USB: fix autosuspend bug in usb-serial
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blobd750cc0355a62d65cbe60dc2c1787f15972b3f56
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 struct file *file;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
112 if (IS_ERR(tmp))
113 goto out;
115 file = do_filp_open(AT_FDCWD, tmp,
116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 MAY_READ | MAY_EXEC | MAY_OPEN);
118 putname(tmp);
119 error = PTR_ERR(file);
120 if (IS_ERR(file))
121 goto out;
123 error = -EINVAL;
124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 goto exit;
127 error = -EACCES;
128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 goto exit;
131 fsnotify_open(file);
133 error = -ENOEXEC;
134 if(file->f_op) {
135 struct linux_binfmt * fmt;
137 read_lock(&binfmt_lock);
138 list_for_each_entry(fmt, &formats, lh) {
139 if (!fmt->load_shlib)
140 continue;
141 if (!try_module_get(fmt->module))
142 continue;
143 read_unlock(&binfmt_lock);
144 error = fmt->load_shlib(file);
145 read_lock(&binfmt_lock);
146 put_binfmt(fmt);
147 if (error != -ENOEXEC)
148 break;
150 read_unlock(&binfmt_lock);
152 exit:
153 fput(file);
154 out:
155 return error;
158 #ifdef CONFIG_MMU
160 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
162 struct mm_struct *mm = current->mm;
163 long diff = (long)(pages - bprm->vma_pages);
165 if (!mm || !diff)
166 return;
168 bprm->vma_pages = pages;
170 #ifdef SPLIT_RSS_COUNTING
171 add_mm_counter(mm, MM_ANONPAGES, diff);
172 #else
173 spin_lock(&mm->page_table_lock);
174 add_mm_counter(mm, MM_ANONPAGES, diff);
175 spin_unlock(&mm->page_table_lock);
176 #endif
179 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
182 struct page *page;
183 int ret;
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_stack_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
201 acct_arg_size(bprm, size / PAGE_SIZE);
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
207 if (size <= ARG_MAX)
208 return page;
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
224 return page;
227 static void put_arg_page(struct page *page)
229 put_page(page);
232 static void free_arg_page(struct linux_binprm *bprm, int i)
236 static void free_arg_pages(struct linux_binprm *bprm)
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 static int __bprm_mm_init(struct linux_binprm *bprm)
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
265 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
271 err = insert_vm_struct(mm, vma);
272 if (err)
273 goto err;
275 mm->stack_vm = mm->total_vm = 1;
276 up_write(&mm->mmap_sem);
277 bprm->p = vma->vm_end - sizeof(void *);
278 return 0;
279 err:
280 up_write(&mm->mmap_sem);
281 bprm->vma = NULL;
282 kmem_cache_free(vm_area_cachep, vma);
283 return err;
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 return len <= MAX_ARG_STRLEN;
291 #else
293 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
297 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298 int write)
300 struct page *page;
302 page = bprm->page[pos / PAGE_SIZE];
303 if (!page && write) {
304 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
305 if (!page)
306 return NULL;
307 bprm->page[pos / PAGE_SIZE] = page;
310 return page;
313 static void put_arg_page(struct page *page)
317 static void free_arg_page(struct linux_binprm *bprm, int i)
319 if (bprm->page[i]) {
320 __free_page(bprm->page[i]);
321 bprm->page[i] = NULL;
325 static void free_arg_pages(struct linux_binprm *bprm)
327 int i;
329 for (i = 0; i < MAX_ARG_PAGES; i++)
330 free_arg_page(bprm, i);
333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334 struct page *page)
338 static int __bprm_mm_init(struct linux_binprm *bprm)
340 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
341 return 0;
344 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 return len <= bprm->p;
349 #endif /* CONFIG_MMU */
352 * Create a new mm_struct and populate it with a temporary stack
353 * vm_area_struct. We don't have enough context at this point to set the stack
354 * flags, permissions, and offset, so we use temporary values. We'll update
355 * them later in setup_arg_pages().
357 int bprm_mm_init(struct linux_binprm *bprm)
359 int err;
360 struct mm_struct *mm = NULL;
362 bprm->mm = mm = mm_alloc();
363 err = -ENOMEM;
364 if (!mm)
365 goto err;
367 err = init_new_context(current, mm);
368 if (err)
369 goto err;
371 err = __bprm_mm_init(bprm);
372 if (err)
373 goto err;
375 return 0;
377 err:
378 if (mm) {
379 bprm->mm = NULL;
380 mmdrop(mm);
383 return err;
387 * count() counts the number of strings in array ARGV.
389 static int count(const char __user * const __user * argv, int max)
391 int i = 0;
393 if (argv != NULL) {
394 for (;;) {
395 const char __user * p;
397 if (get_user(p, argv))
398 return -EFAULT;
399 if (!p)
400 break;
401 argv++;
402 if (i++ >= max)
403 return -E2BIG;
405 if (fatal_signal_pending(current))
406 return -ERESTARTNOHAND;
407 cond_resched();
410 return i;
414 * 'copy_strings()' copies argument/environment strings from the old
415 * processes's memory to the new process's stack. The call to get_user_pages()
416 * ensures the destination page is created and not swapped out.
418 static int copy_strings(int argc, const char __user *const __user *argv,
419 struct linux_binprm *bprm)
421 struct page *kmapped_page = NULL;
422 char *kaddr = NULL;
423 unsigned long kpos = 0;
424 int ret;
426 while (argc-- > 0) {
427 const char __user *str;
428 int len;
429 unsigned long pos;
431 if (get_user(str, argv+argc) ||
432 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
433 ret = -EFAULT;
434 goto out;
437 if (!valid_arg_len(bprm, len)) {
438 ret = -E2BIG;
439 goto out;
442 /* We're going to work our way backwords. */
443 pos = bprm->p;
444 str += len;
445 bprm->p -= len;
447 while (len > 0) {
448 int offset, bytes_to_copy;
450 if (fatal_signal_pending(current)) {
451 ret = -ERESTARTNOHAND;
452 goto out;
454 cond_resched();
456 offset = pos % PAGE_SIZE;
457 if (offset == 0)
458 offset = PAGE_SIZE;
460 bytes_to_copy = offset;
461 if (bytes_to_copy > len)
462 bytes_to_copy = len;
464 offset -= bytes_to_copy;
465 pos -= bytes_to_copy;
466 str -= bytes_to_copy;
467 len -= bytes_to_copy;
469 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
470 struct page *page;
472 page = get_arg_page(bprm, pos, 1);
473 if (!page) {
474 ret = -E2BIG;
475 goto out;
478 if (kmapped_page) {
479 flush_kernel_dcache_page(kmapped_page);
480 kunmap(kmapped_page);
481 put_arg_page(kmapped_page);
483 kmapped_page = page;
484 kaddr = kmap(kmapped_page);
485 kpos = pos & PAGE_MASK;
486 flush_arg_page(bprm, kpos, kmapped_page);
488 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
489 ret = -EFAULT;
490 goto out;
494 ret = 0;
495 out:
496 if (kmapped_page) {
497 flush_kernel_dcache_page(kmapped_page);
498 kunmap(kmapped_page);
499 put_arg_page(kmapped_page);
501 return ret;
505 * Like copy_strings, but get argv and its values from kernel memory.
