1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <asm/unaligned.h>
167 #define DRV_NAME "e100"
168 #define DRV_EXT "-NAPI"
169 #define DRV_VERSION "3.5.23-k6"DRV_EXT
170 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
171 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
172 #define PFX DRV_NAME ": "
174 #define E100_WATCHDOG_PERIOD (2 * HZ)
175 #define E100_NAPI_WEIGHT 16
177 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
178 MODULE_AUTHOR(DRV_COPYRIGHT
);
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION
);
182 static int debug
= 3;
183 static int eeprom_bad_csum_allow
= 0;
184 static int use_io
= 0;
185 module_param(debug
, int, 0);
186 module_param(eeprom_bad_csum_allow
, int, 0);
187 module_param(use_io
, int, 0);
188 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
189 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
190 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
191 #define DPRINTK(nlevel, klevel, fmt, args...) \
192 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
193 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
196 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
197 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
198 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
199 static struct pci_device_id e100_id_table
[] = {
200 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
201 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
202 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
203 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
204 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
205 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
206 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
207 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
208 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
209 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
210 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
211 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
212 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
213 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
215 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
216 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
217 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
218 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
219 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
220 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
221 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
222 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
223 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
224 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
225 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
226 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
227 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
228 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
229 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
230 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
231 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
232 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
233 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
234 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
235 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
236 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
237 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
238 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
239 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
240 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
243 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
246 mac_82557_D100_A
= 0,
247 mac_82557_D100_B
= 1,
248 mac_82557_D100_C
= 2,
249 mac_82558_D101_A4
= 4,
250 mac_82558_D101_B0
= 5,
254 mac_82550_D102_C
= 13,
262 phy_100a
= 0x000003E0,
263 phy_100c
= 0x035002A8,
264 phy_82555_tx
= 0x015002A8,
265 phy_nsc_tx
= 0x5C002000,
266 phy_82562_et
= 0x033002A8,
267 phy_82562_em
= 0x032002A8,
268 phy_82562_ek
= 0x031002A8,
269 phy_82562_eh
= 0x017002A8,
270 phy_unknown
= 0xFFFFFFFF,
273 /* CSR (Control/Status Registers) */
299 RU_UNINITIALIZED
= -1,
303 stat_ack_not_ours
= 0x00,
304 stat_ack_sw_gen
= 0x04,
306 stat_ack_cu_idle
= 0x20,
307 stat_ack_frame_rx
= 0x40,
308 stat_ack_cu_cmd_done
= 0x80,
309 stat_ack_not_present
= 0xFF,
310 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
311 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
315 irq_mask_none
= 0x00,
323 ruc_load_base
= 0x06,
326 cuc_dump_addr
= 0x40,
327 cuc_dump_stats
= 0x50,
328 cuc_load_base
= 0x60,
329 cuc_dump_reset
= 0x70,
333 cuc_dump_complete
= 0x0000A005,
334 cuc_dump_reset_complete
= 0x0000A007,
338 software_reset
= 0x0000,
340 selective_reset
= 0x0002,
343 enum eeprom_ctrl_lo
{
351 mdi_write
= 0x04000000,
352 mdi_read
= 0x08000000,
353 mdi_ready
= 0x10000000,
363 enum eeprom_offsets
{
364 eeprom_cnfg_mdix
= 0x03,
366 eeprom_config_asf
= 0x0D,
367 eeprom_smbus_addr
= 0x90,
370 enum eeprom_cnfg_mdix
{
371 eeprom_mdix_enabled
= 0x0080,
375 eeprom_id_wol
= 0x0020,
378 enum eeprom_config_asf
{
384 cb_complete
= 0x8000,
413 struct rx
*next
, *prev
;
418 #if defined(__BIG_ENDIAN_BITFIELD)
424 /*0*/ u8
X(byte_count
:6, pad0
:2);
425 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
426 /*2*/ u8 adaptive_ifs
;
427 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
428 term_write_cache_line
:1), pad3
:4);
429 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
430 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
431 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
432 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
433 rx_discard_overruns
:1), rx_save_bad_frames
:1);
434 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
435 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
437 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
438 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
439 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
440 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
442 /*11*/ u8
X(linear_priority
:3, pad11
:5);
443 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
444 /*13*/ u8 ip_addr_lo
;
445 /*14*/ u8 ip_addr_hi
;
446 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
447 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
448 pad15_2
:1), crs_or_cdt
:1);
449 /*16*/ u8 fc_delay_lo
;
450 /*17*/ u8 fc_delay_hi
;
451 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
452 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
453 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
454 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
455 full_duplex_force
:1), full_duplex_pin
:1);
456 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
457 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
458 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
462 #define E100_MAX_MULTICAST_ADDRS 64
465 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
468 /* Important: keep total struct u32-aligned */
469 #define UCODE_SIZE 134
476 __le32 ucode
[UCODE_SIZE
];
477 struct config config
;
490 __le32 dump_buffer_addr
;
492 struct cb
*next
, *prev
;
498 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
502 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
503 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
504 tx_multiple_collisions
, tx_total_collisions
;
505 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
506 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
507 rx_short_frame_errors
;
508 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
509 __le16 xmt_tco_frames
, rcv_tco_frames
;
529 struct param_range rfds
;
530 struct param_range cbs
;
534 /* Begin: frequently used values: keep adjacent for cache effect */
535 u32 msg_enable ____cacheline_aligned
;
536 struct net_device
*netdev
;
537 struct pci_dev
*pdev
;
539 struct rx
*rxs ____cacheline_aligned
;
540 struct rx
*rx_to_use
;
541 struct rx
*rx_to_clean
;
542 struct rfd blank_rfd
;
543 enum ru_state ru_running
;
545 spinlock_t cb_lock ____cacheline_aligned
;
547 struct csr __iomem
*csr
;
548 enum scb_cmd_lo cuc_cmd
;
549 unsigned int cbs_avail
;
550 struct napi_struct napi
;
552 struct cb
*cb_to_use
;
553 struct cb
*cb_to_send
;
554 struct cb
*cb_to_clean
;
556 /* End: frequently used values: keep adjacent for cache effect */
560 promiscuous
= (1 << 1),
561 multicast_all
= (1 << 2),
562 wol_magic
= (1 << 3),
563 ich_10h_workaround
= (1 << 4),
564 } flags ____cacheline_aligned
;
568 struct params params
;
569 struct timer_list watchdog
;
570 struct timer_list blink_timer
;
571 struct mii_if_info mii
;
572 struct work_struct tx_timeout_task
;
573 enum loopback loopback
;
578 dma_addr_t cbs_dma_addr
;
584 u32 tx_single_collisions
;
585 u32 tx_multiple_collisions
;
590 u32 rx_fc_unsupported
;
592 u32 rx_over_length_errors
;
597 spinlock_t mdio_lock
;
600 static inline void e100_write_flush(struct nic
*nic
)
602 /* Flush previous PCI writes through intermediate bridges
603 * by doing a benign read */
604 (void)ioread8(&nic
->csr
->scb
.status
);
607 static void e100_enable_irq(struct nic
*nic
)
611 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
612 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
613 e100_write_flush(nic
);
614 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
617 static void e100_disable_irq(struct nic
*nic
)
621 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
622 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
623 e100_write_flush(nic
);
624 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
627 static void e100_hw_reset(struct nic
*nic
)
629 /* Put CU and RU into idle with a selective reset to get
630 * device off of PCI bus */
631 iowrite32(selective_reset
, &nic
->csr
->port
);
632 e100_write_flush(nic
); udelay(20);
634 /* Now fully reset device */
635 iowrite32(software_reset
, &nic
->csr
->port
);
636 e100_write_flush(nic
); udelay(20);
638 /* Mask off our interrupt line - it's unmasked after reset */
639 e100_disable_irq(nic
);
642 static int e100_self_test(struct nic
*nic
)
644 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
