2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct rb_node
*active
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending metadata requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
, org_ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 struct cfq_group
*orig_cfqg
;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors
;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
174 /* This is per cgroup per device grouping structure */
176 /* group service_tree member */
177 struct rb_node rb_node
;
179 /* group service_tree key */
184 /* number of cfqq currently on this group */
187 /* Per group busy queus average. Useful for workload slice calc. */
188 unsigned int busy_queues_avg
[2];
190 * rr lists of queues with requests, onle rr for each priority class.
191 * Counts are embedded in the cfq_rb_root
193 struct cfq_rb_root service_trees
[2][3];
194 struct cfq_rb_root service_tree_idle
;
196 unsigned long saved_workload_slice
;
197 enum wl_type_t saved_workload
;
198 enum wl_prio_t saved_serving_prio
;
199 struct blkio_group blkg
;
200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
201 struct hlist_node cfqd_node
;
204 /* number of requests that are on the dispatch list or inside driver */
209 * Per block device queue structure
212 struct request_queue
*queue
;
213 /* Root service tree for cfq_groups */
214 struct cfq_rb_root grp_service_tree
;
215 struct cfq_group root_group
;
218 * The priority currently being served
220 enum wl_prio_t serving_prio
;
221 enum wl_type_t serving_type
;
222 unsigned long workload_expires
;
223 struct cfq_group
*serving_group
;
224 bool noidle_tree_requires_idle
;
227 * Each priority tree is sorted by next_request position. These
228 * trees are used when determining if two or more queues are
229 * interleaving requests (see cfq_close_cooperator).
231 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
233 unsigned int busy_queues
;
239 * queue-depth detection
245 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
246 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
249 int hw_tag_est_depth
;
250 unsigned int hw_tag_samples
;
253 * idle window management
255 struct timer_list idle_slice_timer
;
256 struct work_struct unplug_work
;
258 struct cfq_queue
*active_queue
;
259 struct cfq_io_context
*active_cic
;
262 * async queue for each priority case
264 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
265 struct cfq_queue
*async_idle_cfqq
;
267 sector_t last_position
;
270 * tunables, see top of file
272 unsigned int cfq_quantum
;
273 unsigned int cfq_fifo_expire
[2];
274 unsigned int cfq_back_penalty
;
275 unsigned int cfq_back_max
;
276 unsigned int cfq_slice
[2];
277 unsigned int cfq_slice_async_rq
;
278 unsigned int cfq_slice_idle
;
279 unsigned int cfq_group_idle
;
280 unsigned int cfq_latency
;
281 unsigned int cfq_group_isolation
;
283 unsigned int cic_index
;
284 struct list_head cic_list
;
287 * Fallback dummy cfqq for extreme OOM conditions
289 struct cfq_queue oom_cfqq
;
291 unsigned long last_delayed_sync
;
293 /* List of cfq groups being managed on this device*/
294 struct hlist_head cfqg_list
;
298 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
300 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
307 if (prio
== IDLE_WORKLOAD
)
308 return &cfqg
->service_tree_idle
;
310 return &cfqg
->service_trees
[prio
][type
];
313 enum cfqq_state_flags
{
314 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
315 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
316 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
317 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
318 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
319 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
320 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
321 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
322 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
323 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
324 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
325 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
326 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
329 #define CFQ_CFQQ_FNS(name) \
330 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
332 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
334 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
336 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
338 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
340 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
344 CFQ_CFQQ_FNS(wait_request
);
345 CFQ_CFQQ_FNS(must_dispatch
);
346 CFQ_CFQQ_FNS(must_alloc_slice
);
347 CFQ_CFQQ_FNS(fifo_expire
);
348 CFQ_CFQQ_FNS(idle_window
);
349 CFQ_CFQQ_FNS(prio_changed
);
350 CFQ_CFQQ_FNS(slice_new
);
353 CFQ_CFQQ_FNS(split_coop
);
355 CFQ_CFQQ_FNS(wait_busy
);
358 #ifdef CONFIG_CFQ_GROUP_IOSCHED
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
361 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
362 blkg_path(&(cfqq)->cfqg->blkg), ##args);
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
366 blkg_path(&(cfqg)->blkg), ##args); \
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
373 #define cfq_log(cfqd, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
376 /* Traverses through cfq group service trees */
377 #define for_each_cfqg_st(cfqg, i, j, st) \
378 for (i = 0; i <= IDLE_WORKLOAD; i++) \
379 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
380 : &cfqg->service_tree_idle; \
381 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
382 (i == IDLE_WORKLOAD && j == 0); \
383 j++, st = i < IDLE_WORKLOAD ? \
384 &cfqg->service_trees[i][j]: NULL) \
387 static inline bool iops_mode(struct cfq_data *cfqd)
390 * If we are not idling on queues and it is a NCQ drive, parallel
391 * execution of requests is on and measuring time is not possible
392 * in most of the cases until and unless we drive shallower queue
393 * depths and that becomes a performance bottleneck. In such cases
394 * switch to start providing fairness in terms of number of IOs.
396 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
402 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
404 if (cfq_class_idle(cfqq
))
405 return IDLE_WORKLOAD
;
406 if (cfq_class_rt(cfqq
))
412 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
414 if (!cfq_cfqq_sync(cfqq
))
415 return ASYNC_WORKLOAD
;
416 if (!cfq_cfqq_idle_window(cfqq
))
417 return SYNC_NOIDLE_WORKLOAD
;
418 return SYNC_WORKLOAD
;
421 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
422 struct cfq_data
*cfqd
,
423 struct cfq_group
*cfqg
)
425 if (wl
== IDLE_WORKLOAD
)
426 return cfqg
->service_tree_idle
.count
;
428 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
429 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
430 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
433 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
434 struct cfq_group
*cfqg
)
436 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
437 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
440 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
441 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
442 struct io_context
*, gfp_t
);
443 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
444 struct io_context
*);
446 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
449 return cic
->cfqq
[is_sync
];
452 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
453 struct cfq_queue
*cfqq
, bool is_sync
)
455 cic
->cfqq
[is_sync
] = cfqq
;
458 #define CIC_DEAD_KEY 1ul
459 #define CIC_DEAD_INDEX_SHIFT 1
461 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
463 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
466 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
468 struct cfq_data
*cfqd
= cic
->key
;
470 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
477 * We regard a request as SYNC, if it's either a read or has the SYNC bit
478 * set (in which case it could also be direct WRITE).
480 static inline bool cfq_bio_sync(struct bio
*bio
)
482 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
486 * scheduler run of queue, if there are requests pending and no one in the
487 * driver that will restart queueing
489 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
491 if (cfqd
->busy_queues
) {
492 cfq_log(cfqd
, "schedule dispatch");
493 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
497 static int cfq_queue_empty(struct request_queue
*q
)
499 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
501 return !cfqd
->rq_queued
;
505 * Scale schedule slice based on io priority. Use the sync time slice only
506 * if a queue is marked sync and has sync io queued. A sync queue with async
507 * io only, should not get full sync slice length.
509 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
512 const int base_slice
= cfqd
->cfq_slice
[sync
];
514 WARN_ON(prio
>= IOPRIO_BE_NR
);
516 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
520 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
522 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
525 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
527 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
529 d
= d
* BLKIO_WEIGHT_DEFAULT
;
530 do_div(d
, cfqg
->weight
);
534 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
536 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
538 min_vdisktime
= vdisktime
;
540 return min_vdisktime
;
543 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
545 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
547 min_vdisktime
= vdisktime
;
549 return min_vdisktime
;
552 static void update_min_vdisktime(struct cfq_rb_root
*st
)
554 u64 vdisktime
= st
->min_vdisktime
;
555 struct cfq_group
*cfqg
;
558 cfqg
= rb_entry_cfqg(st
->active
);
559 vdisktime
= cfqg
->vdisktime
;
563 cfqg
= rb_entry_cfqg(st
->left
);
564 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
567 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
576 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
577 struct cfq_group
*cfqg
, bool rt
)
579 unsigned min_q
, max_q
;
580 unsigned mult
= cfq_hist_divisor
- 1;
581 unsigned round
= cfq_hist_divisor
/ 2;
582 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
584 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
585 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
586 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
588 return cfqg
->busy_queues_avg
[rt
];
591 static inline unsigned
592 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
594 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
596 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
600 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
602 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
603 if (cfqd
->cfq_latency
) {
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
608 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
610 unsigned sync_slice
= cfqd
->cfq_slice
[1];
611 unsigned expect_latency
= sync_slice
* iq
;
612 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
614 if (expect_latency
> group_slice
) {
615 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
619 min(slice
, base_low_slice
* slice
/ sync_slice
);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
622 slice
= max(slice
* group_slice
/ expect_latency
,
626 cfqq
->slice_start
= jiffies
;
627 cfqq
->slice_end
= jiffies
+ slice
;
628 cfqq
->allocated_slice
= slice
;
629 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
637 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
639 if (cfq_cfqq_slice_new(cfqq
))
641 if (time_before(jiffies
, cfqq
->slice_end
))
648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649 * We choose the request that is closest to the head right now. Distance
650 * behind the head is penalized and only allowed to a certain extent.