507 int copy_strings_kernel(int argc, const char *const *argv,
508 struct linux_binprm *bprm)
510 int r;
511 mm_segment_t oldfs = get_fs();
512 set_fs(KERNEL_DS);
513 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
514 set_fs(oldfs);
515 return r;
517 EXPORT_SYMBOL(copy_strings_kernel);
519 #ifdef CONFIG_MMU
522 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
523 * the binfmt code determines where the new stack should reside, we shift it to
524 * its final location. The process proceeds as follows:
526 * 1) Use shift to calculate the new vma endpoints.
527 * 2) Extend vma to cover both the old and new ranges. This ensures the
528 * arguments passed to subsequent functions are consistent.
529 * 3) Move vma's page tables to the new range.
530 * 4) Free up any cleared pgd range.
531 * 5) Shrink the vma to cover only the new range.
533 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long old_start = vma->vm_start;
537 unsigned long old_end = vma->vm_end;
538 unsigned long length = old_end - old_start;
539 unsigned long new_start = old_start - shift;
540 unsigned long new_end = old_end - shift;
541 struct mmu_gather *tlb;
543 BUG_ON(new_start > new_end);
546 * ensure there are no vmas between where we want to go
547 * and where we are
549 if (vma != find_vma(mm, new_start))
550 return -EFAULT;
553 * cover the whole range: [new_start, old_end)
555 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
556 return -ENOMEM;
559 * move the page tables downwards, on failure we rely on
560 * process cleanup to remove whatever mess we made.
562 if (length != move_page_tables(vma, old_start,
563 vma, new_start, length))
564 return -ENOMEM;
566 lru_add_drain();
567 tlb = tlb_gather_mmu(mm, 0);
568 if (new_end > old_start) {
570 * when the old and new regions overlap clear from new_end.
572 free_pgd_range(tlb, new_end, old_end, new_end,
573 vma->vm_next ? vma->vm_next->vm_start : 0);
574 } else {
576 * otherwise, clean from old_start; this is done to not touch
577 * the address space in [new_end, old_start) some architectures
578 * have constraints on va-space that make this illegal (IA64) -
579 * for the others its just a little faster.
581 free_pgd_range(tlb, old_start, old_end, new_end,
582 vma->vm_next ? vma->vm_next->vm_start : 0);
584 tlb_finish_mmu(tlb, new_end, old_end);
587 * Shrink the vma to just the new range. Always succeeds.
589 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
591 return 0;
595 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
596 * the stack is optionally relocated, and some extra space is added.
598 int setup_arg_pages(struct linux_binprm *bprm,
599 unsigned long stack_top,
600 int executable_stack)
602 unsigned long ret;
603 unsigned long stack_shift;
604 struct mm_struct *mm = current->mm;
605 struct vm_area_struct *vma = bprm->vma;
606 struct vm_area_struct *prev = NULL;
607 unsigned long vm_flags;
608 unsigned long stack_base;
609 unsigned long stack_size;
610 unsigned long stack_expand;
611 unsigned long rlim_stack;
613 #ifdef CONFIG_STACK_GROWSUP
614 /* Limit stack size to 1GB */
615 stack_base = rlimit_max(RLIMIT_STACK);
616 if (stack_base > (1 << 30))
617 stack_base = 1 << 30;
619 /* Make sure we didn't let the argument array grow too large. */
620 if (vma->vm_end - vma->vm_start > stack_base)
621 return -ENOMEM;
623 stack_base = PAGE_ALIGN(stack_top - stack_base);
625 stack_shift = vma->vm_start - stack_base;
626 mm->arg_start = bprm->p - stack_shift;
627 bprm->p = vma->vm_end - stack_shift;
628 #else
629 stack_top = arch_align_stack(stack_top);
630 stack_top = PAGE_ALIGN(stack_top);
632 if (unlikely(stack_top < mmap_min_addr) ||
633 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
634 return -ENOMEM;
636 stack_shift = vma->vm_end - stack_top;
638 bprm->p -= stack_shift;
639 mm->arg_start = bprm->p;
640 #endif
642 if (bprm->loader)
643 bprm->loader -= stack_shift;
644 bprm->exec -= stack_shift;
646 down_write(&mm->mmap_sem);
647 vm_flags = VM_STACK_FLAGS;
650 * Adjust stack execute permissions; explicitly enable for
651 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
652 * (arch default) otherwise.
654 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
655 vm_flags |= VM_EXEC;
656 else if (executable_stack == EXSTACK_DISABLE_X)
657 vm_flags &= ~VM_EXEC;
658 vm_flags |= mm->def_flags;
659 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
661 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
662 vm_flags);
663 if (ret)
664 goto out_unlock;
665 BUG_ON(prev != vma);
667 /* Move stack pages down in memory. */
668 if (stack_shift) {
669 ret = shift_arg_pages(vma, stack_shift);
670 if (ret)
671 goto out_unlock;
674 /* mprotect_fixup is overkill to remove the temporary stack flags */
675 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
677 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
678 stack_size = vma->vm_end - vma->vm_start;
680 * Align this down to a page boundary as expand_stack
681 * will align it up.
