iwlegacy: 3945: fix hw passive scan on radar channels
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / rcupdate.h
blob2cf4226ade7e60c11ed6d0a3d3f1a4f90496bc24
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2001
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/compiler.h>
47 #ifdef CONFIG_RCU_TORTURE_TEST
48 extern int rcutorture_runnable; /* for sysctl */
49 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
52 extern void rcutorture_record_test_transition(void);
53 extern void rcutorture_record_progress(unsigned long vernum);
54 #else
55 static inline void rcutorture_record_test_transition(void)
58 static inline void rcutorture_record_progress(unsigned long vernum)
61 #endif
63 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
64 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
65 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
66 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
68 /* Exported common interfaces */
70 #ifdef CONFIG_PREEMPT_RCU
72 /**
73 * call_rcu() - Queue an RCU callback for invocation after a grace period.
74 * @head: structure to be used for queueing the RCU updates.
75 * @func: actual callback function to be invoked after the grace period
77 * The callback function will be invoked some time after a full grace
78 * period elapses, in other words after all pre-existing RCU read-side
79 * critical sections have completed. However, the callback function
80 * might well execute concurrently with RCU read-side critical sections
81 * that started after call_rcu() was invoked. RCU read-side critical
82 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
83 * and may be nested.
85 extern void call_rcu(struct rcu_head *head,
86 void (*func)(struct rcu_head *head));
88 #else /* #ifdef CONFIG_PREEMPT_RCU */
90 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
91 #define call_rcu call_rcu_sched
93 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
95 /**
96 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
97 * @head: structure to be used for queueing the RCU updates.
98 * @func: actual callback function to be invoked after the grace period
100 * The callback function will be invoked some time after a full grace
101 * period elapses, in other words after all currently executing RCU
102 * read-side critical sections have completed. call_rcu_bh() assumes
103 * that the read-side critical sections end on completion of a softirq
104 * handler. This means that read-side critical sections in process
105 * context must not be interrupted by softirqs. This interface is to be
106 * used when most of the read-side critical sections are in softirq context.
107 * RCU read-side critical sections are delimited by :
108 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
109 * OR
110 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
111 * These may be nested.
113 extern void call_rcu_bh(struct rcu_head *head,
114 void (*func)(struct rcu_head *head));
117 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
118 * @head: structure to be used for queueing the RCU updates.
119 * @func: actual callback function to be invoked after the grace period
121 * The callback function will be invoked some time after a full grace
122 * period elapses, in other words after all currently executing RCU
123 * read-side critical sections have completed. call_rcu_sched() assumes
124 * that the read-side critical sections end on enabling of preemption
125 * or on voluntary preemption.
126 * RCU read-side critical sections are delimited by :
127 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
128 * OR
129 * anything that disables preemption.
130 * These may be nested.
132 extern void call_rcu_sched(struct rcu_head *head,
133 void (*func)(struct rcu_head *rcu));
135 extern void synchronize_sched(void);
137 #ifdef CONFIG_PREEMPT_RCU
139 extern void __rcu_read_lock(void);
140 extern void __rcu_read_unlock(void);
141 void synchronize_rcu(void);
144 * Defined as a macro as it is a very low level header included from
145 * areas that don't even know about current. This gives the rcu_read_lock()
146 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
147 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
149 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
151 #else /* #ifdef CONFIG_PREEMPT_RCU */
153 static inline void __rcu_read_lock(void)
155 preempt_disable();
158 static inline void __rcu_read_unlock(void)
160 preempt_enable();
163 static inline void synchronize_rcu(void)
165 synchronize_sched();
168 static inline int rcu_preempt_depth(void)
170 return 0;
173 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
175 /* Internal to kernel */
176 extern void rcu_sched_qs(int cpu);
177 extern void rcu_bh_qs(int cpu);
178 extern void rcu_check_callbacks(int cpu, int user);
179 struct notifier_block;
181 #ifdef CONFIG_NO_HZ
183 extern void rcu_enter_nohz(void);
184 extern void rcu_exit_nohz(void);
186 #else /* #ifdef CONFIG_NO_HZ */
188 static inline void rcu_enter_nohz(void)
192 static inline void rcu_exit_nohz(void)
196 #endif /* #else #ifdef CONFIG_NO_HZ */
199 * Infrastructure to implement the synchronize_() primitives in
200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
203 typedef void call_rcu_func_t(struct rcu_head *head,
204 void (*func)(struct rcu_head *head));
205 void wait_rcu_gp(call_rcu_func_t crf);
207 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
208 #include <linux/rcutree.h>
209 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
210 #include <linux/rcutiny.h>
211 #else
212 #error "Unknown RCU implementation specified to kernel configuration"
213 #endif
216 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
217 * initialization and destruction of rcu_head on the stack. rcu_head structures
218 * allocated dynamically in the heap or defined statically don't need any
219 * initialization.