646 /* Passing the self-test is a pretty good indication
647 * that the device can DMA to/from host memory */
649 nic
->mem
->selftest
.signature
= 0;
650 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
652 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
653 e100_write_flush(nic
);
654 /* Wait 10 msec for self-test to complete */
657 /* Interrupts are enabled after self-test */
658 e100_disable_irq(nic
);
660 /* Check results of self-test */
661 if(nic
->mem
->selftest
.result
!= 0) {
662 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
663 nic
->mem
->selftest
.result
);
666 if(nic
->mem
->selftest
.signature
== 0) {
667 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
674 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
676 u32 cmd_addr_data
[3];
680 /* Three cmds: write/erase enable, write data, write/erase disable */
681 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
682 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
684 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
686 /* Bit-bang cmds to write word to eeprom */
687 for(j
= 0; j
< 3; j
++) {
690 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
691 e100_write_flush(nic
); udelay(4);
693 for(i
= 31; i
>= 0; i
--) {
694 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
696 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
697 e100_write_flush(nic
); udelay(4);
699 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
700 e100_write_flush(nic
); udelay(4);
702 /* Wait 10 msec for cmd to complete */
706 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
707 e100_write_flush(nic
); udelay(4);
711 /* General technique stolen from the eepro100 driver - very clever */
712 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
719 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
722 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
723 e100_write_flush(nic
); udelay(4);
725 /* Bit-bang to read word from eeprom */
726 for(i
= 31; i
>= 0; i
--) {
727 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
728 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
729 e100_write_flush(nic
); udelay(4);
731 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
732 e100_write_flush(nic
); udelay(4);
734 /* Eeprom drives a dummy zero to EEDO after receiving
735 * complete address. Use this to adjust addr_len. */
736 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
737 if(!(ctrl
& eedo
) && i
> 16) {
738 *addr_len
-= (i
- 16);
742 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
746 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
747 e100_write_flush(nic
); udelay(4);
749 return cpu_to_le16(data
);
752 /* Load entire EEPROM image into driver cache and validate checksum */
753 static int e100_eeprom_load(struct nic
*nic
)
755 u16 addr
, addr_len
= 8, checksum
= 0;
757 /* Try reading with an 8-bit addr len to discover actual addr len */
758 e100_eeprom_read(nic
, &addr_len
, 0);
759 nic
->eeprom_wc
= 1 << addr_len
;
761 for(addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
762 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
763 if(addr
< nic
->eeprom_wc
- 1)
764 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
767 /* The checksum, stored in the last word, is calculated such that
768 * the sum of words should be 0xBABA */
769 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
770 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
771 if (!eeprom_bad_csum_allow
)
778 /* Save (portion of) driver EEPROM cache to device and update checksum */
779 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
781 u16 addr
, addr_len
= 8, checksum
= 0;
783 /* Try reading with an 8-bit addr len to discover actual addr len */
784 e100_eeprom_read(nic
, &addr_len
, 0);
785 nic
->eeprom_wc
= 1 << addr_len
;
787 if(start
+ count
>= nic
->eeprom_wc
)
790 for(addr
= start
; addr
< start
+ count
; addr
++)
791 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
793 /* The checksum, stored in the last word, is calculated such that
794 * the sum of words should be 0xBABA */
795 for(addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
796 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
797 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
798 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
799 nic
->eeprom
[nic
->eeprom_wc
- 1]);
804 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
805 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
806 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
812 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
814 /* Previous command is accepted when SCB clears */
815 for(i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
816 if(likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
819 if(unlikely(i
> E100_WAIT_SCB_FAST
))
822 if(unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
827 if(unlikely(cmd
!= cuc_resume
))
828 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
829 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
832 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
837 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
838 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
844 spin_lock_irqsave(&nic
->cb_lock
, flags
);
846 if(unlikely(!nic
->cbs_avail
)) {
852 nic
->cb_to_use
= cb
->next
;
856 if(unlikely(!nic
->cbs_avail
))
859 cb_prepare(nic
, cb
, skb
);
861 /* Order is important otherwise we'll be in a race with h/w:
862 * set S-bit in current first, then clear S-bit in previous. */
863 cb
->command
|= cpu_to_le16(cb_s
);
865 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
867 while(nic
->cb_to_send
!= nic
->cb_to_use
) {
868 if(unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
869 nic
->cb_to_send
->dma_addr
))) {
870 /* Ok, here's where things get sticky. It's
871 * possible that we can't schedule the command
872 * because the controller is too busy, so
873 * let's just queue the command and try again
874 * when another command is scheduled. */
877 schedule_work(&nic
->tx_timeout_task
);
881 nic
->cuc_cmd
= cuc_resume
;
882 nic
->cb_to_send
= nic
->cb_to_send
->next
;
887 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
892 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
900 * Stratus87247: we shouldn't be writing the MDI control
901 * register until the Ready bit shows True. Also, since
902 * manipulation of the MDI control registers is a multi-step
903 * procedure it should be done under lock.
905 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
906 for (i
= 100; i
; --i
) {
907 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
912 printk("e100.mdio_ctrl(%s) won't go Ready\n",
914 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
915 return 0; /* No way to indicate timeout error */
917 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
919 for (i
= 0; i
< 100; i
++) {
921 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
924 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
926 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
927 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
928 return (u16
)data_out
;
931 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
933 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
936 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
938 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
941 static void e100_get_defaults(struct nic
*nic
)
943 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
944 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
946 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
947 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
948 if(nic
->mac
== mac_unknown
)
949 nic
->mac
= mac_82557_D100_A
;
951 nic
->params
.rfds
= rfds
;
952 nic
->params
.cbs
= cbs
;
954 /* Quadwords to DMA into FIFO before starting frame transmit */
955 nic
->tx_threshold
= 0xE0;
957 /* no interrupt for every tx completion, delay = 256us if not 557 */
958 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
959 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
961 /* Template for a freshly allocated RFD */
962 nic
->blank_rfd
.command
= 0;
963 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
964 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
967 nic
->mii
.phy_id_mask
= 0x1F;
968 nic
->mii
.reg_num_mask
= 0x1F;
969 nic
->mii
.dev
= nic
->netdev
;
970 nic
->mii
.mdio_read
= mdio_read
;
971 nic
->mii
.mdio_write
= mdio_write
;
974 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
976 struct config
*config
= &cb
->u
.config
;
977 u8
*c
= (u8
*)config
;
979 cb
->command
= cpu_to_le16(cb_config
);
981 memset(config
, 0, sizeof(struct config
));
983 config
->byte_count
= 0x16; /* bytes in this struct */
984 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
985 config
->direct_rx_dma
= 0x1; /* reserved */
986 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
987 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
988 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
989 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
990 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
992 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
993 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
994 config
->ifs
= 0x6; /* x16 = inter frame spacing */
995 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
996 config
->pad15_1
= 0x1;
997 config
->pad15_2
= 0x1;
998 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
999 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1000 config
->tx_padding
= 0x1; /* 1=pad short frames */
1001 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1002 config
->pad18
= 0x1;
1003 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1004 config
->pad20_1
= 0x1F;
1005 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1006 config
->pad21_1
= 0x5;
1008 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1009 config
->loopback
= nic
->loopback
;
1011 if(nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1012 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1014 if(nic
->flags
& promiscuous
|| nic
->loopback
) {