683 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
684 #ifdef CONFIG_STACK_GROWSUP
685 if (stack_size + stack_expand > rlim_stack)
686 stack_base = vma->vm_start + rlim_stack;
687 else
688 stack_base = vma->vm_end + stack_expand;
689 #else
690 if (stack_size + stack_expand > rlim_stack)
691 stack_base = vma->vm_end - rlim_stack;
692 else
693 stack_base = vma->vm_start - stack_expand;
694 #endif
695 current->mm->start_stack = bprm->p;
696 ret = expand_stack(vma, stack_base);
697 if (ret)
698 ret = -EFAULT;
700 out_unlock:
701 up_write(&mm->mmap_sem);
702 return ret;
704 EXPORT_SYMBOL(setup_arg_pages);
706 #endif /* CONFIG_MMU */
708 struct file *open_exec(const char *name)
710 struct file *file;
711 int err;
713 file = do_filp_open(AT_FDCWD, name,
714 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
715 MAY_EXEC | MAY_OPEN);
716 if (IS_ERR(file))
717 goto out;
719 err = -EACCES;
720 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
721 goto exit;
723 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
724 goto exit;
726 fsnotify_open(file);
728 err = deny_write_access(file);
729 if (err)
730 goto exit;
732 out:
733 return file;
735 exit:
736 fput(file);
737 return ERR_PTR(err);
739 EXPORT_SYMBOL(open_exec);
741 int kernel_read(struct file *file, loff_t offset,
742 char *addr, unsigned long count)
744 mm_segment_t old_fs;
745 loff_t pos = offset;
746 int result;
748 old_fs = get_fs();
749 set_fs(get_ds());
750 /* The cast to a user pointer is valid due to the set_fs() */
751 result = vfs_read(file, (void __user *)addr, count, &pos);
752 set_fs(old_fs);
753 return result;
756 EXPORT_SYMBOL(kernel_read);
758 static int exec_mmap(struct mm_struct *mm)
760 struct task_struct *tsk;
761 struct mm_struct * old_mm, *active_mm;
763 /* Notify parent that we're no longer interested in the old VM */
764 tsk = current;
765 old_mm = current->mm;
766 sync_mm_rss(tsk, old_mm);
767 mm_release(tsk, old_mm);
769 if (old_mm) {
771 * Make sure that if there is a core dump in progress
772 * for the old mm, we get out and die instead of going
773 * through with the exec. We must hold mmap_sem around
774 * checking core_state and changing tsk->mm.
776 down_read(&old_mm->mmap_sem);
777 if (unlikely(old_mm->core_state)) {
778 up_read(&old_mm->mmap_sem);
779 return -EINTR;
782 task_lock(tsk);
783 active_mm = tsk->active_mm;
784 tsk->mm = mm;
785 tsk->active_mm = mm;
786 activate_mm(active_mm, mm);
787 task_unlock(tsk);
788 arch_pick_mmap_layout(mm);
789 if (old_mm) {
790 up_read(&old_mm->mmap_sem);
791 BUG_ON(active_mm != old_mm);
792 mm_update_next_owner(old_mm);
793 mmput(old_mm);
794 return 0;
796 mmdrop(active_mm);
797 return 0;
801 * This function makes sure the current process has its own signal table,
802 * so that flush_signal_handlers can later reset the handlers without
803 * disturbing other processes. (Other processes might share the signal
804 * table via the CLONE_SIGHAND option to clone().)
806 static int de_thread(struct task_struct *tsk)
808 struct signal_struct *sig = tsk->signal;
809 struct sighand_struct *oldsighand = tsk->sighand;
810 spinlock_t *lock = &oldsighand->siglock;
812 if (thread_group_empty(tsk))
813 goto no_thread_group;
816 * Kill all other threads in the thread group.
818 spin_lock_irq(lock);
819 if (signal_group_exit(sig)) {
821 * Another group action in progress, just
822 * return so that the signal is processed.
824 spin_unlock_irq(lock);
825 return -EAGAIN;
828 sig->group_exit_task = tsk;
829 sig->notify_count = zap_other_threads(tsk);
830 if (!thread_group_leader(tsk))
831 sig->notify_count--;
833 while (sig->notify_count) {
834 __set_current_state(TASK_UNINTERRUPTIBLE);
835 spin_unlock_irq(lock);
836 schedule();
837 spin_lock_irq(lock);
839 spin_unlock_irq(lock);
842 * At this point all other threads have exited, all we have to
843 * do is to wait for the thread group leader to become inactive,
844 * and to assume its PID:
846 if (!thread_group_leader(tsk)) {
847 struct task_struct *leader = tsk->group_leader;
849 sig->notify_count = -1; /* for exit_notify() */
850 for (;;) {
851 write_lock_irq(&tasklist_lock);
852 if (likely(leader->exit_state))
853 break;
854 __set_current_state(TASK_UNINTERRUPTIBLE);
855 write_unlock_irq(&tasklist_lock);
856 schedule();
860 * The only record we have of the real-time age of a
861 * process, regardless of execs it's done, is start_time.
862 * All the past CPU time is accumulated in signal_struct
863 * from sister threads now dead. But in this non-leader
864 * exec, nothing survives from the original leader thread,
865 * whose birth marks the true age of this process now.
866 * When we take on its identity by switching to its PID, we
867 * also take its birthdate (always earlier than our own).
869 tsk->start_time = leader->start_time;
871 BUG_ON(!same_thread_group(leader, tsk));
872 BUG_ON(has_group_leader_pid(tsk));
874 * An exec() starts a new thread group with the
875 * TGID of the previous thread group. Rehash the
876 * two threads with a switched PID, and release
877 * the former thread group leader:
880 /* Become a process group leader with the old leader's pid.
881 * The old leader becomes a thread of the this thread group.
882 * Note: The old leader also uses this pid until release_task
883 * is called. Odd but simple and correct.
885 detach_pid(tsk, PIDTYPE_PID);
886 tsk->pid = leader->pid;
887 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
888 transfer_pid(leader, tsk, PIDTYPE_PGID);
889 transfer_pid(leader, tsk, PIDTYPE_SID);
891 list_replace_rcu(&leader->tasks, &tsk->tasks);
892 list_replace_init(&leader->sibling, &tsk->sibling);
894 tsk->group_leader = tsk;
895 leader->group_leader = tsk;
897 tsk->exit_signal = SIGCHLD;
899 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
900 leader->exit_state = EXIT_DEAD;
901 write_unlock_irq(&tasklist_lock);
903 release_task(leader);
906 sig->group_exit_task = NULL;
907 sig->notify_count = 0;
909 no_thread_group:
910 if (current->mm)
911 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
913 exit_itimers(sig);
914 flush_itimer_signals();
916 if (atomic_read(&oldsighand->count) != 1) {
917 struct sighand_struct *newsighand;
919 * This ->sighand is shared with the CLONE_SIGHAND
920 * but not CLONE_THREAD task, switch to the new one.
