2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
70 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
71 #include <linux/if_vlan.h>
75 #include <linux/ethtool.h>
81 #include <asm/system.h>
84 #include <asm/byteorder.h>
85 #include <asm/uaccess.h>
88 #define DRV_NAME "acenic"
92 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
93 #define ACE_IS_TIGON_I(ap) 0
94 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
96 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
97 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
100 #ifndef PCI_VENDOR_ID_ALTEON
101 #define PCI_VENDOR_ID_ALTEON 0x12ae
103 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
107 #ifndef PCI_DEVICE_ID_3COM_3C985
108 #define PCI_DEVICE_ID_3COM_3C985 0x0001
110 #ifndef PCI_VENDOR_ID_NETGEAR
111 #define PCI_VENDOR_ID_NETGEAR 0x1385
112 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
114 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
115 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
120 * Farallon used the DEC vendor ID by mistake and they seem not
123 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
124 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
126 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
127 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
129 #ifndef PCI_VENDOR_ID_SGI
130 #define PCI_VENDOR_ID_SGI 0x10a9
132 #ifndef PCI_DEVICE_ID_SGI_ACENIC
133 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
136 static struct pci_device_id acenic_pci_tbl
[] = {
137 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
138 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
139 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
140 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
141 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
142 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
143 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
144 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
146 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
148 * Farallon used the DEC vendor ID on their cards incorrectly,
149 * then later Alteon's ID.
151 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
152 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
153 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
154 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
155 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
156 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
159 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
161 #define ace_sync_irq(irq) synchronize_irq(irq)
163 #ifndef offset_in_page
164 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
167 #define ACE_MAX_MOD_PARMS 8
168 #define BOARD_IDX_STATIC 0
169 #define BOARD_IDX_OVERFLOW -1
171 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
172 defined(NETIF_F_HW_VLAN_RX)
173 #define ACENIC_DO_VLAN 1
174 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
176 #define ACENIC_DO_VLAN 0
177 #define ACE_RCB_VLAN_FLAG 0
183 * These must be defined before the firmware is included.
185 #define MAX_TEXT_LEN 96*1024
186 #define MAX_RODATA_LEN 8*1024
187 #define MAX_DATA_LEN 2*1024
189 #include "acenic_firmware.h"
191 #ifndef tigon2FwReleaseLocal
192 #define tigon2FwReleaseLocal 0
196 * This driver currently supports Tigon I and Tigon II based cards
197 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
198 * GA620. The driver should also work on the SGI, DEC and Farallon
199 * versions of the card, however I have not been able to test that
202 * This card is really neat, it supports receive hardware checksumming
203 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
204 * firmware. Also the programming interface is quite neat, except for
205 * the parts dealing with the i2c eeprom on the card ;-)
207 * Using jumbo frames:
209 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
210 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
211 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
212 * interface number and <MTU> being the MTU value.
216 * When compiled as a loadable module, the driver allows for a number
217 * of module parameters to be specified. The driver supports the
218 * following module parameters:
220 * trace=<val> - Firmware trace level. This requires special traced
221 * firmware to replace the firmware supplied with
222 * the driver - for debugging purposes only.
224 * link=<val> - Link state. Normally you want to use the default link
225 * parameters set by the driver. This can be used to
226 * override these in case your switch doesn't negotiate
227 * the link properly. Valid values are:
228 * 0x0001 - Force half duplex link.
229 * 0x0002 - Do not negotiate line speed with the other end.
230 * 0x0010 - 10Mbit/sec link.
231 * 0x0020 - 100Mbit/sec link.
232 * 0x0040 - 1000Mbit/sec link.
233 * 0x0100 - Do not negotiate flow control.
234 * 0x0200 - Enable RX flow control Y
235 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
236 * Default value is 0x0270, ie. enable link+flow
237 * control negotiation. Negotiating the highest
238 * possible link speed with RX flow control enabled.
240 * When disabling link speed negotiation, only one link
241 * speed is allowed to be specified!
243 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
244 * to wait for more packets to arive before
245 * interrupting the host, from the time the first
248 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive in the transmit ring,
250 * before interrupting the host, after transmitting the
251 * first packet in the ring.
253 * max_tx_desc=<val> - maximum number of transmit descriptors
254 * (packets) transmitted before interrupting the host.
256 * max_rx_desc=<val> - maximum number of receive descriptors
257 * (packets) received before interrupting the host.
259 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
260 * increments of the NIC's on board memory to be used for
261 * transmit and receive buffers. For the 1MB NIC app. 800KB
262 * is available, on the 1/2MB NIC app. 300KB is available.
263 * 68KB will always be available as a minimum for both
264 * directions. The default value is a 50/50 split.
265 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
266 * operations, default (1) is to always disable this as
267 * that is what Alteon does on NT. I have not been able
268 * to measure any real performance differences with
269 * this on my systems. Set <val>=0 if you want to
270 * enable these operations.
272 * If you use more than one NIC, specify the parameters for the
273 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
274 * run tracing on NIC #2 but not on NIC #1 and #3.
278 * - Proper multicast support.
279 * - NIC dump support.
280 * - More tuning parameters.
282 * The mini ring is not used under Linux and I am not sure it makes sense
283 * to actually use it.
285 * New interrupt handler strategy:
287 * The old interrupt handler worked using the traditional method of
288 * replacing an skbuff with a new one when a packet arrives. However
289 * the rx rings do not need to contain a static number of buffer
290 * descriptors, thus it makes sense to move the memory allocation out
291 * of the main interrupt handler and do it in a bottom half handler
292 * and only allocate new buffers when the number of buffers in the
293 * ring is below a certain threshold. In order to avoid starving the
294 * NIC under heavy load it is however necessary to force allocation
295 * when hitting a minimum threshold. The strategy for alloction is as
298 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
299 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
300 * the buffers in the interrupt handler
301 * RX_RING_THRES - maximum number of buffers in the rx ring
302 * RX_MINI_THRES - maximum number of buffers in the mini ring
303 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
305 * One advantagous side effect of this allocation approach is that the
306 * entire rx processing can be done without holding any spin lock
307 * since the rx rings and registers are totally independent of the tx
308 * ring and its registers. This of course includes the kmalloc's of
309 * new skb's. Thus start_xmit can run in parallel with rx processing
310 * and the memory allocation on SMP systems.
312 * Note that running the skb reallocation in a bottom half opens up
313 * another can of races which needs to be handled properly. In
314 * particular it can happen that the interrupt handler tries to run
315 * the reallocation while the bottom half is either running on another
316 * CPU or was interrupted on the same CPU. To get around this the
317 * driver uses bitops to prevent the reallocation routines from being
320 * TX handling can also be done without holding any spin lock, wheee
321 * this is fun! since tx_ret_csm is only written to by the interrupt
322 * handler. The case to be aware of is when shutting down the device
323 * and cleaning up where it is necessary to make sure that
324 * start_xmit() is not running while this is happening. Well DaveM
325 * informs me that this case is already protected against ... bye bye
326 * Mr. Spin Lock, it was nice to know you.
328 * TX interrupts are now partly disabled so the NIC will only generate
329 * TX interrupts for the number of coal ticks, not for the number of
330 * TX packets in the queue. This should reduce the number of TX only,
331 * ie. when no RX processing is done, interrupts seen.