1015 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1016 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1017 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1020 if(nic
->flags
& multicast_all
)
1021 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1023 /* disable WoL when up */
1024 if(netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1025 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1027 if(nic
->mac
>= mac_82558_D101_A4
) {
1028 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1029 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1030 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1031 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1032 if (nic
->mac
>= mac_82559_D101M
) {
1033 config
->tno_intr
= 0x1; /* TCO stats enable */
1034 /* Enable TCO in extended config */
1035 if (nic
->mac
>= mac_82551_10
) {
1036 config
->byte_count
= 0x20; /* extended bytes */
1037 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1040 config
->standard_stat_counter
= 0x0;
1044 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1045 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1046 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1047 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1048 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1049 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1052 /********************************************************/
1053 /* Micro code for 8086:1229 Rev 8 */
1054 /********************************************************/
1056 /* Parameter values for the D101M B-step */
1057 #define D101M_CPUSAVER_TIMER_DWORD 78
1058 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1059 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1061 #define D101M_B_RCVBUNDLE_UCODE \
1063 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1064 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1065 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1066 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1067 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1068 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1069 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1070 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1071 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1072 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1073 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1074 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1075 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1076 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1077 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1078 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1079 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1080 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1082 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1083 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1084 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1085 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1086 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1087 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1088 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1089 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1090 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1091 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1092 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1093 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1094 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1095 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1098 /********************************************************/
1099 /* Micro code for 8086:1229 Rev 9 */
1100 /********************************************************/
1102 /* Parameter values for the D101S */
1103 #define D101S_CPUSAVER_TIMER_DWORD 78
1104 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1105 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1107 #define D101S_RCVBUNDLE_UCODE \
1109 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1110 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1111 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1112 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1113 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1114 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1115 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1116 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1117 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1118 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1120 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1121 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1122 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1123 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1124 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1125 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1126 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1129 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1130 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1131 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1132 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1133 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1134 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1135 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1136 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1137 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1140 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1141 0x00041000, 0x00010004, 0x00380700 \
1144 /********************************************************/
1145 /* Micro code for the 8086:1229 Rev F/10 */
1146 /********************************************************/
1148 /* Parameter values for the D102 E-step */
1149 #define D102_E_CPUSAVER_TIMER_DWORD 42
1150 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1151 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1153 #define D102_E_RCVBUNDLE_UCODE \
1155 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1156 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1158 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1166 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1167 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1173 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1177 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1178 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1179 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1180 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1181 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1182 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1183 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1184 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1185 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1186 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1187 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1190 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1194 u32 ucode
[UCODE_SIZE
+ 1];
1200 { D101M_B_RCVBUNDLE_UCODE
,
1202 D101M_CPUSAVER_TIMER_DWORD
,
1203 D101M_CPUSAVER_BUNDLE_DWORD
,
1204 D101M_CPUSAVER_MIN_SIZE_DWORD
},
1205 { D101S_RCVBUNDLE_UCODE
,
1207 D101S_CPUSAVER_TIMER_DWORD
,
1208 D101S_CPUSAVER_BUNDLE_DWORD
,
1209 D101S_CPUSAVER_MIN_SIZE_DWORD
},
1210 { D102_E_RCVBUNDLE_UCODE
,
1212 D102_E_CPUSAVER_TIMER_DWORD
,
1213 D102_E_CPUSAVER_BUNDLE_DWORD
,
1214 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1215 { D102_E_RCVBUNDLE_UCODE
,
1217 D102_E_CPUSAVER_TIMER_DWORD
,
1218 D102_E_CPUSAVER_BUNDLE_DWORD
,
1219 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1224 /*************************************************************************
1225 * CPUSaver parameters
1227 * All CPUSaver parameters are 16-bit literals that are part of a
1228 * "move immediate value" instruction. By changing the value of
1229 * the literal in the instruction before the code is loaded, the
1230 * driver can change the algorithm.
1232 * INTDELAY - This loads the dead-man timer with its initial value.
1233 * When this timer expires the interrupt is asserted, and the
1234 * timer is reset each time a new packet is received. (see
1235 * BUNDLEMAX below to set the limit on number of chained packets)
1236 * The current default is 0x600 or 1536. Experiments show that
1237 * the value should probably stay within the 0x200 - 0x1000.
1240 * This sets the maximum number of frames that will be bundled. In
1241 * some situations, such as the TCP windowing algorithm, it may be
1242 * better to limit the growth of the bundle size than let it go as
1243 * high as it can, because that could cause too much added latency.
1244 * The default is six, because this is the number of packets in the
1245 * default TCP window size. A value of 1 would make CPUSaver indicate
1246 * an interrupt for every frame received. If you do not want to put
1247 * a limit on the bundle size, set this value to xFFFF.
1250 * This contains a bit-mask describing the minimum size frame that
1251 * will be bundled. The default masks the lower 7 bits, which means
1252 * that any frame less than 128 bytes in length will not be bundled,
1253 * but will instead immediately generate an interrupt. This does
1254 * not affect the current bundle in any way. Any frame that is 128
1255 * bytes or large will be bundled normally. This feature is meant
1256 * to provide immediate indication of ACK frames in a TCP environment.
1257 * Customers were seeing poor performance when a machine with CPUSaver
1258 * enabled was sending but not receiving. The delay introduced when
1259 * the ACKs were received was enough to reduce total throughput, because
1260 * the sender would sit idle until the ACK was finally seen.
1262 * The current default is 0xFF80, which masks out the lower 7 bits.
1263 * This means that any frame which is x7F (127) bytes or smaller
1264 * will cause an immediate interrupt. Because this value must be a
1265 * bit mask, there are only a few valid values that can be used. To
1266 * turn this feature off, the driver can write the value xFFFF to the
1267 * lower word of this instruction (in the same way that the other
