class: Implement support for class attrs in tagged sysfs directories.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / skbuff.h
blob77ddf2de712fa4d03f77d48136d3feb8241f4a0d
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* return minimum truesize of one skb containing X bytes of data */
50 #define SKB_TRUESIZE(X) ((X) + \
51 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
52 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54 /* A. Checksumming of received packets by device.
56 * NONE: device failed to checksum this packet.
57 * skb->csum is undefined.
59 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
60 * skb->csum is undefined.
61 * It is bad option, but, unfortunately, many of vendors do this.
62 * Apparently with secret goal to sell you new device, when you
63 * will add new protocol to your host. F.e. IPv6. 8)
65 * COMPLETE: the most generic way. Device supplied checksum of _all_
66 * the packet as seen by netif_rx in skb->csum.
67 * NOTE: Even if device supports only some protocols, but
68 * is able to produce some skb->csum, it MUST use COMPLETE,
69 * not UNNECESSARY.
71 * PARTIAL: identical to the case for output below. This may occur
72 * on a packet received directly from another Linux OS, e.g.,
73 * a virtualised Linux kernel on the same host. The packet can
74 * be treated in the same way as UNNECESSARY except that on
75 * output (i.e., forwarding) the checksum must be filled in
76 * by the OS or the hardware.
78 * B. Checksumming on output.
80 * NONE: skb is checksummed by protocol or csum is not required.
82 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
83 * from skb->csum_start to the end and to record the checksum
84 * at skb->csum_start + skb->csum_offset.
86 * Device must show its capabilities in dev->features, set
87 * at device setup time.
88 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
89 * everything.
90 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 * Any questions? No questions, good. --ANK
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 atomic_t use;
108 #endif
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 atomic_t use;
113 struct net_device *physindev;
114 struct net_device *physoutdev;
115 unsigned int mask;
116 unsigned long data[32 / sizeof(unsigned long)];
118 #endif
120 struct sk_buff_head {
121 /* These two members must be first. */
122 struct sk_buff *next;
123 struct sk_buff *prev;
125 __u32 qlen;
126 spinlock_t lock;
129 struct sk_buff;
131 /* To allow 64K frame to be packed as single skb without frag_list. Since
132 * GRO uses frags we allocate at least 16 regardless of page size.
134 #if (65536/PAGE_SIZE + 2) < 16
135 #define MAX_SKB_FRAGS 16UL
136 #else
137 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
138 #endif
140 typedef struct skb_frag_struct skb_frag_t;
142 struct skb_frag_struct {
143 struct page *page;
144 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
145 __u32 page_offset;
146 __u32 size;
147 #else
148 __u16 page_offset;
149 __u16 size;
150 #endif
153 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
155 return frag->size;
158 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
160 frag->size = size;
163 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
165 frag->size += delta;
168 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
170 frag->size -= delta;
173 #define HAVE_HW_TIME_STAMP
176 * struct skb_shared_hwtstamps - hardware time stamps
177 * @hwtstamp: hardware time stamp transformed into duration
178 * since arbitrary point in time
179 * @syststamp: hwtstamp transformed to system time base
181 * Software time stamps generated by ktime_get_real() are stored in
182 * skb->tstamp. The relation between the different kinds of time
183 * stamps is as follows:
185 * syststamp and tstamp can be compared against each other in
186 * arbitrary combinations. The accuracy of a
187 * syststamp/tstamp/"syststamp from other device" comparison is
188 * limited by the accuracy of the transformation into system time
189 * base. This depends on the device driver and its underlying
190 * hardware.
192 * hwtstamps can only be compared against other hwtstamps from
193 * the same device.
195 * This structure is attached to packets as part of the
196 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
198 struct skb_shared_hwtstamps {
199 ktime_t hwtstamp;
200 ktime_t syststamp;
203 /* Definitions for tx_flags in struct skb_shared_info */
204 enum {
205 /* generate hardware time stamp */
206 SKBTX_HW_TSTAMP = 1 << 0,
208 /* generate software time stamp */
209 SKBTX_SW_TSTAMP = 1 << 1,
211 /* device driver is going to provide hardware time stamp */
212 SKBTX_IN_PROGRESS = 1 << 2,
214 /* ensure the originating sk reference is available on driver level */
215 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
217 /* device driver supports TX zero-copy buffers */
218 SKBTX_DEV_ZEROCOPY = 1 << 4,
222 * The callback notifies userspace to release buffers when skb DMA is done in
223 * lower device, the skb last reference should be 0 when calling this.
224 * The desc is used to track userspace buffer index.
226 struct ubuf_info {
227 void (*callback)(void *);
228 void *arg;
229 unsigned long desc;
232 /* This data is invariant across clones and lives at
233 * the end of the header data, ie. at skb->end.
235 struct skb_shared_info {
236 unsigned short nr_frags;
237 unsigned short gso_size;
238 /* Warning: this field is not always filled in (UFO)! */
239 unsigned short gso_segs;
240 unsigned short gso_type;
241 __be32 ip6_frag_id;
242 __u8 tx_flags;
243 struct sk_buff *frag_list;
244 struct skb_shared_hwtstamps hwtstamps;
247 * Warning : all fields before dataref are cleared in __alloc_skb()
249 atomic_t dataref;
251 /* Intermediate layers must ensure that destructor_arg
252 * remains valid until skb destructor */
253 void * destructor_arg;
255 /* must be last field, see pskb_expand_head() */
256 skb_frag_t frags[MAX_SKB_FRAGS];
259 /* We divide dataref into two halves. The higher 16 bits hold references
260 * to the payload part of skb->data. The lower 16 bits hold references to
261 * the entire skb->data. A clone of a headerless skb holds the length of
262 * the header in skb->hdr_len.
264 * All users must obey the rule that the skb->data reference count must be
265 * greater than or equal to the payload reference count.
267 * Holding a reference to the payload part means that the user does not
268 * care about modifications to the header part of skb->data.