335 * Threshold values for RX buffer allocation - the low water marks for
336 * when to start refilling the rings are set to 75% of the ring
337 * sizes. It seems to make sense to refill the rings entirely from the
338 * intrrupt handler once it gets below the panic threshold, that way
339 * we don't risk that the refilling is moved to another CPU when the
340 * one running the interrupt handler just got the slab code hot in its
343 #define RX_RING_SIZE 72
344 #define RX_MINI_SIZE 64
345 #define RX_JUMBO_SIZE 48
347 #define RX_PANIC_STD_THRES 16
348 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
349 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
350 #define RX_PANIC_MINI_THRES 12
351 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
352 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
353 #define RX_PANIC_JUMBO_THRES 6
354 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
355 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
359 * Size of the mini ring entries, basically these just should be big
360 * enough to take TCP ACKs
362 #define ACE_MINI_SIZE 100
364 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
365 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
366 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
369 * There seems to be a magic difference in the effect between 995 and 996
370 * but little difference between 900 and 995 ... no idea why.
372 * There is now a default set of tuning parameters which is set, depending
373 * on whether or not the user enables Jumbo frames. It's assumed that if
374 * Jumbo frames are enabled, the user wants optimal tuning for that case.
376 #define DEF_TX_COAL 400 /* 996 */
377 #define DEF_TX_MAX_DESC 60 /* was 40 */
378 #define DEF_RX_COAL 120 /* 1000 */
379 #define DEF_RX_MAX_DESC 25
380 #define DEF_TX_RATIO 21 /* 24 */
382 #define DEF_JUMBO_TX_COAL 20
383 #define DEF_JUMBO_TX_MAX_DESC 60
384 #define DEF_JUMBO_RX_COAL 30
385 #define DEF_JUMBO_RX_MAX_DESC 6
386 #define DEF_JUMBO_TX_RATIO 21
388 #if tigon2FwReleaseLocal < 20001118
390 * Standard firmware and early modifications duplicate
391 * IRQ load without this flag (coal timer is never reset).
392 * Note that with this flag tx_coal should be less than
393 * time to xmit full tx ring.
394 * 400usec is not so bad for tx ring size of 128.
396 #define TX_COAL_INTS_ONLY 1 /* worth it */
399 * With modified firmware, this is not necessary, but still useful.
401 #define TX_COAL_INTS_ONLY 1
405 #define DEF_STAT (2 * TICKS_PER_SEC)
408 static int link_state
[ACE_MAX_MOD_PARMS
];
409 static int trace
[ACE_MAX_MOD_PARMS
];
410 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
411 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
412 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
413 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
414 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
415 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
417 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
418 MODULE_LICENSE("GPL");
419 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
421 module_param_array_named(link
, link_state
, int, NULL
, 0);
422 module_param_array(trace
, int, NULL
, 0);
423 module_param_array(tx_coal_tick
, int, NULL
, 0);
424 module_param_array(max_tx_desc
, int, NULL
, 0);
425 module_param_array(rx_coal_tick
, int, NULL
, 0);
426 module_param_array(max_rx_desc
, int, NULL
, 0);
427 module_param_array(tx_ratio
, int, NULL
, 0);
428 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
429 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
430 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
431 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
432 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
433 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
434 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
437 static char version
[] __devinitdata
=
438 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
439 " http://home.cern.ch/~jes/gige/acenic.html\n";
441 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
442 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
443 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
445 static const struct ethtool_ops ace_ethtool_ops
= {
446 .get_settings
= ace_get_settings
,
447 .set_settings
= ace_set_settings
,
448 .get_drvinfo
= ace_get_drvinfo
,
451 static void ace_watchdog(struct net_device
*dev
);
453 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
454 const struct pci_device_id
*id
)
456 struct net_device
*dev
;
457 struct ace_private
*ap
;
458 static int boards_found
;
460 dev
= alloc_etherdev(sizeof(struct ace_private
));
462 printk(KERN_ERR
"acenic: Unable to allocate "
463 "net_device structure!\n");
467 SET_NETDEV_DEV(dev
, &pdev
->dev
);
471 ap
->name
= pci_name(pdev
);
473 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
475 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
476 dev
->vlan_rx_register
= ace_vlan_rx_register
;
479 dev
->tx_timeout
= &ace_watchdog
;
480 dev
->watchdog_timeo
= 5*HZ
;
482 dev
->open
= &ace_open
;
483 dev
->stop
= &ace_close
;
484 dev
->hard_start_xmit
= &ace_start_xmit
;
485 dev
->get_stats
= &ace_get_stats
;
486 dev
->set_multicast_list
= &ace_set_multicast_list
;
487 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
488 dev
->set_mac_address
= &ace_set_mac_addr
;
489 dev
->change_mtu
= &ace_change_mtu
;
491 /* we only display this string ONCE */
495 if (pci_enable_device(pdev
))
496 goto fail_free_netdev
;
499 * Enable master mode before we start playing with the
500 * pci_command word since pci_set_master() will modify
503 pci_set_master(pdev
);
505 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
507 /* OpenFirmware on Mac's does not set this - DOH.. */
508 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
509 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
510 "access - was not enabled by BIOS/Firmware\n",
512 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
513 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
518 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
519 if (ap
->pci_latency
<= 0x40) {
520 ap
->pci_latency
= 0x40;
521 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
525 * Remap the regs into kernel space - this is abuse of
526 * dev->base_addr since it was means for I/O port
527 * addresses but who gives a damn.
529 dev
->base_addr
= pci_resource_start(pdev
, 0);
530 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
532 printk(KERN_ERR
"%s: Unable to map I/O register, "
533 "AceNIC %i will be disabled.\n",
534 ap
->name
, boards_found
);
535 goto fail_free_netdev
;
538 switch(pdev
->vendor
) {
539 case PCI_VENDOR_ID_ALTEON
:
540 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
541 printk(KERN_INFO
"%s: Farallon PN9100-T ",
544 printk(KERN_INFO
"%s: Alteon AceNIC ",
548 case PCI_VENDOR_ID_3COM
:
549 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
551 case PCI_VENDOR_ID_NETGEAR
:
552 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
554 case PCI_VENDOR_ID_DEC
:
555 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
556 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
560 case PCI_VENDOR_ID_SGI
:
561 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
564 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
568 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
569 printk("irq %d\n", pdev
->irq
);
571 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
572 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
573 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
574 " support - NIC disabled\n", dev
->name
);
579 if (ace_allocate_descriptors(dev
))
580 goto fail_free_netdev
;
583 if (boards_found
>= ACE_MAX_MOD_PARMS
)
584 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
586 ap
->board_idx
= boards_found
;
588 ap
->board_idx
= BOARD_IDX_STATIC
;
592 goto fail_free_netdev
;
594 if (register_netdev(dev
)) {
595 printk(KERN_ERR
"acenic: device registration failed\n");
598 ap
->name
= dev
->name
;
600 if (ap
->pci_using_dac
)
601 dev
->features
|= NETIF_F_HIGHDMA
;
603 pci_set_drvdata(pdev
, dev
);
609 ace_init_cleanup(dev
);
615 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
617 struct net_device
*dev
= pci_get_drvdata(pdev
);
618 struct ace_private
*ap
= netdev_priv(dev
);
619 struct ace_regs __iomem
*regs
= ap
->regs
;
622 unregister_netdev(dev
);
624 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
625 if (ap
->version
>= 2)
626 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
629 * This clears any pending interrupts
631 writel(1, ®s
->Mb0Lo
);
632 readl(®s
->CpuCtrl
); /* flush */
635 * Make sure no other CPUs are processing interrupts
636 * on the card before the buffers are being released.