1268 * parameters are used). Likewise, a value of 0xF800 (2047) would
1269 * cause an interrupt to be generated for every frame, because all
1270 * standard Ethernet frames are <= 2047 bytes in length.
1271 *************************************************************************/
1273 /* if you wish to disable the ucode functionality, while maintaining the
1274 * workarounds it provides, set the following defines to:
1279 #define BUNDLESMALL 1
1280 #define BUNDLEMAX (u16)6
1281 #define INTDELAY (u16)1536 /* 0x600 */
1283 /* do not load u-code for ICH devices */
1284 if (nic
->flags
& ich
)
1287 /* Search for ucode match against h/w revision */
1288 for (opts
= ucode_opts
; opts
->mac
; opts
++) {
1290 u32
*ucode
= opts
->ucode
;
1291 if (nic
->mac
!= opts
->mac
)
1294 /* Insert user-tunable settings */
1295 ucode
[opts
->timer_dword
] &= 0xFFFF0000;
1296 ucode
[opts
->timer_dword
] |= INTDELAY
;
1297 ucode
[opts
->bundle_dword
] &= 0xFFFF0000;
1298 ucode
[opts
->bundle_dword
] |= BUNDLEMAX
;
1299 ucode
[opts
->min_size_dword
] &= 0xFFFF0000;
1300 ucode
[opts
->min_size_dword
] |= (BUNDLESMALL
) ? 0xFFFF : 0xFF80;
1302 for (i
= 0; i
< UCODE_SIZE
; i
++)
1303 cb
->u
.ucode
[i
] = cpu_to_le32(ucode
[i
]);
1304 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1309 cb
->command
= cpu_to_le16(cb_nop
| cb_el
);
1312 static inline int e100_exec_cb_wait(struct nic
*nic
, struct sk_buff
*skb
,
1313 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
1315 int err
= 0, counter
= 50;
1316 struct cb
*cb
= nic
->cb_to_clean
;
1318 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_ucode
)))
1319 DPRINTK(PROBE
,ERR
, "ucode cmd failed with error %d\n", err
);
1321 /* must restart cuc */
1322 nic
->cuc_cmd
= cuc_start
;
1324 /* wait for completion */
1325 e100_write_flush(nic
);
1328 /* wait for possibly (ouch) 500ms */
1329 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1331 if (!--counter
) break;
1334 /* ack any interrupts, something could have been set */
1335 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1337 /* if the command failed, or is not OK, notify and return */
1338 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1339 DPRINTK(PROBE
,ERR
, "ucode load failed\n");
1346 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1347 struct sk_buff
*skb
)
1349 cb
->command
= cpu_to_le16(cb_iaaddr
);
1350 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1353 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1355 cb
->command
= cpu_to_le16(cb_dump
);
1356 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1357 offsetof(struct mem
, dump_buf
));
1360 #define NCONFIG_AUTO_SWITCH 0x0080
1361 #define MII_NSC_CONG MII_RESV1
1362 #define NSC_CONG_ENABLE 0x0100
1363 #define NSC_CONG_TXREADY 0x0400
1364 #define ADVERTISE_FC_SUPPORTED 0x0400
1365 static int e100_phy_init(struct nic
*nic
)
1367 struct net_device
*netdev
= nic
->netdev
;
1369 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1371 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1372 for(addr
= 0; addr
< 32; addr
++) {
1373 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1374 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1375 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1376 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1377 if(!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1380 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1384 /* Selected the phy and isolate the rest */
1385 for(addr
= 0; addr
< 32; addr
++) {
1386 if(addr
!= nic
->mii
.phy_id
) {
1387 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1389 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1390 mdio_write(netdev
, addr
, MII_BMCR
,
1391 bmcr
& ~BMCR_ISOLATE
);
1396 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1397 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1398 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1399 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1401 /* Handle National tx phys */
1402 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1403 if((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1404 /* Disable congestion control */
1405 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1406 cong
|= NSC_CONG_TXREADY
;
1407 cong
&= ~NSC_CONG_ENABLE
;
1408 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1411 if((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1412 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1413 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1414 /* enable/disable MDI/MDI-X auto-switching. */
1415 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1416 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1422 static int e100_hw_init(struct nic
*nic
)
1428 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1429 if(!in_interrupt() && (err
= e100_self_test(nic
)))
1432 if((err
= e100_phy_init(nic
)))
1434 if((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1436 if((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1438 if ((err
= e100_exec_cb_wait(nic
, NULL
, e100_setup_ucode
)))
1440 if((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1442 if((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1444 if((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1445 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1447 if((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1450 e100_disable_irq(nic
);
1455 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1457 struct net_device
*netdev
= nic
->netdev
;
1458 struct dev_mc_list
*list
= netdev
->mc_list
;
1459 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1461 cb
->command
= cpu_to_le16(cb_multi
);
1462 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1463 for(i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1464 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1468 static void e100_set_multicast_list(struct net_device
*netdev
)
1470 struct nic
*nic
= netdev_priv(netdev
);
1472 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1473 netdev
->mc_count
, netdev
->flags
);
1475 if(netdev
->flags
& IFF_PROMISC
)
1476 nic
->flags
|= promiscuous
;
1478 nic
->flags
&= ~promiscuous
;
1480 if(netdev
->flags
& IFF_ALLMULTI
||
1481 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1482 nic
->flags
|= multicast_all
;
1484 nic
->flags
&= ~multicast_all
;
1486 e100_exec_cb(nic
, NULL
, e100_configure
);
1487 e100_exec_cb(nic
, NULL
, e100_multi
);
1490 static void e100_update_stats(struct nic
*nic
)
1492 struct net_device
*dev
= nic
->netdev
;
1493 struct net_device_stats
*ns
= &dev
->stats
;
1494 struct stats
*s
= &nic
->mem
->stats
;
1495 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1496 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1499 /* Device's stats reporting may take several microseconds to
1500 * complete, so we're always waiting for results of the
1501 * previous command. */
1503 if(*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1505 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1506 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1507 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1508 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1509 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1510 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1511 ns
->collisions
+= nic
->tx_collisions
;
1512 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1513 le32_to_cpu(s
->tx_lost_crs
);
1514 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1515 nic
->rx_over_length_errors
;
1516 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1517 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1518 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1519 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1520 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1521 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1522 le32_to_cpu(s
->rx_alignment_errors
) +
1523 le32_to_cpu(s
->rx_short_frame_errors
) +
1524 le32_to_cpu(s
->rx_cdt_errors
);
1525 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1526 nic
->tx_single_collisions
+=
1527 le32_to_cpu(s
->tx_single_collisions
);
1528 nic
->tx_multiple_collisions
+=
1529 le32_to_cpu(s
->tx_multiple_collisions
);
1530 if(nic
->mac
>= mac_82558_D101_A4
) {
1531 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1532 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1533 nic
->rx_fc_unsupported
+=
1534 le32_to_cpu(s
->fc_rcv_unsupported
);
1535 if(nic
->mac
>= mac_82559_D101M
) {
1536 nic
->tx_tco_frames
+=
1537 le16_to_cpu(s
->xmt_tco_frames
);
1538 nic
->rx_tco_frames
+=
1539 le16_to_cpu(s
->rcv_tco_frames
);
1545 if(e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1546 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1549 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1551 /* Adjust inter-frame-spacing (IFS) between two transmits if
1552 * we're getting collisions on a half-duplex connection. */
1554 if(duplex
== DUPLEX_HALF
) {
1555 u32 prev
= nic
->adaptive_ifs
;
1556 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1558 if((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1559 (nic
->tx_frames
> min_frames
)) {
1560 if(nic
->adaptive_ifs
< 60)
1561 nic
->adaptive_ifs
+= 5;
1562 } else if (nic
->tx_frames
< min_frames
) {
1563 if(nic
->adaptive_ifs
>= 5)
1564 nic
->adaptive_ifs
-= 5;
1566 if(nic
->adaptive_ifs
!= prev
)
1567 e100_exec_cb(nic
, NULL
, e100_configure
);
1571 static void e100_watchdog(unsigned long data
)
1573 struct nic
*nic
= (struct nic
*)data
;
1574 struct ethtool_cmd cmd
;
1576 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1578 /* mii library handles link maintenance tasks */
1580 mii_ethtool_gset(&nic
->mii
, &cmd
);
1582 if(mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1583 DPRINTK(LINK
, INFO
, "link up, %sMbps, %s-duplex\n",
1584 cmd
.speed
== SPEED_100
? "100" : "10",
1585 cmd
.duplex
== DUPLEX_FULL
? "full" : "half");
1586 } else if(!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1587 DPRINTK(LINK
, INFO
, "link down\n");
1590 mii_check_link(&nic
->mii
);
1592 /* Software generated interrupt to recover from (rare) Rx
1593 * allocation failure.
