CALL(do_check_pgt_cache
, srmmu_check_pgt_cache
, BTFIXUPCALL_NOP
);
2173 BTFIXUPSET_CALL(set_pte
, srmmu_set_pte
, BTFIXUPCALL_SWAPO0O1
);
2174 BTFIXUPSET_CALL(switch_mm
, srmmu_switch_mm
, BTFIXUPCALL_NORM
);
2176 BTFIXUPSET_CALL(pte_pfn
, srmmu_pte_pfn
, BTFIXUPCALL_NORM
);
2177 BTFIXUPSET_CALL(pmd_page
, srmmu_pmd_page
, BTFIXUPCALL_NORM
);
2178 BTFIXUPSET_CALL(pgd_page_vaddr
, srmmu_pgd_page
, BTFIXUPCALL_NORM
);
2180 BTFIXUPSET_SETHI(none_mask
, 0xF0000000);
2182 BTFIXUPSET_CALL(pte_present
, srmmu_pte_present
, BTFIXUPCALL_NORM
);
2183 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_SWAPO0G0
);
2184 BTFIXUPSET_CALL(pte_read
, srmmu_pte_read
, BTFIXUPCALL_NORM
);
2186 BTFIXUPSET_CALL(pmd_bad
, srmmu_pmd_bad
, BTFIXUPCALL_NORM
);
2187 BTFIXUPSET_CALL(pmd_present
, srmmu_pmd_present
, BTFIXUPCALL_NORM
);
2188 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_SWAPO0G0
);
2190 BTFIXUPSET_CALL(pgd_none
, srmmu_pgd_none
, BTFIXUPCALL_NORM
);
2191 BTFIXUPSET_CALL(pgd_bad
, srmmu_pgd_bad
, BTFIXUPCALL_NORM
);
2192 BTFIXUPSET_CALL(pgd_present
, srmmu_pgd_present
, BTFIXUPCALL_NORM
);
2193 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_SWAPO0G0
);
2195 BTFIXUPSET_CALL(mk_pte
, srmmu_mk_pte
, BTFIXUPCALL_NORM
);
2196 BTFIXUPSET_CALL(mk_pte_phys
, srmmu_mk_pte_phys
, BTFIXUPCALL_NORM
);
2197 BTFIXUPSET_CALL(mk_pte_io
, srmmu_mk_pte_io
, BTFIXUPCALL_NORM
);
2198 BTFIXUPSET_CALL(pgd_set
, srmmu_pgd_set
, BTFIXUPCALL_NORM
);
2199 BTFIXUPSET_CALL(pmd_set
, srmmu_pmd_set
, BTFIXUPCALL_NORM
);
2200 BTFIXUPSET_CALL(pmd_populate
, srmmu_pmd_populate
, BTFIXUPCALL_NORM
);
2202 BTFIXUPSET_INT(pte_modify_mask
, SRMMU_CHG_MASK
);
2203 BTFIXUPSET_CALL(pmd_offset
, srmmu_pmd_offset
, BTFIXUPCALL_NORM
);
2204 BTFIXUPSET_CALL(pte_offset_kernel
, srmmu_pte_offset
, BTFIXUPCALL_NORM
);
2206 BTFIXUPSET_CALL(free_pte_fast
, srmmu_free_pte_fast
, BTFIXUPCALL_NORM
);
2207 BTFIXUPSET_CALL(pte_free
, srmmu_pte_free
, BTFIXUPCALL_NORM
);
2208 BTFIXUPSET_CALL(pte_alloc_one_kernel
, srmmu_pte_alloc_one_kernel
, BTFIXUPCALL_NORM
);
2209 BTFIXUPSET_CALL(pte_alloc_one
, srmmu_pte_alloc_one
, BTFIXUPCALL_NORM
);
2210 BTFIXUPSET_CALL(free_pmd_fast
, srmmu_pmd_free
, BTFIXUPCALL_NORM
);
2211 BTFIXUPSET_CALL(pmd_alloc_one
, srmmu_pmd_alloc_one
, BTFIXUPCALL_NORM
);
2212 BTFIXUPSET_CALL(free_pgd_fast
, srmmu_free_pgd_fast
, BTFIXUPCALL_NORM
);
2213 BTFIXUPSET_CALL(get_pgd_fast
, srmmu_get_pgd_fast
, BTFIXUPCALL_NORM
);
2215 BTFIXUPSET_HALF(pte_writei
, SRMMU_WRITE
);
2216 BTFIXUPSET_HALF(pte_dirtyi
, SRMMU_DIRTY
);
2217 BTFIXUPSET_HALF(pte_youngi
, SRMMU_REF
);
2218 BTFIXUPSET_HALF(pte_filei
, SRMMU_FILE
);
2219 BTFIXUPSET_HALF(pte_wrprotecti
, SRMMU_WRITE
);
2220 BTFIXUPSET_HALF(pte_mkcleani
, SRMMU_DIRTY
);
2221 BTFIXUPSET_HALF(pte_mkoldi
, SRMMU_REF
);
2222 BTFIXUPSET_CALL(pte_mkwrite
, srmmu_pte_mkwrite
, BTFIXUPCALL_ORINT(SRMMU_WRITE
));
2223 BTFIXUPSET_CALL(pte_mkdirty