270 #define SKB_DATAREF_SHIFT 16
271 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
274 enum {
275 SKB_FCLONE_UNAVAILABLE,
276 SKB_FCLONE_ORIG,
277 SKB_FCLONE_CLONE,
280 enum {
281 SKB_GSO_TCPV4 = 1 << 0,
282 SKB_GSO_UDP = 1 << 1,
284 /* This indicates the skb is from an untrusted source. */
285 SKB_GSO_DODGY = 1 << 2,
287 /* This indicates the tcp segment has CWR set. */
288 SKB_GSO_TCP_ECN = 1 << 3,
290 SKB_GSO_TCPV6 = 1 << 4,
292 SKB_GSO_FCOE = 1 << 5,
295 #if BITS_PER_LONG > 32
296 #define NET_SKBUFF_DATA_USES_OFFSET 1
297 #endif
299 #ifdef NET_SKBUFF_DATA_USES_OFFSET
300 typedef unsigned int sk_buff_data_t;
301 #else
302 typedef unsigned char *sk_buff_data_t;
303 #endif
305 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
306 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
307 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
308 #endif
310 /**
311 * struct sk_buff - socket buffer
312 * @next: Next buffer in list
313 * @prev: Previous buffer in list
314 * @tstamp: Time we arrived
315 * @sk: Socket we are owned by
316 * @dev: Device we arrived on/are leaving by
317 * @cb: Control buffer. Free for use by every layer. Put private vars here
318 * @_skb_refdst: destination entry (with norefcount bit)
319 * @sp: the security path, used for xfrm
320 * @len: Length of actual data
321 * @data_len: Data length
322 * @mac_len: Length of link layer header
323 * @hdr_len: writable header length of cloned skb
324 * @csum: Checksum (must include start/offset pair)
325 * @csum_start: Offset from skb->head where checksumming should start
326 * @csum_offset: Offset from csum_start where checksum should be stored
327 * @priority: Packet queueing priority
328 * @local_df: allow local fragmentation
329 * @cloned: Head may be cloned (check refcnt to be sure)
330 * @ip_summed: Driver fed us an IP checksum
331 * @nohdr: Payload reference only, must not modify header
332 * @nfctinfo: Relationship of this skb to the connection
333 * @pkt_type: Packet class
334 * @fclone: skbuff clone status
335 * @ipvs_property: skbuff is owned by ipvs
336 * @peeked: this packet has been seen already, so stats have been
337 * done for it, don't do them again
338 * @nf_trace: netfilter packet trace flag
339 * @protocol: Packet protocol from driver
340 * @destructor: Destruct function
341 * @nfct: Associated connection, if any
342 * @nfct_reasm: netfilter conntrack re-assembly pointer
343 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
344 * @skb_iif: ifindex of device we arrived on
345 * @tc_index: Traffic control index
346 * @tc_verd: traffic control verdict
347 * @rxhash: the packet hash computed on receive
348 * @queue_mapping: Queue mapping for multiqueue devices
349 * @ndisc_nodetype: router type (from link layer)
350 * @ooo_okay: allow the mapping of a socket to a queue to be changed
351 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
352 * ports.
353 * @dma_cookie: a cookie to one of several possible DMA operations
354 * done by skb DMA functions
355 * @secmark: security marking
356 * @mark: Generic packet mark
357 * @dropcount: total number of sk_receive_queue overflows
358 * @vlan_tci: vlan tag control information
359 * @transport_header: Transport layer header
360 * @network_header: Network layer header
361 * @mac_header: Link layer header
362 * @tail: Tail pointer
363 * @end: End pointer
364 * @head: Head of buffer
365 * @data: Data head pointer
366 * @truesize: Buffer size
367 * @users: User count - see {datagram,tcp}.c
370 struct sk_buff {
371 /* These two members must be first. */
372 struct sk_buff *next;
373 struct sk_buff *prev;
375 ktime_t tstamp;
377 struct sock *sk;
378 struct net_device *dev;
381 * This is the control buffer. It is free to use for every
382 * layer. Please put your private variables there. If you
383 * want to keep them across layers you have to do a skb_clone()
384 * first. This is owned by whoever has the skb queued ATM.
386 char cb[48] __aligned(8);
388 unsigned long _skb_refdst;
389 #ifdef CONFIG_XFRM
390 struct sec_path *sp;
391 #endif
392 unsigned int len,
393 data_len;
394 __u16 mac_len,
395 hdr_len;
396 union {
397 __wsum csum;
398 struct {
399 __u16 csum_start;
400 __u16 csum_offset;
403 __u32 priority;
404 kmemcheck_bitfield_begin(flags1);
405 __u8 local_df:1,
406 cloned:1,
407 ip_summed:2,
408 nohdr:1,
409 nfctinfo:3;
410 __u8 pkt_type:3,
411 fclone:2,
412 ipvs_property:1,
413 peeked:1,
414 nf_trace:1;
415 kmemcheck_bitfield_end(flags1);
416 __be16 protocol;
418 void (*destructor)(struct sk_buff *skb);
419 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
420 struct nf_conntrack *nfct;
421 #endif
422 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
423 struct sk_buff *nfct_reasm;
424 #endif
425 #ifdef CONFIG_BRIDGE_NETFILTER
426 struct nf_bridge_info *nf_bridge;
427 #endif
429 int skb_iif;
430 #ifdef CONFIG_NET_SCHED
431 __u16 tc_index; /* traffic control index */
432 #ifdef CONFIG_NET_CLS_ACT
433 __u16 tc_verd; /* traffic control verdict */
434 #endif
435 #endif
437 __u32 rxhash;
439 __u16 queue_mapping;
440 kmemcheck_bitfield_begin(flags2);
441 #ifdef CONFIG_IPV6_NDISC_NODETYPE
442 __u8 ndisc_nodetype:2;
443 #endif
444 __u8 ooo_okay:1;
445 __u8 l4_rxhash:1;
446 kmemcheck_bitfield_end(flags2);
448 /* 0/13 bit hole */
450 #ifdef CONFIG_NET_DMA
451 dma_cookie_t dma_cookie;
452 #endif
453 #ifdef CONFIG_NETWORK_SECMARK
454 __u32 secmark;
455 #endif
456 union {
457 __u32 mark;
458 __u32 dropcount;
461 __u16 vlan_tci;
463 sk_buff_data_t transport_header;
464 sk_buff_data_t network_header;
465 sk_buff_data_t mac_header;
466 /* These elements must be at the end, see alloc_skb() for details. */
467 sk_buff_data_t tail;
468 sk_buff_data_t end;
469 unsigned char *head,
470 *data;
471 unsigned int truesize;
472 atomic_t users;
475 #ifdef __KERNEL__
477 * Handling routines are only of interest to the kernel
479 #include <linux/slab.h>
481 #include <asm/system.h>
484 * skb might have a dst pointer attached, refcounted or not.
485 * _skb_refdst low order bit is set if refcount was _not_ taken
487 #define SKB_DST_NOREF 1UL
488 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
491 * skb_dst - returns skb dst_entry
492 * @skb: buffer
494 * Returns skb dst_entry, regardless of reference taken or not.
496 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
498 /* If refdst was not refcounted, check we still are in a
499 * rcu_read_lock section
501 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
502 !rcu_read_lock_held() &&
503 !rcu_read_lock_bh_held());
504 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
508 * skb_dst_set - sets skb dst
509 * @skb: buffer
510 * @dst: dst entry
512 * Sets skb dst, assuming a reference was taken on dst and should
513 * be released by skb_dst_drop()
515 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
517 skb->_skb_refdst = (unsigned long)dst;
520 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
523 * skb_dst_is_noref - Test if skb dst isn't refcounted
524 * @skb: buffer
526 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
528 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
531 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
533 return (struct rtable *)skb_dst(skb);
536 extern void kfree_skb(struct sk_buff *skb);
537 extern void consume_skb(struct sk_buff *skb);
538 extern void __kfree_skb(struct sk_buff *skb);
539 extern struct sk_buff *__alloc_skb(unsigned int size,
540 gfp_t priority, int fclone, int node);
541 static inline struct sk_buff *alloc_skb(unsigned int size,
542 gfp_t priority)
544 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
547 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
548 gfp_t priority)
550 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
553 extern void skb_recycle(struct sk_buff *skb);
554 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
556 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
557 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
558 extern struct sk_buff *skb_clone(struct sk_buff *skb,
559 gfp_t priority);
560 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
561 gfp_t priority);
562 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
563 gfp_t gfp_mask);
564 extern int pskb_expand_head(struct sk_buff *skb,
565 int nhead, int ntail,
566 gfp_t gfp_mask);
567 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
568 unsigned int headroom);
569 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
570 int newheadroom, int newtailroom,
571 gfp_t priority);
572 extern int skb_to_sgvec(struct sk_buff *skb,
573 struct scatterlist *sg, int offset,
574 int len);
575 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
576 struct sk_buff **trailer);
577 extern int skb_pad(struct sk_buff *skb, int pad);
578 #define dev_kfree_skb(a) consume_skb(a)
580 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
581 int getfrag(void *from, char *to, int offset,
582 int len,int odd, struct sk_buff *skb),
583 void *from, int length);
585 struct skb_seq_state {
586 __u32 lower_offset;
587 __u32 upper_offset;
588 __u32 frag_idx;
589 __u32 stepped_offset;
590 struct sk_buff *root_skb;
591 struct sk_buff *cur_skb;
592 __u8 *frag_data;
595 extern void skb_prepare_seq_read(struct sk_buff *skb,
596 unsigned int from, unsigned int to,
597 struct skb_seq_state *st);
598 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
599 struct skb_seq_state *st);
600 extern void skb_abort_seq_read(struct skb_seq_state *st);
602 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
603 unsigned int to, struct ts_config *config,
604 struct ts_state *state);
606 extern void __skb_get_rxhash(struct sk_buff *skb);
607 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
609 if (!skb->rxhash)
610 __skb_get_rxhash(skb);
612 return skb->rxhash;
615 #ifdef NET_SKBUFF_DATA_USES_OFFSET
616 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
618 return skb->head + skb->end;
620 #else
621 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
623 return skb->end;
625 #endif
627 /* Internal */
628 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
630 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
632 return &skb_shinfo(skb)->hwtstamps;
636 * skb_queue_empty - check if a queue is empty
637 * @list: queue head
639 * Returns true if the queue is empty, false otherwise.