652 static struct request
*
653 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
655 sector_t s1
, s2
, d1
= 0, d2
= 0;
656 unsigned long back_max
;
657 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
661 if (rq1
== NULL
|| rq1
== rq2
)
666 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
668 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
670 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
672 else if ((rq2
->cmd_flags
& REQ_META
) &&
673 !(rq1
->cmd_flags
& REQ_META
))
676 s1
= blk_rq_pos(rq1
);
677 s2
= blk_rq_pos(rq2
);
680 * by definition, 1KiB is 2 sectors
682 back_max
= cfqd
->cfq_back_max
* 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
691 else if (s1
+ back_max
>= last
)
692 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
694 wrap
|= CFQ_RQ1_WRAP
;
698 else if (s2
+ back_max
>= last
)
699 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
701 wrap
|= CFQ_RQ2_WRAP
;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
746 /* Service tree is empty */
751 root
->left
= rb_first(&root
->rb
);
754 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
759 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
762 root
->left
= rb_first(&root
->rb
);
765 return rb_entry_cfqg(root
->left
);
770 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
776 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
780 rb_erase_init(n
, &root
->rb
);
785 * would be nice to take fifo expire time into account as well
787 static struct request
*
788 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
789 struct request
*last
)
791 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
792 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
793 struct request
*next
= NULL
, *prev
= NULL
;
795 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
798 prev
= rb_entry_rq(rbprev
);
801 next
= rb_entry_rq(rbnext
);
803 rbnext
= rb_first(&cfqq
->sort_list
);
804 if (rbnext
&& rbnext
!= &last
->rb_node
)
805 next
= rb_entry_rq(rbnext
);
808 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
811 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
812 struct cfq_queue
*cfqq
)
815 * just an approximation, should be ok.
817 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
818 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
822 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
824 return cfqg
->vdisktime
- st
->min_vdisktime
;
828 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
830 struct rb_node
**node
= &st
->rb
.rb_node
;
831 struct rb_node
*parent
= NULL
;
832 struct cfq_group
*__cfqg
;
833 s64 key
= cfqg_key(st
, cfqg
);
836 while (*node
!= NULL
) {
838 __cfqg
= rb_entry_cfqg(parent
);
840 if (key
< cfqg_key(st
, __cfqg
))
841 node
= &parent
->rb_left
;
843 node
= &parent
->rb_right
;
849 st
->left
= &cfqg
->rb_node
;
851 rb_link_node(&cfqg
->rb_node
, parent
, node
);
852 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
856 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
858 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
859 struct cfq_group
*__cfqg
;
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
871 n
= rb_last(&st
->rb
);
873 __cfqg
= rb_entry_cfqg(n
);
874 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
876 cfqg
->vdisktime
= st
->min_vdisktime
;
878 __cfq_group_service_tree_add(st
, cfqg
);
880 st
->total_weight
+= cfqg
->weight
;
884 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
886 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
888 if (st
->active
== &cfqg
->rb_node
)
891 BUG_ON(cfqg
->nr_cfqq
< 1);
894 /* If there are other cfq queues under this group, don't delete it */
898 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
900 st
->total_weight
-= cfqg
->weight
;
901 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
902 cfq_rb_erase(&cfqg
->rb_node
, st
);
903 cfqg
->saved_workload_slice
= 0;
904 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
907 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
909 unsigned int slice_used
;
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
915 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
922 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
925 slice_used
= jiffies
- cfqq
->slice_start
;
926 if (slice_used
> cfqq
->allocated_slice
)
927 slice_used
= cfqq
->allocated_slice
;
933 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
934 struct cfq_queue
*cfqq
)
936 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
937 unsigned int used_sl
, charge
;
938 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
939 - cfqg
->service_tree_idle
.count
;
942 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
);
945 charge
= cfqq
->slice_dispatch
;
946 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
947 charge
= cfqq
->allocated_slice
;
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg
->rb_node
, st
);
951 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
952 __cfq_group_service_tree_add(st
, cfqg
);
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd
->workload_expires
, jiffies
)) {
956 cfqg
->saved_workload_slice
= cfqd
->workload_expires
958 cfqg
->saved_workload
= cfqd
->serving_type
;
959 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
961 cfqg
->saved_workload_slice
= 0;
963 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
965 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
967 iops_mode(cfqd
), cfqq
->nr_sectors
);
968 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
);
969 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
973 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
976 return container_of(blkg
, struct cfq_group
, blkg
);
981 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
983 cfqg_of_blkg(blkg
)->weight
= weight
;
986 static struct cfq_group
*
987 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
989 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
990 struct cfq_group
*cfqg
= NULL
;
993 struct cfq_rb_root
*st
;
994 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
995 unsigned int major
, minor
;
997 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
998 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
999 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1000 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1003 if (cfqg
|| !create
)
1006 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1010 for_each_cfqg_st(cfqg
, i
, j
, st
)
1012 RB_CLEAR_NODE(&cfqg
->rb_node
);
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1020 atomic_set(&cfqg
->ref
, 1);
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initiliazed yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1026 * comes for IO. See code above.
1029 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1030 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1031 MKDEV(major
, minor
));
1033 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1036 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1046 * Search for the cfq group current task belongs to. If create = 1, then also
1047 * create the cfq group if it does not exist. request_queue lock must be held.
1049 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1051 struct cgroup
*cgroup
;
1052 struct cfq_group
*cfqg
= NULL
;
1055 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1056 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1057 if (!cfqg
&& create
)
1058 cfqg
= &cfqd
->root_group
;
1063 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1065 atomic_inc(&cfqg
->ref
);
1069 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1071 /* Currently, all async queues are mapped to root group */
1072 if (!cfq_cfqq_sync(cfqq
))
1073 cfqg
= &cfqq
->cfqd
->root_group
;
1076 /* cfqq reference on cfqg */
1077 atomic_inc(&cfqq
->cfqg
->ref
);
1080 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1082 struct cfq_rb_root
*st
;
1085 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1086 if (!atomic_dec_and_test(&cfqg
->ref
))
1088 for_each_cfqg_st(cfqg
, i
, j
, st
)
1089 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1093 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1095 /* Something wrong if we are trying to remove same group twice */
1096 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1098 hlist_del_init(&cfqg
->cfqd_node
);
1101 * Put the reference taken at the time of creation so that when all
1102 * queues are gone, group can be destroyed.
1107 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1109 struct hlist_node
*pos
, *n
;
1110 struct cfq_group
*cfqg
;
1112 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1114 * If cgroup removal path got to blk_group first and removed
1115 * it from cgroup list, then it will take care of destroying
1118 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1119 cfq_destroy_cfqg(cfqd
, cfqg
);
1124 * Blk cgroup controller notification saying that blkio_group object is being
1125 * delinked as associated cgroup object is going away. That also means that
1126 * no new IO will come in this group. So get rid of this group as soon as
1127 * any pending IO in the group is finished.
1129 * This function is called under rcu_read_lock(). key is the rcu protected
1130 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1133 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1134 * it should not be NULL as even if elevator was exiting, cgroup deltion
1135 * path got to it first.
1137 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1139 unsigned long flags
;
1140 struct cfq_data
*cfqd
= key
;
1142 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1143 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1144 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1147 #else /* GROUP_IOSCHED */
1148 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1150 return &cfqd
->root_group
;
1153 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1159 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1163 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1164 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1166 #endif /* GROUP_IOSCHED */
1169 * The cfqd->service_trees holds all pending cfq_queue's that have
1170 * requests waiting to be processed. It is sorted in the order that
1171 * we will service the queues.
1173 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1176 struct rb_node
**p
, *parent
;
1177 struct cfq_queue
*__cfqq
;
1178 unsigned long rb_key
;
1179 struct cfq_rb_root
*service_tree
;
1182 int group_changed
= 0;
1184 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1185 if (!cfqd
->cfq_group_isolation
1186 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1187 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1188 /* Move this cfq to root group */
1189 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1190 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1191 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1192 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1193 cfqq
->cfqg
= &cfqd
->root_group
;
1194 atomic_inc(&cfqd
->root_group
.ref
);
1196 } else if (!cfqd
->cfq_group_isolation
1197 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1198 /* cfqq is sequential now needs to go to its original group */
1199 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1200 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1201 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1202 cfq_put_cfqg(cfqq
->cfqg
);
1203 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1204 cfqq
->orig_cfqg
= NULL
;
1206 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1210 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1212 if (cfq_class_idle(cfqq
)) {
1213 rb_key
= CFQ_IDLE_DELAY
;
1214 parent
= rb_last(&service_tree
->rb
);
1215 if (parent
&& parent
!= &cfqq
->rb_node
) {
1216 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1217 rb_key
+= __cfqq
->rb_key
;
1220 } else if (!add_front
) {
1222 * Get our rb key offset. Subtract any residual slice
1223 * value carried from last service. A negative resid
1224 * count indicates slice overrun, and this should position
1225 * the next service time further away in the tree.
1227 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1228 rb_key
-= cfqq
->slice_resid
;
1229 cfqq
->slice_resid
= 0;
1232 __cfqq
= cfq_rb_first(service_tree
);
1233 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1236 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1239 * same position, nothing more to do
1241 if (rb_key
== cfqq
->rb_key
&&
1242 cfqq
->service_tree
== service_tree
)
1245 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1246 cfqq
->service_tree
= NULL
;
1251 cfqq
->service_tree
= service_tree
;
1252 p
= &service_tree
->rb
.rb_node
;
1257 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1260 * sort by key, that represents service time.
