iwlegacy: 3945: fix hw passive scan on radar channels
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / perf_event.h
blobb1f89122bf6a820102f43714fd42246d1dadd207
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_MAX, /* non-ABI */
62 * Generalized hardware cache events:
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
68 enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
75 PERF_COUNT_HW_CACHE_NODE = 6,
77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80 enum perf_hw_cache_op_id {
81 PERF_COUNT_HW_CACHE_OP_READ = 0,
82 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88 enum perf_hw_cache_op_result_id {
89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
96 * Special "software" events provided by the kernel, even if the hardware
97 * does not support performance events. These events measure various
98 * physical and sw events of the kernel (and allow the profiling of them as
99 * well):
101 enum perf_sw_ids {
102 PERF_COUNT_SW_CPU_CLOCK = 0,
103 PERF_COUNT_SW_TASK_CLOCK = 1,
104 PERF_COUNT_SW_PAGE_FAULTS = 2,
105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
106 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
110 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112 PERF_COUNT_SW_MAX, /* non-ABI */
116 * Bits that can be set in attr.sample_type to request information
117 * in the overflow packets.
119 enum perf_event_sample_format {
120 PERF_SAMPLE_IP = 1U << 0,
121 PERF_SAMPLE_TID = 1U << 1,
122 PERF_SAMPLE_TIME = 1U << 2,
123 PERF_SAMPLE_ADDR = 1U << 3,
124 PERF_SAMPLE_READ = 1U << 4,
125 PERF_SAMPLE_CALLCHAIN = 1U << 5,
126 PERF_SAMPLE_ID = 1U << 6,
127 PERF_SAMPLE_CPU = 1U << 7,
128 PERF_SAMPLE_PERIOD = 1U << 8,
129 PERF_SAMPLE_STREAM_ID = 1U << 9,
130 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
136 * The format of the data returned by read() on a perf event fd,
137 * as specified by attr.read_format:
139 * struct read_format {
140 * { u64 value;
141 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
142 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
143 * { u64 id; } && PERF_FORMAT_ID
144 * } && !PERF_FORMAT_GROUP
146 * { u64 nr;
147 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
148 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
149 * { u64 value;
150 * { u64 id; } && PERF_FORMAT_ID
151 * } cntr[nr];
152 * } && PERF_FORMAT_GROUP
153 * };
155 enum perf_event_read_format {
156 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
157 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
158 PERF_FORMAT_ID = 1U << 2,
159 PERF_FORMAT_GROUP = 1U << 3,
161 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
164 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
167 * Hardware event_id to monitor via a performance monitoring event:
169 struct perf_event_attr {
172 * Major type: hardware/software/tracepoint/etc.
174 __u32 type;
177 * Size of the attr structure, for fwd/bwd compat.
179 __u32 size;
182 * Type specific configuration information.