922 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
923 if (!newsighand)
924 return -ENOMEM;
926 atomic_set(&newsighand->count, 1);
927 memcpy(newsighand->action, oldsighand->action,
928 sizeof(newsighand->action));
930 write_lock_irq(&tasklist_lock);
931 spin_lock(&oldsighand->siglock);
932 rcu_assign_pointer(tsk->sighand, newsighand);
933 spin_unlock(&oldsighand->siglock);
934 write_unlock_irq(&tasklist_lock);
936 __cleanup_sighand(oldsighand);
939 BUG_ON(!thread_group_leader(tsk));
940 return 0;
944 * These functions flushes out all traces of the currently running executable
945 * so that a new one can be started
947 static void flush_old_files(struct files_struct * files)
949 long j = -1;
950 struct fdtable *fdt;
952 spin_lock(&files->file_lock);
953 for (;;) {
954 unsigned long set, i;
956 j++;
957 i = j * __NFDBITS;
958 fdt = files_fdtable(files);
959 if (i >= fdt->max_fds)
960 break;
961 set = fdt->close_on_exec->fds_bits[j];
962 if (!set)
963 continue;
964 fdt->close_on_exec->fds_bits[j] = 0;
965 spin_unlock(&files->file_lock);
966 for ( ; set ; i++,set >>= 1) {
967 if (set & 1) {
968 sys_close(i);
971 spin_lock(&files->file_lock);
974 spin_unlock(&files->file_lock);
977 char *get_task_comm(char *buf, struct task_struct *tsk)
979 /* buf must be at least sizeof(tsk->comm) in size */
980 task_lock(tsk);
981 strncpy(buf, tsk->comm, sizeof(tsk->comm));
982 task_unlock(tsk);
983 return buf;
986 void set_task_comm(struct task_struct *tsk, char *buf)
988 task_lock(tsk);
991 * Threads may access current->comm without holding
992 * the task lock, so write the string carefully.
993 * Readers without a lock may see incomplete new
994 * names but are safe from non-terminating string reads.
996 memset(tsk->comm, 0, TASK_COMM_LEN);
997 wmb();
998 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
999 task_unlock(tsk);
1000 perf_event_comm(tsk);
1003 int flush_old_exec(struct linux_binprm * bprm)
1005 int retval;
1008 * Make sure we have a private signal table and that
1009 * we are unassociated from the previous thread group.
1011 retval = de_thread(current);
1012 if (retval)
1013 goto out;
1015 set_mm_exe_file(bprm->mm, bprm->file);
1018 * Release all of the old mmap stuff
1020 acct_arg_size(bprm, 0);
1021 retval = exec_mmap(bprm->mm);
1022 if (retval)
1023 goto out;
1025 bprm->mm = NULL; /* We're using it now */
1027 current->flags &= ~PF_RANDOMIZE;
1028 flush_thread();
1029 current->personality &= ~bprm->per_clear;
1031 return 0;
1033 out:
1034 return retval;
1036 EXPORT_SYMBOL(flush_old_exec);
1038 void setup_new_exec(struct linux_binprm * bprm)
1040 int i, ch;
1041 const char *name;
1042 char tcomm[sizeof(current->comm)];
1044 arch_pick_mmap_layout(current->mm);
1046 /* This is the point of no return */
1047 current->sas_ss_sp = current->sas_ss_size = 0;
1049 if (current_euid() == current_uid() && current_egid() == current_gid())
1050 set_dumpable(current->mm, 1);
1051 else
1052 set_dumpable(current->mm, suid_dumpable);
1054 name = bprm->filename;
1056 /* Copies the binary name from after last slash */
1057 for (i=0; (ch = *(name++)) != '\0';) {
1058 if (ch == '/')
1059 i = 0; /* overwrite what we wrote */
1060 else
1061 if (i < (sizeof(tcomm) - 1))
1062 tcomm[i++] = ch;
1064 tcomm[i] = '\0';
1065 set_task_comm(current, tcomm);
1067 /* Set the new mm task size. We have to do that late because it may
1068 * depend on TIF_32BIT which is only updated in flush_thread() on
1069 * some architectures like powerpc
1071 current->mm->task_size = TASK_SIZE;
1073 /* install the new credentials */
1074 if (bprm->cred->uid != current_euid() ||
1075 bprm->cred->gid != current_egid()) {
1076 current->pdeath_signal = 0;
1077 } else if (file_permission(bprm->file, MAY_READ) ||
1078 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1079 set_dumpable(current->mm, suid_dumpable);
1083 * Flush performance counters when crossing a
1084 * security domain:
1086 if (!get_dumpable(current->mm))
1087 perf_event_exit_task(current);
1089 /* An exec changes our domain. We are no longer part of the thread
1090 group */
1092 current->self_exec_id++;
1094 flush_signal_handlers(current, 0);
1095 flush_old_files(current->files);
1097 EXPORT_SYMBOL(setup_new_exec);
1100 * Prepare credentials and lock ->cred_guard_mutex.
1101 * install_exec_creds() commits the new creds and drops the lock.
1102 * Or, if exec fails before, free_bprm() should release ->cred and
1103 * and unlock.
1105 int prepare_bprm_creds(struct linux_binprm *bprm)
1107 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1108 return -ERESTARTNOINTR;
1110 bprm->cred = prepare_exec_creds();
1111 if (likely(bprm->cred))
1112 return 0;
1114 mutex_unlock(&current->cred_guard_mutex);
1115 return -ENOMEM;
1118 void free_bprm(struct linux_binprm *bprm)
1120 free_arg_pages(bprm);
1121 if (bprm->cred) {
1122 mutex_unlock(&current->cred_guard_mutex);
1123 abort_creds(bprm->cred);
1125 kfree(bprm);
1129 * install the new credentials for this executable
1131 void install_exec_creds(struct linux_binprm *bprm)
1133 security_bprm_committing_creds(bprm);
1135 commit_creds(bprm->cred);
1136 bprm->cred = NULL;
1138 * cred_guard_mutex must be held at least to this point to prevent
1139 * ptrace_attach() from altering our determination of the task's
1140 * credentials; any time after this it may be unlocked.
1142 security_bprm_committed_creds(bprm);
1143 mutex_unlock(&current->cred_guard_mutex);
1145 EXPORT_SYMBOL(install_exec_creds);
1148 * determine how safe it is to execute the proposed program
1149 * - the caller must hold current->cred_guard_mutex to protect against
1150 * PTRACE_ATTACH
1152 int check_unsafe_exec(struct linux_binprm *bprm)
1154 struct task_struct *p = current, *t;
1155 unsigned n_fs;
1156 int res = 0;
1158 bprm->unsafe = tracehook_unsafe_exec(p);
1160 n_fs = 1;
1161 spin_lock(&p->fs->lock);
1162 rcu_read_lock();
1163 for (t = next_thread(p); t != p; t = next_thread(t)) {
1164 if (t->fs == p->fs)
1165 n_fs++;
1167 rcu_read_unlock();
1169 if (p->fs->users > n_fs) {
1170 bprm->unsafe |= LSM_UNSAFE_SHARE;
1171 } else {
1172 res = -EAGAIN;
1173 if (!p->fs->in_exec) {
1174 p->fs->in_exec = 1;
1175 res = 1;
1178 spin_unlock(&p->fs->lock);
1180 return res;
1184 * Fill the binprm structure from the inode.