221 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
222 extern void init_rcu_head_on_stack(struct rcu_head *head);
223 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
224 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
225 static inline void init_rcu_head_on_stack(struct rcu_head *head)
229 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
232 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
234 #ifdef CONFIG_DEBUG_LOCK_ALLOC
236 extern struct lockdep_map rcu_lock_map;
237 # define rcu_read_acquire() \
238 lock_acquire(&rcu_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
239 # define rcu_read_release() lock_release(&rcu_lock_map, 1, _THIS_IP_)
241 extern struct lockdep_map rcu_bh_lock_map;
242 # define rcu_read_acquire_bh() \
243 lock_acquire(&rcu_bh_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
244 # define rcu_read_release_bh() lock_release(&rcu_bh_lock_map, 1, _THIS_IP_)
246 extern struct lockdep_map rcu_sched_lock_map;
247 # define rcu_read_acquire_sched() \
248 lock_acquire(&rcu_sched_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
249 # define rcu_read_release_sched() \
250 lock_release(&rcu_sched_lock_map, 1, _THIS_IP_)
252 extern int debug_lockdep_rcu_enabled(void);
255 * rcu_read_lock_held() - might we be in RCU read-side critical section?
257 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
258 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
259 * this assumes we are in an RCU read-side critical section unless it can
260 * prove otherwise. This is useful for debug checks in functions that
261 * require that they be called within an RCU read-side critical section.
263 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
264 * and while lockdep is disabled.
266 static inline int rcu_read_lock_held(void)
268 if (!debug_lockdep_rcu_enabled())
269 return 1;
270 return lock_is_held(&rcu_lock_map);
274 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
275 * hell.
277 extern int rcu_read_lock_bh_held(void);
280 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
282 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
283 * RCU-sched read-side critical section. In absence of
284 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
285 * critical section unless it can prove otherwise. Note that disabling
286 * of preemption (including disabling irqs) counts as an RCU-sched
287 * read-side critical section. This is useful for debug checks in functions
288 * that required that they be called within an RCU-sched read-side
289 * critical section.
291 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
292 * and while lockdep is disabled.