184 __u64 config;
186 union {
187 __u64 sample_period;
188 __u64 sample_freq;
191 __u64 sample_type;
192 __u64 read_format;
194 __u64 disabled : 1, /* off by default */
195 inherit : 1, /* children inherit it */
196 pinned : 1, /* must always be on PMU */
197 exclusive : 1, /* only group on PMU */
198 exclude_user : 1, /* don't count user */
199 exclude_kernel : 1, /* ditto kernel */
200 exclude_hv : 1, /* ditto hypervisor */
201 exclude_idle : 1, /* don't count when idle */
202 mmap : 1, /* include mmap data */
203 comm : 1, /* include comm data */
204 freq : 1, /* use freq, not period */
205 inherit_stat : 1, /* per task counts */
206 enable_on_exec : 1, /* next exec enables */
207 task : 1, /* trace fork/exit */
208 watermark : 1, /* wakeup_watermark */
210 * precise_ip:
212 * 0 - SAMPLE_IP can have arbitrary skid
213 * 1 - SAMPLE_IP must have constant skid
214 * 2 - SAMPLE_IP requested to have 0 skid
215 * 3 - SAMPLE_IP must have 0 skid
217 * See also PERF_RECORD_MISC_EXACT_IP
219 precise_ip : 2, /* skid constraint */
220 mmap_data : 1, /* non-exec mmap data */
221 sample_id_all : 1, /* sample_type all events */
223 exclude_host : 1, /* don't count in host */
224 exclude_guest : 1, /* don't count in guest */
226 __reserved_1 : 43;
228 union {
229 __u32 wakeup_events; /* wakeup every n events */
230 __u32 wakeup_watermark; /* bytes before wakeup */
233 __u32 bp_type;
234 union {
235 __u64 bp_addr;
236 __u64 config1; /* extension of config */
238 union {
239 __u64 bp_len;
240 __u64 config2; /* extension of config1 */
245 * Ioctls that can be done on a perf event fd:
247 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
248 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
249 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
250 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
251 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
252 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
253 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
255 enum perf_event_ioc_flags {
256 PERF_IOC_FLAG_GROUP = 1U << 0,
260 * Structure of the page that can be mapped via mmap
262 struct perf_event_mmap_page {
263 __u32 version; /* version number of this structure */
264 __u32 compat_version; /* lowest version this is compat with */
267 * Bits needed to read the hw events in user-space.
269 * u32 seq;
270 * s64 count;
272 * do {
273 * seq = pc->lock;
275 * barrier()
276 * if (pc->index) {
277 * count = pmc_read(pc->index - 1);
278 * count += pc->offset;
279 * } else
280 * goto regular_read;
282 * barrier();
283 * } while (pc->lock != seq);
285 * NOTE: for obvious reason this only works on self-monitoring
286 * processes.
288 __u32 lock; /* seqlock for synchronization */
289 __u32 index; /* hardware event identifier */
290 __s64 offset; /* add to hardware event value */
291 __u64 time_enabled; /* time event active */
292 __u64 time_running; /* time event on cpu */
295 * Hole for extension of the self monitor capabilities
298 __u64 __reserved[123]; /* align to 1k */
301 * Control data for the mmap() data buffer.
303 * User-space reading the @data_head value should issue an rmb(), on
304 * SMP capable platforms, after reading this value -- see
305 * perf_event_wakeup().
307 * When the mapping is PROT_WRITE the @data_tail value should be
308 * written by userspace to reflect the last read data. In this case
309 * the kernel will not over-write unread data.
311 __u64 data_head; /* head in the data section */
312 __u64 data_tail; /* user-space written tail */
315 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
316 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
317 #define PERF_RECORD_MISC_KERNEL (1 << 0)
318 #define PERF_RECORD_MISC_USER (2 << 0)
319 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
320 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
321 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
324 * Indicates that the content of PERF_SAMPLE_IP points to
325 * the actual instruction that triggered the event. See also
326 * perf_event_attr::precise_ip.
328 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
330 * Reserve the last bit to indicate some extended misc field
332 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
334 struct perf_event_header {
335 __u32 type;
336 __u16 misc;
337 __u16 size;
340 enum perf_event_type {
343 * If perf_event_attr.sample_id_all is set then all event types will
344 * have the sample_type selected fields related to where/when
345 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
346 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
347 * the perf_event_header and the fields already present for the existing
348 * fields, i.e. at the end of the payload. That way a newer perf.data
349 * file will be supported by older perf tools, with these new optional
350 * fields being ignored.