1185 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1187 * This may be called multiple times for binary chains (scripts for example).
1189 int prepare_binprm(struct linux_binprm *bprm)
1191 umode_t mode;
1192 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1193 int retval;
1195 mode = inode->i_mode;
1196 if (bprm->file->f_op == NULL)
1197 return -EACCES;
1199 /* clear any previous set[ug]id data from a previous binary */
1200 bprm->cred->euid = current_euid();
1201 bprm->cred->egid = current_egid();
1203 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1204 /* Set-uid? */
1205 if (mode & S_ISUID) {
1206 bprm->per_clear |= PER_CLEAR_ON_SETID;
1207 bprm->cred->euid = inode->i_uid;
1210 /* Set-gid? */
1212 * If setgid is set but no group execute bit then this
1213 * is a candidate for mandatory locking, not a setgid
1214 * executable.
1216 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1217 bprm->per_clear |= PER_CLEAR_ON_SETID;
1218 bprm->cred->egid = inode->i_gid;
1222 /* fill in binprm security blob */
1223 retval = security_bprm_set_creds(bprm);
1224 if (retval)
1225 return retval;
1226 bprm->cred_prepared = 1;
1228 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1229 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1232 EXPORT_SYMBOL(prepare_binprm);
1235 * Arguments are '\0' separated strings found at the location bprm->p
1236 * points to; chop off the first by relocating brpm->p to right after
1237 * the first '\0' encountered.
1239 int remove_arg_zero(struct linux_binprm *bprm)
1241 int ret = 0;
1242 unsigned long offset;
1243 char *kaddr;
1244 struct page *page;
1246 if (!bprm->argc)
1247 return 0;
1249 do {
1250 offset = bprm->p & ~PAGE_MASK;
1251 page = get_arg_page(bprm, bprm->p, 0);
1252 if (!page) {
1253 ret = -EFAULT;
1254 goto out;
1256 kaddr = kmap_atomic(page, KM_USER0);
1258 for (; offset < PAGE_SIZE && kaddr[offset];
1259 offset++, bprm->p++)
1262 kunmap_atomic(kaddr, KM_USER0);
1263 put_arg_page(page);
1265 if (offset == PAGE_SIZE)
1266 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1267 } while (offset == PAGE_SIZE);
1269 bprm->p++;
1270 bprm->argc--;
1271 ret = 0;
1273 out:
1274 return ret;
1276 EXPORT_SYMBOL(remove_arg_zero);
1279 * cycle the list of binary formats handler, until one recognizes the image
1281 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1283 unsigned int depth = bprm->recursion_depth;
1284 int try,retval;
1285 struct linux_binfmt *fmt;
1287 retval = security_bprm_check(bprm);
1288 if (retval)
1289 return retval;
1291 /* kernel module loader fixup */
1292 /* so we don't try to load run modprobe in kernel space. */
1293 set_fs(USER_DS);
1295 retval = audit_bprm(bprm);
1296 if (retval)
1297 return retval;
1299 retval = -ENOENT;
1300 for (try=0; try<2; try++) {
1301 read_lock(&binfmt_lock);
1302 list_for_each_entry(fmt, &formats, lh) {
1303 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1304 if (!fn)
1305 continue;
1306 if (!try_module_get(fmt->module))
1307 continue;
1308 read_unlock(&binfmt_lock);
1309 retval = fn(bprm, regs);
1311 * Restore the depth counter to its starting value
1312 * in this call, so we don't have to rely on every
1313 * load_binary function to restore it on return.
1315 bprm->recursion_depth = depth;
1316 if (retval >= 0) {
1317 if (depth == 0)
1318 tracehook_report_exec(fmt, bprm, regs);
1319 put_binfmt(fmt);
1320 allow_write_access(bprm->file);
1321 if (bprm->file)
1322 fput(bprm->file);
1323 bprm->file = NULL;
1324 current->did_exec = 1;
1325 proc_exec_connector(current);
1326 return retval;
1328 read_lock(&binfmt_lock);
1329 put_binfmt(fmt);
1330 if (retval != -ENOEXEC || bprm->mm == NULL)
1331 break;
1332 if (!bprm->file) {
1333 read_unlock(&binfmt_lock);
1334 return retval;
1337 read_unlock(&binfmt_lock);
1338 if (retval != -ENOEXEC || bprm->mm == NULL) {
1339 break;
1340 #ifdef CONFIG_MODULES
1341 } else {
1342 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1343 if (printable(bprm->buf[0]) &&
1344 printable(bprm->buf[1]) &&
1345 printable(bprm->buf[2]) &&
1346 printable(bprm->buf[3]))
1347 break; /* -ENOEXEC */
1348 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1349 #endif
1352 return retval;
1355 EXPORT_SYMBOL(search_binary_handler);
1358 * sys_execve() executes a new program.