641 static inline int skb_queue_empty(const struct sk_buff_head *list)
643 return list->next == (struct sk_buff *)list;
647 * skb_queue_is_last - check if skb is the last entry in the queue
648 * @list: queue head
649 * @skb: buffer
651 * Returns true if @skb is the last buffer on the list.
653 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
654 const struct sk_buff *skb)
656 return skb->next == (struct sk_buff *)list;
660 * skb_queue_is_first - check if skb is the first entry in the queue
661 * @list: queue head
662 * @skb: buffer
664 * Returns true if @skb is the first buffer on the list.
666 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
667 const struct sk_buff *skb)
669 return skb->prev == (struct sk_buff *)list;
673 * skb_queue_next - return the next packet in the queue
674 * @list: queue head
675 * @skb: current buffer
677 * Return the next packet in @list after @skb. It is only valid to
678 * call this if skb_queue_is_last() evaluates to false.
680 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
681 const struct sk_buff *skb)
683 /* This BUG_ON may seem severe, but if we just return then we
684 * are going to dereference garbage.
686 BUG_ON(skb_queue_is_last(list, skb));
687 return skb->next;
691 * skb_queue_prev - return the prev packet in the queue
692 * @list: queue head
693 * @skb: current buffer
695 * Return the prev packet in @list before @skb. It is only valid to
696 * call this if skb_queue_is_first() evaluates to false.
698 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
699 const struct sk_buff *skb)
701 /* This BUG_ON may seem severe, but if we just return then we
702 * are going to dereference garbage.
704 BUG_ON(skb_queue_is_first(list, skb));
705 return skb->prev;
709 * skb_get - reference buffer
710 * @skb: buffer to reference
712 * Makes another reference to a socket buffer and returns a pointer
713 * to the buffer.
715 static inline struct sk_buff *skb_get(struct sk_buff *skb)
717 atomic_inc(&skb->users);
718 return skb;
722 * If users == 1, we are the only owner and are can avoid redundant
723 * atomic change.
727 * skb_cloned - is the buffer a clone
728 * @skb: buffer to check
730 * Returns true if the buffer was generated with skb_clone() and is
731 * one of multiple shared copies of the buffer. Cloned buffers are
732 * shared data so must not be written to under normal circumstances.
734 static inline int skb_cloned(const struct sk_buff *skb)
736 return skb->cloned &&
737 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
741 * skb_header_cloned - is the header a clone
742 * @skb: buffer to check
744 * Returns true if modifying the header part of the buffer requires
745 * the data to be copied.
747 static inline int skb_header_cloned(const struct sk_buff *skb)
749 int dataref;
751 if (!skb->cloned)
752 return 0;
754 dataref = atomic_read(&skb_shinfo(skb)->dataref);
755 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
756 return dataref != 1;
760 * skb_header_release - release reference to header
761 * @skb: buffer to operate on
763 * Drop a reference to the header part of the buffer. This is done
764 * by acquiring a payload reference. You must not read from the header
765 * part of skb->data after this.
767 static inline void skb_header_release(struct sk_buff *skb)
769 BUG_ON(skb->nohdr);
770 skb->nohdr = 1;
771 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
775 * skb_shared - is the buffer shared
776 * @skb: buffer to check
778 * Returns true if more than one person has a reference to this
779 * buffer.
781 static inline int skb_shared(const struct sk_buff *skb)
783 return atomic_read(&skb->users) != 1;
787 * skb_share_check - check if buffer is shared and if so clone it
788 * @skb: buffer to check
789 * @pri: priority for memory allocation
791 * If the buffer is shared the buffer is cloned and the old copy
792 * drops a reference. A new clone with a single reference is returned.
793 * If the buffer is not shared the original buffer is returned. When
794 * being called from interrupt status or with spinlocks held pri must
795 * be GFP_ATOMIC.
797 * NULL is returned on a memory allocation failure.
799 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
800 gfp_t pri)
802 might_sleep_if(pri & __GFP_WAIT);
803 if (skb_shared(skb)) {
804 struct sk_buff *nskb = skb_clone(skb, pri);
805 kfree_skb(skb);
806 skb = nskb;
808 return skb;
812 * Copy shared buffers into a new sk_buff. We effectively do COW on
813 * packets to handle cases where we have a local reader and forward
814 * and a couple of other messy ones. The normal one is tcpdumping
815 * a packet thats being forwarded.
819 * skb_unshare - make a copy of a shared buffer
820 * @skb: buffer to check
821 * @pri: priority for memory allocation
823 * If the socket buffer is a clone then this function creates a new
824 * copy of the data, drops a reference count on the old copy and returns
825 * the new copy with the reference count at 1. If the buffer is not a clone
826 * the original buffer is returned. When called with a spinlock held or
827 * from interrupt state @pri must be %GFP_ATOMIC
829 * %NULL is returned on a memory allocation failure.
831 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
832 gfp_t pri)
834 might_sleep_if(pri & __GFP_WAIT);
835 if (skb_cloned(skb)) {
836 struct sk_buff *nskb = skb_copy(skb, pri);
837 kfree_skb(skb); /* Free our shared copy */
838 skb = nskb;
840 return skb;
844 * skb_peek - peek at the head of an &sk_buff_head
845 * @list_: list to peek at
847 * Peek an &sk_buff. Unlike most other operations you _MUST_
848 * be careful with this one. A peek leaves the buffer on the
849 * list and someone else may run off with it. You must hold
850 * the appropriate locks or have a private queue to do this.
852 * Returns %NULL for an empty list or a pointer to the head element.
853 * The reference count is not incremented and the reference is therefore
854 * volatile. Use with caution.