294 #ifdef CONFIG_PREEMPT_COUNT
295 static inline int rcu_read_lock_sched_held(void)
297 int lockdep_opinion = 0;
299 if (!debug_lockdep_rcu_enabled())
300 return 1;
301 if (debug_locks)
302 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
303 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
305 #else /* #ifdef CONFIG_PREEMPT_COUNT */
306 static inline int rcu_read_lock_sched_held(void)
308 return 1;
310 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
312 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
314 # define rcu_read_acquire() do { } while (0)
315 # define rcu_read_release() do { } while (0)
316 # define rcu_read_acquire_bh() do { } while (0)
317 # define rcu_read_release_bh() do { } while (0)
318 # define rcu_read_acquire_sched() do { } while (0)
319 # define rcu_read_release_sched() do { } while (0)
321 static inline int rcu_read_lock_held(void)
323 return 1;
326 static inline int rcu_read_lock_bh_held(void)
328 return 1;
331 #ifdef CONFIG_PREEMPT_COUNT
332 static inline int rcu_read_lock_sched_held(void)
334 return preempt_count() != 0 || irqs_disabled();
336 #else /* #ifdef CONFIG_PREEMPT_COUNT */
337 static inline int rcu_read_lock_sched_held(void)
339 return 1;
341 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
343 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
345 #ifdef CONFIG_PROVE_RCU
347 extern int rcu_my_thread_group_empty(void);
350 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
351 * @c: condition to check
352 * @s: informative message
354 #define rcu_lockdep_assert(c, s) \
355 do { \
356 static bool __warned; \
357 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
358 __warned = true; \
359 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
361 } while (0)
363 #define rcu_sleep_check() \
364 do { \
365 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
366 "Illegal context switch in RCU-bh" \
367 " read-side critical section"); \
368 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
369 "Illegal context switch in RCU-sched"\
370 " read-side critical section"); \
371 } while (0)
373 #else /* #ifdef CONFIG_PROVE_RCU */
375 #define rcu_lockdep_assert(c, s) do { } while (0)
376 #define rcu_sleep_check() do { } while (0)
378 #endif /* #else #ifdef CONFIG_PROVE_RCU */
381 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
382 * and rcu_assign_pointer(). Some of these could be folded into their
383 * callers, but they are left separate in order to ease introduction of
384 * multiple flavors of pointers to match the multiple flavors of RCU
385 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
386 * the future.
389 #ifdef __CHECKER__
390 #define rcu_dereference_sparse(p, space) \
391 ((void)(((typeof(*p) space *)p) == p))
392 #else /* #ifdef __CHECKER__ */
393 #define rcu_dereference_sparse(p, space)
394 #endif /* #else #ifdef __CHECKER__ */
396 #define __rcu_access_pointer(p, space) \
397 ({ \
398 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
399 rcu_dereference_sparse(p, space); \
400 ((typeof(*p) __force __kernel *)(_________p1)); \
402 #define __rcu_dereference_check(p, c, space) \
403 ({ \
404 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
405 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
406 " usage"); \
407 rcu_dereference_sparse(p, space); \
408 smp_read_barrier_depends(); \
409 ((typeof(*p) __force __kernel *)(_________p1)); \
411 #define __rcu_dereference_protected(p, c, space) \
412 ({ \
413 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
414 " usage"); \
415 rcu_dereference_sparse(p, space); \
416 ((typeof(*p) __force __kernel *)(p)); \
419 #define __rcu_access_index(p, space) \
420 ({ \
421 typeof(p) _________p1 = ACCESS_ONCE(p); \
422 rcu_dereference_sparse(p, space); \
423 (_________p1); \
425 #define __rcu_dereference_index_check(p, c) \
426 ({ \
427 typeof(p) _________p1 = ACCESS_ONCE(p); \
428 rcu_lockdep_assert(c, \
429 "suspicious rcu_dereference_index_check()" \
430 " usage"); \
431 smp_read_barrier_depends(); \
432 (_________p1); \
434 #define __rcu_assign_pointer(p, v, space) \
435 ({ \
436 smp_wmb(); \
437 (p) = (typeof(*v) __force space *)(v); \
442 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
443 * @p: The pointer to read
445 * Return the value of the specified RCU-protected pointer, but omit the
446 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
447 * when the value of this pointer is accessed, but the pointer is not
448 * dereferenced, for example, when testing an RCU-protected pointer against
449 * NULL. Although rcu_access_pointer() may also be used in cases where
450 * update-side locks prevent the value of the pointer from changing, you
451 * should instead use rcu_dereference_protected() for this use case.
453 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
456 * rcu_dereference_check() - rcu_dereference with debug checking
457 * @p: The pointer to read, prior to dereferencing
458 * @c: The conditions under which the dereference will take place
460 * Do an rcu_dereference(), but check that the conditions under which the
461 * dereference will take place are correct. Typically the conditions
462 * indicate the various locking conditions that should be held at that
463 * point. The check should return true if the conditions are satisfied.