1262 if (time_before(rb_key
, __cfqq
->rb_key
))
1265 n
= &(*p
)->rb_right
;
1273 service_tree
->left
= &cfqq
->rb_node
;
1275 cfqq
->rb_key
= rb_key
;
1276 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1277 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1278 service_tree
->count
++;
1279 if ((add_front
|| !new_cfqq
) && !group_changed
)
1281 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1284 static struct cfq_queue
*
1285 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1286 sector_t sector
, struct rb_node
**ret_parent
,
1287 struct rb_node
***rb_link
)
1289 struct rb_node
**p
, *parent
;
1290 struct cfq_queue
*cfqq
= NULL
;
1298 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1301 * Sort strictly based on sector. Smallest to the left,
1302 * largest to the right.
1304 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1305 n
= &(*p
)->rb_right
;
1306 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1314 *ret_parent
= parent
;
1320 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1322 struct rb_node
**p
, *parent
;
1323 struct cfq_queue
*__cfqq
;
1326 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1327 cfqq
->p_root
= NULL
;
1330 if (cfq_class_idle(cfqq
))
1335 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1336 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1337 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1339 rb_link_node(&cfqq
->p_node
, parent
, p
);
1340 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1342 cfqq
->p_root
= NULL
;
1346 * Update cfqq's position in the service tree.
1348 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1351 * Resorting requires the cfqq to be on the RR list already.
1353 if (cfq_cfqq_on_rr(cfqq
)) {
1354 cfq_service_tree_add(cfqd
, cfqq
, 0);
1355 cfq_prio_tree_add(cfqd
, cfqq
);
1360 * add to busy list of queues for service, trying to be fair in ordering
1361 * the pending list according to last request service
1363 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1365 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1366 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1367 cfq_mark_cfqq_on_rr(cfqq
);
1368 cfqd
->busy_queues
++;
1370 cfq_resort_rr_list(cfqd
, cfqq
);
1374 * Called when the cfqq no longer has requests pending, remove it from
1377 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1379 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1380 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1381 cfq_clear_cfqq_on_rr(cfqq
);
1383 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1384 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1385 cfqq
->service_tree
= NULL
;
1388 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1389 cfqq
->p_root
= NULL
;
1392 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1393 BUG_ON(!cfqd
->busy_queues
);
1394 cfqd
->busy_queues
--;
1398 * rb tree support functions
1400 static void cfq_del_rq_rb(struct request
*rq
)
1402 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1403 const int sync
= rq_is_sync(rq
);
1405 BUG_ON(!cfqq
->queued
[sync
]);
1406 cfqq
->queued
[sync
]--;
1408 elv_rb_del(&cfqq
->sort_list
, rq
);
1410 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1412 * Queue will be deleted from service tree when we actually
1413 * expire it later. Right now just remove it from prio tree
1417 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1418 cfqq
->p_root
= NULL
;
1423 static void cfq_add_rq_rb(struct request
*rq
)
1425 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1426 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1427 struct request
*__alias
, *prev
;
1429 cfqq
->queued
[rq_is_sync(rq
)]++;
1432 * looks a little odd, but the first insert might return an alias.
1433 * if that happens, put the alias on the dispatch list
1435 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1436 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1438 if (!cfq_cfqq_on_rr(cfqq
))
1439 cfq_add_cfqq_rr(cfqd
, cfqq
);
1442 * check if this request is a better next-serve candidate
1444 prev
= cfqq
->next_rq
;
1445 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1448 * adjust priority tree position, if ->next_rq changes
1450 if (prev
!= cfqq
->next_rq
)
1451 cfq_prio_tree_add(cfqd
, cfqq
);
1453 BUG_ON(!cfqq
->next_rq
);
1456 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1458 elv_rb_del(&cfqq
->sort_list
, rq
);
1459 cfqq
->queued
[rq_is_sync(rq
)]--;
1460 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1461 rq_data_dir(rq
), rq_is_sync(rq
));
1463 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1464 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1468 static struct request
*
1469 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1471 struct task_struct
*tsk
= current
;
1472 struct cfq_io_context
*cic
;
1473 struct cfq_queue
*cfqq
;
1475 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1479 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1481 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1483 return elv_rb_find(&cfqq
->sort_list
, sector
);
1489 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1491 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1493 cfqd
->rq_in_driver
++;
1494 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1495 cfqd
->rq_in_driver
);
1497 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1500 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1502 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1504 WARN_ON(!cfqd
->rq_in_driver
);
1505 cfqd
->rq_in_driver
--;
1506 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1507 cfqd
->rq_in_driver
);
1510 static void cfq_remove_request(struct request
*rq
)
1512 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1514 if (cfqq
->next_rq
== rq
)
1515 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1517 list_del_init(&rq
->queuelist
);
1520 cfqq
->cfqd
->rq_queued
--;
1521 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1522 rq_data_dir(rq
), rq_is_sync(rq
));
1523 if (rq
->cmd_flags
& REQ_META
) {
1524 WARN_ON(!cfqq
->meta_pending
);
1525 cfqq
->meta_pending
--;
1529 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1532 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1533 struct request
*__rq
;
1535 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1536 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1538 return ELEVATOR_FRONT_MERGE
;
1541 return ELEVATOR_NO_MERGE
;
1544 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1547 if (type
== ELEVATOR_FRONT_MERGE
) {
1548 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1550 cfq_reposition_rq_rb(cfqq
, req
);
1554 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1557 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1558 bio_data_dir(bio
), cfq_bio_sync(bio
));
1562 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1563 struct request
*next
)
1565 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1567 * reposition in fifo if next is older than rq
1569 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1570 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1571 list_move(&rq
->queuelist
, &next
->queuelist
);
1572 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1575 if (cfqq
->next_rq
== next
)
1577 cfq_remove_request(next
);
1578 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1579 rq_data_dir(next
), rq_is_sync(next
));
1582 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1585 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1586 struct cfq_io_context
*cic
;
1587 struct cfq_queue
*cfqq
;
1590 * Disallow merge of a sync bio into an async request.
1592 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1596 * Lookup the cfqq that this bio will be queued with. Allow
1597 * merge only if rq is queued there.
1599 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1603 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1604 return cfqq
== RQ_CFQQ(rq
);
1607 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1609 del_timer(&cfqd
->idle_slice_timer
);
1610 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1613 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1614 struct cfq_queue
*cfqq
)
1617 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1618 cfqd
->serving_prio
, cfqd
->serving_type
);
1619 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1620 cfqq
->slice_start
= 0;
1621 cfqq
->dispatch_start
= jiffies
;
1622 cfqq
->allocated_slice
= 0;
1623 cfqq
->slice_end
= 0;
1624 cfqq
->slice_dispatch
= 0;
1625 cfqq
->nr_sectors
= 0;
1627 cfq_clear_cfqq_wait_request(cfqq
);
1628 cfq_clear_cfqq_must_dispatch(cfqq
);
1629 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1630 cfq_clear_cfqq_fifo_expire(cfqq
);
1631 cfq_mark_cfqq_slice_new(cfqq
);
1633 cfq_del_timer(cfqd
, cfqq
);
1636 cfqd
->active_queue
= cfqq
;
1640 * current cfqq expired its slice (or was too idle), select new one
1643 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1646 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1648 if (cfq_cfqq_wait_request(cfqq
))
1649 cfq_del_timer(cfqd
, cfqq
);
1651 cfq_clear_cfqq_wait_request(cfqq
);
1652 cfq_clear_cfqq_wait_busy(cfqq
);
1655 * If this cfqq is shared between multiple processes, check to
1656 * make sure that those processes are still issuing I/Os within
1657 * the mean seek distance. If not, it may be time to break the
1658 * queues apart again.
1660 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1661 cfq_mark_cfqq_split_coop(cfqq
);
1664 * store what was left of this slice, if the queue idled/timed out
1666 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1667 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1668 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1671 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1673 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1674 cfq_del_cfqq_rr(cfqd
, cfqq
);
1676 cfq_resort_rr_list(cfqd
, cfqq
);
1678 if (cfqq
== cfqd
->active_queue
)
1679 cfqd
->active_queue
= NULL
;
1681 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1682 cfqd
->grp_service_tree
.active
= NULL
;
1684 if (cfqd
->active_cic
) {
1685 put_io_context(cfqd
->active_cic
->ioc
);
1686 cfqd
->active_cic
= NULL
;
1690 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1692 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1695 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1699 * Get next queue for service. Unless we have a queue preemption,
1700 * we'll simply select the first cfqq in the service tree.
1702 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1704 struct cfq_rb_root
*service_tree
=
1705 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1706 cfqd
->serving_type
);
1708 if (!cfqd
->rq_queued
)
1711 /* There is nothing to dispatch */
1714 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1716 return cfq_rb_first(service_tree
);
1719 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1721 struct cfq_group
*cfqg
;
1722 struct cfq_queue
*cfqq
;
1724 struct cfq_rb_root
*st
;
1726 if (!cfqd
->rq_queued
)
1729 cfqg
= cfq_get_next_cfqg(cfqd
);
1733 for_each_cfqg_st(cfqg
, i
, j
, st
)
1734 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1740 * Get and set a new active queue for service.
1742 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1743 struct cfq_queue
*cfqq
)
1746 cfqq
= cfq_get_next_queue(cfqd
);
1748 __cfq_set_active_queue(cfqd
, cfqq
);
1752 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1755 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1756 return blk_rq_pos(rq
) - cfqd
->last_position
;
1758 return cfqd
->last_position
- blk_rq_pos(rq
);
1761 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1764 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1767 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1768 struct cfq_queue
*cur_cfqq
)
1770 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1771 struct rb_node
*parent
, *node
;
1772 struct cfq_queue
*__cfqq
;
1773 sector_t sector
= cfqd
->last_position
;
1775 if (RB_EMPTY_ROOT(root
))
1779 * First, if we find a request starting at the end of the last
1780 * request, choose it.