856 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
858 struct sk_buff *list = ((struct sk_buff *)list_)->next;
859 if (list == (struct sk_buff *)list_)
860 list = NULL;
861 return list;
865 * skb_peek_tail - peek at the tail of an &sk_buff_head
866 * @list_: list to peek at
868 * Peek an &sk_buff. Unlike most other operations you _MUST_
869 * be careful with this one. A peek leaves the buffer on the
870 * list and someone else may run off with it. You must hold
871 * the appropriate locks or have a private queue to do this.
873 * Returns %NULL for an empty list or a pointer to the tail element.
874 * The reference count is not incremented and the reference is therefore
875 * volatile. Use with caution.
877 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
879 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
880 if (list == (struct sk_buff *)list_)
881 list = NULL;
882 return list;
886 * skb_queue_len - get queue length
887 * @list_: list to measure
889 * Return the length of an &sk_buff queue.
891 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
893 return list_->qlen;
897 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
898 * @list: queue to initialize
900 * This initializes only the list and queue length aspects of
901 * an sk_buff_head object. This allows to initialize the list
902 * aspects of an sk_buff_head without reinitializing things like
903 * the spinlock. It can also be used for on-stack sk_buff_head
904 * objects where the spinlock is known to not be used.
906 static inline void __skb_queue_head_init(struct sk_buff_head *list)
908 list->prev = list->next = (struct sk_buff *)list;
909 list->qlen = 0;
913 * This function creates a split out lock class for each invocation;
914 * this is needed for now since a whole lot of users of the skb-queue
915 * infrastructure in drivers have different locking usage (in hardirq)
916 * than the networking core (in softirq only). In the long run either the
917 * network layer or drivers should need annotation to consolidate the
918 * main types of usage into 3 classes.
920 static inline void skb_queue_head_init(struct sk_buff_head *list)
922 spin_lock_init(&list->lock);
923 __skb_queue_head_init(list);
926 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
927 struct lock_class_key *class)
929 skb_queue_head_init(list);
930 lockdep_set_class(&list->lock, class);
934 * Insert an sk_buff on a list.
936 * The "__skb_xxxx()" functions are the non-atomic ones that
937 * can only be called with interrupts disabled.
939 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
940 static inline void __skb_insert(struct sk_buff *newsk,
941 struct sk_buff *prev, struct sk_buff *next,
942 struct sk_buff_head *list)
944 newsk->next = next;
945 newsk->prev = prev;
946 next->prev = prev->next = newsk;
947 list->qlen++;
950 static inline void __skb_queue_splice(const struct sk_buff_head *list,
951 struct sk_buff *prev,
952 struct sk_buff *next)
954 struct sk_buff *first = list->next;
955 struct sk_buff *last = list->prev;
957 first->prev = prev;
958 prev->next = first;
960 last->next = next;
961 next->prev = last;
965 * skb_queue_splice - join two skb lists, this is designed for stacks
966 * @list: the new list to add
967 * @head: the place to add it in the first list
969 static inline void skb_queue_splice(const struct sk_buff_head *list,
970 struct sk_buff_head *head)
972 if (!skb_queue_empty(list)) {
973 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
974 head->qlen += list->qlen;
979 * skb_queue_splice - join two skb lists and reinitialise the emptied list
980 * @list: the new list to add
981 * @head: the place to add it in the first list
983 * The list at @list is reinitialised
985 static inline void skb_queue_splice_init(struct sk_buff_head *list,
986 struct sk_buff_head *head)
988 if (!skb_queue_empty(list)) {
989 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
990 head->qlen += list->qlen;
991 __skb_queue_head_init(list);
996 * skb_queue_splice_tail - join two skb lists, each list being a queue
997 * @list: the new list to add
998 * @head: the place to add it in the first list
1000 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1001 struct sk_buff_head *head)
1003 if (!skb_queue_empty(list)) {
1004 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1005 head->qlen += list->qlen;
1010 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1011 * @list: the new list to add
1012 * @head: the place to add it in the first list
1014 * Each of the lists is a queue.
1015 * The list at @list is reinitialised
1017 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1018 struct sk_buff_head *head)
1020 if (!skb_queue_empty(list)) {
1021 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1022 head->qlen += list->qlen;
1023 __skb_queue_head_init(list);
1028 * __skb_queue_after - queue a buffer at the list head
1029 * @list: list to use
1030 * @prev: place after this buffer
1031 * @newsk: buffer to queue
1033 * Queue a buffer int the middle of a list. This function takes no locks
1034 * and you must therefore hold required locks before calling it.
1036 * A buffer cannot be placed on two lists at the same time.
1038 static inline void __skb_queue_after(struct sk_buff_head *list,
1039 struct sk_buff *prev,
1040 struct sk_buff *newsk)
1042 __skb_insert(newsk, prev, prev->next, list);
1045 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1046 struct sk_buff_head *list);
1048 static inline void __skb_queue_before(struct sk_buff_head *list,
1049 struct sk_buff *next,
1050 struct sk_buff *newsk)
1052 __skb_insert(newsk, next->prev, next, list);
1056 * __skb_queue_head - queue a buffer at the list head
1057 * @list: list to use
1058 * @newsk: buffer to queue
1060 * Queue a buffer at the start of a list. This function takes no locks
1061 * and you must therefore hold required locks before calling it.
1063 * A buffer cannot be placed on two lists at the same time.
1065 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1066 static inline void __skb_queue_head(struct sk_buff_head *list,
1067 struct sk_buff *newsk)
1069 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1073 * __skb_queue_tail - queue a buffer at the list tail
1074 * @list: list to use
1075 * @newsk: buffer to queue
1077 * Queue a buffer at the end of a list. This function takes no locks
1078 * and you must therefore hold required locks before calling it.
1080 * A buffer cannot be placed on two lists at the same time.
1082 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1083 static inline void __skb_queue_tail(struct sk_buff_head *list,
1084 struct sk_buff *newsk)
1086 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1090 * remove sk_buff from list. _Must_ be called atomically, and with
1091 * the list known..
1093 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1094 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1096 struct sk_buff *next, *prev;
1098 list->qlen--;
1099 next = skb->next;
1100 prev = skb->prev;
1101 skb->next = skb->prev = NULL;
1102 next->prev = prev;
1103 prev->next = next;
1107 * __skb_dequeue - remove from the head of the queue
1108 * @list: list to dequeue from
1110 * Remove the head of the list. This function does not take any locks
1111 * so must be used with appropriate locks held only. The head item is
1112 * returned or %NULL if the list is empty.
1114 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1115 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1117 struct sk_buff *skb = skb_peek(list);
1118 if (skb)
1119 __skb_unlink(skb, list);
1120 return skb;
1124 * __skb_dequeue_tail - remove from the tail of the queue
1125 * @list: list to dequeue from
1127 * Remove the tail of the list. This function does not take any locks
1128 * so must be used with appropriate locks held only. The tail item is
1129 * returned or %NULL if the list is empty.
1131 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1132 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1134 struct sk_buff *skb = skb_peek_tail(list);
1135 if (skb)
1136 __skb_unlink(skb, list);
1137 return skb;
1141 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1143 return skb->data_len;
1146 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1148 return skb->len - skb->data_len;
1151 static inline int skb_pagelen(const struct sk_buff *skb)
1153 int i, len = 0;
1155 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1156 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1157 return len + skb_headlen(skb);
1161 * __skb_fill_page_desc - initialise a paged fragment in an skb
1162 * @skb: buffer containing fragment to be initialised
1163 * @i: paged fragment index to initialise
1164 * @page: the page to use for this fragment
1165 * @off: the offset to the data with @page
1166 * @size: the length of the data
1168 * Initialises the @i'th fragment of @skb to point to &size bytes at
1169 * offset @off within @page.