464 * An implicit check for being in an RCU read-side critical section
465 * (rcu_read_lock()) is included.
467 * For example:
469 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
471 * could be used to indicate to lockdep that foo->bar may only be dereferenced
472 * if either rcu_read_lock() is held, or that the lock required to replace
473 * the bar struct at foo->bar is held.
475 * Note that the list of conditions may also include indications of when a lock
476 * need not be held, for example during initialisation or destruction of the
477 * target struct:
479 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
480 * atomic_read(&foo->usage) == 0);
482 * Inserts memory barriers on architectures that require them
483 * (currently only the Alpha), prevents the compiler from refetching
484 * (and from merging fetches), and, more importantly, documents exactly
485 * which pointers are protected by RCU and checks that the pointer is
486 * annotated as __rcu.
488 #define rcu_dereference_check(p, c) \
489 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
492 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
493 * @p: The pointer to read, prior to dereferencing
494 * @c: The conditions under which the dereference will take place
496 * This is the RCU-bh counterpart to rcu_dereference_check().
498 #define rcu_dereference_bh_check(p, c) \
499 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
502 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
503 * @p: The pointer to read, prior to dereferencing
504 * @c: The conditions under which the dereference will take place
506 * This is the RCU-sched counterpart to rcu_dereference_check().
508 #define rcu_dereference_sched_check(p, c) \
509 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
510 __rcu)
512 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
515 * rcu_access_index() - fetch RCU index with no dereferencing
516 * @p: The index to read
518 * Return the value of the specified RCU-protected index, but omit the
519 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
520 * when the value of this index is accessed, but the index is not
521 * dereferenced, for example, when testing an RCU-protected index against
522 * -1. Although rcu_access_index() may also be used in cases where
523 * update-side locks prevent the value of the index from changing, you
524 * should instead use rcu_dereference_index_protected() for this use case.
526 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
529 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
530 * @p: The pointer to read, prior to dereferencing
531 * @c: The conditions under which the dereference will take place
533 * Similar to rcu_dereference_check(), but omits the sparse checking.
534 * This allows rcu_dereference_index_check() to be used on integers,
535 * which can then be used as array indices. Attempting to use
536 * rcu_dereference_check() on an integer will give compiler warnings
537 * because the sparse address-space mechanism relies on dereferencing
538 * the RCU-protected pointer. Dereferencing integers is not something
539 * that even gcc will put up with.
541 * Note that this function does not implicitly check for RCU read-side
542 * critical sections. If this function gains lots of uses, it might
543 * make sense to provide versions for each flavor of RCU, but it does
544 * not make sense as of early 2010.
546 #define rcu_dereference_index_check(p, c) \
547 __rcu_dereference_index_check((p), (c))
550 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
551 * @p: The pointer to read, prior to dereferencing
552 * @c: The conditions under which the dereference will take place
554 * Return the value of the specified RCU-protected pointer, but omit
555 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
556 * is useful in cases where update-side locks prevent the value of the
557 * pointer from changing. Please note that this primitive does -not-
558 * prevent the compiler from repeating this reference or combining it
559 * with other references, so it should not be used without protection
560 * of appropriate locks.
562 * This function is only for update-side use. Using this function
563 * when protected only by rcu_read_lock() will result in infrequent
564 * but very ugly failures.
566 #define rcu_dereference_protected(p, c) \
567 __rcu_dereference_protected((p), (c), __rcu)
571 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
572 * @p: The pointer to read, prior to dereferencing
574 * This is a simple wrapper around rcu_dereference_check().
576 #define rcu_dereference(p) rcu_dereference_check(p, 0)
579 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
580 * @p: The pointer to read, prior to dereferencing
582 * Makes rcu_dereference_check() do the dirty work.
584 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
587 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
588 * @p: The pointer to read, prior to dereferencing
590 * Makes rcu_dereference_check() do the dirty work.