637 * Otherwise one might experience some `interesting'
640 * Then release the RX buffers - jumbo buffers were
641 * already released in ace_close().
643 ace_sync_irq(dev
->irq
);
645 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
646 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
649 struct ring_info
*ringp
;
652 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
653 mapping
= pci_unmap_addr(ringp
, mapping
);
654 pci_unmap_page(ap
->pdev
, mapping
,
658 ap
->rx_std_ring
[i
].size
= 0;
659 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
664 if (ap
->version
>= 2) {
665 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
666 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
669 struct ring_info
*ringp
;
672 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
673 mapping
= pci_unmap_addr(ringp
,mapping
);
674 pci_unmap_page(ap
->pdev
, mapping
,
678 ap
->rx_mini_ring
[i
].size
= 0;
679 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
685 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
686 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
688 struct ring_info
*ringp
;
691 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
692 mapping
= pci_unmap_addr(ringp
, mapping
);
693 pci_unmap_page(ap
->pdev
, mapping
,
697 ap
->rx_jumbo_ring
[i
].size
= 0;
698 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
703 ace_init_cleanup(dev
);
707 static struct pci_driver acenic_pci_driver
= {
709 .id_table
= acenic_pci_tbl
,
710 .probe
= acenic_probe_one
,
711 .remove
= __devexit_p(acenic_remove_one
),
714 static int __init
acenic_init(void)
716 return pci_register_driver(&acenic_pci_driver
);
719 static void __exit
acenic_exit(void)
721 pci_unregister_driver(&acenic_pci_driver
);
724 module_init(acenic_init
);
725 module_exit(acenic_exit
);
727 static void ace_free_descriptors(struct net_device
*dev
)
729 struct ace_private
*ap
= netdev_priv(dev
);
732 if (ap
->rx_std_ring
!= NULL
) {
733 size
= (sizeof(struct rx_desc
) *
734 (RX_STD_RING_ENTRIES
+
735 RX_JUMBO_RING_ENTRIES
+
736 RX_MINI_RING_ENTRIES
+
737 RX_RETURN_RING_ENTRIES
));
738 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
739 ap
->rx_ring_base_dma
);
740 ap
->rx_std_ring
= NULL
;
741 ap
->rx_jumbo_ring
= NULL
;
742 ap
->rx_mini_ring
= NULL
;
743 ap
->rx_return_ring
= NULL
;
745 if (ap
->evt_ring
!= NULL
) {
746 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
747 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
751 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
752 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
753 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
758 if (ap
->evt_prd
!= NULL
) {
759 pci_free_consistent(ap
->pdev
, sizeof(u32
),
760 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
763 if (ap
->rx_ret_prd
!= NULL
) {
764 pci_free_consistent(ap
->pdev
, sizeof(u32
),
765 (void *)ap
->rx_ret_prd
,
767 ap
->rx_ret_prd
= NULL
;
769 if (ap
->tx_csm
!= NULL
) {
770 pci_free_consistent(ap
->pdev
, sizeof(u32
),
771 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
777 static int ace_allocate_descriptors(struct net_device
*dev
)
779 struct ace_private
*ap
= netdev_priv(dev
);
782 size
= (sizeof(struct rx_desc
) *
783 (RX_STD_RING_ENTRIES
+
784 RX_JUMBO_RING_ENTRIES
+
785 RX_MINI_RING_ENTRIES
+
786 RX_RETURN_RING_ENTRIES
));
788 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
789 &ap
->rx_ring_base_dma
);
790 if (ap
->rx_std_ring
== NULL
)
793 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
794 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
795 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
797 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
799 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
801 if (ap
->evt_ring
== NULL
)
805 * Only allocate a host TX ring for the Tigon II, the Tigon I
806 * has to use PCI registers for this ;-(
808 if (!ACE_IS_TIGON_I(ap
)) {
809 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
811 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
814 if (ap
->tx_ring
== NULL
)
818 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
820 if (ap
->evt_prd
== NULL
)
823 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
824 &ap
->rx_ret_prd_dma
);
825 if (ap
->rx_ret_prd
== NULL
)
828 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
830 if (ap
->tx_csm
== NULL
)
837 ace_init_cleanup(dev
);
843 * Generic cleanup handling data allocated during init. Used when the
844 * module is unloaded or if an error occurs during initialization
846 static void ace_init_cleanup(struct net_device
*dev
)
848 struct ace_private
*ap
;
850 ap
= netdev_priv(dev
);
852 ace_free_descriptors(dev
);
855 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
856 ap
->info
, ap
->info_dma
);
858 kfree(ap
->trace_buf
);
861 free_irq(dev
->irq
, dev
);
868 * Commands are considered to be slow.
870 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
874 idx
= readl(®s
->CmdPrd
);
876 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
877 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
879 writel(idx
, ®s
->CmdPrd
);
883 static int __devinit
ace_init(struct net_device
*dev
)
885 struct ace_private
*ap
;
886 struct ace_regs __iomem
*regs
;
887 struct ace_info
*info
= NULL
;
888 struct pci_dev
*pdev
;
891 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
892 int board_idx
, ecode
= 0;
894 unsigned char cache_size
;
895 DECLARE_MAC_BUF(mac
);
897 ap
= netdev_priv(dev
);
900 board_idx
= ap
->board_idx
;
903 * aman@sgi.com - its useful to do a NIC reset here to
904 * address the `Firmware not running' problem subsequent
905 * to any crashes involving the NIC
907 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
908 readl(®s
->HostCtrl
); /* PCI write posting */
912 * Don't access any other registers before this point!
916 * This will most likely need BYTE_SWAP once we switch
917 * to using __raw_writel()
919 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
922 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
925 readl(®s
->HostCtrl
); /* PCI write posting */
928 * Stop the NIC CPU and clear pending interrupts
930 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
931 readl(®s
->CpuCtrl
); /* PCI write posting */
932 writel(0, ®s
->Mb0Lo
);
934 tig_ver
= readl(®s
->HostCtrl
) >> 28;
937 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
940 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
941 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
943 writel(0, ®s
->LocalCtrl
);
945 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
949 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
950 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
952 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
953 readl(®s
->CpuBCtrl
); /* PCI write posting */
955 * The SRAM bank size does _not_ indicate the amount
956 * of memory on the card, it controls the _bank_ size!
957 * Ie. a 1MB AceNIC will have two banks of 512KB.
959 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
960 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
962 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
965 printk(KERN_WARNING
" Unsupported Tigon version detected "
972 * ModeStat _must_ be set after the SRAM settings as this change
973 * seems to corrupt the ModeStat and possible other registers.
974 * The SRAM settings survive resets and setting it to the same
975 * value a second time works as well. This is what caused the
976 * `Firmware not running' problem on the Tigon II.