1171 * Does not take any additional reference on the fragment.
1173 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1174 struct page *page, int off, int size)
1176 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1178 frag->page = page;
1179 frag->page_offset = off;
1180 skb_frag_size_set(frag, size);
1184 * skb_fill_page_desc - initialise a paged fragment in an skb
1185 * @skb: buffer containing fragment to be initialised
1186 * @i: paged fragment index to initialise
1187 * @page: the page to use for this fragment
1188 * @off: the offset to the data with @page
1189 * @size: the length of the data
1191 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1192 * @skb to point to &size bytes at offset @off within @page. In
1193 * addition updates @skb such that @i is the last fragment.
1195 * Does not take any additional reference on the fragment.
1197 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1198 struct page *page, int off, int size)
1200 __skb_fill_page_desc(skb, i, page, off, size);
1201 skb_shinfo(skb)->nr_frags = i + 1;
1204 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1205 int off, int size);
1207 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1208 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1209 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1211 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1212 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1214 return skb->head + skb->tail;
1217 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1219 skb->tail = skb->data - skb->head;
1222 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1224 skb_reset_tail_pointer(skb);
1225 skb->tail += offset;
1227 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1228 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1230 return skb->tail;
1233 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1235 skb->tail = skb->data;
1238 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1240 skb->tail = skb->data + offset;
1243 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1246 * Add data to an sk_buff
1248 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1249 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1251 unsigned char *tmp = skb_tail_pointer(skb);
1252 SKB_LINEAR_ASSERT(skb);
1253 skb->tail += len;
1254 skb->len += len;
1255 return tmp;
1258 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1259 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1261 skb->data -= len;
1262 skb->len += len;
1263 return skb->data;
1266 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1267 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1269 skb->len -= len;
1270 BUG_ON(skb->len < skb->data_len);
1271 return skb->data += len;
1274 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1276 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1279 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1281 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1283 if (len > skb_headlen(skb) &&
1284 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1285 return NULL;
1286 skb->len -= len;
1287 return skb->data += len;
1290 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1292 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1295 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1297 if (likely(len <= skb_headlen(skb)))
1298 return 1;
1299 if (unlikely(len > skb->len))
1300 return 0;
1301 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1305 * skb_headroom - bytes at buffer head
1306 * @skb: buffer to check
1308 * Return the number of bytes of free space at the head of an &sk_buff.
1310 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1312 return skb->data - skb->head;
1316 * skb_tailroom - bytes at buffer end
1317 * @skb: buffer to check
1319 * Return the number of bytes of free space at the tail of an sk_buff
1321 static inline int skb_tailroom(const struct sk_buff *skb)
1323 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1327 * skb_reserve - adjust headroom
1328 * @skb: buffer to alter
1329 * @len: bytes to move
1331 * Increase the headroom of an empty &sk_buff by reducing the tail
1332 * room. This is only allowed for an empty buffer.
1334 static inline void skb_reserve(struct sk_buff *skb, int len)
1336 skb->data += len;
1337 skb->tail += len;
1340 static inline void skb_reset_mac_len(struct sk_buff *skb)
1342 skb->mac_len = skb->network_header - skb->mac_header;
1345 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1346 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1348 return skb->head + skb->transport_header;
1351 static inline void skb_reset_transport_header(struct sk_buff *skb)
1353 skb->transport_header = skb->data - skb->head;
1356 static inline void skb_set_transport_header(struct sk_buff *skb,
1357 const int offset)
1359 skb_reset_transport_header(skb);
1360 skb->transport_header += offset;
1363 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1365 return skb->head + skb->network_header;
1368 static inline void skb_reset_network_header(struct sk_buff *skb)
1370 skb->network_header = skb->data - skb->head;
1373 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1375 skb_reset_network_header(skb);
1376 skb->network_header += offset;
1379 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1381 return skb->head + skb->mac_header;
1384 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1386 return skb->mac_header != ~0U;
1389 static inline void skb_reset_mac_header(struct sk_buff *skb)
1391 skb->mac_header = skb->data - skb->head;
1394 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1396 skb_reset_mac_header(skb);
1397 skb->mac_header += offset;
1400 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1404 return skb->transport_header;
1407 static inline void skb_reset_transport_header(struct sk_buff *skb)
1409 skb->transport_header = skb->data;
1412 static inline void skb_set_transport_header(struct sk_buff *skb,
1413 const int offset)
1415 skb->transport_header = skb->data + offset;
1418 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1420 return skb->network_header;
1423 static inline void skb_reset_network_header(struct sk_buff *skb)
1425 skb->network_header = skb->data;
1428 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1430 skb->network_header = skb->data + offset;
1433 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1435 return skb->mac_header;
1438 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1440 return skb->mac_header != NULL;
1443 static inline void skb_reset_mac_header(struct sk_buff *skb)
1445 skb->mac_header = skb->data;
1448 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1450 skb->mac_header = skb->data + offset;
1452 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1454 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1456 return skb->csum_start - skb_headroom(skb);
1459 static inline int skb_transport_offset(const struct sk_buff *skb)
1461 return skb_transport_header(skb) - skb->data;
1464 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1466 return skb->transport_header - skb->network_header;
1469 static inline int skb_network_offset(const struct sk_buff *skb)
1471 return skb_network_header(skb) - skb->data;
1474 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1476 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1480 * CPUs often take a performance hit when accessing unaligned memory
1481 * locations. The actual performance hit varies, it can be small if the
1482 * hardware handles it or large if we have to take an exception and fix it
1483 * in software.
1485 * Since an ethernet header is 14 bytes network drivers often end up with
1486 * the IP header at an unaligned offset. The IP header can be aligned by
1487 * shifting the start of the packet by 2 bytes. Drivers should do this
1488 * with:
1490 * skb_reserve(skb, NET_IP_ALIGN);
1492 * The downside to this alignment of the IP header is that the DMA is now
1493 * unaligned. On some architectures the cost of an unaligned DMA is high
1494 * and this cost outweighs the gains made by aligning the IP header.
1496 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1497 * to be overridden.
1499 #ifndef NET_IP_ALIGN
1500 #define NET_IP_ALIGN 2
1501 #endif
1504 * The networking layer reserves some headroom in skb data (via
1505 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1506 * the header has to grow. In the default case, if the header has to grow
1507 * 32 bytes or less we avoid the reallocation.
1509 * Unfortunately this headroom changes the DMA alignment of the resulting
1510 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1511 * on some architectures. An architecture can override this value,
1512 * perhaps setting it to a cacheline in size (since that will maintain
1513 * cacheline alignment of the DMA). It must be a power of 2.
1515 * Various parts of the networking layer expect at least 32 bytes of
1516 * headroom, you should not reduce this.
1518 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1519 * to reduce average number of cache lines per packet.
1520 * get_rps_cpus() for example only access one 64 bytes aligned block :
1521 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1523 #ifndef NET_SKB_PAD
1524 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1525 #endif
1527 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1529 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1531 if (unlikely(skb_is_nonlinear(skb))) {
1532 WARN_ON(1);
1533 return;
1535 skb->len = len;
1536 skb_set_tail_pointer(skb, len);
1539 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1541 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1543 if (skb->data_len)
1544 return ___pskb_trim(skb, len);
1545 __skb_trim(skb, len);
1546 return 0;
1549 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1551 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1555 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1556 * @skb: buffer to alter
1557 * @len: new length
1559 * This is identical to pskb_trim except that the caller knows that
1560 * the skb is not cloned so we should never get an error due to out-
1561 * of-memory.