592 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
595 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
597 * When synchronize_rcu() is invoked on one CPU while other CPUs
598 * are within RCU read-side critical sections, then the
599 * synchronize_rcu() is guaranteed to block until after all the other
600 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
601 * on one CPU while other CPUs are within RCU read-side critical
602 * sections, invocation of the corresponding RCU callback is deferred
603 * until after the all the other CPUs exit their critical sections.
605 * Note, however, that RCU callbacks are permitted to run concurrently
606 * with new RCU read-side critical sections. One way that this can happen
607 * is via the following sequence of events: (1) CPU 0 enters an RCU
608 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
609 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
610 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
611 * callback is invoked. This is legal, because the RCU read-side critical
612 * section that was running concurrently with the call_rcu() (and which
613 * therefore might be referencing something that the corresponding RCU
614 * callback would free up) has completed before the corresponding
615 * RCU callback is invoked.
617 * RCU read-side critical sections may be nested. Any deferred actions
618 * will be deferred until the outermost RCU read-side critical section
619 * completes.
621 * You can avoid reading and understanding the next paragraph by
622 * following this rule: don't put anything in an rcu_read_lock() RCU
623 * read-side critical section that would block in a !PREEMPT kernel.
624 * But if you want the full story, read on!
626 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
627 * is illegal to block while in an RCU read-side critical section. In
628 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
629 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
630 * be preempted, but explicit blocking is illegal. Finally, in preemptible
631 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
632 * RCU read-side critical sections may be preempted and they may also
633 * block, but only when acquiring spinlocks that are subject to priority
634 * inheritance.
636 static inline void rcu_read_lock(void)
638 __rcu_read_lock();
639 __acquire(RCU);
640 rcu_read_acquire();
644 * So where is rcu_write_lock()? It does not exist, as there is no
645 * way for writers to lock out RCU readers. This is a feature, not
646 * a bug -- this property is what provides RCU's performance benefits.
647 * Of course, writers must coordinate with each other. The normal
648 * spinlock primitives work well for this, but any other technique may be
649 * used as well. RCU does not care how the writers keep out of each
650 * others' way, as long as they do so.
654 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
656 * See rcu_read_lock() for more information.
658 static inline void rcu_read_unlock(void)
660 rcu_read_release();
661 __release(RCU);
662 __rcu_read_unlock();
666 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
668 * This is equivalent of rcu_read_lock(), but to be used when updates
669 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
670 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
671 * softirq handler to be a quiescent state, a process in RCU read-side
672 * critical section must be protected by disabling softirqs. Read-side
673 * critical sections in interrupt context can use just rcu_read_lock(),
674 * though this should at least be commented to avoid confusing people
675 * reading the code.
677 static inline void rcu_read_lock_bh(void)
679 local_bh_disable();
680 __acquire(RCU_BH);
681 rcu_read_acquire_bh();
685 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
687 * See rcu_read_lock_bh() for more information.
689 static inline void rcu_read_unlock_bh(void)
691 rcu_read_release_bh();
692 __release(RCU_BH);
693 local_bh_enable();
697 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
699 * This is equivalent of rcu_read_lock(), but to be used when updates
700 * are being done using call_rcu_sched() or synchronize_rcu_sched().
701 * Read-side critical sections can also be introduced by anything that
702 * disables preemption, including local_irq_disable() and friends.
704 static inline void rcu_read_lock_sched(void)
706 preempt_disable();
707 __acquire(RCU_SCHED);
708 rcu_read_acquire_sched();
711 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
712 static inline notrace void rcu_read_lock_sched_notrace(void)
714 preempt_disable_notrace();
715 __acquire(RCU_SCHED);
719 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
721 * See rcu_read_lock_sched for more information.
723 static inline void rcu_read_unlock_sched(void)
725 rcu_read_release_sched();
726 __release(RCU_SCHED);
727 preempt_enable();
730 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
731 static inline notrace void rcu_read_unlock_sched_notrace(void)
733 __release(RCU_SCHED);
734 preempt_enable_notrace();
738 * rcu_assign_pointer() - assign to RCU-protected pointer
739 * @p: pointer to assign to
740 * @v: value to assign (publish)
742 * Assigns the specified value to the specified RCU-protected
743 * pointer, ensuring that any concurrent RCU readers will see
744 * any prior initialization. Returns the value assigned.