1360 int do_execve(const char * filename,
1361 const char __user *const __user *argv,
1362 const char __user *const __user *envp,
1363 struct pt_regs * regs)
1365 struct linux_binprm *bprm;
1366 struct file *file;
1367 struct files_struct *displaced;
1368 bool clear_in_exec;
1369 int retval;
1371 retval = unshare_files(&displaced);
1372 if (retval)
1373 goto out_ret;
1375 retval = -ENOMEM;
1376 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1377 if (!bprm)
1378 goto out_files;
1380 retval = prepare_bprm_creds(bprm);
1381 if (retval)
1382 goto out_free;
1384 retval = check_unsafe_exec(bprm);
1385 if (retval < 0)
1386 goto out_free;
1387 clear_in_exec = retval;
1388 current->in_execve = 1;
1390 file = open_exec(filename);
1391 retval = PTR_ERR(file);
1392 if (IS_ERR(file))
1393 goto out_unmark;
1395 sched_exec();
1397 bprm->file = file;
1398 bprm->filename = filename;
1399 bprm->interp = filename;
1401 retval = bprm_mm_init(bprm);
1402 if (retval)
1403 goto out_file;
1405 bprm->argc = count(argv, MAX_ARG_STRINGS);
1406 if ((retval = bprm->argc) < 0)
1407 goto out;
1409 bprm->envc = count(envp, MAX_ARG_STRINGS);
1410 if ((retval = bprm->envc) < 0)
1411 goto out;
1413 retval = prepare_binprm(bprm);
1414 if (retval < 0)
1415 goto out;
1417 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1418 if (retval < 0)
1419 goto out;
1421 bprm->exec = bprm->p;
1422 retval = copy_strings(bprm->envc, envp, bprm);
1423 if (retval < 0)
1424 goto out;
1426 retval = copy_strings(bprm->argc, argv, bprm);
1427 if (retval < 0)
1428 goto out;
1430 current->flags &= ~PF_KTHREAD;
1431 retval = search_binary_handler(bprm,regs);
1432 if (retval < 0)
1433 goto out;
1435 /* execve succeeded */
1436 current->fs->in_exec = 0;
1437 current->in_execve = 0;
1438 acct_update_integrals(current);
1439 free_bprm(bprm);
1440 if (displaced)
1441 put_files_struct(displaced);
1442 return retval;
1444 out:
1445 if (bprm->mm) {
1446 acct_arg_size(bprm, 0);
1447 mmput(bprm->mm);
1450 out_file:
1451 if (bprm->file) {
1452 allow_write_access(bprm->file);
1453 fput(bprm->file);
1456 out_unmark:
1457 if (clear_in_exec)
1458 current->fs->in_exec = 0;
1459 current->in_execve = 0;
1461 out_free:
1462 free_bprm(bprm);
1464 out_files:
1465 if (displaced)
1466 reset_files_struct(displaced);
1467 out_ret:
1468 return retval;
1471 void set_binfmt(struct linux_binfmt *new)
1473 struct mm_struct *mm = current->mm;
1475 if (mm->binfmt)
1476 module_put(mm->binfmt->module);
1478 mm->binfmt = new;
1479 if (new)
1480 __module_get(new->module);
1483 EXPORT_SYMBOL(set_binfmt);
1485 /* format_corename will inspect the pattern parameter, and output a
1486 * name into corename, which must have space for at least
1487 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1489 static int format_corename(char *corename, long signr)
1491 const struct cred *cred = current_cred();
1492 const char *pat_ptr = core_pattern;
1493 int ispipe = (*pat_ptr == '|');
1494 char *out_ptr = corename;
1495 char *const out_end = corename + CORENAME_MAX_SIZE;
1496 int rc;
1497 int pid_in_pattern = 0;
1499 /* Repeat as long as we have more pattern to process and more output
1500 space */
1501 while (*pat_ptr) {
1502 if (*pat_ptr != '%') {
1503 if (out_ptr == out_end)
1504 goto out;
1505 *out_ptr++ = *pat_ptr++;
1506 } else {
1507 switch (*++pat_ptr) {
1508 case 0:
1509 goto out;
1510 /* Double percent, output one percent */
1511 case '%':
1512 if (out_ptr == out_end)
1513 goto out;
1514 *out_ptr++ = '%';
1515 break;
1516 /* pid */
1517 case 'p':
1518 pid_in_pattern = 1;
1519 rc = snprintf(out_ptr, out_end - out_ptr,
1520 "%d", task_tgid_vnr(current));
1521 if (rc > out_end - out_ptr)
1522 goto out;
1523 out_ptr += rc;
1524 break;
1525 /* uid */
1526 case 'u':
1527 rc = snprintf(out_ptr, out_end - out_ptr,
1528 "%d", cred->uid);
1529 if (rc > out_end - out_ptr)
1530 goto out;
1531 out_ptr += rc;
1532 break;
1533 /* gid */
1534 case 'g':
1535 rc = snprintf(out_ptr, out_end - out_ptr,
1536 "%d", cred->gid);
1537 if (rc > out_end - out_ptr)
1538 goto out;
1539 out_ptr += rc;
1540 break;
1541 /* signal that caused the coredump */
1542 case 's':
1543 rc = snprintf(out_ptr, out_end - out_ptr,
1544 "%ld", signr);
1545 if (rc > out_end - out_ptr)
1546 goto out;
1547 out_ptr += rc;
1548 break;
1549 /* UNIX time of coredump */
1550 case 't': {
1551 struct timeval tv;
1552 do_gettimeofday(&tv);
1553 rc = snprintf(out_ptr, out_end - out_ptr,
1554 "%lu", tv.tv_sec);
1555 if (rc > out_end - out_ptr)
1556 goto out;
1557 out_ptr += rc;
1558 break;
1560 /* hostname */
1561 case 'h':
1562 down_read(&uts_sem);
1563 rc = snprintf(out_ptr, out_end - out_ptr,
1564 "%s", utsname()->nodename);
1565 up_read(&uts_sem);
1566 if (rc > out_end - out_ptr)
1567 goto out;
1568 out_ptr += rc;
1569 break;
1570 /* executable */
1571 case 'e':
1572 rc = snprintf(out_ptr, out_end - out_ptr,
1573 "%s", current->comm);
1574 if (rc > out_end - out_ptr)
1575 goto out;
1576 out_ptr += rc;
1577 break;
1578 /* core limit size */
1579 case 'c':
1580 rc = snprintf(out_ptr, out_end - out_ptr,
1581 "%lu", rlimit(RLIMIT_CORE));
1582 if (rc > out_end - out_ptr)
1583 goto out;
1584 out_ptr += rc;
1585 break;
1586 default:
1587 break;
1589 ++pat_ptr;
1592 /* Backward compatibility with core_uses_pid:
1594 * If core_pattern does not include a %p (as is the default)
1595 * and core_uses_pid is set, then .%pid will be appended to
1596 * the filename. Do not do this for piped commands. */
1597 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1598 rc = snprintf(out_ptr, out_end - out_ptr,
1599 ".%d", task_tgid_vnr(current));
1600 if (rc > out_end - out_ptr)
1601 goto out;
1602 out_ptr += rc;
1604 out:
1605 *out_ptr = 0;
1606 return ispipe;
1609 static int zap_process(struct task_struct *start, int exit_code)
1611 struct task_struct *t;
1612 int nr = 0;
1614 start->signal->flags = SIGNAL_GROUP_EXIT;
1615 start->signal->group_exit_code = exit_code;
1616 start->signal->group_stop_count = 0;
1618 t = start;
1619 do {
1620 if (t != current && t->mm) {
1621 sigaddset(&t->pending.signal, SIGKILL);
1622 signal_wake_up(t, 1);
1623 nr++;
1625 } while_each_thread(start, t);
1627 return nr;
1630 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1631 struct core_state *core_state, int exit_code)
1633 struct task_struct *g, *p;
1634 unsigned long flags;
1635 int nr = -EAGAIN;
1637 spin_lock_irq(&tsk->sighand->siglock);
1638 if (!signal_group_exit(tsk->signal)) {
1639 mm->core_state = core_state;
1640 nr = zap_process(tsk, exit_code);
1642 spin_unlock_irq(&tsk->sighand->siglock);
1643 if (unlikely(nr < 0))
1644 return nr;
1646 if (atomic_read(&mm->mm_users) == nr + 1)
1647 goto done;
1649 * We should find and kill all tasks which use this mm, and we should
1650 * count them correctly into ->nr_threads. We don't take tasklist
1651 * lock, but this is safe wrt:
1653 * fork:
1654 * None of sub-threads can fork after zap_process(leader). All
1655 * processes which were created before this point should be
1656 * visible to zap_threads() because copy_process() adds the new
1657 * process to the tail of init_task.tasks list, and lock/unlock
1658 * of ->siglock provides a memory barrier.