1563 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1565 int err = pskb_trim(skb, len);
1566 BUG_ON(err);
1570 * skb_orphan - orphan a buffer
1571 * @skb: buffer to orphan
1573 * If a buffer currently has an owner then we call the owner's
1574 * destructor function and make the @skb unowned. The buffer continues
1575 * to exist but is no longer charged to its former owner.
1577 static inline void skb_orphan(struct sk_buff *skb)
1579 if (skb->destructor)
1580 skb->destructor(skb);
1581 skb->destructor = NULL;
1582 skb->sk = NULL;
1586 * __skb_queue_purge - empty a list
1587 * @list: list to empty
1589 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1590 * the list and one reference dropped. This function does not take the
1591 * list lock and the caller must hold the relevant locks to use it.
1593 extern void skb_queue_purge(struct sk_buff_head *list);
1594 static inline void __skb_queue_purge(struct sk_buff_head *list)
1596 struct sk_buff *skb;
1597 while ((skb = __skb_dequeue(list)) != NULL)
1598 kfree_skb(skb);
1602 * __dev_alloc_skb - allocate an skbuff for receiving
1603 * @length: length to allocate
1604 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1606 * Allocate a new &sk_buff and assign it a usage count of one. The
1607 * buffer has unspecified headroom built in. Users should allocate
1608 * the headroom they think they need without accounting for the
1609 * built in space. The built in space is used for optimisations.
1611 * %NULL is returned if there is no free memory.
1613 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1614 gfp_t gfp_mask)
1616 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1617 if (likely(skb))
1618 skb_reserve(skb, NET_SKB_PAD);
1619 return skb;
1622 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1624 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1625 unsigned int length, gfp_t gfp_mask);
1628 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1629 * @dev: network device to receive on
1630 * @length: length to allocate
1632 * Allocate a new &sk_buff and assign it a usage count of one. The
1633 * buffer has unspecified headroom built in. Users should allocate
1634 * the headroom they think they need without accounting for the
1635 * built in space. The built in space is used for optimisations.
1637 * %NULL is returned if there is no free memory. Although this function
1638 * allocates memory it can be called from an interrupt.
1640 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1641 unsigned int length)
1643 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1646 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1647 unsigned int length, gfp_t gfp)
1649 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1651 if (NET_IP_ALIGN && skb)
1652 skb_reserve(skb, NET_IP_ALIGN);
1653 return skb;
1656 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1657 unsigned int length)
1659 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1663 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1664 * @dev: network device to receive on
1665 * @gfp_mask: alloc_pages_node mask
1667 * Allocate a new page. dev currently unused.
1669 * %NULL is returned if there is no free memory.
1671 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1673 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1677 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1678 * @dev: network device to receive on
1680 * Allocate a new page. dev currently unused.
1682 * %NULL is returned if there is no free memory.
1684 static inline struct page *netdev_alloc_page(struct net_device *dev)
1686 return __netdev_alloc_page(dev, GFP_ATOMIC);
1689 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1691 __free_page(page);
1695 * skb_frag_page - retrieve the page refered to by a paged fragment
1696 * @frag: the paged fragment
1698 * Returns the &struct page associated with @frag.
1700 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1702 return frag->page;
1706 * __skb_frag_ref - take an addition reference on a paged fragment.
1707 * @frag: the paged fragment
1709 * Takes an additional reference on the paged fragment @frag.
1711 static inline void __skb_frag_ref(skb_frag_t *frag)
1713 get_page(skb_frag_page(frag));
1717 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1718 * @skb: the buffer
1719 * @f: the fragment offset.
1721 * Takes an additional reference on the @f'th paged fragment of @skb.
1723 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1725 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1729 * __skb_frag_unref - release a reference on a paged fragment.
1730 * @frag: the paged fragment
1732 * Releases a reference on the paged fragment @frag.
1734 static inline void __skb_frag_unref(skb_frag_t *frag)
1736 put_page(skb_frag_page(frag));
1740 * skb_frag_unref - release a reference on a paged fragment of an skb.
1741 * @skb: the buffer
1742 * @f: the fragment offset
1744 * Releases a reference on the @f'th paged fragment of @skb.
1746 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1748 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1752 * skb_frag_address - gets the address of the data contained in a paged fragment
1753 * @frag: the paged fragment buffer
1755 * Returns the address of the data within @frag. The page must already
1756 * be mapped.
1758 static inline void *skb_frag_address(const skb_frag_t *frag)
1760 return page_address(skb_frag_page(frag)) + frag->page_offset;
1764 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1765 * @frag: the paged fragment buffer
1767 * Returns the address of the data within @frag. Checks that the page
1768 * is mapped and returns %NULL otherwise.
1770 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1772 void *ptr = page_address(skb_frag_page(frag));
1773 if (unlikely(!ptr))
1774 return NULL;
1776 return ptr + frag->page_offset;
1780 * __skb_frag_set_page - sets the page contained in a paged fragment
1781 * @frag: the paged fragment
1782 * @page: the page to set
1784 * Sets the fragment @frag to contain @page.
1786 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1788 frag->page = page;
1789 __skb_frag_ref(frag);
1793 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1794 * @skb: the buffer
1795 * @f: the fragment offset
1796 * @page: the page to set
1798 * Sets the @f'th fragment of @skb to contain @page.
1800 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1801 struct page *page)
1803 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1807 * skb_frag_dma_map - maps a paged fragment via the DMA API
1808 * @device: the device to map the fragment to
1809 * @frag: the paged fragment to map
1810 * @offset: the offset within the fragment (starting at the
1811 * fragment's own offset)
1812 * @size: the number of bytes to map
1813 * @direction: the direction of the mapping (%PCI_DMA_*)
1815 * Maps the page associated with @frag to @device.
1817 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1818 const skb_frag_t *frag,
1819 size_t offset, size_t size,
1820 enum dma_data_direction dir)
1822 return dma_map_page(dev, skb_frag_page(frag),
1823 frag->page_offset + offset, size, dir);
1827 * skb_clone_writable - is the header of a clone writable
1828 * @skb: buffer to check
1829 * @len: length up to which to write
1831 * Returns true if modifying the header part of the cloned buffer
1832 * does not requires the data to be copied.
1834 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1836 return !skb_header_cloned(skb) &&
1837 skb_headroom(skb) + len <= skb->hdr_len;
1840 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1841 int cloned)
1843 int delta = 0;
1845 if (headroom < NET_SKB_PAD)
1846 headroom = NET_SKB_PAD;
1847 if (headroom > skb_headroom(skb))
1848 delta = headroom - skb_headroom(skb);
1850 if (delta || cloned)
1851 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1852 GFP_ATOMIC);
1853 return 0;
1857 * skb_cow - copy header of skb when it is required
1858 * @skb: buffer to cow
1859 * @headroom: needed headroom
1861 * If the skb passed lacks sufficient headroom or its data part
1862 * is shared, data is reallocated. If reallocation fails, an error
1863 * is returned and original skb is not changed.
1865 * The result is skb with writable area skb->head...skb->tail
1866 * and at least @headroom of space at head.