1594 * Unfortunately have to use a spinlock to not re-enable interrupts
1595 * accidentally, due to hardware that shares a register between the
1596 * interrupt mask bit and the SW Interrupt generation bit */
1597 spin_lock_irq(&nic
->cmd_lock
);
1598 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1599 e100_write_flush(nic
);
1600 spin_unlock_irq(&nic
->cmd_lock
);
1602 e100_update_stats(nic
);
1603 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1605 if(nic
->mac
<= mac_82557_D100_C
)
1606 /* Issue a multicast command to workaround a 557 lock up */
1607 e100_set_multicast_list(nic
->netdev
);
1609 if(nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1610 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1611 nic
->flags
|= ich_10h_workaround
;
1613 nic
->flags
&= ~ich_10h_workaround
;
1615 mod_timer(&nic
->watchdog
,
1616 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1619 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1620 struct sk_buff
*skb
)
1622 cb
->command
= nic
->tx_command
;
1623 /* interrupt every 16 packets regardless of delay */
1624 if((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1625 cb
->command
|= cpu_to_le16(cb_i
);
1626 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1627 cb
->u
.tcb
.tcb_byte_count
= 0;
1628 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1629 cb
->u
.tcb
.tbd_count
= 1;
1630 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1631 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1632 /* check for mapping failure? */
1633 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1636 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1638 struct nic
*nic
= netdev_priv(netdev
);
1641 if(nic
->flags
& ich_10h_workaround
) {
1642 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1643 Issue a NOP command followed by a 1us delay before
1644 issuing the Tx command. */
1645 if(e100_exec_cmd(nic
, cuc_nop
, 0))
1646 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1650 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1654 /* We queued the skb, but now we're out of space. */
1655 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1656 netif_stop_queue(netdev
);
1659 /* This is a hard error - log it. */
1660 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1661 netif_stop_queue(netdev
);
1665 netdev
->trans_start
= jiffies
;
1669 static int e100_tx_clean(struct nic
*nic
)
1671 struct net_device
*dev
= nic
->netdev
;
1675 spin_lock(&nic
->cb_lock
);
1677 /* Clean CBs marked complete */
1678 for(cb
= nic
->cb_to_clean
;
1679 cb
->status
& cpu_to_le16(cb_complete
);
1680 cb
= nic
->cb_to_clean
= cb
->next
) {
1681 DPRINTK(TX_DONE
, DEBUG
, "cb[%d]->status = 0x%04X\n",
1682 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1685 if(likely(cb
->skb
!= NULL
)) {
1686 dev
->stats
.tx_packets
++;
1687 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1689 pci_unmap_single(nic
->pdev
,
1690 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1691 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1693 dev_kfree_skb_any(cb
->skb
);
1701 spin_unlock(&nic
->cb_lock
);
1703 /* Recover from running out of Tx resources in xmit_frame */
1704 if(unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1705 netif_wake_queue(nic
->netdev
);
1710 static void e100_clean_cbs(struct nic
*nic
)
1713 while(nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1714 struct cb
*cb
= nic
->cb_to_clean
;
1716 pci_unmap_single(nic
->pdev
,
1717 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1718 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1720 dev_kfree_skb(cb
->skb
);
1722 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1725 pci_free_consistent(nic
->pdev
,
1726 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1727 nic
->cbs
, nic
->cbs_dma_addr
);
1731 nic
->cuc_cmd
= cuc_start
;
1732 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1736 static int e100_alloc_cbs(struct nic
*nic
)
1739 unsigned int i
, count
= nic
->params
.cbs
.count
;
1741 nic
->cuc_cmd
= cuc_start
;
1742 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1745 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1746 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1750 for(cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1751 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1752 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1754 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1755 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1756 ((i
+1) % count
) * sizeof(struct cb
));
1760 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1761 nic
->cbs_avail
= count
;
1766 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1768 if(!nic
->rxs
) return;
1769 if(RU_SUSPENDED
!= nic
->ru_running
) return;
1771 /* handle init time starts */
1772 if(!rx
) rx
= nic
->rxs
;
1774 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1776 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1777 nic
->ru_running
= RU_RUNNING
;
1781 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1782 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1784 if(!(rx
->skb
= netdev_alloc_skb(nic
->netdev
, RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1787 /* Align, init, and map the RFD. */
1788 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1789 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1790 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1791 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1793 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1794 dev_kfree_skb_any(rx
->skb
);
1800 /* Link the RFD to end of RFA by linking previous RFD to
1801 * this one. We are safe to touch the previous RFD because
1802 * it is protected by the before last buffer's el bit being set */
1803 if (rx
->prev
->skb
) {
1804 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1805 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1806 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1807 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1813 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1814 unsigned int *work_done
, unsigned int work_to_do
)
1816 struct net_device
*dev
= nic
->netdev
;
1817 struct sk_buff
*skb
= rx
->skb
;
1818 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1819 u16 rfd_status
, actual_size
;
1821 if(unlikely(work_done
&& *work_done
>= work_to_do
))
1824 /* Need to sync before taking a peek at cb_complete bit */
1825 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1826 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1827 rfd_status
= le16_to_cpu(rfd
->status
);
1829 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1831 /* If data isn't ready, nothing to indicate */
1832 if (unlikely(!(rfd_status
& cb_complete
))) {
1833 /* If the next buffer has the el bit, but we think the receiver
1834 * is still running, check to see if it really stopped while
1835 * we had interrupts off.
1836 * This allows for a fast restart without re-enabling
1838 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1839 (RU_RUNNING
== nic
->ru_running
))
1841 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1842 nic
->ru_running
= RU_SUSPENDED
;
1846 /* Get actual data size */
1847 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1848 if(unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1849 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1852 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1853 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1855 /* If this buffer has the el bit, but we think the receiver
1856 * is still running, check to see if it really stopped while
1857 * we had interrupts off.
1858 * This allows for a fast restart without re-enabling interrupts.
1859 * This can happen when the RU sees the size change but also sees
1860 * the el bit set. */
1861 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1862 (RU_RUNNING
== nic
->ru_running
)) {
1864 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1865 nic
->ru_running
= RU_SUSPENDED
;
1868 /* Pull off the RFD and put the actual data (minus eth hdr) */
1869 skb_reserve(skb
, sizeof(struct rfd
));
1870 skb_put(skb
, actual_size
);
1871 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1873 if(unlikely(!(rfd_status
& cb_ok
))) {
1874 /* Don't indicate if hardware indicates errors */
1875 dev_kfree_skb_any(skb
);
1876 } else if(actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1877 /* Don't indicate oversized frames */
1878 nic
->rx_over_length_errors
++;
1879 dev_kfree_skb_any(skb
);
1881 dev
->stats
.rx_packets
++;
1882 dev
->stats
.rx_bytes
+= actual_size
;
1883 nic
->netdev
->last_rx
= jiffies
;
1884 netif_receive_skb(skb
);
1894 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1895 unsigned int work_to_do
)
1898 int restart_required
= 0, err
= 0;
1899 struct rx
*old_before_last_rx
, *new_before_last_rx
;
1900 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
1902 /* Indicate newly arrived packets */
1903 for(rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1904 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1905 /* Hit quota or no more to clean */
1906 if (-EAGAIN
== err
|| -ENODATA
== err
)
1911 /* On EAGAIN, hit quota so have more work to do, restart once
1912 * cleanup is complete.
1913 * Else, are we already rnr? then pay attention!!! this ensures that
1914 * the state machine progression never allows a start with a
1915 * partially cleaned list, avoiding a race between hardware
1916 * and rx_to_clean when in NAPI mode */
1917 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
1918 restart_required
= 1;
1920 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1921 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
1923 /* Alloc new skbs to refill list */
1924 for(rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1925 if(unlikely(e100_rx_alloc_skb(nic
, rx
)))
1926 break; /* Better luck next time (see watchdog) */
1929 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1930 if (new_before_last_rx
!= old_before_last_rx
) {
1931 /* Set the el-bit on the buffer that is before the last buffer.
1932 * This lets us update the next pointer on the last buffer
1933 * without worrying about hardware touching it.
1934 * We set the size to 0 to prevent hardware from touching this
1936 * When the hardware hits the before last buffer with el-bit
1937 * and size of 0, it will RNR interrupt, the RUS will go into
1938 * the No Resources state. It will not complete nor write to
1940 new_before_last_rfd
=
1941 (struct rfd
*)new_before_last_rx
->skb
->data
;
1942 new_before_last_rfd
->size
= 0;
1943 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
1944 pci_dma_sync_single_for_device(nic
->pdev
,
1945 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1946 PCI_DMA_BIDIRECTIONAL
);
1948 /* Now that we have a new stopping point, we can clear the old
1949 * stopping point. We must sync twice to get the proper
1950 * ordering on the hardware side of things. */
1951 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
1952 pci_dma_sync_single_for_device(nic
->pdev
,
1953 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1954 PCI_DMA_BIDIRECTIONAL
);
1955 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
1956 pci_dma_sync_single_for_device(nic
->pdev
,
1957 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1958 PCI_DMA_BIDIRECTIONAL
);
1961 if(restart_required
) {
1963 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1964 e100_start_receiver(nic
, nic
->rx_to_clean
);
1970 static void e100_rx_clean_list(struct nic
*nic
)
1973 unsigned int i
, count
= nic
->params
.rfds
.count
;
1975 nic
->ru_running
= RU_UNINITIALIZED
;
1978 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1980 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1981 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1982 dev_kfree_skb(rx
->skb
);
1989 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1992 static int e100_rx_alloc_list(struct nic
*nic
)
1995 unsigned int i
, count
= nic
->params
.rfds
.count
;
1996 struct rfd
*before_last
;
1998 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1999 nic
->ru_running
= RU_UNINITIALIZED
;
2001 if(!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
2004 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2005 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
2006 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
2007 if(e100_rx_alloc_skb(nic
, rx
)) {
2008 e100_rx_clean_list(nic
);
2012 /* Set the el-bit on the buffer that is before the last buffer.