352 * The MMAP events record the PROT_EXEC mappings so that we can
353 * correlate userspace IPs to code. They have the following structure:
355 * struct {
356 * struct perf_event_header header;
358 * u32 pid, tid;
359 * u64 addr;
360 * u64 len;
361 * u64 pgoff;
362 * char filename[];
363 * };
365 PERF_RECORD_MMAP = 1,
368 * struct {
369 * struct perf_event_header header;
370 * u64 id;
371 * u64 lost;
372 * };
374 PERF_RECORD_LOST = 2,
377 * struct {
378 * struct perf_event_header header;
380 * u32 pid, tid;
381 * char comm[];
382 * };
384 PERF_RECORD_COMM = 3,
387 * struct {
388 * struct perf_event_header header;
389 * u32 pid, ppid;
390 * u32 tid, ptid;
391 * u64 time;
392 * };
394 PERF_RECORD_EXIT = 4,
397 * struct {
398 * struct perf_event_header header;
399 * u64 time;
400 * u64 id;
401 * u64 stream_id;
402 * };
404 PERF_RECORD_THROTTLE = 5,
405 PERF_RECORD_UNTHROTTLE = 6,
408 * struct {
409 * struct perf_event_header header;
410 * u32 pid, ppid;
411 * u32 tid, ptid;
412 * u64 time;
413 * };
415 PERF_RECORD_FORK = 7,
418 * struct {
419 * struct perf_event_header header;
420 * u32 pid, tid;
422 * struct read_format values;
423 * };
425 PERF_RECORD_READ = 8,
428 * struct {
429 * struct perf_event_header header;
431 * { u64 ip; } && PERF_SAMPLE_IP
432 * { u32 pid, tid; } && PERF_SAMPLE_TID
433 * { u64 time; } && PERF_SAMPLE_TIME
434 * { u64 addr; } && PERF_SAMPLE_ADDR
435 * { u64 id; } && PERF_SAMPLE_ID
436 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
437 * { u32 cpu, res; } && PERF_SAMPLE_CPU
438 * { u64 period; } && PERF_SAMPLE_PERIOD
440 * { struct read_format values; } && PERF_SAMPLE_READ
442 * { u64 nr,
443 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
446 * # The RAW record below is opaque data wrt the ABI
448 * # That is, the ABI doesn't make any promises wrt to
449 * # the stability of its content, it may vary depending
450 * # on event, hardware, kernel version and phase of
451 * # the moon.
453 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
456 * { u32 size;
457 * char data[size];}&& PERF_SAMPLE_RAW
458 * };
460 PERF_RECORD_SAMPLE = 9,
462 PERF_RECORD_MAX, /* non-ABI */
465 enum perf_callchain_context {
466 PERF_CONTEXT_HV = (__u64)-32,
467 PERF_CONTEXT_KERNEL = (__u64)-128,
468 PERF_CONTEXT_USER = (__u64)-512,
470 PERF_CONTEXT_GUEST = (__u64)-2048,
471 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
472 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
474 PERF_CONTEXT_MAX = (__u64)-4095,
477 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
478 #define PERF_FLAG_FD_OUTPUT (1U << 1)
479 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
481 #ifdef __KERNEL__
483 * Kernel-internal data types and definitions:
486 #ifdef CONFIG_PERF_EVENTS
487 # include <linux/cgroup.h>
488 # include <asm/perf_event.h>
489 # include <asm/local64.h>
490 #endif
492 struct perf_guest_info_callbacks {
493 int (*is_in_guest)(void);
494 int (*is_user_mode)(void);
495 unsigned long (*get_guest_ip)(void);
498 #ifdef CONFIG_HAVE_HW_BREAKPOINT
499 #include <asm/hw_breakpoint.h>
500 #endif
502 #include <linux/list.h>
503 #include <linux/mutex.h>
504 #include <linux/rculist.h>
505 #include <linux/rcupdate.h>
506 #include <linux/spinlock.h>
507 #include <linux/hrtimer.h>
508 #include <linux/fs.h>
509 #include <linux/pid_namespace.h>
510 #include <linux/workqueue.h>
511 #include <linux/ftrace.h>
512 #include <linux/cpu.h>
513 #include <linux/irq_work.h>
514 #include <linux/jump_label.h>
515 #include <linux/atomic.h>
516 #include <asm/local.h>
518 #define PERF_MAX_STACK_DEPTH 255
520 struct perf_callchain_entry {
521 __u64 nr;
522 __u64 ip[PERF_MAX_STACK_DEPTH];
525 struct perf_raw_record {
526 u32 size;