1782 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1787 * If the exact sector wasn't found, the parent of the NULL leaf
1788 * will contain the closest sector.
1790 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1791 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1794 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1795 node
= rb_next(&__cfqq
->p_node
);
1797 node
= rb_prev(&__cfqq
->p_node
);
1801 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1802 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1810 * cur_cfqq - passed in so that we don't decide that the current queue is
1811 * closely cooperating with itself.
1813 * So, basically we're assuming that that cur_cfqq has dispatched at least
1814 * one request, and that cfqd->last_position reflects a position on the disk
1815 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1818 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1819 struct cfq_queue
*cur_cfqq
)
1821 struct cfq_queue
*cfqq
;
1823 if (cfq_class_idle(cur_cfqq
))
1825 if (!cfq_cfqq_sync(cur_cfqq
))
1827 if (CFQQ_SEEKY(cur_cfqq
))
1831 * Don't search priority tree if it's the only queue in the group.
1833 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1837 * We should notice if some of the queues are cooperating, eg
1838 * working closely on the same area of the disk. In that case,
1839 * we can group them together and don't waste time idling.
1841 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1845 /* If new queue belongs to different cfq_group, don't choose it */
1846 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1850 * It only makes sense to merge sync queues.
1852 if (!cfq_cfqq_sync(cfqq
))
1854 if (CFQQ_SEEKY(cfqq
))
1858 * Do not merge queues of different priority classes
1860 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1867 * Determine whether we should enforce idle window for this queue.
1870 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1872 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1873 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1875 BUG_ON(!service_tree
);
1876 BUG_ON(!service_tree
->count
);
1878 if (!cfqd
->cfq_slice_idle
)
1881 /* We never do for idle class queues. */
1882 if (prio
== IDLE_WORKLOAD
)
1885 /* We do for queues that were marked with idle window flag. */
1886 if (cfq_cfqq_idle_window(cfqq
) &&
1887 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1891 * Otherwise, we do only if they are the last ones
1892 * in their service tree.
1894 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1896 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1897 service_tree
->count
);
1901 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1903 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1904 struct cfq_io_context
*cic
;
1905 unsigned long sl
, group_idle
= 0;
1908 * SSD device without seek penalty, disable idling. But only do so
1909 * for devices that support queuing, otherwise we still have a problem
1910 * with sync vs async workloads.
1912 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1915 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1916 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1919 * idle is disabled, either manually or by past process history
1921 if (!cfq_should_idle(cfqd
, cfqq
)) {
1922 /* no queue idling. Check for group idling */
1923 if (cfqd
->cfq_group_idle
)
1924 group_idle
= cfqd
->cfq_group_idle
;
1930 * still active requests from this queue, don't idle
1932 if (cfqq
->dispatched
)
1936 * task has exited, don't wait
1938 cic
= cfqd
->active_cic
;
1939 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1943 * If our average think time is larger than the remaining time
1944 * slice, then don't idle. This avoids overrunning the allotted
1947 if (sample_valid(cic
->ttime_samples
) &&
1948 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1949 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1954 /* There are other queues in the group, don't do group idle */
1955 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
1958 cfq_mark_cfqq_wait_request(cfqq
);
1961 sl
= cfqd
->cfq_group_idle
;
1963 sl
= cfqd
->cfq_slice_idle
;
1965 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1966 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1967 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
1968 group_idle
? 1 : 0);
1972 * Move request from internal lists to the request queue dispatch list.
1974 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1976 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1977 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1979 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1981 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1982 cfq_remove_request(rq
);
1984 (RQ_CFQG(rq
))->dispatched
++;
1985 elv_dispatch_sort(q
, rq
);
1987 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1988 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1989 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
1990 rq_data_dir(rq
), rq_is_sync(rq
));
1994 * return expired entry, or NULL to just start from scratch in rbtree
1996 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1998 struct request
*rq
= NULL
;
2000 if (cfq_cfqq_fifo_expire(cfqq
))
2003 cfq_mark_cfqq_fifo_expire(cfqq
);
2005 if (list_empty(&cfqq
->fifo
))
2008 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2009 if (time_before(jiffies
, rq_fifo_time(rq
)))
2012 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2017 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2019 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2021 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2023 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
2027 * Must be called with the queue_lock held.
2029 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2031 int process_refs
, io_refs
;
2033 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2034 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
2035 BUG_ON(process_refs
< 0);
2036 return process_refs
;
2039 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2041 int process_refs
, new_process_refs
;
2042 struct cfq_queue
*__cfqq
;
2045 * If there are no process references on the new_cfqq, then it is
2046 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2047 * chain may have dropped their last reference (not just their
2048 * last process reference).
2050 if (!cfqq_process_refs(new_cfqq
))
2053 /* Avoid a circular list and skip interim queue merges */
2054 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2060 process_refs
= cfqq_process_refs(cfqq
);
2061 new_process_refs
= cfqq_process_refs(new_cfqq
);
2063 * If the process for the cfqq has gone away, there is no
2064 * sense in merging the queues.
2066 if (process_refs
== 0 || new_process_refs
== 0)
2070 * Merge in the direction of the lesser amount of work.
2072 if (new_process_refs
>= process_refs
) {
2073 cfqq
->new_cfqq
= new_cfqq
;
2074 atomic_add(process_refs
, &new_cfqq
->ref
);
2076 new_cfqq
->new_cfqq
= cfqq
;
2077 atomic_add(new_process_refs
, &cfqq
->ref
);
2081 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2082 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2084 struct cfq_queue
*queue
;
2086 bool key_valid
= false;
2087 unsigned long lowest_key
= 0;
2088 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2090 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2091 /* select the one with lowest rb_key */
2092 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2094 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2095 lowest_key
= queue
->rb_key
;
2104 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2108 struct cfq_rb_root
*st
;
2109 unsigned group_slice
;
2112 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2113 cfqd
->workload_expires
= jiffies
+ 1;
2117 /* Choose next priority. RT > BE > IDLE */
2118 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2119 cfqd
->serving_prio
= RT_WORKLOAD
;
2120 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2121 cfqd
->serving_prio
= BE_WORKLOAD
;
2123 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2124 cfqd
->workload_expires
= jiffies
+ 1;
2129 * For RT and BE, we have to choose also the type
2130 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2133 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2137 * check workload expiration, and that we still have other queues ready
2139 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2142 /* otherwise select new workload type */
2143 cfqd
->serving_type
=
2144 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2145 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2149 * the workload slice is computed as a fraction of target latency
2150 * proportional to the number of queues in that workload, over
2151 * all the queues in the same priority class
2153 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2155 slice
= group_slice
* count
/
2156 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2157 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2159 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2163 * Async queues are currently system wide. Just taking
2164 * proportion of queues with-in same group will lead to higher
2165 * async ratio system wide as generally root group is going
2166 * to have higher weight. A more accurate thing would be to
2167 * calculate system wide asnc/sync ratio.
2169 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2170 tmp
= tmp
/cfqd
->busy_queues
;
2171 slice
= min_t(unsigned, slice
, tmp
);
2173 /* async workload slice is scaled down according to
2174 * the sync/async slice ratio. */
2175 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2177 /* sync workload slice is at least 2 * cfq_slice_idle */
2178 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2180 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2181 cfq_log(cfqd
, "workload slice:%d", slice
);
2182 cfqd
->workload_expires
= jiffies
+ slice
;
2183 cfqd
->noidle_tree_requires_idle
= false;
2186 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2188 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2189 struct cfq_group
*cfqg
;
2191 if (RB_EMPTY_ROOT(&st
->rb
))
2193 cfqg
= cfq_rb_first_group(st
);
2194 st
->active
= &cfqg
->rb_node
;
2195 update_min_vdisktime(st
);
2199 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2201 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2203 cfqd
->serving_group
= cfqg
;
2205 /* Restore the workload type data */
2206 if (cfqg
->saved_workload_slice
) {
2207 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2208 cfqd
->serving_type
= cfqg
->saved_workload
;
2209 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2211 cfqd
->workload_expires
= jiffies
- 1;
2213 choose_service_tree(cfqd
, cfqg
);
2217 * Select a queue for service. If we have a current active queue,
2218 * check whether to continue servicing it, or retrieve and set a new one.
2220 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2222 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2224 cfqq
= cfqd
->active_queue
;
2228 if (!cfqd
->rq_queued
)
2232 * We were waiting for group to get backlogged. Expire the queue
2234 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2238 * The active queue has run out of time, expire it and select new.
2240 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2242 * If slice had not expired at the completion of last request
2243 * we might not have turned on wait_busy flag. Don't expire
2244 * the queue yet. Allow the group to get backlogged.
2246 * The very fact that we have used the slice, that means we
2247 * have been idling all along on this queue and it should be
2248 * ok to wait for this request to complete.
2250 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2251 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2255 goto check_group_idle
;
2259 * The active queue has requests and isn't expired, allow it to
2262 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2266 * If another queue has a request waiting within our mean seek
2267 * distance, let it run. The expire code will check for close
2268 * cooperators and put the close queue at the front of the service
2269 * tree. If possible, merge the expiring queue with the new cfqq.
2271 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2273 if (!cfqq
->new_cfqq
)
2274 cfq_setup_merge(cfqq
, new_cfqq
);
2279 * No requests pending. If the active queue still has requests in
2280 * flight or is idling for a new request, allow either of these
2281 * conditions to happen (or time out) before selecting a new queue.