1660 * do_exit:
1661 * The caller holds mm->mmap_sem. This means that the task which
1662 * uses this mm can't pass exit_mm(), so it can't exit or clear
1663 * its ->mm.
1665 * de_thread:
1666 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1667 * we must see either old or new leader, this does not matter.
1668 * However, it can change p->sighand, so lock_task_sighand(p)
1669 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1670 * it can't fail.
1672 * Note also that "g" can be the old leader with ->mm == NULL
1673 * and already unhashed and thus removed from ->thread_group.
1674 * This is OK, __unhash_process()->list_del_rcu() does not
1675 * clear the ->next pointer, we will find the new leader via
1676 * next_thread().
1678 rcu_read_lock();
1679 for_each_process(g) {
1680 if (g == tsk->group_leader)
1681 continue;
1682 if (g->flags & PF_KTHREAD)
1683 continue;
1684 p = g;
1685 do {
1686 if (p->mm) {
1687 if (unlikely(p->mm == mm)) {
1688 lock_task_sighand(p, &flags);
1689 nr += zap_process(p, exit_code);
1690 unlock_task_sighand(p, &flags);
1692 break;
1694 } while_each_thread(g, p);
1696 rcu_read_unlock();
1697 done:
1698 atomic_set(&core_state->nr_threads, nr);
1699 return nr;
1702 static int coredump_wait(int exit_code, struct core_state *core_state)
1704 struct task_struct *tsk = current;
1705 struct mm_struct *mm = tsk->mm;
1706 struct completion *vfork_done;
1707 int core_waiters = -EBUSY;
1709 init_completion(&core_state->startup);
1710 core_state->dumper.task = tsk;
1711 core_state->dumper.next = NULL;
1713 down_write(&mm->mmap_sem);
1714 if (!mm->core_state)
1715 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1716 up_write(&mm->mmap_sem);
1718 if (unlikely(core_waiters < 0))
1719 goto fail;
1722 * Make sure nobody is waiting for us to release the VM,
1723 * otherwise we can deadlock when we wait on each other
1725 vfork_done = tsk->vfork_done;
1726 if (vfork_done) {
1727 tsk->vfork_done = NULL;
1728 complete(vfork_done);
1731 if (core_waiters)
1732 wait_for_completion(&core_state->startup);
1733 fail:
1734 return core_waiters;
1737 static void coredump_finish(struct mm_struct *mm)
1739 struct core_thread *curr, *next;
1740 struct task_struct *task;
1742 next = mm->core_state->dumper.next;
1743 while ((curr = next) != NULL) {
1744 next = curr->next;
1745 task = curr->task;
1747 * see exit_mm(), curr->task must not see
1748 * ->task == NULL before we read ->next.
1750 smp_mb();
1751 curr->task = NULL;
1752 wake_up_process(task);
1755 mm->core_state = NULL;
1759 * set_dumpable converts traditional three-value dumpable to two flags and
1760 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1761 * these bits are not changed atomically. So get_dumpable can observe the
1762 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1763 * return either old dumpable or new one by paying attention to the order of
1764 * modifying the bits.
1766 * dumpable | mm->flags (binary)
1767 * old new | initial interim final
1768 * ---------+-----------------------
1769 * 0 1 | 00 01 01
1770 * 0 2 | 00 10(*) 11
1771 * 1 0 | 01 00 00
1772 * 1 2 | 01 11 11
1773 * 2 0 | 11 10(*) 00
1774 * 2 1 | 11 11 01
1776 * (*) get_dumpable regards interim value of 10 as 11.
1778 void set_dumpable(struct mm_struct *mm, int value)
1780 switch (value) {
1781 case 0:
1782 clear_bit(MMF_DUMPABLE, &mm->flags);
1783 smp_wmb();
1784 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1785 break;
1786 case 1:
1787 set_bit(MMF_DUMPABLE, &mm->flags);
1788 smp_wmb();
1789 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1790 break;
1791 case 2:
1792 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1793 smp_wmb();
1794 set_bit(MMF_DUMPABLE, &mm->flags);
1795 break;
1799 static int __get_dumpable(unsigned long mm_flags)
1801 int ret;
1803 ret = mm_flags & MMF_DUMPABLE_MASK;
1804 return (ret >= 2) ? 2 : ret;
1807 int get_dumpable(struct mm_struct *mm)
1809 return __get_dumpable(mm->flags);
1812 static void wait_for_dump_helpers(struct file *file)
1814 struct pipe_inode_info *pipe;
1816 pipe = file->f_path.dentry->d_inode->i_pipe;
1818 pipe_lock(pipe);
1819 pipe->readers++;
1820 pipe->writers--;
1822 while ((pipe->readers > 1) && (!signal_pending(current))) {
1823 wake_up_interruptible_sync(&pipe->wait);
1824 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1825 pipe_wait(pipe);
1828 pipe->readers--;
1829 pipe->writers++;
1830 pipe_unlock(pipe);
1836 * uhm_pipe_setup
1837 * helper function to customize the process used
1838 * to collect the core in userspace. Specifically
1839 * it sets up a pipe and installs it as fd 0 (stdin)
1840 * for the process. Returns 0 on success, or
1841 * PTR_ERR on failure.