2013 * This lets us update the next pointer on the last buffer without
2014 * worrying about hardware touching it.
2015 * We set the size to 0 to prevent hardware from touching this buffer.
2016 * When the hardware hits the before last buffer with el-bit and size
2017 * of 0, it will RNR interrupt, the RU will go into the No Resources
2018 * state. It will not complete nor write to this buffer. */
2019 rx
= nic
->rxs
->prev
->prev
;
2020 before_last
= (struct rfd
*)rx
->skb
->data
;
2021 before_last
->command
|= cpu_to_le16(cb_el
);
2022 before_last
->size
= 0;
2023 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
2024 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
2026 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
2027 nic
->ru_running
= RU_SUSPENDED
;
2032 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
2034 struct net_device
*netdev
= dev_id
;
2035 struct nic
*nic
= netdev_priv(netdev
);
2036 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
2038 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
2040 if(stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
2041 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
2044 /* Ack interrupt(s) */
2045 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
2047 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2048 if(stat_ack
& stat_ack_rnr
)
2049 nic
->ru_running
= RU_SUSPENDED
;
2051 if(likely(netif_rx_schedule_prep(netdev
, &nic
->napi
))) {
2052 e100_disable_irq(nic
);
2053 __netif_rx_schedule(netdev
, &nic
->napi
);
2059 static int e100_poll(struct napi_struct
*napi
, int budget
)
2061 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
2062 struct net_device
*netdev
= nic
->netdev
;
2063 unsigned int work_done
= 0;
2065 e100_rx_clean(nic
, &work_done
, budget
);
2068 /* If budget not fully consumed, exit the polling mode */
2069 if (work_done
< budget
) {
2070 netif_rx_complete(netdev
, napi
);
2071 e100_enable_irq(nic
);
2077 #ifdef CONFIG_NET_POLL_CONTROLLER
2078 static void e100_netpoll(struct net_device
*netdev
)
2080 struct nic
*nic
= netdev_priv(netdev
);
2082 e100_disable_irq(nic
);
2083 e100_intr(nic
->pdev
->irq
, netdev
);
2085 e100_enable_irq(nic
);
2089 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2091 struct nic
*nic
= netdev_priv(netdev
);
2092 struct sockaddr
*addr
= p
;
2094 if (!is_valid_ether_addr(addr
->sa_data
))
2095 return -EADDRNOTAVAIL
;
2097 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2098 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2103 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2105 if(new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2107 netdev
->mtu
= new_mtu
;
2111 static int e100_asf(struct nic
*nic
)
2113 /* ASF can be enabled from eeprom */
2114 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2115 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2116 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2117 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
2120 static int e100_up(struct nic
*nic
)
2124 if((err
= e100_rx_alloc_list(nic
)))
2126 if((err
= e100_alloc_cbs(nic
)))
2127 goto err_rx_clean_list
;
2128 if((err
= e100_hw_init(nic
)))
2130 e100_set_multicast_list(nic
->netdev
);
2131 e100_start_receiver(nic
, NULL
);
2132 mod_timer(&nic
->watchdog
, jiffies
);
2133 if((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2134 nic
->netdev
->name
, nic
->netdev
)))
2136 netif_wake_queue(nic
->netdev
);
2137 napi_enable(&nic
->napi
);
2138 /* enable ints _after_ enabling poll, preventing a race between
2139 * disable ints+schedule */
2140 e100_enable_irq(nic
);
2144 del_timer_sync(&nic
->watchdog
);
2146 e100_clean_cbs(nic
);
2148 e100_rx_clean_list(nic
);
2152 static void e100_down(struct nic
*nic
)
2154 /* wait here for poll to complete */
2155 napi_disable(&nic
->napi
);
2156 netif_stop_queue(nic
->netdev
);
2158 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2159 del_timer_sync(&nic
->watchdog
);
2160 netif_carrier_off(nic
->netdev
);
2161 e100_clean_cbs(nic
);
2162 e100_rx_clean_list(nic
);
2165 static void e100_tx_timeout(struct net_device
*netdev
)
2167 struct nic
*nic
= netdev_priv(netdev
);
2169 /* Reset outside of interrupt context, to avoid request_irq
2170 * in interrupt context */
2171 schedule_work(&nic
->tx_timeout_task
);
2174 static void e100_tx_timeout_task(struct work_struct
*work
)
2176 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2177 struct net_device
*netdev
= nic
->netdev
;
2179 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2180 ioread8(&nic
->csr
->scb
.status
));
2181 e100_down(netdev_priv(netdev
));
2182 e100_up(netdev_priv(netdev
));
2185 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2188 struct sk_buff
*skb
;
2190 /* Use driver resources to perform internal MAC or PHY
2191 * loopback test. A single packet is prepared and transmitted
2192 * in loopback mode, and the test passes if the received
2193 * packet compares byte-for-byte to the transmitted packet. */
2195 if((err
= e100_rx_alloc_list(nic
)))
2197 if((err
= e100_alloc_cbs(nic
)))
2200 /* ICH PHY loopback is broken so do MAC loopback instead */
2201 if(nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2202 loopback_mode
= lb_mac
;
2204 nic
->loopback
= loopback_mode
;
2205 if((err
= e100_hw_init(nic
)))
2206 goto err_loopback_none
;
2208 if(loopback_mode
== lb_phy
)
2209 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2212 e100_start_receiver(nic
, NULL
);
2214 if(!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2216 goto err_loopback_none
;
2218 skb_put(skb
, ETH_DATA_LEN
);
2219 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2220 e100_xmit_frame(skb
, nic
->netdev
);
2224 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2225 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2227 if(memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2228 skb
->data
, ETH_DATA_LEN
))
2232 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2233 nic
->loopback
= lb_none
;
2234 e100_clean_cbs(nic
);
2237 e100_rx_clean_list(nic
);
2241 #define MII_LED_CONTROL 0x1B
2242 static void e100_blink_led(unsigned long data
)
2244 struct nic
*nic
= (struct nic
*)data
;
2252 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2253 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2254 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
2255 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2258 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2260 struct nic
*nic
= netdev_priv(netdev
);
2261 return mii_ethtool_gset(&nic
->mii
, cmd
);
2264 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2266 struct nic
*nic
= netdev_priv(netdev
);
2269 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2270 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2271 e100_exec_cb(nic
, NULL
, e100_configure
);
2276 static void e100_get_drvinfo(struct net_device
*netdev
,
2277 struct ethtool_drvinfo
*info
)
2279 struct nic
*nic
= netdev_priv(netdev
);
2280 strcpy(info
->driver
, DRV_NAME
);
2281 strcpy(info
->version
, DRV_VERSION
);
2282 strcpy(info
->fw_version
, "N/A");
2283 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2286 #define E100_PHY_REGS 0x1C
2287 static int e100_get_regs_len(struct net_device
*netdev
)
2289 struct nic
*nic
= netdev_priv(netdev
);
2290 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2293 static void e100_get_regs(struct net_device
*netdev
,
2294 struct ethtool_regs
*regs
, void *p
)
2296 struct nic
*nic
= netdev_priv(netdev
);
2300 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2301 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2302 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2303 ioread16(&nic
->csr
->scb
.status
);
2304 for(i
= E100_PHY_REGS
; i
>= 0; i
--)
2305 buff
[1 + E100_PHY_REGS
- i
] =
2306 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2307 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2308 e100_exec_cb(nic
, NULL
, e100_dump
);
2310 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2311 sizeof(nic
->mem
->dump_buf
));
2314 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2316 struct nic
*nic
= netdev_priv(netdev