527 void *data;
530 struct perf_branch_entry {
531 __u64 from;
532 __u64 to;
533 __u64 flags;
536 struct perf_branch_stack {
537 __u64 nr;
538 struct perf_branch_entry entries[0];
541 struct task_struct;
544 * extra PMU register associated with an event
546 struct hw_perf_event_extra {
547 u64 config; /* register value */
548 unsigned int reg; /* register address or index */
549 int alloc; /* extra register already allocated */
550 int idx; /* index in shared_regs->regs[] */
554 * struct hw_perf_event - performance event hardware details:
556 struct hw_perf_event {
557 #ifdef CONFIG_PERF_EVENTS
558 union {
559 struct { /* hardware */
560 u64 config;
561 u64 last_tag;
562 unsigned long config_base;
563 unsigned long event_base;
564 int idx;
565 int last_cpu;
566 struct hw_perf_event_extra extra_reg;
568 struct { /* software */
569 struct hrtimer hrtimer;
571 #ifdef CONFIG_HAVE_HW_BREAKPOINT
572 struct { /* breakpoint */
573 struct arch_hw_breakpoint info;
574 struct list_head bp_list;
576 * Crufty hack to avoid the chicken and egg
577 * problem hw_breakpoint has with context
578 * creation and event initalization.
580 struct task_struct *bp_target;
582 #endif
584 int state;
585 local64_t prev_count;
586 u64 sample_period;
587 u64 last_period;
588 local64_t period_left;
589 u64 interrupts;
591 u64 freq_time_stamp;
592 u64 freq_count_stamp;
593 #endif
597 * hw_perf_event::state flags
599 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
600 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
601 #define PERF_HES_ARCH 0x04
603 struct perf_event;
606 * Common implementation detail of pmu::{start,commit,cancel}_txn
608 #define PERF_EVENT_TXN 0x1
611 * struct pmu - generic performance monitoring unit
613 struct pmu {
614 struct list_head entry;
616 struct device *dev;
617 char *name;
618 int type;
620 int * __percpu pmu_disable_count;
621 struct perf_cpu_context * __percpu pmu_cpu_context;
622 int task_ctx_nr;
625 * Fully disable/enable this PMU, can be used to protect from the PMI
626 * as well as for lazy/batch writing of the MSRs.
628 void (*pmu_enable) (struct pmu *pmu); /* optional */
629 void (*pmu_disable) (struct pmu *pmu); /* optional */
632 * Try and initialize the event for this PMU.
633 * Should return -ENOENT when the @event doesn't match this PMU.
635 int (*event_init) (struct perf_event *event);
637 #define PERF_EF_START 0x01 /* start the counter when adding */
638 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
639 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
642 * Adds/Removes a counter to/from the PMU, can be done inside
643 * a transaction, see the ->*_txn() methods.
645 int (*add) (struct perf_event *event, int flags);
646 void (*del) (struct perf_event *event, int flags);
649 * Starts/Stops a counter present on the PMU. The PMI handler
650 * should stop the counter when perf_event_overflow() returns
651 * !0. ->start() will be used to continue.
653 void (*start) (struct perf_event *event, int flags);
654 void (*stop) (struct perf_event *event, int flags);
657 * Updates the counter value of the event.
659 void (*read) (struct perf_event *event);
662 * Group events scheduling is treated as a transaction, add
663 * group events as a whole and perform one schedulability test.
664 * If the test fails, roll back the whole group
666 * Start the transaction, after this ->add() doesn't need to
667 * do schedulability tests.
669 void (*start_txn) (struct pmu *pmu); /* optional */
671 * If ->start_txn() disabled the ->add() schedulability test
672 * then ->commit_txn() is required to perform one. On success
673 * the transaction is closed. On error the transaction is kept
674 * open until ->cancel_txn() is called.