979 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
980 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
982 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
983 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
985 readl(®s
->ModeStat
); /* PCI write posting */
988 for(i
= 0; i
< 4; i
++) {
992 t
= read_eeprom_byte(dev
, 0x8c+i
);
1000 for(i
= 4; i
< 8; i
++) {
1004 t
= read_eeprom_byte(dev
, 0x8c+i
);
1012 writel(mac1
, ®s
->MacAddrHi
);
1013 writel(mac2
, ®s
->MacAddrLo
);
1015 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1016 dev
->dev_addr
[1] = mac1
& 0xff;
1017 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1018 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1019 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1020 dev
->dev_addr
[5] = mac2
& 0xff;
1022 printk("MAC: %s\n", print_mac(mac
, dev
->dev_addr
));
1025 * Looks like this is necessary to deal with on all architectures,
1026 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1027 * Ie. having two NICs in the machine, one will have the cache
1028 * line set at boot time, the other will not.
1031 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1033 if (cache_size
!= SMP_CACHE_BYTES
) {
1034 printk(KERN_INFO
" PCI cache line size set incorrectly "
1035 "(%i bytes) by BIOS/FW, ", cache_size
);
1036 if (cache_size
> SMP_CACHE_BYTES
)
1037 printk("expecting %i\n", SMP_CACHE_BYTES
);
1039 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1040 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1041 SMP_CACHE_BYTES
>> 2);
1045 pci_state
= readl(®s
->PciState
);
1046 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1047 "latency: %i clks\n",
1048 (pci_state
& PCI_32BIT
) ? 32 : 64,
1049 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1053 * Set the max DMA transfer size. Seems that for most systems
1054 * the performance is better when no MAX parameter is
1055 * set. However for systems enabling PCI write and invalidate,
1056 * DMA writes must be set to the L1 cache line size to get
1057 * optimal performance.
1059 * The default is now to turn the PCI write and invalidate off
1060 * - that is what Alteon does for NT.
1062 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1063 if (ap
->version
>= 2) {
1064 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1066 * Tuning parameters only supported for 8 cards
1068 if (board_idx
== BOARD_IDX_OVERFLOW
||
1069 dis_pci_mem_inval
[board_idx
]) {
1070 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1071 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1072 pci_write_config_word(pdev
, PCI_COMMAND
,
1074 printk(KERN_INFO
" Disabling PCI memory "
1075 "write and invalidate\n");
1077 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1078 printk(KERN_INFO
" PCI memory write & invalidate "
1079 "enabled by BIOS, enabling counter measures\n");
1081 switch(SMP_CACHE_BYTES
) {
1083 tmp
|= DMA_WRITE_MAX_16
;
1086 tmp
|= DMA_WRITE_MAX_32
;
1089 tmp
|= DMA_WRITE_MAX_64
;
1092 tmp
|= DMA_WRITE_MAX_128
;
1095 printk(KERN_INFO
" Cache line size %i not "
1096 "supported, PCI write and invalidate "
1097 "disabled\n", SMP_CACHE_BYTES
);
1098 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1099 pci_write_config_word(pdev
, PCI_COMMAND
,
1107 * On this platform, we know what the best dma settings
1108 * are. We use 64-byte maximum bursts, because if we
1109 * burst larger than the cache line size (or even cross
1110 * a 64byte boundary in a single burst) the UltraSparc
1111 * PCI controller will disconnect at 64-byte multiples.
1113 * Read-multiple will be properly enabled above, and when
1114 * set will give the PCI controller proper hints about
1117 tmp
&= ~DMA_READ_WRITE_MASK
;
1118 tmp
|= DMA_READ_MAX_64
;
1119 tmp
|= DMA_WRITE_MAX_64
;
1122 tmp
&= ~DMA_READ_WRITE_MASK
;
1123 tmp
|= DMA_READ_MAX_128
;
1125 * All the docs say MUST NOT. Well, I did.
1126 * Nothing terrible happens, if we load wrong size.
1127 * Bit w&i still works better!
1129 tmp
|= DMA_WRITE_MAX_128
;
1131 writel(tmp
, ®s
->PciState
);
1135 * The Host PCI bus controller driver has to set FBB.
1136 * If all devices on that PCI bus support FBB, then the controller
1137 * can enable FBB support in the Host PCI Bus controller (or on
1138 * the PCI-PCI bridge if that applies).
1142 * I have received reports from people having problems when this
1145 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1146 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1147 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1148 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1153 * Configure DMA attributes.
1155 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1156 ap
->pci_using_dac
= 1;
1157 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
1158 ap
->pci_using_dac
= 0;
1165 * Initialize the generic info block and the command+event rings
1166 * and the control blocks for the transmit and receive rings
1167 * as they need to be setup once and for all.
1169 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1177 * Get the memory for the skb rings.
1179 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1184 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1187 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1188 DRV_NAME
, pdev
->irq
);
1191 dev
->irq
= pdev
->irq
;
1194 spin_lock_init(&ap
->debug_lock
);
1195 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1196 ap
->last_std_rx
= 0;
1197 ap
->last_mini_rx
= 0;
1200 memset(ap
->info
, 0, sizeof(struct ace_info
));
1201 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1203 ace_load_firmware(dev
);
1206 tmp_ptr
= ap
->info_dma
;
1207 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1208 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1210 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1212 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1213 info
->evt_ctrl
.flags
= 0;
1217 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1218 writel(0, ®s
->EvtCsm
);
1220 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1221 info
->cmd_ctrl
.flags
= 0;
1222 info
->cmd_ctrl
.max_len
= 0;
1224 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1225 writel(0, ®s
->CmdRng
[i
]);
1227 writel(0, ®s
->CmdPrd
);
1228 writel(0, ®s
->CmdCsm
);
1230 tmp_ptr
= ap
->info_dma
;
1231 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1232 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1234 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1235 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1236 info
->rx_std_ctrl
.flags
=
1237 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1239 memset(ap
->rx_std_ring
, 0,
1240 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1242 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1243 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1245 ap
->rx_std_skbprd
= 0;
1246 atomic_set(&ap
->cur_rx_bufs
, 0);
1248 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1249 (ap
->rx_ring_base_dma
+
1250 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1251 info
->rx_jumbo_ctrl
.max_len
= 0;
1252 info
->rx_jumbo_ctrl
.flags
=
1253 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1255 memset(ap
->rx_jumbo_ring
, 0,
1256 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1258 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1259 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1261 ap
->rx_jumbo_skbprd
= 0;
1262 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1264 memset(ap
->rx_mini_ring
, 0,
1265 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1267 if (ap
->version
>= 2) {
1268 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1269 (ap
->rx_ring_base_dma
+
1270 (sizeof(struct rx_desc
) *
1271 (RX_STD_RING_ENTRIES
+
1272 RX_JUMBO_RING_ENTRIES
))));
1273 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1274 info
->rx_mini_ctrl
.flags
=
1275 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1277 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1278 ap
->rx_mini_ring
[i
].flags
=