2283 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2288 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2294 * If group idle is enabled and there are requests dispatched from
2295 * this group, wait for requests to complete.
2298 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2299 && cfqq
->cfqg
->dispatched
) {
2305 cfq_slice_expired(cfqd
, 0);
2308 * Current queue expired. Check if we have to switch to a new
2312 cfq_choose_cfqg(cfqd
);
2314 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2319 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2323 while (cfqq
->next_rq
) {
2324 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2328 BUG_ON(!list_empty(&cfqq
->fifo
));
2330 /* By default cfqq is not expired if it is empty. Do it explicitly */
2331 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2336 * Drain our current requests. Used for barriers and when switching
2337 * io schedulers on-the-fly.
2339 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2341 struct cfq_queue
*cfqq
;
2344 /* Expire the timeslice of the current active queue first */
2345 cfq_slice_expired(cfqd
, 0);
2346 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2347 __cfq_set_active_queue(cfqd
, cfqq
);
2348 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2351 BUG_ON(cfqd
->busy_queues
);
2353 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2357 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2358 struct cfq_queue
*cfqq
)
2360 /* the queue hasn't finished any request, can't estimate */
2361 if (cfq_cfqq_slice_new(cfqq
))
2363 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2370 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2372 unsigned int max_dispatch
;
2375 * Drain async requests before we start sync IO
2377 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2381 * If this is an async queue and we have sync IO in flight, let it wait
2383 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2386 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2387 if (cfq_class_idle(cfqq
))
2391 * Does this cfqq already have too much IO in flight?
2393 if (cfqq
->dispatched
>= max_dispatch
) {
2395 * idle queue must always only have a single IO in flight
2397 if (cfq_class_idle(cfqq
))
2401 * We have other queues, don't allow more IO from this one
2403 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2407 * Sole queue user, no limit
2409 if (cfqd
->busy_queues
== 1)
2413 * Normally we start throttling cfqq when cfq_quantum/2
2414 * requests have been dispatched. But we can drive
2415 * deeper queue depths at the beginning of slice
2416 * subjected to upper limit of cfq_quantum.
2418 max_dispatch
= cfqd
->cfq_quantum
;
2422 * Async queues must wait a bit before being allowed dispatch.
2423 * We also ramp up the dispatch depth gradually for async IO,
2424 * based on the last sync IO we serviced
2426 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2427 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2430 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2431 if (!depth
&& !cfqq
->dispatched
)
2433 if (depth
< max_dispatch
)
2434 max_dispatch
= depth
;
2438 * If we're below the current max, allow a dispatch
2440 return cfqq
->dispatched
< max_dispatch
;
2444 * Dispatch a request from cfqq, moving them to the request queue
2447 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2451 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2453 if (!cfq_may_dispatch(cfqd
, cfqq
))
2457 * follow expired path, else get first next available
2459 rq
= cfq_check_fifo(cfqq
);
2464 * insert request into driver dispatch list
2466 cfq_dispatch_insert(cfqd
->queue
, rq
);
2468 if (!cfqd
->active_cic
) {
2469 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2471 atomic_long_inc(&cic
->ioc
->refcount
);
2472 cfqd
->active_cic
= cic
;
2479 * Find the cfqq that we need to service and move a request from that to the
2482 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2484 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2485 struct cfq_queue
*cfqq
;
2487 if (!cfqd
->busy_queues
)
2490 if (unlikely(force
))
2491 return cfq_forced_dispatch(cfqd
);
2493 cfqq
= cfq_select_queue(cfqd
);
2498 * Dispatch a request from this cfqq, if it is allowed
2500 if (!cfq_dispatch_request(cfqd
, cfqq
))
2503 cfqq
->slice_dispatch
++;
2504 cfq_clear_cfqq_must_dispatch(cfqq
);
2507 * expire an async queue immediately if it has used up its slice. idle
2508 * queue always expire after 1 dispatch round.
2510 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2511 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2512 cfq_class_idle(cfqq
))) {
2513 cfqq
->slice_end
= jiffies
+ 1;
2514 cfq_slice_expired(cfqd
, 0);
2517 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2522 * task holds one reference to the queue, dropped when task exits. each rq
2523 * in-flight on this queue also holds a reference, dropped when rq is freed.
2525 * Each cfq queue took a reference on the parent group. Drop it now.
2526 * queue lock must be held here.
2528 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2530 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2531 struct cfq_group
*cfqg
, *orig_cfqg
;
2533 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2535 if (!atomic_dec_and_test(&cfqq
->ref
))
2538 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2539 BUG_ON(rb_first(&cfqq
->sort_list
));
2540 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2542 orig_cfqg
= cfqq
->orig_cfqg
;
2544 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2545 __cfq_slice_expired(cfqd
, cfqq
, 0);
2546 cfq_schedule_dispatch(cfqd
);
2549 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2550 kmem_cache_free(cfq_pool
, cfqq
);
2553 cfq_put_cfqg(orig_cfqg
);
2557 * Must always be called with the rcu_read_lock() held
2560 __call_for_each_cic(struct io_context
*ioc
,
2561 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2563 struct cfq_io_context
*cic
;
2564 struct hlist_node
*n
;
2566 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2571 * Call func for each cic attached to this ioc.
2574 call_for_each_cic(struct io_context
*ioc
,
2575 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2578 __call_for_each_cic(ioc
, func
);
2582 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2584 struct cfq_io_context
*cic
;
2586 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2588 kmem_cache_free(cfq_ioc_pool
, cic
);
2589 elv_ioc_count_dec(cfq_ioc_count
);
2593 * CFQ scheduler is exiting, grab exit lock and check
2594 * the pending io context count. If it hits zero,
2595 * complete ioc_gone and set it back to NULL
2597 spin_lock(&ioc_gone_lock
);
2598 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2602 spin_unlock(&ioc_gone_lock
);
2606 static void cfq_cic_free(struct cfq_io_context
*cic
)
2608 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2611 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2613 unsigned long flags
;
2614 unsigned long dead_key
= (unsigned long) cic
->key
;
2616 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2618 spin_lock_irqsave(&ioc
->lock
, flags
);
2619 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2620 hlist_del_rcu(&cic
->cic_list
);
2621 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2627 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2628 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2629 * and ->trim() which is called with the task lock held
2631 static void cfq_free_io_context(struct io_context
*ioc
)
2634 * ioc->refcount is zero here, or we are called from elv_unregister(),
2635 * so no more cic's are allowed to be linked into this ioc. So it
2636 * should be ok to iterate over the known list, we will see all cic's
2637 * since no new ones are added.
2639 __call_for_each_cic(ioc
, cic_free_func
);
2642 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2644 struct cfq_queue
*__cfqq
, *next
;
2647 * If this queue was scheduled to merge with another queue, be
2648 * sure to drop the reference taken on that queue (and others in
2649 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2651 __cfqq
= cfqq
->new_cfqq
;
2653 if (__cfqq
== cfqq
) {
2654 WARN(1, "cfqq->new_cfqq loop detected\n");
2657 next
= __cfqq
->new_cfqq
;
2658 cfq_put_queue(__cfqq
);
2663 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2665 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2666 __cfq_slice_expired(cfqd
, cfqq
, 0);
2667 cfq_schedule_dispatch(cfqd
);
2670 cfq_put_cooperator(cfqq
);
2672 cfq_put_queue(cfqq
);
2675 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2676 struct cfq_io_context
*cic
)
2678 struct io_context
*ioc
= cic
->ioc
;
2680 list_del_init(&cic
->queue_list
);
2683 * Make sure dead mark is seen for dead queues
2686 cic
->key
= cfqd_dead_key(cfqd
);
2688 if (ioc
->ioc_data
== cic
)
2689 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2691 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2692 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2693 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2696 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2697 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2698 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2702 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2703 struct cfq_io_context
*cic
)
2705 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2708 struct request_queue
*q
= cfqd
->queue
;
2709 unsigned long flags
;
2711 spin_lock_irqsave(q
->queue_lock
, flags
);
2714 * Ensure we get a fresh copy of the ->key to prevent
2715 * race between exiting task and queue
2717 smp_read_barrier_depends();
2718 if (cic
->key
== cfqd
)
2719 __cfq_exit_single_io_context(cfqd
, cic
);
2721 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2726 * The process that ioc belongs to has exited, we need to clean up
2727 * and put the internal structures we have that belongs to that process.