676 int (*commit_txn) (struct pmu *pmu); /* optional */
678 * Will cancel the transaction, assumes ->del() is called
679 * for each successful ->add() during the transaction.
681 void (*cancel_txn) (struct pmu *pmu); /* optional */
685 * enum perf_event_active_state - the states of a event
687 enum perf_event_active_state {
688 PERF_EVENT_STATE_ERROR = -2,
689 PERF_EVENT_STATE_OFF = -1,
690 PERF_EVENT_STATE_INACTIVE = 0,
691 PERF_EVENT_STATE_ACTIVE = 1,
694 struct file;
695 struct perf_sample_data;
697 typedef void (*perf_overflow_handler_t)(struct perf_event *,
698 struct perf_sample_data *,
699 struct pt_regs *regs);
701 enum perf_group_flag {
702 PERF_GROUP_SOFTWARE = 0x1,
705 #define SWEVENT_HLIST_BITS 8
706 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
708 struct swevent_hlist {
709 struct hlist_head heads[SWEVENT_HLIST_SIZE];
710 struct rcu_head rcu_head;
713 #define PERF_ATTACH_CONTEXT 0x01
714 #define PERF_ATTACH_GROUP 0x02
715 #define PERF_ATTACH_TASK 0x04
717 #ifdef CONFIG_CGROUP_PERF
719 * perf_cgroup_info keeps track of time_enabled for a cgroup.
720 * This is a per-cpu dynamically allocated data structure.
722 struct perf_cgroup_info {
723 u64 time;
724 u64 timestamp;
727 struct perf_cgroup {
728 struct cgroup_subsys_state css;
729 struct perf_cgroup_info *info; /* timing info, one per cpu */
731 #endif
733 struct ring_buffer;
736 * struct perf_event - performance event kernel representation:
738 struct perf_event {
739 #ifdef CONFIG_PERF_EVENTS
740 struct list_head group_entry;
741 struct list_head event_entry;
742 struct list_head sibling_list;
743 struct hlist_node hlist_entry;
744 int nr_siblings;
745 int group_flags;
746 struct perf_event *group_leader;
747 struct pmu *pmu;
749 enum perf_event_active_state state;
750 unsigned int attach_state;
751 local64_t count;
752 atomic64_t child_count;
755 * These are the total time in nanoseconds that the event
756 * has been enabled (i.e. eligible to run, and the task has
757 * been scheduled in, if this is a per-task event)
758 * and running (scheduled onto the CPU), respectively.
760 * They are computed from tstamp_enabled, tstamp_running and
761 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
763 u64 total_time_enabled;
764 u64 total_time_running;
767 * These are timestamps used for computing total_time_enabled
768 * and total_time_running when the event is in INACTIVE or
769 * ACTIVE state, measured in nanoseconds from an arbitrary point
770 * in time.
771 * tstamp_enabled: the notional time when the event was enabled
772 * tstamp_running: the notional time when the event was scheduled on
773 * tstamp_stopped: in INACTIVE state, the notional time when the
774 * event was scheduled off.
776 u64 tstamp_enabled;
777 u64 tstamp_running;
778 u64 tstamp_stopped;
781 * timestamp shadows the actual context timing but it can
782 * be safely used in NMI interrupt context. It reflects the
783 * context time as it was when the event was last scheduled in.
785 * ctx_time already accounts for ctx->timestamp. Therefore to
786 * compute ctx_time for a sample, simply add perf_clock().
788 u64 shadow_ctx_time;
790 struct perf_event_attr attr;
791 u16 header_size;
792 u16 id_header_size;
793 u16 read_size;
794 struct hw_perf_event hw;
796 struct perf_event_context *ctx;
797 struct file *filp;
800 * These accumulate total time (in nanoseconds) that children
801 * events have been enabled and running, respectively.