1279 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1281 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1282 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1283 info
->rx_mini_ctrl
.max_len
= 0;
1286 ap
->rx_mini_skbprd
= 0;
1287 atomic_set(&ap
->cur_mini_bufs
, 0);
1289 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1290 (ap
->rx_ring_base_dma
+
1291 (sizeof(struct rx_desc
) *
1292 (RX_STD_RING_ENTRIES
+
1293 RX_JUMBO_RING_ENTRIES
+
1294 RX_MINI_RING_ENTRIES
))));
1295 info
->rx_return_ctrl
.flags
= 0;
1296 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1298 memset(ap
->rx_return_ring
, 0,
1299 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1301 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1302 *(ap
->rx_ret_prd
) = 0;
1304 writel(TX_RING_BASE
, ®s
->WinBase
);
1306 if (ACE_IS_TIGON_I(ap
)) {
1307 ap
->tx_ring
= (__force
struct tx_desc
*) regs
->Window
;
1308 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1309 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1310 writel(0, (__force
void __iomem
*)ap
->tx_ring
+ i
* 4);
1312 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1314 memset(ap
->tx_ring
, 0,
1315 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1317 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1320 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1321 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1324 * The Tigon I does not like having the TX ring in host memory ;-(
1326 if (!ACE_IS_TIGON_I(ap
))
1327 tmp
|= RCB_FLG_TX_HOST_RING
;
1328 #if TX_COAL_INTS_ONLY
1329 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1331 info
->tx_ctrl
.flags
= tmp
;
1333 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1336 * Potential item for tuning parameter
1339 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1340 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1342 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1343 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1346 writel(0, ®s
->MaskInt
);
1347 writel(1, ®s
->IfIdx
);
1350 * McKinley boxes do not like us fiddling with AssistState
1353 writel(1, ®s
->AssistState
);
1356 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1357 writel(DEF_TRACE
, ®s
->TuneTrace
);
1359 ace_set_rxtx_parms(dev
, 0);
1361 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1362 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1363 "ignoring module parameters!\n",
1364 ap
->name
, ACE_MAX_MOD_PARMS
);
1365 } else if (board_idx
>= 0) {
1366 if (tx_coal_tick
[board_idx
])
1367 writel(tx_coal_tick
[board_idx
],
1368 ®s
->TuneTxCoalTicks
);
1369 if (max_tx_desc
[board_idx
])
1370 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1372 if (rx_coal_tick
[board_idx
])
1373 writel(rx_coal_tick
[board_idx
],
1374 ®s
->TuneRxCoalTicks
);
1375 if (max_rx_desc
[board_idx
])
1376 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1378 if (trace
[board_idx
])
1379 writel(trace
[board_idx
], ®s
->TuneTrace
);
1381 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1382 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1386 * Default link parameters
1388 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1389 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1390 if(ap
->version
>= 2)
1391 tmp
|= LNK_TX_FLOW_CTL_Y
;
1394 * Override link default parameters
1396 if ((board_idx
>= 0) && link_state
[board_idx
]) {
1397 int option
= link_state
[board_idx
];
1401 if (option
& 0x01) {
1402 printk(KERN_INFO
"%s: Setting half duplex link\n",
1404 tmp
&= ~LNK_FULL_DUPLEX
;
1407 tmp
&= ~LNK_NEGOTIATE
;
1414 if ((option
& 0x70) == 0) {
1415 printk(KERN_WARNING
"%s: No media speed specified, "
1416 "forcing auto negotiation\n", ap
->name
);
1417 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1418 LNK_100MB
| LNK_10MB
;
1420 if ((option
& 0x100) == 0)
1421 tmp
|= LNK_NEG_FCTL
;
1423 printk(KERN_INFO
"%s: Disabling flow control "
1424 "negotiation\n", ap
->name
);
1426 tmp
|= LNK_RX_FLOW_CTL_Y
;
1427 if ((option
& 0x400) && (ap
->version
>= 2)) {
1428 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1430 tmp
|= LNK_TX_FLOW_CTL_Y
;
1435 writel(tmp
, ®s
->TuneLink
);
1436 if (ap
->version
>= 2)
1437 writel(tmp
, ®s
->TuneFastLink
);
1439 if (ACE_IS_TIGON_I(ap
))
1440 writel(tigonFwStartAddr
, ®s
->Pc
);
1441 if (ap
->version
== 2)
1442 writel(tigon2FwStartAddr
, ®s
->Pc
);
1444 writel(0, ®s
->Mb0Lo
);
1447 * Set tx_csm before we start receiving interrupts, otherwise
1448 * the interrupt handler might think it is supposed to process
1449 * tx ints before we are up and running, which may cause a null
1450 * pointer access in the int handler.
1453 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1456 ace_set_txprd(regs
, ap
, 0);
1457 writel(0, ®s
->RxRetCsm
);
1460 * Enable DMA engine now.
1461 * If we do this sooner, Mckinley box pukes.
1462 * I assume it's because Tigon II DMA engine wants to check
1463 * *something* even before the CPU is started.
1465 writel(1, ®s
->AssistState
); /* enable DMA */
1470 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1471 readl(®s
->CpuCtrl
);
1474 * Wait for the firmware to spin up - max 3 seconds.
1476 myjif
= jiffies
+ 3 * HZ
;
1477 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1480 if (!ap
->fw_running
) {
1481 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1484 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1485 readl(®s
->CpuCtrl
);
1487 /* aman@sgi.com - account for badly behaving firmware/NIC:
1488 * - have observed that the NIC may continue to generate
1489 * interrupts for some reason; attempt to stop it - halt
1490 * second CPU for Tigon II cards, and also clear Mb0
1491 * - if we're a module, we'll fail to load if this was
1492 * the only GbE card in the system => if the kernel does
1493 * see an interrupt from the NIC, code to handle it is
1494 * gone and OOps! - so free_irq also
1496 if (ap
->version
>= 2)
1497 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1499 writel(0, ®s
->Mb0Lo
);
1500 readl(®s
->Mb0Lo
);
1507 * We load the ring here as there seem to be no way to tell the
1508 * firmware to wipe the ring without re-initializing it.
1510 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1511 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1513 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1515 if (ap
->version
>= 2) {
1516 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1517 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1519 printk(KERN_ERR
"%s: Someone is busy refilling "
1520 "the RX mini ring\n", ap
->name
);
1525 ace_init_cleanup(dev
);
1530 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1532 struct ace_private
*ap
= netdev_priv(dev
);
1533 struct ace_regs __iomem
*regs
= ap
->regs
;
1534 int board_idx
= ap
->board_idx
;
1536 if (board_idx
>= 0) {
1538 if (!tx_coal_tick
[board_idx
])
1539 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1540 if (!max_tx_desc
[board_idx
])
1541 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1542 if (!rx_coal_tick
[board_idx
])
1543 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1544 if (!max_rx_desc
[board_idx
])
1545 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1546 if (!tx_ratio
[board_idx
])
1547 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1549 if (!tx_coal_tick
[board_idx
])
1550 writel(DEF_JUMBO_TX_COAL
,
1551 ®s
->TuneTxCoalTicks
);
1552 if (!max_tx_desc
[board_idx
])
1553 writel(DEF_JUMBO_TX_MAX_DESC
,
1554 ®s
->TuneMaxTxDesc
);
1555 if (!rx_coal_tick
[board_idx
])
1556 writel(DEF_JUMBO_RX_COAL
,
1557 ®s
->TuneRxCoalTicks
);
1558 if (!max_rx_desc
[board_idx
])
1559 writel(DEF_JUMBO_RX_MAX_DESC
,
1560 ®s
->TuneMaxRxDesc
);
1561 if (!tx_ratio
[board_idx
])
1562 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1568 static void ace_watchdog(struct net_device
*data
)
1570 struct net_device
*dev
= data
;
1571 struct ace_private
*ap
= netdev_priv(dev
);
1572 struct ace_regs __iomem
*regs
= ap
->regs
;
1575 * We haven't received a stats update event for more than 2.5
1576 * seconds and there is data in the transmit queue, thus we
1577 * asume the card is stuck.