1868 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1870 return __skb_cow(skb, headroom, skb_cloned(skb));
1874 * skb_cow_head - skb_cow but only making the head writable
1875 * @skb: buffer to cow
1876 * @headroom: needed headroom
1878 * This function is identical to skb_cow except that we replace the
1879 * skb_cloned check by skb_header_cloned. It should be used when
1880 * you only need to push on some header and do not need to modify
1881 * the data.
1883 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1885 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1889 * skb_padto - pad an skbuff up to a minimal size
1890 * @skb: buffer to pad
1891 * @len: minimal length
1893 * Pads up a buffer to ensure the trailing bytes exist and are
1894 * blanked. If the buffer already contains sufficient data it
1895 * is untouched. Otherwise it is extended. Returns zero on
1896 * success. The skb is freed on error.
1899 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1901 unsigned int size = skb->len;
1902 if (likely(size >= len))
1903 return 0;
1904 return skb_pad(skb, len - size);
1907 static inline int skb_add_data(struct sk_buff *skb,
1908 char __user *from, int copy)
1910 const int off = skb->len;
1912 if (skb->ip_summed == CHECKSUM_NONE) {
1913 int err = 0;
1914 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1915 copy, 0, &err);
1916 if (!err) {
1917 skb->csum = csum_block_add(skb->csum, csum, off);
1918 return 0;
1920 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1921 return 0;
1923 __skb_trim(skb, off);
1924 return -EFAULT;
1927 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1928 const struct page *page, int off)
1930 if (i) {
1931 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1933 return page == skb_frag_page(frag) &&
1934 off == frag->page_offset + skb_frag_size(frag);
1936 return 0;
1939 static inline int __skb_linearize(struct sk_buff *skb)
1941 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1945 * skb_linearize - convert paged skb to linear one
1946 * @skb: buffer to linarize
1948 * If there is no free memory -ENOMEM is returned, otherwise zero
1949 * is returned and the old skb data released.
1951 static inline int skb_linearize(struct sk_buff *skb)
1953 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1957 * skb_linearize_cow - make sure skb is linear and writable
1958 * @skb: buffer to process
1960 * If there is no free memory -ENOMEM is returned, otherwise zero
1961 * is returned and the old skb data released.
1963 static inline int skb_linearize_cow(struct sk_buff *skb)
1965 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1966 __skb_linearize(skb) : 0;
1970 * skb_postpull_rcsum - update checksum for received skb after pull
1971 * @skb: buffer to update
1972 * @start: start of data before pull
1973 * @len: length of data pulled
1975 * After doing a pull on a received packet, you need to call this to
1976 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1977 * CHECKSUM_NONE so that it can be recomputed from scratch.
1980 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1981 const void *start, unsigned int len)
1983 if (skb->ip_summed == CHECKSUM_COMPLETE)
1984 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1987 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1990 * pskb_trim_rcsum - trim received skb and update checksum
1991 * @skb: buffer to trim
1992 * @len: new length
1994 * This is exactly the same as pskb_trim except that it ensures the
1995 * checksum of received packets are still valid after the operation.
1998 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2000 if (likely(len >= skb->len))
2001 return 0;
2002 if (skb->ip_summed == CHECKSUM_COMPLETE)
2003 skb->ip_summed = CHECKSUM_NONE;
2004 return __pskb_trim(skb, len);
2007 #define skb_queue_walk(queue, skb) \
2008 for (skb = (queue)->next; \
2009 skb != (struct sk_buff *)(queue); \
2010 skb = skb->next)
2012 #define skb_queue_walk_safe(queue, skb, tmp) \
2013 for (skb = (queue)->next, tmp = skb->next; \
2014 skb != (struct sk_buff *)(queue); \
2015 skb = tmp, tmp = skb->next)
2017 #define skb_queue_walk_from(queue, skb) \
2018 for (; skb != (struct sk_buff *)(queue); \
2019 skb = skb->next)
2021 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2022 for (tmp = skb->next; \
2023 skb != (struct sk_buff *)(queue); \
2024 skb = tmp, tmp = skb->next)
2026 #define skb_queue_reverse_walk(queue, skb) \
2027 for (skb = (queue)->prev; \
2028 skb != (struct sk_buff *)(queue); \
2029 skb = skb->prev)
2031 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2032 for (skb = (queue)->prev, tmp = skb->prev; \
2033 skb != (struct sk_buff *)(queue); \
2034 skb = tmp, tmp = skb->prev)
2036 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2037 for (tmp = skb->prev; \
2038 skb != (struct sk_buff *)(queue); \
2039 skb = tmp, tmp = skb->prev)
2041 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2043 return skb_shinfo(skb)->frag_list != NULL;
2046 static inline void skb_frag_list_init(struct sk_buff *skb)
2048 skb_shinfo(skb)->frag_list = NULL;
2051 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2053 frag->next = skb_shinfo(skb)->frag_list;
2054 skb_shinfo(skb)->frag_list = frag;
2057 #define skb_walk_frags(skb, iter) \
2058 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2060 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2061 int *peeked, int *err);
2062 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2063 int noblock, int *err);
2064 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2065 struct poll_table_struct *wait);
2066 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2067 int offset, struct iovec *to,
2068 int size);
2069 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2070 int hlen,
2071 struct iovec *iov);
2072 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2073 int offset,
2074 const struct iovec *from,
2075 int from_offset,
2076 int len);
2077 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2078 int offset,
2079 const struct iovec *to,
2080 int to_offset,
2081 int size);
2082 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2083 extern void skb_free_datagram_locked(struct sock *sk,
2084 struct sk_buff *skb);
2085 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2086 unsigned int flags);
2087 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2088 int len, __wsum csum);
2089 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2090 void *to, int len);
2091 extern int skb_store_bits(struct sk_buff *skb, int offset,
2092 const void *from, int len);
2093 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2094 int offset, u8 *to, int len,
2095 __wsum csum);
2096 extern int skb_splice_bits(struct sk_buff *skb,
2097 unsigned int offset,
2098 struct pipe_inode_info *pipe,
2099 unsigned int len,
2100 unsigned int flags);
2101 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2102 extern void skb_split(struct sk_buff *skb,
2103 struct sk_buff *skb1, const u32 len);
2104 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2105 int shiftlen);
2107 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2109 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2110 int len, void *buffer)
2112 int hlen = skb_headlen(skb);
2114 if (hlen - offset >= len)
2115 return skb->data + offset;
2117 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2118 return NULL;
2120 return buffer;
2123 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2124 void *to,
2125 const unsigned int len)
2127 memcpy(to, skb->data, len);
2130 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2131 const int offset, void *to,
2132 const unsigned int len)
2134 memcpy(to, skb->data + offset, len);
2137 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2138 const void *from,
2139 const unsigned int len)
2141 memcpy(skb->data, from, len);
2144 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2145 const int offset,
2146 const void *from,
2147 const unsigned int len)
2149 memcpy(skb->data + offset, from, len);
2152 extern void skb_init(void);
2154 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2156 return skb->tstamp;
2160 * skb_get_timestamp - get timestamp from a skb
2161 * @skb: skb to get stamp from
2162 * @stamp: pointer to struct timeval to store stamp in
2164 * Timestamps are stored in the skb as offsets to a base timestamp.
2165 * This function converts the offset back to a struct timeval and stores
2166 * it in stamp.