803 atomic64_t child_total_time_enabled;
804 atomic64_t child_total_time_running;
807 * Protect attach/detach and child_list:
809 struct mutex child_mutex;
810 struct list_head child_list;
811 struct perf_event *parent;
813 int oncpu;
814 int cpu;
816 struct list_head owner_entry;
817 struct task_struct *owner;
819 /* mmap bits */
820 struct mutex mmap_mutex;
821 atomic_t mmap_count;
822 int mmap_locked;
823 struct user_struct *mmap_user;
824 struct ring_buffer *rb;
825 struct list_head rb_entry;
827 /* poll related */
828 wait_queue_head_t waitq;
829 struct fasync_struct *fasync;
831 /* delayed work for NMIs and such */
832 int pending_wakeup;
833 int pending_kill;
834 int pending_disable;
835 struct irq_work pending;
837 atomic_t event_limit;
839 void (*destroy)(struct perf_event *);
840 struct rcu_head rcu_head;
842 struct pid_namespace *ns;
843 u64 id;
845 perf_overflow_handler_t overflow_handler;
846 void *overflow_handler_context;
848 #ifdef CONFIG_EVENT_TRACING
849 struct ftrace_event_call *tp_event;
850 struct event_filter *filter;
851 #endif
853 #ifdef CONFIG_CGROUP_PERF
854 struct perf_cgroup *cgrp; /* cgroup event is attach to */
855 int cgrp_defer_enabled;
856 #endif
858 #endif /* CONFIG_PERF_EVENTS */
861 enum perf_event_context_type {
862 task_context,
863 cpu_context,
867 * struct perf_event_context - event context structure
869 * Used as a container for task events and CPU events as well:
871 struct perf_event_context {
872 struct pmu *pmu;
873 enum perf_event_context_type type;
875 * Protect the states of the events in the list,
876 * nr_active, and the list:
878 raw_spinlock_t lock;
880 * Protect the list of events. Locking either mutex or lock
881 * is sufficient to ensure the list doesn't change; to change
882 * the list you need to lock both the mutex and the spinlock.
884 struct mutex mutex;
886 struct list_head pinned_groups;
887 struct list_head flexible_groups;
888 struct list_head event_list;
889 int nr_events;
890 int nr_active;
891 int is_active;
892 int nr_stat;
893 int rotate_disable;
894 atomic_t refcount;
895 struct task_struct *task;
898 * Context clock, runs when context enabled.
900 u64 time;
901 u64 timestamp;
904 * These fields let us detect when two contexts have both
905 * been cloned (inherited) from a common ancestor.
907 struct perf_event_context *parent_ctx;
908 u64 parent_gen;
909 u64 generation;
910 int pin_count;
911 int nr_cgroups; /* cgroup events present */
912 struct rcu_head rcu_head;
916 * Number of contexts where an event can trigger:
917 * task, softirq, hardirq, nmi.