1579 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1580 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1581 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1582 /* This can happen due to ieee flow control. */
1584 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1587 netif_wake_queue(dev
);
1593 static void ace_tasklet(unsigned long dev
)
1595 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1598 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1599 if ((cur_size
< RX_LOW_STD_THRES
) &&
1600 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1602 printk("refilling buffers (current %i)\n", cur_size
);
1604 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1607 if (ap
->version
>= 2) {
1608 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1609 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1610 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1612 printk("refilling mini buffers (current %i)\n",
1615 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1619 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1620 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1621 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1623 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1625 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1627 ap
->tasklet_pending
= 0;
1632 * Copy the contents of the NIC's trace buffer to kernel memory.
1634 static void ace_dump_trace(struct ace_private
*ap
)
1638 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1645 * Load the standard rx ring.
1647 * Loading rings is safe without holding the spin lock since this is
1648 * done only before the device is enabled, thus no interrupts are
1649 * generated and by the interrupt handler/tasklet handler.
1651 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1653 struct ace_regs __iomem
*regs
= ap
->regs
;
1657 prefetchw(&ap
->cur_rx_bufs
);
1659 idx
= ap
->rx_std_skbprd
;
1661 for (i
= 0; i
< nr_bufs
; i
++) {
1662 struct sk_buff
*skb
;
1666 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1670 skb_reserve(skb
, NET_IP_ALIGN
);
1671 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1672 offset_in_page(skb
->data
),
1674 PCI_DMA_FROMDEVICE
);
1675 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1676 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1679 rd
= &ap
->rx_std_ring
[idx
];
1680 set_aceaddr(&rd
->addr
, mapping
);
1681 rd
->size
= ACE_STD_BUFSIZE
;
1683 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1689 atomic_add(i
, &ap
->cur_rx_bufs
);
1690 ap
->rx_std_skbprd
= idx
;
1692 if (ACE_IS_TIGON_I(ap
)) {
1694 cmd
.evt
= C_SET_RX_PRD_IDX
;
1696 cmd
.idx
= ap
->rx_std_skbprd
;
1697 ace_issue_cmd(regs
, &cmd
);
1699 writel(idx
, ®s
->RxStdPrd
);
1704 clear_bit(0, &ap
->std_refill_busy
);
1708 printk(KERN_INFO
"Out of memory when allocating "
1709 "standard receive buffers\n");
1714 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1716 struct ace_regs __iomem
*regs
= ap
->regs
;
1719 prefetchw(&ap
->cur_mini_bufs
);
1721 idx
= ap
->rx_mini_skbprd
;
1722 for (i
= 0; i
< nr_bufs
; i
++) {
1723 struct sk_buff
*skb
;
1727 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1731 skb_reserve(skb
, NET_IP_ALIGN
);
1732 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1733 offset_in_page(skb
->data
),
1735 PCI_DMA_FROMDEVICE
);
1736 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1737 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1740 rd
= &ap
->rx_mini_ring
[idx
];
1741 set_aceaddr(&rd
->addr
, mapping
);
1742 rd
->size
= ACE_MINI_BUFSIZE
;
1744 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1750 atomic_add(i
, &ap
->cur_mini_bufs
);
1752 ap
->rx_mini_skbprd
= idx
;
1754 writel(idx
, ®s
->RxMiniPrd
);
1758 clear_bit(0, &ap
->mini_refill_busy
);
1761 printk(KERN_INFO
"Out of memory when allocating "
1762 "mini receive buffers\n");
1768 * Load the jumbo rx ring, this may happen at any time if the MTU
1769 * is changed to a value > 1500.
1771 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1773 struct ace_regs __iomem
*regs
= ap
->regs
;
1776 idx
= ap
->rx_jumbo_skbprd
;
1778 for (i
= 0; i
< nr_bufs
; i
++) {
1779 struct sk_buff
*skb
;
1783 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1787 skb_reserve(skb
, NET_IP_ALIGN
);
1788 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1789 offset_in_page(skb
->data
),
1791 PCI_DMA_FROMDEVICE
);
1792 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1793 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1796 rd
= &ap
->rx_jumbo_ring
[idx
];
1797 set_aceaddr(&rd
->addr
, mapping
);
1798 rd
->size
= ACE_JUMBO_BUFSIZE
;
1800 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1806 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1807 ap
->rx_jumbo_skbprd
= idx
;
1809 if (ACE_IS_TIGON_I(ap
)) {
1811 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1813 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1814 ace_issue_cmd(regs
, &cmd
);
1816 writel(idx
, ®s
->RxJumboPrd
);
1821 clear_bit(0, &ap
->jumbo_refill_busy
);
1824 if (net_ratelimit())
1825 printk(KERN_INFO
"Out of memory when allocating "
1826 "jumbo receive buffers\n");
1832 * All events are considered to be slow (RX/TX ints do not generate
1833 * events) and are handled here, outside the main interrupt handler,
1834 * to reduce the size of the handler.
1836 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1838 struct ace_private
*ap
;
1840 ap
= netdev_priv(dev
);
1842 while (evtcsm
!= evtprd
) {
1843 switch (ap
->evt_ring
[evtcsm
].evt
) {
1845 printk(KERN_INFO
"%s: Firmware up and running\n",
1850 case E_STATS_UPDATED
:
1854 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1858 u32 state
= readl(&ap
->regs
->GigLnkState
);
1859 printk(KERN_WARNING
"%s: Optical link UP "
1860 "(%s Duplex, Flow Control: %s%s)\n",
1862 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1863 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1864 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1868 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1871 case E_C_LINK_10_100
:
1872 printk(KERN_WARNING
"%s: 10/100BaseT link "
1876 printk(KERN_ERR
"%s: Unknown optical link "
1877 "state %02x\n", ap
->name
, code
);
1882 switch(ap
->evt_ring
[evtcsm
].code
) {
1883 case E_C_ERR_INVAL_CMD
:
1884 printk(KERN_ERR
"%s: invalid command error\n",
1887 case E_C_ERR_UNIMP_CMD
:
1888 printk(KERN_ERR
"%s: unimplemented command "
1889 "error\n", ap
->name
);
1891 case E_C_ERR_BAD_CFG
:
1892 printk(KERN_ERR
"%s: bad config error\n",
1896 printk(KERN_ERR
"%s: unknown error %02x\n",
1897 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1900 case E_RESET_JUMBO_RNG
:
1903 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1904 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1905 ap
->rx_jumbo_ring
[i
].size
= 0;
1906 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1907 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1908 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1912 if (ACE_IS_TIGON_I(ap
)) {
1914 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1917 ace_issue_cmd(ap
->regs
, &cmd
);
1919 writel(0, &((ap
->regs
)->RxJumboPrd
));
1924 ap
->rx_jumbo_skbprd
= 0;
1925 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1927 clear_bit(0, &ap
->jumbo_refill_busy
);
1931 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1932 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1934 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1941 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1943 struct ace_private
*ap
= netdev_priv(dev
);
1945 int mini_count
= 0, std_count
= 0;
1949 prefetchw(&ap
->cur_rx_bufs
);
1950 prefetchw(&ap
->cur_mini_bufs
);
1952 while (idx
!= rxretprd
) {
1953 struct ring_info
*rip
;
1954 struct sk_buff
*skb
;
1955 struct rx_desc
*rxdesc
, *retdesc
;
1957 int bd_flags
, desc_type
, mapsize
;
1961 /* make sure the rx descriptor isn't read before rxretprd */
1962 if (idx
== rxretcsm
)
1965 retdesc
= &ap
->rx_return_ring
[idx
];
1966 skbidx
= retdesc
->idx
;
1967 bd_flags
= retdesc
->flags
;
1968 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1972 * Normal frames do not have any flags set
1974 * Mini and normal frames arrive frequently,
1975 * so use a local counter to avoid doing
1976 * atomic operations for each packet arriving.