746 * Inserts memory barriers on architectures that require them
747 * (which is most of them), and also prevents the compiler from
748 * reordering the code that initializes the structure after the pointer
749 * assignment. More importantly, this call documents which pointers
750 * will be dereferenced by RCU read-side code.
752 * In some special cases, you may use RCU_INIT_POINTER() instead
753 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
754 * to the fact that it does not constrain either the CPU or the compiler.
755 * That said, using RCU_INIT_POINTER() when you should have used
756 * rcu_assign_pointer() is a very bad thing that results in
757 * impossible-to-diagnose memory corruption. So please be careful.
758 * See the RCU_INIT_POINTER() comment header for details.
760 #define rcu_assign_pointer(p, v) \
761 __rcu_assign_pointer((p), (v), __rcu)
764 * RCU_INIT_POINTER() - initialize an RCU protected pointer
766 * Initialize an RCU-protected pointer in special cases where readers
767 * do not need ordering constraints on the CPU or the compiler. These
768 * special cases are:
770 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
771 * 2. The caller has taken whatever steps are required to prevent
772 * RCU readers from concurrently accessing this pointer -or-
773 * 3. The referenced data structure has already been exposed to
774 * readers either at compile time or via rcu_assign_pointer() -and-
775 * a. You have not made -any- reader-visible changes to
776 * this structure since then -or-
777 * b. It is OK for readers accessing this structure from its
778 * new location to see the old state of the structure. (For
779 * example, the changes were to statistical counters or to
780 * other state where exact synchronization is not required.)
782 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
783 * result in impossible-to-diagnose memory corruption. As in the structures
784 * will look OK in crash dumps, but any concurrent RCU readers might
785 * see pre-initialized values of the referenced data structure. So
786 * please be very careful how you use RCU_INIT_POINTER()!!!
788 * If you are creating an RCU-protected linked structure that is accessed
789 * by a single external-to-structure RCU-protected pointer, then you may
790 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
791 * pointers, but you must use rcu_assign_pointer() to initialize the
792 * external-to-structure pointer -after- you have completely initialized
793 * the reader-accessible portions of the linked structure.
795 #define RCU_INIT_POINTER(p, v) \
796 p = (typeof(*v) __force __rcu *)(v)
798 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
800 return offset < 4096;
803 static __always_inline
804 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
806 typedef void (*rcu_callback)(struct rcu_head *);
808 BUILD_BUG_ON(!__builtin_constant_p(offset));
810 /* See the kfree_rcu() header comment. */
811 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
813 call_rcu(head, (rcu_callback)offset);
817 * kfree_rcu() - kfree an object after a grace period.
818 * @ptr: pointer to kfree
819 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
821 * Many rcu callbacks functions just call kfree() on the base structure.
822 * These functions are trivial, but their size adds up, and furthermore
823 * when they are used in a kernel module, that module must invoke the
824 * high-latency rcu_barrier() function at module-unload time.
826 * The kfree_rcu() function handles this issue. Rather than encoding a
827 * function address in the embedded rcu_head structure, kfree_rcu() instead
828 * encodes the offset of the rcu_head structure within the base structure.
829 * Because the functions are not allowed in the low-order 4096 bytes of
830 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
831 * If the offset is larger than 4095 bytes, a compile-time error will
832 * be generated in __kfree_rcu(). If this error is triggered, you can
833 * either fall back to use of call_rcu() or rearrange the structure to
834 * position the rcu_head structure into the first 4096 bytes.
836 * Note that the allowable offset might decrease in the future, for example,
837 * to allow something like kmem_cache_free_rcu().
839 #define kfree_rcu(ptr, rcu_head) \
840 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
842 #endif /* __LINUX_RCUPDATE_H */