919 #define PERF_NR_CONTEXTS 4
922 * struct perf_event_cpu_context - per cpu event context structure
924 struct perf_cpu_context {
925 struct perf_event_context ctx;
926 struct perf_event_context *task_ctx;
927 int active_oncpu;
928 int exclusive;
929 struct list_head rotation_list;
930 int jiffies_interval;
931 struct pmu *active_pmu;
932 struct perf_cgroup *cgrp;
935 struct perf_output_handle {
936 struct perf_event *event;
937 struct ring_buffer *rb;
938 unsigned long wakeup;
939 unsigned long size;
940 void *addr;
941 int page;
944 #ifdef CONFIG_PERF_EVENTS
946 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
947 extern void perf_pmu_unregister(struct pmu *pmu);
949 extern int perf_num_counters(void);
950 extern const char *perf_pmu_name(void);
951 extern void __perf_event_task_sched_in(struct task_struct *prev,
952 struct task_struct *task);
953 extern void __perf_event_task_sched_out(struct task_struct *prev,
954 struct task_struct *next);
955 extern int perf_event_init_task(struct task_struct *child);
956 extern void perf_event_exit_task(struct task_struct *child);
957 extern void perf_event_free_task(struct task_struct *task);
958 extern void perf_event_delayed_put(struct task_struct *task);
959 extern void perf_event_print_debug(void);
960 extern void perf_pmu_disable(struct pmu *pmu);
961 extern void perf_pmu_enable(struct pmu *pmu);
962 extern int perf_event_task_disable(void);
963 extern int perf_event_task_enable(void);
964 extern int perf_event_refresh(struct perf_event *event, int refresh);
965 extern void perf_event_update_userpage(struct perf_event *event);
966 extern int perf_event_release_kernel(struct perf_event *event);
967 extern struct perf_event *
968 perf_event_create_kernel_counter(struct perf_event_attr *attr,
969 int cpu,
970 struct task_struct *task,
971 perf_overflow_handler_t callback,
972 void *context);
973 extern u64 perf_event_read_value(struct perf_event *event,
974 u64 *enabled, u64 *running);
976 struct perf_sample_data {
977 u64 type;
979 u64 ip;
980 struct {
981 u32 pid;
982 u32 tid;
983 } tid_entry;
984 u64 time;
985 u64 addr;
986 u64 id;
987 u64 stream_id;
988 struct {
989 u32 cpu;
990 u32 reserved;
991 } cpu_entry;
992 u64 period;
993 struct perf_callchain_entry *callchain;
994 struct perf_raw_record *raw;
997 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
999 data->addr = addr;
1000 data->raw = NULL;
1003 extern void perf_output_sample(struct perf_output_handle *handle,
1004 struct perf_event_header *header,
1005 struct perf_sample_data *data,
1006 struct perf_event *event);
1007 extern void perf_prepare_sample(struct perf_event_header *header,
1008 struct perf_sample_data *data,
1009 struct perf_event *event,
1010 struct pt_regs *regs);
1012 extern int perf_event_overflow(struct perf_event *event,
1013 struct perf_sample_data *data,
1014 struct pt_regs *regs);
1016 static inline bool is_sampling_event(struct perf_event *event)
1018 return event->attr.sample_period != 0;
1022 * Return 1 for a software event, 0 for a hardware event
1024 static inline int is_software_event(struct perf_event *event)
1026 return event->pmu->task_ctx_nr == perf_sw_context;
1029 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1031 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1033 #ifndef perf_arch_fetch_caller_regs
1034 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1035 #endif
1038 * Take a snapshot of the regs. Skip ip and frame pointer to
1039 * the nth caller. We only need a few of the regs:
1040 * - ip for PERF_SAMPLE_IP
1041 * - cs for user_mode() tests
1042 * - bp for callchains
1043 * - eflags, for future purposes, just in case
1045 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1047 memset(regs, 0, sizeof(*regs));
1049 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1052 static __always_inline void
1053 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1055 struct pt_regs hot_regs;
1057 if (static_branch(&perf_swevent_enabled[event_id])) {
1058 if (!regs) {
1059 perf_fetch_caller_regs(&hot_regs);
1060 regs = &hot_regs;
1062 __perf_sw_event(event_id, nr, regs, addr);
1066 extern struct jump_label_key perf_sched_events;
1068 static inline void perf_event_task_sched_in(struct task_struct *prev,
1069 struct task_struct *task)
1071 if (static_branch(&perf_sched_events))
1072 __perf_event_task_sched_in(prev, task);
1075 static inline void perf_event_task_sched_out(struct task_struct *prev,
1076 struct task_struct *next)
1078 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1080 if (static_branch(&perf_sched_events))
1081 __perf_event_task_sched_out(prev, next);
1084 extern void perf_event_mmap(struct vm_area_struct *vma);