1979 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1980 mapsize
= ACE_STD_BUFSIZE
;
1981 rxdesc
= &ap
->rx_std_ring
[skbidx
];
1985 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
1986 mapsize
= ACE_JUMBO_BUFSIZE
;
1987 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
1988 atomic_dec(&ap
->cur_jumbo_bufs
);
1991 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
1992 mapsize
= ACE_MINI_BUFSIZE
;
1993 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
1997 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
1998 "returned by NIC\n", dev
->name
,
2005 pci_unmap_page(ap
->pdev
,
2006 pci_unmap_addr(rip
, mapping
),
2008 PCI_DMA_FROMDEVICE
);
2009 skb_put(skb
, retdesc
->size
);
2014 csum
= retdesc
->tcp_udp_csum
;
2016 skb
->protocol
= eth_type_trans(skb
, dev
);
2019 * Instead of forcing the poor tigon mips cpu to calculate
2020 * pseudo hdr checksum, we do this ourselves.
2022 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2023 skb
->csum
= htons(csum
);
2024 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2026 skb
->ip_summed
= CHECKSUM_NONE
;
2031 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2032 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2037 dev
->last_rx
= jiffies
;
2038 dev
->stats
.rx_packets
++;
2039 dev
->stats
.rx_bytes
+= retdesc
->size
;
2041 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2044 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2045 if (!ACE_IS_TIGON_I(ap
))
2046 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2050 * According to the documentation RxRetCsm is obsolete with
2051 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2053 if (ACE_IS_TIGON_I(ap
)) {
2054 writel(idx
, &ap
->regs
->RxRetCsm
);
2065 static inline void ace_tx_int(struct net_device
*dev
,
2068 struct ace_private
*ap
= netdev_priv(dev
);
2071 struct sk_buff
*skb
;
2073 struct tx_ring_info
*info
;
2075 info
= ap
->skb
->tx_skbuff
+ idx
;
2077 mapping
= pci_unmap_addr(info
, mapping
);
2080 pci_unmap_page(ap
->pdev
, mapping
,
2081 pci_unmap_len(info
, maplen
),
2083 pci_unmap_addr_set(info
, mapping
, 0);
2087 dev
->stats
.tx_packets
++;
2088 dev
->stats
.tx_bytes
+= skb
->len
;
2089 dev_kfree_skb_irq(skb
);
2093 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2094 } while (idx
!= txcsm
);
2096 if (netif_queue_stopped(dev
))
2097 netif_wake_queue(dev
);
2100 ap
->tx_ret_csm
= txcsm
;
2102 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2104 * We could try to make it before. In this case we would get
2105 * the following race condition: hard_start_xmit on other cpu
2106 * enters after we advanced tx_ret_csm and fills space,
2107 * which we have just freed, so that we make illegal device wakeup.
2108 * There is no good way to workaround this (at entry
2109 * to ace_start_xmit detects this condition and prevents
2110 * ring corruption, but it is not a good workaround.)
2112 * When tx_ret_csm is advanced after, we wake up device _only_
2113 * if we really have some space in ring (though the core doing
2114 * hard_start_xmit can see full ring for some period and has to
2115 * synchronize.) Superb.
2116 * BUT! We get another subtle race condition. hard_start_xmit
2117 * may think that ring is full between wakeup and advancing
2118 * tx_ret_csm and will stop device instantly! It is not so bad.
2119 * We are guaranteed that there is something in ring, so that
2120 * the next irq will resume transmission. To speedup this we could
2121 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2122 * (see ace_start_xmit).
2124 * Well, this dilemma exists in all lock-free devices.
2125 * We, following scheme used in drivers by Donald Becker,
2126 * select the least dangerous.
2132 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
2134 struct net_device
*dev
= (struct net_device
*)dev_id
;
2135 struct ace_private
*ap
= netdev_priv(dev
);
2136 struct ace_regs __iomem
*regs
= ap
->regs
;
2138 u32 txcsm
, rxretcsm
, rxretprd
;
2142 * In case of PCI shared interrupts or spurious interrupts,
2143 * we want to make sure it is actually our interrupt before
2144 * spending any time in here.
2146 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2150 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2151 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2152 * writel(0, ®s->Mb0Lo).
2154 * "IRQ avoidance" recommended in docs applies to IRQs served
2155 * threads and it is wrong even for that case.
2157 writel(0, ®s
->Mb0Lo
);
2158 readl(®s
->Mb0Lo
);
2161 * There is no conflict between transmit handling in
2162 * start_xmit and receive processing, thus there is no reason
2163 * to take a spin lock for RX handling. Wait until we start
2164 * working on the other stuff - hey we don't need a spin lock
2167 rxretprd
= *ap
->rx_ret_prd
;
2168 rxretcsm
= ap
->cur_rx
;
2170 if (rxretprd
!= rxretcsm
)
2171 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2173 txcsm
= *ap
->tx_csm
;
2174 idx
= ap
->tx_ret_csm
;
2178 * If each skb takes only one descriptor this check degenerates
2179 * to identity, because new space has just been opened.
2180 * But if skbs are fragmented we must check that this index
2181 * update releases enough of space, otherwise we just
2182 * wait for device to make more work.
2184 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2185 ace_tx_int(dev
, txcsm
, idx
);
2188 evtcsm
= readl(®s
->EvtCsm
);
2189 evtprd
= *ap
->evt_prd
;
2191 if (evtcsm
!= evtprd
) {
2192 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2193 writel(evtcsm
, ®s
->EvtCsm
);
2197 * This has to go last in the interrupt handler and run with
2198 * the spin lock released ... what lock?