2168 static inline void skb_get_timestamp(const struct sk_buff *skb,
2169 struct timeval *stamp)
2171 *stamp = ktime_to_timeval(skb->tstamp);
2174 static inline void skb_get_timestampns(const struct sk_buff *skb,
2175 struct timespec *stamp)
2177 *stamp = ktime_to_timespec(skb->tstamp);
2180 static inline void __net_timestamp(struct sk_buff *skb)
2182 skb->tstamp = ktime_get_real();
2185 static inline ktime_t net_timedelta(ktime_t t)
2187 return ktime_sub(ktime_get_real(), t);
2190 static inline ktime_t net_invalid_timestamp(void)
2192 return ktime_set(0, 0);
2195 extern void skb_timestamping_init(void);
2197 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2199 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2200 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2202 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2204 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2208 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2210 return false;
2213 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2216 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2218 * @skb: clone of the the original outgoing packet
2219 * @hwtstamps: hardware time stamps
2222 void skb_complete_tx_timestamp(struct sk_buff *skb,
2223 struct skb_shared_hwtstamps *hwtstamps);
2226 * skb_tstamp_tx - queue clone of skb with send time stamps
2227 * @orig_skb: the original outgoing packet
2228 * @hwtstamps: hardware time stamps, may be NULL if not available
2230 * If the skb has a socket associated, then this function clones the
2231 * skb (thus sharing the actual data and optional structures), stores
2232 * the optional hardware time stamping information (if non NULL) or
2233 * generates a software time stamp (otherwise), then queues the clone
2234 * to the error queue of the socket. Errors are silently ignored.
2236 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2237 struct skb_shared_hwtstamps *hwtstamps);
2239 static inline void sw_tx_timestamp(struct sk_buff *skb)
2241 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2242 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2243 skb_tstamp_tx(skb, NULL);
2247 * skb_tx_timestamp() - Driver hook for transmit timestamping
2249 * Ethernet MAC Drivers should call this function in their hard_xmit()
2250 * function immediately before giving the sk_buff to the MAC hardware.
2252 * @skb: A socket buffer.
2254 static inline void skb_tx_timestamp(struct sk_buff *skb)
2256 skb_clone_tx_timestamp(skb);
2257 sw_tx_timestamp(skb);
2260 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2261 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2263 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2265 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2269 * skb_checksum_complete - Calculate checksum of an entire packet
2270 * @skb: packet to process
2272 * This function calculates the checksum over the entire packet plus
2273 * the value of skb->csum. The latter can be used to supply the
2274 * checksum of a pseudo header as used by TCP/UDP. It returns the
2275 * checksum.
2277 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2278 * this function can be used to verify that checksum on received
2279 * packets. In that case the function should return zero if the
2280 * checksum is correct. In particular, this function will return zero
2281 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2282 * hardware has already verified the correctness of the checksum.
2284 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2286 return skb_csum_unnecessary(skb) ?
2287 0 : __skb_checksum_complete(skb);
2290 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2291 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2292 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2294 if (nfct && atomic_dec_and_test(&nfct->use))
2295 nf_conntrack_destroy(nfct);
2297 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2299 if (nfct)
2300 atomic_inc(&nfct->use);
2302 #endif
2303 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2304 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2306 if (skb)
2307 atomic_inc(&skb->users);
2309 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2311 if (skb)
2312 kfree_skb(skb);
2314 #endif
2315 #ifdef CONFIG_BRIDGE_NETFILTER
2316 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2318 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2319 kfree(nf_bridge);
2321 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2323 if (nf_bridge)
2324 atomic_inc(&nf_bridge->use);
2326 #endif /* CONFIG_BRIDGE_NETFILTER */
2327 static inline void nf_reset(struct sk_buff *skb)
2329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2330 nf_conntrack_put(skb->nfct);
2331 skb->nfct = NULL;
2332 #endif
2333 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2334 nf_conntrack_put_reasm(skb->nfct_reasm);
2335 skb->nfct_reasm = NULL;
2336 #endif
2337 #ifdef CONFIG_BRIDGE_NETFILTER
2338 nf_bridge_put(skb->nf_bridge);
2339 skb->nf_bridge = NULL;
2340 #endif
2343 /* Note: This doesn't put any conntrack and bridge info in dst. */
2344 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2346 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2347 dst->nfct = src->nfct;
2348 nf_conntrack_get(src->nfct);
2349 dst->nfctinfo = src->nfctinfo;
2350 #endif
2351 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2352 dst->nfct_reasm = src->nfct_reasm;
2353 nf_conntrack_get_reasm(src->nfct_reasm);
2354 #endif
2355 #ifdef CONFIG_BRIDGE_NETFILTER
2356 dst->nf_bridge = src->nf_bridge;
2357 nf_bridge_get(src->nf_bridge);
2358 #endif
2361 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2363 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2364 nf_conntrack_put(dst->nfct);
2365 #endif
2366 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2367 nf_conntrack_put_reasm(dst->nfct_reasm);
2368 #endif
2369 #ifdef CONFIG_BRIDGE_NETFILTER
2370 nf_bridge_put(dst->nf_bridge);
2371 #endif
2372 __nf_copy(dst, src);
2375 #ifdef CONFIG_NETWORK_SECMARK
2376 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2378 to->secmark = from->secmark;
2381 static inline void skb_init_secmark(struct sk_buff *skb)
2383 skb->secmark = 0;
2385 #else
2386 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2389 static inline void skb_init_secmark(struct sk_buff *skb)
2391 #endif
2393 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2395 skb->queue_mapping = queue_mapping;
2398 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2400 return skb->queue_mapping;
2403 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2405 to->queue_mapping = from->queue_mapping;
2408 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2410 skb->queue_mapping = rx_queue + 1;
2413 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2415 return skb->queue_mapping - 1;
2418 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2420 return skb->queue_mapping != 0;
2423 extern u16 __skb_tx_hash(const struct net_device *dev,
2424 const struct sk_buff *skb,
2425 unsigned int num_tx_queues);
2427 #ifdef CONFIG_XFRM
2428 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2430 return skb->sp;
2432 #else
2433 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2435 return NULL;
2437 #endif
2439 static inline int skb_is_gso(const struct sk_buff *skb)
2441 return skb_shinfo(skb)->gso_size;
2444 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2446 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2449 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2451 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2453 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2454 * wanted then gso_type will be set. */
2455 struct skb_shared_info *shinfo = skb_shinfo(skb);
2456 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2457 unlikely(shinfo->gso_type == 0)) {
2458 __skb_warn_lro_forwarding(skb);
2459 return true;
2461 return false;
2464 static inline void skb_forward_csum(struct sk_buff *skb)
2466 /* Unfortunately we don't support this one. Any brave souls? */
2467 if (skb->ip_summed == CHECKSUM_COMPLETE)
2468 skb->ip_summed = CHECKSUM_NONE;
2472 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2473 * @skb: skb to check
2475 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2476 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2477 * use this helper, to document places where we make this assertion.
2479 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2481 #ifdef DEBUG
2482 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2483 #endif
2486 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2488 static inline bool skb_is_recycleable(struct sk_buff *skb, int skb_size)
2490 if (irqs_disabled())
2491 return false;
2493 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2494 return false;
2496 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2497 return false;
2499 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2500 if (skb_end_pointer(skb) - skb->head < skb_size)
2501 return false;
2503 if (skb_shared(skb) || skb_cloned(skb))
2504 return false;
2506 return true;
2508 #endif /* __KERNEL__ */
2509 #endif /* _LINUX_SKBUFF_H */