1842 * Note that it also sets the core limit to 1. This
1843 * is a special value that we use to trap recursive
1844 * core dumps
1846 static int umh_pipe_setup(struct subprocess_info *info)
1848 struct file *rp, *wp;
1849 struct fdtable *fdt;
1850 struct coredump_params *cp = (struct coredump_params *)info->data;
1851 struct files_struct *cf = current->files;
1853 wp = create_write_pipe(0);
1854 if (IS_ERR(wp))
1855 return PTR_ERR(wp);
1857 rp = create_read_pipe(wp, 0);
1858 if (IS_ERR(rp)) {
1859 free_write_pipe(wp);
1860 return PTR_ERR(rp);
1863 cp->file = wp;
1865 sys_close(0);
1866 fd_install(0, rp);
1867 spin_lock(&cf->file_lock);
1868 fdt = files_fdtable(cf);
1869 FD_SET(0, fdt->open_fds);
1870 FD_CLR(0, fdt->close_on_exec);
1871 spin_unlock(&cf->file_lock);
1873 /* and disallow core files too */
1874 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1876 return 0;
1879 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1881 struct core_state core_state;
1882 char corename[CORENAME_MAX_SIZE + 1];
1883 struct mm_struct *mm = current->mm;
1884 struct linux_binfmt * binfmt;
1885 const struct cred *old_cred;
1886 struct cred *cred;
1887 int retval = 0;
1888 int flag = 0;
1889 int ispipe;
1890 static atomic_t core_dump_count = ATOMIC_INIT(0);
1891 struct coredump_params cprm = {
1892 .signr = signr,
1893 .regs = regs,
1894 .limit = rlimit(RLIMIT_CORE),
1896 * We must use the same mm->flags while dumping core to avoid
1897 * inconsistency of bit flags, since this flag is not protected
1898 * by any locks.
1900 .mm_flags = mm->flags,
1903 audit_core_dumps(signr);
1905 binfmt = mm->binfmt;
1906 if (!binfmt || !binfmt->core_dump)
1907 goto fail;
1908 if (!__get_dumpable(cprm.mm_flags))
1909 goto fail;
1911 cred = prepare_creds();
1912 if (!cred)
1913 goto fail;
1915 * We cannot trust fsuid as being the "true" uid of the
1916 * process nor do we know its entire history. We only know it
1917 * was tainted so we dump it as root in mode 2.
1919 if (__get_dumpable(cprm.mm_flags) == 2) {
1920 /* Setuid core dump mode */
1921 flag = O_EXCL; /* Stop rewrite attacks */
1922 cred->fsuid = 0; /* Dump root private */
1925 retval = coredump_wait(exit_code, &core_state);
1926 if (retval < 0)
1927 goto fail_creds;
1929 old_cred = override_creds(cred);
1932 * Clear any false indication of pending signals that might
1933 * be seen by the filesystem code called to write the core file.
1935 clear_thread_flag(TIF_SIGPENDING);
1937 ispipe = format_corename(corename, signr);
1939 if (ispipe) {
1940 int dump_count;
1941 char **helper_argv;
1943 if (cprm.limit == 1) {
1945 * Normally core limits are irrelevant to pipes, since
1946 * we're not writing to the file system, but we use
1947 * cprm.limit of 1 here as a speacial value. Any
1948 * non-1 limit gets set to RLIM_INFINITY below, but
1949 * a limit of 0 skips the dump. This is a consistent
1950 * way to catch recursive crashes. We can still crash
1951 * if the core_pattern binary sets RLIM_CORE = !1
1952 * but it runs as root, and can do lots of stupid things
1953 * Note that we use task_tgid_vnr here to grab the pid
1954 * of the process group leader. That way we get the
1955 * right pid if a thread in a multi-threaded
1956 * core_pattern process dies.
1958 printk(KERN_WARNING
1959 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1960 task_tgid_vnr(current), current->comm);
1961 printk(KERN_WARNING "Aborting core\n");
1962 goto fail_unlock;
1964 cprm.limit = RLIM_INFINITY;
1966 dump_count = atomic_inc_return(&core_dump_count);
1967 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1968 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1969 task_tgid_vnr(current), current->comm);
1970 printk(KERN_WARNING "Skipping core dump\n");
1971 goto fail_dropcount;
1974 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1975 if (!helper_argv) {
1976 printk(KERN_WARNING "%s failed to allocate memory\n",
1977 __func__);
1978 goto fail_dropcount;
1981 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1982 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1983 NULL, &cprm);
1984 argv_free(helper_argv);
1985 if (retval) {
1986 printk(KERN_INFO "Core dump to %s pipe failed\n",
1987 corename);
1988 goto close_fail;
1990 } else {
1991 struct inode *inode;
1993 if (cprm.limit < binfmt->min_coredump)
1994 goto fail_unlock;
1996 cprm.file = filp_open(corename,
1997 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1998 0600);
1999 if (IS_ERR(cprm.file))
2000 goto fail_unlock;
2002 inode = cprm.file->f_path.dentry->d_inode;
2003 if (inode->i_nlink > 1)
2004 goto close_fail;
2005 if (d_unhashed(cprm.file->f_path.dentry))
2006 goto close_fail;
2008 * AK: actually i see no reason to not allow this for named
2009 * pipes etc, but keep the previous behaviour for now.
2011 if (!S_ISREG(inode->i_mode))
2012 goto close_fail;
2014 * Dont allow local users get cute and trick others to coredump
2015 * into their pre-created files.
2017 if (inode->i_uid != current_fsuid())
2018 goto close_fail;
2019 if (!cprm.file->f_op || !cprm.file->f_op->write)
2020 goto close_fail;
2021 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2022 goto close_fail;
2025 retval = binfmt->core_dump(&cprm);
2026 if (retval)
2027 current->signal->group_exit_code |= 0x80;
2029 if (ispipe && core_pipe_limit)
2030 wait_for_dump_helpers(cprm.file);
2031 close_fail:
2032 if (cprm.file)
2033 filp_close(cprm.file, NULL);
2034 fail_dropcount:
2035 if (ispipe)
2036 atomic_dec(&core_dump_count);
2037 fail_unlock:
2038 coredump_finish(mm);
2039 revert_creds(old_cred);
2040 fail_creds:
2041 put_cred(cred);
2042 fail:
2043 return;
2047 * Core dumping helper functions. These are the only things you should
2048 * do on a core-file: use only these functions to write out all the
2049 * necessary info.
2051 int dump_write(struct file *file, const void *addr, int nr)
2053 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2055 EXPORT_SYMBOL(dump_write);
2057 int dump_seek(struct file *file, loff_t off)
2059 int ret = 1;
2061 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2062 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2063 return 0;
2064 } else {
2065 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2067 if (!buf)
2068 return 0;
2069 while (off > 0) {
2070 unsigned long n = off;
2072 if (n > PAGE_SIZE)
2073 n = PAGE_SIZE;
2074 if (!dump_write(file, buf, n)) {
2075 ret = 0;
2076 break;
2078 off -= n;
2080 free_page((unsigned long)buf);
2082 return ret;
2084 EXPORT_SYMBOL(dump_seek);