2729 static void cfq_exit_io_context(struct io_context
*ioc
)
2731 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2734 static struct cfq_io_context
*
2735 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2737 struct cfq_io_context
*cic
;
2739 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2742 cic
->last_end_request
= jiffies
;
2743 INIT_LIST_HEAD(&cic
->queue_list
);
2744 INIT_HLIST_NODE(&cic
->cic_list
);
2745 cic
->dtor
= cfq_free_io_context
;
2746 cic
->exit
= cfq_exit_io_context
;
2747 elv_ioc_count_inc(cfq_ioc_count
);
2753 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2755 struct task_struct
*tsk
= current
;
2758 if (!cfq_cfqq_prio_changed(cfqq
))
2761 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2762 switch (ioprio_class
) {
2764 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2765 case IOPRIO_CLASS_NONE
:
2767 * no prio set, inherit CPU scheduling settings
2769 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2770 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2772 case IOPRIO_CLASS_RT
:
2773 cfqq
->ioprio
= task_ioprio(ioc
);
2774 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2776 case IOPRIO_CLASS_BE
:
2777 cfqq
->ioprio
= task_ioprio(ioc
);
2778 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2780 case IOPRIO_CLASS_IDLE
:
2781 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2783 cfq_clear_cfqq_idle_window(cfqq
);
2788 * keep track of original prio settings in case we have to temporarily
2789 * elevate the priority of this queue
2791 cfqq
->org_ioprio
= cfqq
->ioprio
;
2792 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2793 cfq_clear_cfqq_prio_changed(cfqq
);
2796 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2798 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2799 struct cfq_queue
*cfqq
;
2800 unsigned long flags
;
2802 if (unlikely(!cfqd
))
2805 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2807 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2809 struct cfq_queue
*new_cfqq
;
2810 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2813 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2814 cfq_put_queue(cfqq
);
2818 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2820 cfq_mark_cfqq_prio_changed(cfqq
);
2822 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2825 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2827 call_for_each_cic(ioc
, changed_ioprio
);
2828 ioc
->ioprio_changed
= 0;
2831 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2832 pid_t pid
, bool is_sync
)
2834 RB_CLEAR_NODE(&cfqq
->rb_node
);
2835 RB_CLEAR_NODE(&cfqq
->p_node
);
2836 INIT_LIST_HEAD(&cfqq
->fifo
);
2838 atomic_set(&cfqq
->ref
, 0);
2841 cfq_mark_cfqq_prio_changed(cfqq
);
2844 if (!cfq_class_idle(cfqq
))
2845 cfq_mark_cfqq_idle_window(cfqq
);
2846 cfq_mark_cfqq_sync(cfqq
);
2851 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2852 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2854 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2855 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2856 unsigned long flags
;
2857 struct request_queue
*q
;
2859 if (unlikely(!cfqd
))
2864 spin_lock_irqsave(q
->queue_lock
, flags
);
2868 * Drop reference to sync queue. A new sync queue will be
2869 * assigned in new group upon arrival of a fresh request.
2871 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2872 cic_set_cfqq(cic
, NULL
, 1);
2873 cfq_put_queue(sync_cfqq
);
2876 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2879 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2881 call_for_each_cic(ioc
, changed_cgroup
);
2882 ioc
->cgroup_changed
= 0;
2884 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2886 static struct cfq_queue
*
2887 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2888 struct io_context
*ioc
, gfp_t gfp_mask
)
2890 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2891 struct cfq_io_context
*cic
;
2892 struct cfq_group
*cfqg
;
2895 cfqg
= cfq_get_cfqg(cfqd
, 1);
2896 cic
= cfq_cic_lookup(cfqd
, ioc
);
2897 /* cic always exists here */
2898 cfqq
= cic_to_cfqq(cic
, is_sync
);
2901 * Always try a new alloc if we fell back to the OOM cfqq
2902 * originally, since it should just be a temporary situation.
2904 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2909 } else if (gfp_mask
& __GFP_WAIT
) {
2910 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2911 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2912 gfp_mask
| __GFP_ZERO
,
2914 spin_lock_irq(cfqd
->queue
->queue_lock
);
2918 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2919 gfp_mask
| __GFP_ZERO
,
2924 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2925 cfq_init_prio_data(cfqq
, ioc
);
2926 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2927 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2929 cfqq
= &cfqd
->oom_cfqq
;
2933 kmem_cache_free(cfq_pool
, new_cfqq
);
2938 static struct cfq_queue
**
2939 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2941 switch (ioprio_class
) {
2942 case IOPRIO_CLASS_RT
:
2943 return &cfqd
->async_cfqq
[0][ioprio
];
2944 case IOPRIO_CLASS_BE
:
2945 return &cfqd
->async_cfqq
[1][ioprio
];
2946 case IOPRIO_CLASS_IDLE
:
2947 return &cfqd
->async_idle_cfqq
;
2953 static struct cfq_queue
*
2954 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2957 const int ioprio
= task_ioprio(ioc
);
2958 const int ioprio_class
= task_ioprio_class(ioc
);
2959 struct cfq_queue
**async_cfqq
= NULL
;
2960 struct cfq_queue
*cfqq
= NULL
;
2963 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2968 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2971 * pin the queue now that it's allocated, scheduler exit will prune it
2973 if (!is_sync
&& !(*async_cfqq
)) {
2974 atomic_inc(&cfqq
->ref
);
2978 atomic_inc(&cfqq
->ref
);
2983 * We drop cfq io contexts lazily, so we may find a dead one.
2986 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2987 struct cfq_io_context
*cic
)
2989 unsigned long flags
;
2991 WARN_ON(!list_empty(&cic
->queue_list
));
2992 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
2994 spin_lock_irqsave(&ioc
->lock
, flags
);
2996 BUG_ON(ioc
->ioc_data
== cic
);
2998 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
2999 hlist_del_rcu(&cic
->cic_list
);
3000 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3005 static struct cfq_io_context
*
3006 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3008 struct cfq_io_context
*cic
;
3009 unsigned long flags
;
3017 * we maintain a last-hit cache, to avoid browsing over the tree
3019 cic
= rcu_dereference(ioc
->ioc_data
);
3020 if (cic
&& cic
->key
== cfqd
) {
3026 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3030 if (unlikely(cic
->key
!= cfqd
)) {
3031 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3036 spin_lock_irqsave(&ioc
->lock
, flags
);
3037 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3038 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3046 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3047 * the process specific cfq io context when entered from the block layer.
3048 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3050 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3051 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3053 unsigned long flags
;
3056 ret
= radix_tree_preload(gfp_mask
);
3061 spin_lock_irqsave(&ioc
->lock
, flags
);
3062 ret
= radix_tree_insert(&ioc
->radix_root
,
3063 cfqd
->cic_index
, cic
);
3065 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3066 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3068 radix_tree_preload_end();
3071 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3072 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3073 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3078 printk(KERN_ERR
"cfq: cic link failed!\n");
3084 * Setup general io context and cfq io context. There can be several cfq
3085 * io contexts per general io context, if this process is doing io to more
3086 * than one device managed by cfq.
3088 static struct cfq_io_context
*
3089 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3091 struct io_context
*ioc
= NULL
;
3092 struct cfq_io_context
*cic
;
3094 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3096 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3100 cic
= cfq_cic_lookup(cfqd
, ioc
);
3104 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3108 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3112 smp_read_barrier_depends();
3113 if (unlikely(ioc
->ioprio_changed
))
3114 cfq_ioc_set_ioprio(ioc
);
3116 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3117 if (unlikely(ioc
->cgroup_changed
))
3118 cfq_ioc_set_cgroup(ioc
);
3124 put_io_context(ioc
);
3129 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3131 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3132 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3134 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3135 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3136 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3140 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3144 sector_t n_sec
= blk_rq_sectors(rq
);
3145 if (cfqq
->last_request_pos
) {
3146 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3147 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3149 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3152 cfqq
->seek_history
<<= 1;
3153 if (blk_queue_nonrot(cfqd
->queue
))
3154 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3156 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3160 * Disable idle window if the process thinks too long or seeks so much that
3164 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3165 struct cfq_io_context
*cic
)
3167 int old_idle
, enable_idle
;
3170 * Don't idle for async or idle io prio class
3172 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3175 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3177 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3178 cfq_mark_cfqq_deep(cfqq
);
3180 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3181 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3183 else if (sample_valid(cic
->ttime_samples
)) {
3184 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3190 if (old_idle
!= enable_idle
) {
3191 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3193 cfq_mark_cfqq_idle_window(cfqq
);
3195 cfq_clear_cfqq_idle_window(cfqq
);
3200 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3201 * no or if we aren't sure, a 1 will cause a preempt.
3204 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3207 struct cfq_queue
*cfqq
;
3209 cfqq
= cfqd
->active_queue
;
3213 if (cfq_class_idle(new_cfqq
))
3216 if (cfq_class_idle(cfqq
))
3220 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3222 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3226 * if the new request is sync, but the currently running queue is
3227 * not, let the sync request have priority.
3229 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3232 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3235 if (cfq_slice_used(cfqq
))
3238 /* Allow preemption only if we are idling on sync-noidle tree */
3239 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3240 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3241 new_cfqq
->service_tree
->count
== 2 &&
3242 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3246 * So both queues are sync. Let the new request get disk time if
3247 * it's a metadata request and the current queue is doing regular IO.
3249 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3253 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3255 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3258 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3262 * if this request is as-good as one we would expect from the
3263 * current cfqq, let it preempt
3265 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3272 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3273 * let it have half of its nominal slice.
3275 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3277 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3278 cfq_slice_expired(cfqd
, 1);
3281 * Put the new queue at the front of the of the current list,
3282 * so we know that it will be selected next.
3284 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3286 cfq_service_tree_add(cfqd
, cfqq
, 1);
3288 cfqq
->slice_end
= 0;
3289 cfq_mark_cfqq_slice_new(cfqq
);
3293 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3294 * something we should do about it
3297 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3300 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3303 if (rq
->cmd_flags
& REQ_META
)
3304 cfqq
->meta_pending
++;
3306 cfq_update_io_thinktime(cfqd
, cic
);
3307 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3308 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3310 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3312 if (cfqq
== cfqd
->active_queue
) {
3314 * Remember that we saw a request from this process, but
3315 * don't start queuing just yet. Otherwise we risk seeing lots
3316 * of tiny requests, because we disrupt the normal plugging
3317 * and merging. If the request is already larger than a single
3318 * page, let it rip immediately. For that case we assume that
3319 * merging is already done. Ditto for a busy system that
3320 * has other work pending, don't risk delaying until the
3321 * idle timer unplug to continue working.