1085 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1086 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1087 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1089 extern void perf_event_comm(struct task_struct *tsk);
1090 extern void perf_event_fork(struct task_struct *tsk);
1092 /* Callchains */
1093 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1095 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1096 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1098 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1100 if (entry->nr < PERF_MAX_STACK_DEPTH)
1101 entry->ip[entry->nr++] = ip;
1104 extern int sysctl_perf_event_paranoid;
1105 extern int sysctl_perf_event_mlock;
1106 extern int sysctl_perf_event_sample_rate;
1108 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1109 void __user *buffer, size_t *lenp,
1110 loff_t *ppos);
1112 static inline bool perf_paranoid_tracepoint_raw(void)
1114 return sysctl_perf_event_paranoid > -1;
1117 static inline bool perf_paranoid_cpu(void)
1119 return sysctl_perf_event_paranoid > 0;
1122 static inline bool perf_paranoid_kernel(void)
1124 return sysctl_perf_event_paranoid > 1;
1127 extern void perf_event_init(void);
1128 extern void perf_tp_event(u64 addr, u64 count, void *record,
1129 int entry_size, struct pt_regs *regs,
1130 struct hlist_head *head, int rctx);
1131 extern void perf_bp_event(struct perf_event *event, void *data);
1133 #ifndef perf_misc_flags
1134 # define perf_misc_flags(regs) \
1135 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1136 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1137 #endif
1139 extern int perf_output_begin(struct perf_output_handle *handle,
1140 struct perf_event *event, unsigned int size);
1141 extern void perf_output_end(struct perf_output_handle *handle);
1142 extern void perf_output_copy(struct perf_output_handle *handle,
1143 const void *buf, unsigned int len);
1144 extern int perf_swevent_get_recursion_context(void);
1145 extern void perf_swevent_put_recursion_context(int rctx);
1146 extern void perf_event_enable(struct perf_event *event);
1147 extern void perf_event_disable(struct perf_event *event);
1148 extern void perf_event_task_tick(void);
1149 #else
1150 static inline void
1151 perf_event_task_sched_in(struct task_struct *prev,
1152 struct task_struct *task) { }
1153 static inline void
1154 perf_event_task_sched_out(struct task_struct *prev,
1155 struct task_struct *next) { }
1156 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1157 static inline void perf_event_exit_task(struct task_struct *child) { }
1158 static inline void perf_event_free_task(struct task_struct *task) { }
1159 static inline void perf_event_delayed_put(struct task_struct *task) { }
1160 static inline void perf_event_print_debug(void) { }
1161 static inline int perf_event_task_disable(void) { return -EINVAL; }
1162 static inline int perf_event_task_enable(void) { return -EINVAL; }
1163 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1165 return -EINVAL;
1168 static inline void
1169 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1170 static inline void
1171 perf_bp_event(struct perf_event *event, void *data) { }
1173 static inline int perf_register_guest_info_callbacks
1174 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1175 static inline int perf_unregister_guest_info_callbacks
1176 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1178 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1179 static inline void perf_event_comm(struct task_struct *tsk) { }
1180 static inline void perf_event_fork(struct task_struct *tsk) { }
1181 static inline void perf_event_init(void) { }
1182 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1183 static inline void perf_swevent_put_recursion_context(int rctx) { }
1184 static inline void perf_event_enable(struct perf_event *event) { }
1185 static inline void perf_event_disable(struct perf_event *event) { }
1186 static inline void perf_event_task_tick(void) { }
1187 #endif
1189 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1192 * This has to have a higher priority than migration_notifier in sched.c.
1194 #define perf_cpu_notifier(fn) \
1195 do { \
1196 static struct notifier_block fn##_nb __cpuinitdata = \
1197 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1198 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1199 (void *)(unsigned long)smp_processor_id()); \
1200 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1201 (void *)(unsigned long)smp_processor_id()); \
1202 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1203 (void *)(unsigned long)smp_processor_id()); \
1204 register_cpu_notifier(&fn##_nb); \
1205 } while (0)
1207 #endif /* __KERNEL__ */
1208 #endif /* _LINUX_PERF_EVENT_H */