, srmmu_pte_mkdirty
, BTFIXUPCALL_ORINT(SRMMU_DIRTY
));
2224 BTFIXUPSET_CALL(pte_mkyoung
, srmmu_pte_mkyoung
, BTFIXUPCALL_ORINT(SRMMU_REF
));
2225 BTFIXUPSET_CALL(update_mmu_cache
, srmmu_update_mmu_cache
, BTFIXUPCALL_NOP
);
2226 BTFIXUPSET_CALL(destroy_context
, srmmu_destroy_context
, BTFIXUPCALL_NORM
);
2228 BTFIXUPSET_CALL(sparc_mapiorange
, srmmu_mapiorange
, BTFIXUPCALL_NORM
);
2229 BTFIXUPSET_CALL(sparc_unmapiorange
, srmmu_unmapiorange
, BTFIXUPCALL_NORM
);
2231 BTFIXUPSET_CALL(__swp_type
, srmmu_swp_type
, BTFIXUPCALL_NORM
);
2232 BTFIXUPSET_CALL(__swp_offset
, srmmu_swp_offset
, BTFIXUPCALL_NORM
);
2233 BTFIXUPSET_CALL(__swp_entry
, srmmu_swp_entry
, BTFIXUPCALL_NORM
);
2235 BTFIXUPSET_CALL(mmu_info
, srmmu_mmu_info
, BTFIXUPCALL_NORM
);
2237 BTFIXUPSET_CALL(alloc_thread_info
, srmmu_alloc_thread_info
, BTFIXUPCALL_NORM
);
2238 BTFIXUPSET_CALL(free_thread_info
, srmmu_free_thread_info
, BTFIXUPCALL_NORM
);
2240 BTFIXUPSET_CALL(pte_to_pgoff
, srmmu_pte_to_pgoff
, BTFIXUPCALL_NORM
);
2241 BTFIXUPSET_CALL(pgoff_to_pte
, srmmu_pgoff_to_pte
, BTFIXUPCALL_NORM
);
2244 patch_window_trap_handlers();
2247 /* El switcheroo... */
2249 BTFIXUPCOPY_CALL(local_flush_cache_all
, flush_cache_all
);
2250 BTFIXUPCOPY_CALL(local_flush_cache_mm
, flush_cache_mm
);
2251 BTFIXUPCOPY_CALL(local_flush_cache_range
, flush_cache_range
);
2252 BTFIXUPCOPY_CALL(local_flush_cache_page
, flush_cache_page
);
2253 BTFIXUPCOPY_CALL(local_flush_tlb_all
, flush_tlb_all
);
2254 BTFIXUPCOPY_CALL(local_flush_tlb_mm
, flush_tlb_mm
);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_range
, flush_tlb_range
);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_page
, flush_tlb_page
);
2257 BTFIXUPCOPY_CALL(local_flush_page_to_ram
, __flush_page_to_ram
);
2258 BTFIXUPCOPY_CALL(local_flush_sig_insns
, flush_sig_insns
);
2259 BTFIXUPCOPY_CALL(local_flush_page_for_dma
, flush_page_for_dma
);
2261 BTFIXUPSET_CALL(flush_cache_all
, smp_flush_cache_all
, BTFIXUPCALL_NORM
);
2262 BTFIXUPSET_CALL(flush_cache_mm
, smp_flush_cache_mm
, BTFIXUPCALL_NORM
);
2263 BTFIXUPSET_CALL(flush_cache_range
, smp_flush_cache_range
, BTFIXUPCALL_NORM
);
2264 BTFIXUPSET_CALL(flush_cache_page
, smp_flush_cache_page
, BTFIXUPCALL_NORM
);
2265 if (sparc_cpu_model
!= sun4d
) {
2266 BTFIXUPSET_CALL(flush_tlb_all
, smp_flush_tlb_all
, BTFIXUPCALL_NORM
);
2267 BTFIXUPSET_CALL(flush_tlb_mm
, smp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
2268 BTFIXUPSET_CALL(flush_tlb_range
, smp_flush_tlb_range
, BTFIXUPCALL_NORM
);
2269 BTFIXUPSET_CALL(flush_tlb_page
, smp_flush_tlb_page
, BTFIXUPCALL_NORM
);
2271 BTFIXUPSET_CALL(__flush_page_to_ram
, smp_flush_page_to_ram
, BTFIXUPCALL_NORM
);
2272 BTFIXUPSET_CALL(flush_sig_insns
, smp_flush_sig_insns
, BTFIXUPCALL_NORM
);
2273 BTFIXUPSET_CALL(flush_page_for_dma
, smp_flush_page_for_dma
, BTFIXUPCALL_NORM
);
2276 if (sparc_cpu_model
== sun4d
)
2281 if (sparc_cpu_model
== sun4d
)