3323 if (cfq_cfqq_wait_request(cfqq
)) {
3324 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3325 cfqd
->busy_queues
> 1) {
3326 cfq_del_timer(cfqd
, cfqq
);
3327 cfq_clear_cfqq_wait_request(cfqq
);
3328 __blk_run_queue(cfqd
->queue
);
3330 cfq_blkiocg_update_idle_time_stats(
3332 cfq_mark_cfqq_must_dispatch(cfqq
);
3335 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3337 * not the active queue - expire current slice if it is
3338 * idle and has expired it's mean thinktime or this new queue
3339 * has some old slice time left and is of higher priority or
3340 * this new queue is RT and the current one is BE
3342 cfq_preempt_queue(cfqd
, cfqq
);
3343 __blk_run_queue(cfqd
->queue
);
3347 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3349 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3350 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3352 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3353 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3355 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3356 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3358 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3359 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3361 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3365 * Update hw_tag based on peak queue depth over 50 samples under
3368 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3370 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3372 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3373 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3375 if (cfqd
->hw_tag
== 1)
3378 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3379 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3383 * If active queue hasn't enough requests and can idle, cfq might not
3384 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3387 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3388 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3389 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3392 if (cfqd
->hw_tag_samples
++ < 50)
3395 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3401 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3403 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3405 /* If there are other queues in the group, don't wait */
3406 if (cfqq
->cfqg
->nr_cfqq
> 1)
3409 if (cfq_slice_used(cfqq
))
3412 /* if slice left is less than think time, wait busy */
3413 if (cic
&& sample_valid(cic
->ttime_samples
)
3414 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3418 * If think times is less than a jiffy than ttime_mean=0 and above
3419 * will not be true. It might happen that slice has not expired yet
3420 * but will expire soon (4-5 ns) during select_queue(). To cover the
3421 * case where think time is less than a jiffy, mark the queue wait
3422 * busy if only 1 jiffy is left in the slice.
3424 if (cfqq
->slice_end
- jiffies
== 1)
3430 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3432 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3433 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3434 const int sync
= rq_is_sync(rq
);
3438 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3439 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3441 cfq_update_hw_tag(cfqd
);
3443 WARN_ON(!cfqd
->rq_in_driver
);
3444 WARN_ON(!cfqq
->dispatched
);
3445 cfqd
->rq_in_driver
--;
3447 (RQ_CFQG(rq
))->dispatched
--;
3448 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3449 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3450 rq_data_dir(rq
), rq_is_sync(rq
));
3452 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3455 RQ_CIC(rq
)->last_end_request
= now
;
3456 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3457 cfqd
->last_delayed_sync
= now
;
3461 * If this is the active queue, check if it needs to be expired,
3462 * or if we want to idle in case it has no pending requests.
3464 if (cfqd
->active_queue
== cfqq
) {
3465 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3467 if (cfq_cfqq_slice_new(cfqq
)) {
3468 cfq_set_prio_slice(cfqd
, cfqq
);
3469 cfq_clear_cfqq_slice_new(cfqq
);
3473 * Should we wait for next request to come in before we expire
3476 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3477 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3478 if (!cfqd
->cfq_slice_idle
)
3479 extend_sl
= cfqd
->cfq_group_idle
;
3480 cfqq
->slice_end
= jiffies
+ extend_sl
;
3481 cfq_mark_cfqq_wait_busy(cfqq
);
3482 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3486 * Idling is not enabled on:
3488 * - idle-priority queues
3490 * - queues with still some requests queued
3491 * - when there is a close cooperator
3493 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3494 cfq_slice_expired(cfqd
, 1);
3495 else if (sync
&& cfqq_empty
&&
3496 !cfq_close_cooperator(cfqd
, cfqq
)) {
3497 cfqd
->noidle_tree_requires_idle
|=
3498 !(rq
->cmd_flags
& REQ_NOIDLE
);
3500 * Idling is enabled for SYNC_WORKLOAD.
3501 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3502 * only if we processed at least one !REQ_NOIDLE request
3504 if (cfqd
->serving_type
== SYNC_WORKLOAD
3505 || cfqd
->noidle_tree_requires_idle
3506 || cfqq
->cfqg
->nr_cfqq
== 1)
3507 cfq_arm_slice_timer(cfqd
);
3511 if (!cfqd
->rq_in_driver
)
3512 cfq_schedule_dispatch(cfqd
);
3516 * we temporarily boost lower priority queues if they are holding fs exclusive
3517 * resources. they are boosted to normal prio (CLASS_BE/4)
3519 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3521 if (has_fs_excl()) {
3523 * boost idle prio on transactions that would lock out other
3524 * users of the filesystem
3526 if (cfq_class_idle(cfqq
))
3527 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3528 if (cfqq
->ioprio
> IOPRIO_NORM
)
3529 cfqq
->ioprio
= IOPRIO_NORM
;
3532 * unboost the queue (if needed)
3534 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3535 cfqq
->ioprio
= cfqq
->org_ioprio
;
3539 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3541 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3542 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3543 return ELV_MQUEUE_MUST
;
3546 return ELV_MQUEUE_MAY
;
3549 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3551 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3552 struct task_struct
*tsk
= current
;
3553 struct cfq_io_context
*cic
;
3554 struct cfq_queue
*cfqq
;
3557 * don't force setup of a queue from here, as a call to may_queue
3558 * does not necessarily imply that a request actually will be queued.
3559 * so just lookup a possibly existing queue, or return 'may queue'
3562 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3564 return ELV_MQUEUE_MAY
;
3566 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3568 cfq_init_prio_data(cfqq
, cic
->ioc
);
3569 cfq_prio_boost(cfqq
);
3571 return __cfq_may_queue(cfqq
);
3574 return ELV_MQUEUE_MAY
;
3578 * queue lock held here
3580 static void cfq_put_request(struct request
*rq
)
3582 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3585 const int rw
= rq_data_dir(rq
);
3587 BUG_ON(!cfqq
->allocated
[rw
]);
3588 cfqq
->allocated
[rw
]--;
3590 put_io_context(RQ_CIC(rq
)->ioc
);
3592 rq
->elevator_private
= NULL
;
3593 rq
->elevator_private2
= NULL
;
3595 /* Put down rq reference on cfqg */
3596 cfq_put_cfqg(RQ_CFQG(rq
));
3597 rq
->elevator_private3
= NULL
;
3599 cfq_put_queue(cfqq
);
3603 static struct cfq_queue
*
3604 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3605 struct cfq_queue
*cfqq
)
3607 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3608 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3609 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3610 cfq_put_queue(cfqq
);
3611 return cic_to_cfqq(cic
, 1);
3615 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3616 * was the last process referring to said cfqq.
3618 static struct cfq_queue
*
3619 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3621 if (cfqq_process_refs(cfqq
) == 1) {
3622 cfqq
->pid
= current
->pid
;
3623 cfq_clear_cfqq_coop(cfqq
);
3624 cfq_clear_cfqq_split_coop(cfqq
);
3628 cic_set_cfqq(cic
, NULL
, 1);
3630 cfq_put_cooperator(cfqq
);
3632 cfq_put_queue(cfqq
);
3636 * Allocate cfq data structures associated with this request.
3639 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3641 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3642 struct cfq_io_context
*cic
;
3643 const int rw
= rq_data_dir(rq
);
3644 const bool is_sync
= rq_is_sync(rq
);
3645 struct cfq_queue
*cfqq
;
3646 unsigned long flags
;
3648 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3650 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3652 spin_lock_irqsave(q
->queue_lock
, flags
);
3658 cfqq
= cic_to_cfqq(cic
, is_sync
);
3659 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3660 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3661 cic_set_cfqq(cic
, cfqq
, is_sync
);
3664 * If the queue was seeky for too long, break it apart.
3666 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3667 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3668 cfqq
= split_cfqq(cic
, cfqq
);
3674 * Check to see if this queue is scheduled to merge with
3675 * another, closely cooperating queue. The merging of
3676 * queues happens here as it must be done in process context.
3677 * The reference on new_cfqq was taken in merge_cfqqs.