);
2317 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2318 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2321 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2323 struct nic
*nic
= netdev_priv(netdev
);
2325 if(wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
2329 nic
->flags
|= wol_magic
;
2331 nic
->flags
&= ~wol_magic
;
2333 e100_exec_cb(nic
, NULL
, e100_configure
);
2338 static u32
e100_get_msglevel(struct net_device
*netdev
)
2340 struct nic
*nic
= netdev_priv(netdev
);
2341 return nic
->msg_enable
;
2344 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2346 struct nic
*nic
= netdev_priv(netdev
);
2347 nic
->msg_enable
= value
;
2350 static int e100_nway_reset(struct net_device
*netdev
)
2352 struct nic
*nic
= netdev_priv(netdev
);
2353 return mii_nway_restart(&nic
->mii
);
2356 static u32
e100_get_link(struct net_device
*netdev
)
2358 struct nic
*nic
= netdev_priv(netdev
);
2359 return mii_link_ok(&nic
->mii
);
2362 static int e100_get_eeprom_len(struct net_device
*netdev
)
2364 struct nic
*nic
= netdev_priv(netdev
);
2365 return nic
->eeprom_wc
<< 1;
2368 #define E100_EEPROM_MAGIC 0x1234
2369 static int e100_get_eeprom(struct net_device
*netdev
,
2370 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2372 struct nic
*nic
= netdev_priv(netdev
);
2374 eeprom
->magic
= E100_EEPROM_MAGIC
;
2375 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2380 static int e100_set_eeprom(struct net_device
*netdev
,
2381 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2383 struct nic
*nic
= netdev_priv(netdev
);
2385 if(eeprom
->magic
!= E100_EEPROM_MAGIC
)
2388 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2390 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2391 (eeprom
->len
>> 1) + 1);
2394 static void e100_get_ringparam(struct net_device
*netdev
,
2395 struct ethtool_ringparam
*ring
)
2397 struct nic
*nic
= netdev_priv(netdev
);
2398 struct param_range
*rfds
= &nic
->params
.rfds
;
2399 struct param_range
*cbs
= &nic
->params
.cbs
;
2401 ring
->rx_max_pending
= rfds
->max
;
2402 ring
->tx_max_pending
= cbs
->max
;
2403 ring
->rx_mini_max_pending
= 0;
2404 ring
->rx_jumbo_max_pending
= 0;
2405 ring
->rx_pending
= rfds
->count
;
2406 ring
->tx_pending
= cbs
->count
;
2407 ring
->rx_mini_pending
= 0;
2408 ring
->rx_jumbo_pending
= 0;
2411 static int e100_set_ringparam(struct net_device
*netdev
,
2412 struct ethtool_ringparam
*ring
)
2414 struct nic
*nic
= netdev_priv(netdev
);
2415 struct param_range
*rfds
= &nic
->params
.rfds
;
2416 struct param_range
*cbs
= &nic
->params
.cbs
;
2418 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2421 if(netif_running(netdev
))
2423 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2424 rfds
->count
= min(rfds
->count
, rfds
->max
);
2425 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2426 cbs
->count
= min(cbs
->count
, cbs
->max
);
2427 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2428 rfds
->count
, cbs
->count
);
2429 if(netif_running(netdev
))
2435 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2436 "Link test (on/offline)",
2437 "Eeprom test (on/offline)",
2438 "Self test (offline)",
2439 "Mac loopback (offline)",
2440 "Phy loopback (offline)",
2442 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2444 static void e100_diag_test(struct net_device
*netdev
,
2445 struct ethtool_test
*test
, u64
*data
)
2447 struct ethtool_cmd cmd
;
2448 struct nic
*nic
= netdev_priv(netdev
);
2451 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2452 data
[0] = !mii_link_ok(&nic
->mii
);
2453 data
[1] = e100_eeprom_load(nic
);
2454 if(test
->flags
& ETH_TEST_FL_OFFLINE
) {
2456 /* save speed, duplex & autoneg settings */
2457 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2459 if(netif_running(netdev
))
2461 data
[2] = e100_self_test(nic
);
2462 data
[3] = e100_loopback_test(nic
, lb_mac
);
2463 data
[4] = e100_loopback_test(nic
, lb_phy
);
2465 /* restore speed, duplex & autoneg settings */
2466 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2468 if(netif_running(netdev
))
2471 for(i
= 0; i
< E100_TEST_LEN
; i
++)
2472 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2474 msleep_interruptible(4 * 1000);
2477 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2479 struct nic
*nic
= netdev_priv(netdev
);
2481 if(!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2482 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2483 mod_timer(&nic
->blink_timer
, jiffies
);
2484 msleep_interruptible(data
* 1000);
2485 del_timer_sync(&nic
->blink_timer
);
2486 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2491 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2492 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2493 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2494 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2495 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2496 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2497 "tx_heartbeat_errors", "tx_window_errors",
2498 /* device-specific stats */
2499 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2500 "tx_flow_control_pause", "rx_flow_control_pause",
2501 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2503 #define E100_NET_STATS_LEN 21
2504 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2506 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2510 return E100_TEST_LEN
;
2512 return E100_STATS_LEN
;
2518 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2519 struct ethtool_stats
*stats
, u64
*data
)
2521 struct nic
*nic
= netdev_priv(netdev
);
2524 for(i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2525 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2527 data
[i
++] = nic
->tx_deferred
;
2528 data
[i
++] = nic
->tx_single_collisions
;
2529 data
[i
++] = nic
->tx_multiple_collisions
;
2530 data
[i
++] = nic
->tx_fc_pause
;
2531 data
[i
++] = nic
->rx_fc_pause
;
2532 data
[i
++] = nic
->rx_fc_unsupported
;
2533 data
[i
++] = nic
->tx_tco_frames
;
2534 data
[i
++] = nic
->rx_tco_frames
;
2537 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2541 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2544 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2549 static const struct ethtool_ops e100_ethtool_ops
= {
2550 .get_settings
= e100_get_settings
,
2551 .set_settings
= e100_set_settings
,
2552 .get_drvinfo
= e100_get_drvinfo
,
2553 .get_regs_len
= e100_get_regs_len
,
2554 .get_regs
= e100_get_regs
,
2555 .get_wol
= e100_get_wol
,
2556 .set_wol
= e100_set_wol
,
2557 .get_msglevel
= e100_get_msglevel
,
2558 .set_msglevel
= e100_set_msglevel
,
2559 .nway_reset
= e100_nway_reset
,
2560 .get_link
= e100_get_link
,
2561 .get_eeprom_len
= e100_get_eeprom_len
,
2562 .get_eeprom
= e100_get_eeprom
,
2563 .set_eeprom
= e100_set_eeprom
,
2564 .get_ringparam
= e100_get_ringparam
,
2565 .set_ringparam
= e100_set_ringparam
,
2566 .self_test
= e100_diag_test
,
2567 .get_strings
= e100_get_strings
,
2568 .phys_id
= e100_phys_id
,
2569 .get_ethtool_stats
= e100_get_ethtool_stats
,
2570 .get_sset_count
= e100_get_sset_count
,
2573 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2575 struct nic
*nic
= netdev_priv(netdev
);
2577 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2580 static int e100_alloc(struct nic
*nic
)
2582 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2584 return nic
->mem
? 0 : -ENOMEM
;
2587 static void e100_free(struct nic
*nic
)
2590 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2591 nic
->mem
, nic
->dma_addr
);
2596 static int e100_open(struct net_device
*netdev
)
2598 struct nic
*nic
= netdev_priv(netdev
);
2601 netif_carrier_off(netdev
);
2602 if((err
= e100_up(nic
)))
2603 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2607 static int e100_close(struct net_device
*netdev
)
2609 e100_down(netdev_priv(netdev
));
2613 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2614 const struct pci_device_id
*ent
)
2616 struct net_device
*netdev
;
2619 DECLARE_MAC_BUF(mac
);
2621 if(!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2622 if(((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2623 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2627 netdev