3680 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3683 cfqq
->allocated
[rw
]++;
3684 atomic_inc(&cfqq
->ref
);
3686 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3688 rq
->elevator_private
= cic
;
3689 rq
->elevator_private2
= cfqq
;
3690 rq
->elevator_private3
= cfq_ref_get_cfqg(cfqq
->cfqg
);
3695 put_io_context(cic
->ioc
);
3697 cfq_schedule_dispatch(cfqd
);
3698 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3699 cfq_log(cfqd
, "set_request fail");
3703 static void cfq_kick_queue(struct work_struct
*work
)
3705 struct cfq_data
*cfqd
=
3706 container_of(work
, struct cfq_data
, unplug_work
);
3707 struct request_queue
*q
= cfqd
->queue
;
3709 spin_lock_irq(q
->queue_lock
);
3710 __blk_run_queue(cfqd
->queue
);
3711 spin_unlock_irq(q
->queue_lock
);
3715 * Timer running if the active_queue is currently idling inside its time slice
3717 static void cfq_idle_slice_timer(unsigned long data
)
3719 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3720 struct cfq_queue
*cfqq
;
3721 unsigned long flags
;
3724 cfq_log(cfqd
, "idle timer fired");
3726 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3728 cfqq
= cfqd
->active_queue
;
3733 * We saw a request before the queue expired, let it through
3735 if (cfq_cfqq_must_dispatch(cfqq
))
3741 if (cfq_slice_used(cfqq
))
3745 * only expire and reinvoke request handler, if there are
3746 * other queues with pending requests
3748 if (!cfqd
->busy_queues
)
3752 * not expired and it has a request pending, let it dispatch
3754 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3758 * Queue depth flag is reset only when the idle didn't succeed
3760 cfq_clear_cfqq_deep(cfqq
);
3763 cfq_slice_expired(cfqd
, timed_out
);
3765 cfq_schedule_dispatch(cfqd
);
3767 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3770 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3772 del_timer_sync(&cfqd
->idle_slice_timer
);
3773 cancel_work_sync(&cfqd
->unplug_work
);
3776 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3780 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3781 if (cfqd
->async_cfqq
[0][i
])
3782 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3783 if (cfqd
->async_cfqq
[1][i
])
3784 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3787 if (cfqd
->async_idle_cfqq
)
3788 cfq_put_queue(cfqd
->async_idle_cfqq
);
3791 static void cfq_cfqd_free(struct rcu_head
*head
)
3793 kfree(container_of(head
, struct cfq_data
, rcu
));
3796 static void cfq_exit_queue(struct elevator_queue
*e
)
3798 struct cfq_data
*cfqd
= e
->elevator_data
;
3799 struct request_queue
*q
= cfqd
->queue
;
3801 cfq_shutdown_timer_wq(cfqd
);
3803 spin_lock_irq(q
->queue_lock
);
3805 if (cfqd
->active_queue
)
3806 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3808 while (!list_empty(&cfqd
->cic_list
)) {
3809 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3810 struct cfq_io_context
,
3813 __cfq_exit_single_io_context(cfqd
, cic
);
3816 cfq_put_async_queues(cfqd
);
3817 cfq_release_cfq_groups(cfqd
);
3818 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3820 spin_unlock_irq(q
->queue_lock
);
3822 cfq_shutdown_timer_wq(cfqd
);
3824 spin_lock(&cic_index_lock
);
3825 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3826 spin_unlock(&cic_index_lock
);
3828 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3829 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3832 static int cfq_alloc_cic_index(void)
3837 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3840 spin_lock(&cic_index_lock
);
3841 error
= ida_get_new(&cic_index_ida
, &index
);
3842 spin_unlock(&cic_index_lock
);
3843 if (error
&& error
!= -EAGAIN
)
3850 static void *cfq_init_queue(struct request_queue
*q
)
3852 struct cfq_data
*cfqd
;
3854 struct cfq_group
*cfqg
;
3855 struct cfq_rb_root
*st
;
3857 i
= cfq_alloc_cic_index();
3861 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3865 cfqd
->cic_index
= i
;
3867 /* Init root service tree */
3868 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3870 /* Init root group */
3871 cfqg
= &cfqd
->root_group
;
3872 for_each_cfqg_st(cfqg
, i
, j
, st
)
3874 RB_CLEAR_NODE(&cfqg
->rb_node
);
3876 /* Give preference to root group over other groups */
3877 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3881 * Take a reference to root group which we never drop. This is just
3882 * to make sure that cfq_put_cfqg() does not try to kfree root group
3884 atomic_set(&cfqg
->ref
, 1);
3886 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3891 * Not strictly needed (since RB_ROOT just clears the node and we
3892 * zeroed cfqd on alloc), but better be safe in case someone decides
3893 * to add magic to the rb code
3895 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3896 cfqd
->prio_trees
[i
] = RB_ROOT
;
3899 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3900 * Grab a permanent reference to it, so that the normal code flow
3901 * will not attempt to free it.
3903 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3904 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3905 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3907 INIT_LIST_HEAD(&cfqd
->cic_list
);
3911 init_timer(&cfqd
->idle_slice_timer
);
3912 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3913 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3915 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3917 cfqd
->cfq_quantum
= cfq_quantum
;
3918 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3919 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3920 cfqd
->cfq_back_max
= cfq_back_max
;
3921 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3922 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3923 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3924 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3925 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3926 cfqd
->cfq_group_idle
= cfq_group_idle
;
3927 cfqd
->cfq_latency
= 1;
3928 cfqd
->cfq_group_isolation
= 0;
3931 * we optimistically start assuming sync ops weren't delayed in last
3932 * second, in order to have larger depth for async operations.
3934 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3938 static void cfq_slab_kill(void)
3941 * Caller already ensured that pending RCU callbacks are completed,
3942 * so we should have no busy allocations at this point.
3945 kmem_cache_destroy(cfq_pool
);
3947 kmem_cache_destroy(cfq_ioc_pool
);
3950 static int __init
cfq_slab_setup(void)
3952 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3956 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3967 * sysfs parts below -->
3970 cfq_var_show(unsigned int var
, char *page
)
3972 return sprintf(page
, "%d\n", var
);
3976 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3978 char *p
= (char *) page
;
3980 *var
= simple_strtoul(p
, &p
, 10);
3984 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3985 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3987 struct cfq_data *cfqd = e->elevator_data; \
3988 unsigned int __data = __VAR; \
3990 __data = jiffies_to_msecs(__data); \
3991 return cfq_var_show(__data, (page)); \
3993 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3994 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3995 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3996 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3997 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3998 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3999 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4000 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4001 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4002 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4003 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4004 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
4005 #undef SHOW_FUNCTION
4007 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4008 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4010 struct cfq_data *cfqd = e->elevator_data; \
4011 unsigned int __data; \
4012 int ret = cfq_var_store(&__data, (page), count); \
4013 if (__data < (MIN)) \
4015 else if (__data > (MAX)) \
4018 *(__PTR) = msecs_to_jiffies(__data); \
4020 *(__PTR) = __data; \
4023 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4024 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4026 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4028 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4029 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4031 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4032 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4033 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4034 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4035 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4037 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4038 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
4039 #undef STORE_FUNCTION
4041 #define CFQ_ATTR(name) \
4042 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4044 static struct elv_fs_entry cfq_attrs
[] = {
4046 CFQ_ATTR(fifo_expire_sync
),
4047 CFQ_ATTR(fifo_expire_async
),
4048 CFQ_ATTR(back_seek_max
),
4049 CFQ_ATTR(back_seek_penalty
),
4050 CFQ_ATTR(slice_sync
),
4051 CFQ_ATTR(slice_async
),
4052 CFQ_ATTR(slice_async_rq
),
4053 CFQ_ATTR(slice_idle
),
4054 CFQ_ATTR(group_idle
),
4055 CFQ_ATTR(low_latency
),
4056 CFQ_ATTR(group_isolation
),
4060 static struct elevator_type iosched_cfq
= {
4062 .elevator_merge_fn
= cfq_merge
,
4063 .elevator_merged_fn
= cfq_merged_request
,
4064 .elevator_merge_req_fn
= cfq_merged_requests
,
4065 .elevator_allow_merge_fn
= cfq_allow_merge
,
4066 .elevator_bio_merged_fn
= cfq_bio_merged
,
4067 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4068 .elevator_add_req_fn
= cfq_insert_request
,
4069 .elevator_activate_req_fn
= cfq_activate_request
,
4070 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4071 .elevator_queue_empty_fn
= cfq_queue_empty
,
4072 .elevator_completed_req_fn
= cfq_completed_request
,
4073 .elevator_former_req_fn
= elv_rb_former_request
,
4074 .elevator_latter_req_fn
= elv_rb_latter_request
,
4075 .elevator_set_req_fn
= cfq_set_request
,
4076 .elevator_put_req_fn
= cfq_put_request
,
4077 .elevator_may_queue_fn
= cfq_may_queue
,
4078 .elevator_init_fn
= cfq_init_queue
,
4079 .elevator_exit_fn
= cfq_exit_queue
,
4080 .trim
= cfq_free_io_context
,
4082 .elevator_attrs
= cfq_attrs
,
4083 .elevator_name
= "cfq",
4084 .elevator_owner
= THIS_MODULE
,
4087 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4088 static struct blkio_policy_type blkio_policy_cfq
= {
4090 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4091 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4095 static struct blkio_policy_type blkio_policy_cfq
;
4098 static int __init
cfq_init(void)
4101 * could be 0 on HZ < 1000 setups
4103 if (!cfq_slice_async
)
4104 cfq_slice_async
= 1;
4105 if (!cfq_slice_idle
)
4108 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4109 if (!cfq_group_idle
)
4114 if (cfq_slab_setup())
4117 elv_register(&iosched_cfq
);
4118 blkio_policy_register(&blkio_policy_cfq
);
4123 static void __exit
cfq_exit(void)
4125 DECLARE_COMPLETION_ONSTACK(all_gone
);
4126 blkio_policy_unregister(&blkio_policy_cfq
);
4127 elv_unregister(&iosched_cfq
);
4128 ioc_gone
= &all_gone
;
4129 /* ioc_gone's update must be visible before reading ioc_count */
4133 * this also protects us from entering cfq_slab_kill() with
4134 * pending RCU callbacks
4136 if (elv_ioc_count_read(cfq_ioc_count
))
4137 wait_for_completion(&all_gone
);
4138 ida_destroy(&cic_index_ida
);
4142 module_init(cfq_init
);
4143 module_exit(cfq_exit
);
4145 MODULE_AUTHOR("Jens Axboe");
4146 MODULE_LICENSE("GPL");
4147 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");