->open
= e100_open
;
2628 netdev
->stop
= e100_close
;
2629 netdev
->hard_start_xmit
= e100_xmit_frame
;
2630 netdev
->set_multicast_list
= e100_set_multicast_list
;
2631 netdev
->set_mac_address
= e100_set_mac_address
;
2632 netdev
->change_mtu
= e100_change_mtu
;
2633 netdev
->do_ioctl
= e100_do_ioctl
;
2634 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2635 netdev
->tx_timeout
= e100_tx_timeout
;
2636 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2637 #ifdef CONFIG_NET_POLL_CONTROLLER
2638 netdev
->poll_controller
= e100_netpoll
;
2640 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2642 nic
= netdev_priv(netdev
);
2643 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2644 nic
->netdev
= netdev
;
2646 nic
->msg_enable
= (1 << debug
) - 1;
2647 pci_set_drvdata(pdev
, netdev
);
2649 if((err
= pci_enable_device(pdev
))) {
2650 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2651 goto err_out_free_dev
;
2654 if(!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2655 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2656 "base address, aborting.\n");
2658 goto err_out_disable_pdev
;
2661 if((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2662 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2663 goto err_out_disable_pdev
;
2666 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2667 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2668 goto err_out_free_res
;
2671 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2674 DPRINTK(PROBE
, INFO
, "using i/o access mode\n");
2676 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2678 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2680 goto err_out_free_res
;
2683 if(ent
->driver_data
)
2688 e100_get_defaults(nic
);
2690 /* locks must be initialized before calling hw_reset */
2691 spin_lock_init(&nic
->cb_lock
);
2692 spin_lock_init(&nic
->cmd_lock
);
2693 spin_lock_init(&nic
->mdio_lock
);
2695 /* Reset the device before pci_set_master() in case device is in some
2696 * funky state and has an interrupt pending - hint: we don't have the
2697 * interrupt handler registered yet. */
2700 pci_set_master(pdev
);
2702 init_timer(&nic
->watchdog
);
2703 nic
->watchdog
.function
= e100_watchdog
;
2704 nic
->watchdog
.data
= (unsigned long)nic
;
2705 init_timer(&nic
->blink_timer
);
2706 nic
->blink_timer
.function
= e100_blink_led
;
2707 nic
->blink_timer
.data
= (unsigned long)nic
;
2709 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2711 if((err
= e100_alloc(nic
))) {
2712 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2713 goto err_out_iounmap
;
2716 if((err
= e100_eeprom_load(nic
)))
2721 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2722 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2723 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2724 if (!eeprom_bad_csum_allow
) {
2725 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2726 "EEPROM, aborting.\n");
2730 DPRINTK(PROBE
, ERR
, "Invalid MAC address from EEPROM, "
2731 "you MUST configure one.\n");
2735 /* Wol magic packet can be enabled from eeprom */
2736 if((nic
->mac
>= mac_82558_D101_A4
) &&
2737 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
))
2738 nic
->flags
|= wol_magic
;
2740 /* ack any pending wake events, disable PME */
2741 pci_pme_active(pdev
, false);
2743 strcpy(netdev
->name
, "eth%d");
2744 if((err
= register_netdev(netdev
))) {
2745 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2749 DPRINTK(PROBE
, INFO
, "addr 0x%llx, irq %d, MAC addr %s\n",
2750 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2751 pdev
->irq
, print_mac(mac
, netdev
->dev_addr
));
2758 pci_iounmap(pdev
, nic
->csr
);
2760 pci_release_regions(pdev
);
2761 err_out_disable_pdev
:
2762 pci_disable_device(pdev
);
2764 pci_set_drvdata(pdev
, NULL
);
2765 free_netdev(netdev
);
2769 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2771 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2774 struct nic
*nic
= netdev_priv(netdev
);
2775 unregister_netdev(netdev
);
2777 pci_iounmap(pdev
, nic
->csr
);
2778 free_netdev(netdev
);
2779 pci_release_regions(pdev
);
2780 pci_disable_device(pdev
);
2781 pci_set_drvdata(pdev
, NULL
);
2785 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2787 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2788 struct nic
*nic
= netdev_priv(netdev
);
2790 if (netif_running(netdev
))
2792 netif_device_detach(netdev
);
2794 pci_save_state(pdev
);
2796 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2797 pci_enable_wake(pdev
, PCI_D3hot
, 1);
2798 pci_enable_wake(pdev
, PCI_D3cold
, 1);
2800 pci_enable_wake(pdev
, PCI_D3hot
, 0);
2801 pci_enable_wake(pdev
, PCI_D3cold
, 0);
2804 pci_disable_device(pdev
);
2805 pci_set_power_state(pdev
, PCI_D3hot
);
2811 static int e100_resume(struct pci_dev
*pdev
)
2813 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2814 struct nic
*nic
= netdev_priv(netdev
);
2816 pci_set_power_state(pdev
, PCI_D0
);
2817 pci_restore_state(pdev
);
2818 /* ack any pending wake events, disable PME */
2819 pci_enable_wake(pdev
, 0, 0);
2821 netif_device_attach(netdev
);
2822 if (netif_running(netdev
))
2827 #endif /* CONFIG_PM */
2829 static void e100_shutdown(struct pci_dev
*pdev
)
2831 e100_suspend(pdev
, PMSG_SUSPEND
);
2834 /* ------------------ PCI Error Recovery infrastructure -------------- */
2836 * e100_io_error_detected - called when PCI error is detected.
2837 * @pdev: Pointer to PCI device
2838 * @state: The current pci connection state
2840 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
2842 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2843 struct nic
*nic
= netdev_priv(netdev
);
2845 /* Similar to calling e100_down(), but avoids adapter I/O. */
2846 netdev
->stop(netdev
);
2848 /* Detach; put netif into a state similar to hotplug unplug. */
2849 napi_enable(&nic
->napi
);
2850 netif_device_detach(netdev
);
2851 pci_disable_device(pdev
);
2853 /* Request a slot reset. */
2854 return PCI_ERS_RESULT_NEED_RESET
;
2858 * e100_io_slot_reset - called after the pci bus has been reset.
2859 * @pdev: Pointer to PCI device
2861 * Restart the card from scratch.
2863 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
2865 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2866 struct nic
*nic
= netdev_priv(netdev
);
2868 if (pci_enable_device(pdev
)) {
2869 printk(KERN_ERR
"e100: Cannot re-enable PCI device after reset.\n");
2870 return PCI_ERS_RESULT_DISCONNECT
;
2872 pci_set_master(pdev
);
2874 /* Only one device per card can do a reset */
2875 if (0 != PCI_FUNC(pdev
->devfn
))
2876 return PCI_ERS_RESULT_RECOVERED
;
2880 return PCI_ERS_RESULT_RECOVERED
;
2884 * e100_io_resume - resume normal operations
2885 * @pdev: Pointer to PCI device
2887 * Resume normal operations after an error recovery
2888 * sequence has been completed.
2890 static void e100_io_resume(struct pci_dev
*pdev
)
2892 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2893 struct nic
*nic
= netdev_priv(netdev
);
2895 /* ack any pending wake events, disable PME */
2896 pci_enable_wake(pdev
, 0, 0);
2898 netif_device_attach(netdev
);
2899 if (netif_running(netdev
)) {
2901 mod_timer(&nic
->watchdog
, jiffies
);
2905 static struct pci_error_handlers e100_err_handler
= {
2906 .error_detected
= e100_io_error_detected
,
2907 .slot_reset
= e100_io_slot_reset
,
2908 .resume
= e100_io_resume
,
2911 static struct pci_driver e100_driver
= {
2913 .id_table
= e100_id_table
,
2914 .probe
= e100_probe
,
2915 .remove
= __devexit_p(e100_remove
),
2917 /* Power Management hooks */
2918 .suspend
= e100_suspend
,
2919 .resume
= e100_resume
,
2921 .shutdown
= e100_shutdown
,
2922 .err_handler
= &e100_err_handler
,
2925 static int __init
e100_init_module(void)
2927 if(((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2928 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2929 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2931 return pci_register_driver(&e100_driver
);
2934 static void __exit
e100_cleanup_module(void)
2936 pci_unregister_driver(&e100_driver
);
2939 module_init(e100_init_module
);
2940 module_exit(e100_cleanup_module
);