2200 if (netif_running(dev
)) {
2202 int run_tasklet
= 0;
2204 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2205 if (cur_size
< RX_LOW_STD_THRES
) {
2206 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2207 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2209 printk("low on std buffers %i\n", cur_size
);
2211 ace_load_std_rx_ring(ap
,
2212 RX_RING_SIZE
- cur_size
);
2217 if (!ACE_IS_TIGON_I(ap
)) {
2218 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2219 if (cur_size
< RX_LOW_MINI_THRES
) {
2220 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2221 !test_and_set_bit(0,
2222 &ap
->mini_refill_busy
)) {
2224 printk("low on mini buffers %i\n",
2227 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2234 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2235 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2236 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2237 !test_and_set_bit(0,
2238 &ap
->jumbo_refill_busy
)){
2240 printk("low on jumbo buffers %i\n",
2243 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2248 if (run_tasklet
&& !ap
->tasklet_pending
) {
2249 ap
->tasklet_pending
= 1;
2250 tasklet_schedule(&ap
->ace_tasklet
);
2259 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2261 struct ace_private
*ap
= netdev_priv(dev
);
2262 unsigned long flags
;
2264 local_irq_save(flags
);
2269 ace_unmask_irq(dev
);
2270 local_irq_restore(flags
);
2272 #endif /* ACENIC_DO_VLAN */
2275 static int ace_open(struct net_device
*dev
)
2277 struct ace_private
*ap
= netdev_priv(dev
);
2278 struct ace_regs __iomem
*regs
= ap
->regs
;
2281 if (!(ap
->fw_running
)) {
2282 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2286 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2288 cmd
.evt
= C_CLEAR_STATS
;
2291 ace_issue_cmd(regs
, &cmd
);
2293 cmd
.evt
= C_HOST_STATE
;
2294 cmd
.code
= C_C_STACK_UP
;
2296 ace_issue_cmd(regs
, &cmd
);
2299 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2300 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2302 if (dev
->flags
& IFF_PROMISC
) {
2303 cmd
.evt
= C_SET_PROMISC_MODE
;
2304 cmd
.code
= C_C_PROMISC_ENABLE
;
2306 ace_issue_cmd(regs
, &cmd
);
2314 cmd
.evt
= C_LNK_NEGOTIATION
;
2317 ace_issue_cmd(regs
, &cmd
);
2320 netif_start_queue(dev
);
2323 * Setup the bottom half rx ring refill handler
2325 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2330 static int ace_close(struct net_device
*dev
)
2332 struct ace_private
*ap
= netdev_priv(dev
);
2333 struct ace_regs __iomem
*regs
= ap
->regs
;
2335 unsigned long flags
;
2339 * Without (or before) releasing irq and stopping hardware, this
2340 * is an absolute non-sense, by the way. It will be reset instantly
2343 netif_stop_queue(dev
);
2347 cmd
.evt
= C_SET_PROMISC_MODE
;
2348 cmd
.code
= C_C_PROMISC_DISABLE
;
2350 ace_issue_cmd(regs
, &cmd
);
2354 cmd
.evt
= C_HOST_STATE
;
2355 cmd
.code
= C_C_STACK_DOWN
;
2357 ace_issue_cmd(regs
, &cmd
);
2359 tasklet_kill(&ap
->ace_tasklet
);
2362 * Make sure one CPU is not processing packets while
2363 * buffers are being released by another.
2366 local_irq_save(flags
);
2369 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2370 struct sk_buff
*skb
;
2372 struct tx_ring_info
*info
;
2374 info
= ap
->skb
->tx_skbuff
+ i
;
2376 mapping
= pci_unmap_addr(info
, mapping
);
2379 if (ACE_IS_TIGON_I(ap
)) {
2380 /* NB: TIGON_1 is special, tx_ring is in io space */
2381 struct tx_desc __iomem
*tx
;
2382 tx
= (__force
struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2383 writel(0, &tx
->addr
.addrhi
);
2384 writel(0, &tx
->addr
.addrlo
);
2385 writel(0, &tx
->flagsize
);
2387 memset(ap
->tx_ring
+ i
, 0,
2388 sizeof(struct tx_desc
));
2389 pci_unmap_page(ap
->pdev
, mapping
,
2390 pci_unmap_len(info
, maplen
),
2392 pci_unmap_addr_set(info
, mapping
, 0);
2401 cmd
.evt
= C_RESET_JUMBO_RNG
;
2404 ace_issue_cmd(regs
, &cmd
);
2407 ace_unmask_irq(dev
);
2408 local_irq_restore(flags
);
2414 static inline dma_addr_t
2415 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2416 struct sk_buff
*tail
, u32 idx
)
2419 struct tx_ring_info
*info
;
2421 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2422 offset_in_page(skb
->data
),
2423 skb
->len
, PCI_DMA_TODEVICE
);
2425 info
= ap
->skb
->tx_skbuff
+ idx
;
2427 pci_unmap_addr_set(info
, mapping
, mapping
);
2428 pci_unmap_len_set(info
, maplen
, skb
->len
);
2434 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2435 u32 flagsize
, u32 vlan_tag
)
2437 #if !USE_TX_COAL_NOW
2438 flagsize
&= ~BD_FLG_COAL_NOW
;
2441 if (ACE_IS_TIGON_I(ap
)) {
2442 struct tx_desc __iomem
*io
= (__force
struct tx_desc __iomem
*) desc
;
2443 writel(addr
>> 32, &io
->addr
.addrhi
);
2444 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2445 writel(flagsize
, &io
->flagsize
);
2447 writel(vlan_tag
, &io
->vlanres
);
2450 desc
->addr
.addrhi
= addr
>> 32;
2451 desc
->addr
.addrlo
= addr
;
2452 desc
->flagsize
= flagsize
;
2454 desc
->vlanres
= vlan_tag
;
2460 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2462 struct ace_private
*ap
= netdev_priv(dev
);
2463 struct ace_regs __iomem
*regs
= ap
->regs
;
2464 struct tx_desc
*desc
;
2466 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2471 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2474 if (!skb_shinfo(skb
)->nr_frags
) {
2478 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2479 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2480 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2481 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2483 if (vlan_tx_tag_present(skb
)) {
2484 flagsize
|= BD_FLG_VLAN_TAG
;
2485 vlan_tag
= vlan_tx_tag_get(skb
);
2488 desc
= ap
->tx_ring
+ idx
;
2489 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2491 /* Look at ace_tx_int for explanations. */
2492 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2493 flagsize
|= BD_FLG_COAL_NOW
;
2495 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2501 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2502 flagsize
= (skb_headlen(skb
) << 16);
2503 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2504 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2506 if (vlan_tx_tag_present(skb
)) {
2507 flagsize
|= BD_FLG_VLAN_TAG
;
2508 vlan_tag
= vlan_tx_tag_get(skb
);
2512 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2514 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2516 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2517 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2518 struct tx_ring_info
*info
;
2521 info
= ap
->skb
->tx_skbuff
+ idx
;
2522 desc
= ap
->tx_ring
+ idx
;
2524 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2525 frag
->page_offset
, frag
->size
,
2528 flagsize
= (frag
->size
<< 16);
2529 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2530 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2531 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2533 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2534 flagsize
|= BD_FLG_END
;
2535 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2536 flagsize
|= BD_FLG_COAL_NOW
;
2539 * Only the last fragment frees
2546 pci_unmap_addr_set(info
, mapping
, mapping
);
2547 pci_unmap_len_set(info
, maplen
, frag
->size
);
2548 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2554 ace_set_txprd(regs
, ap
, idx
);
2556 if (flagsize
& BD_FLG_COAL_NOW
) {
2557 netif_stop_queue(dev
);
2560 * A TX-descriptor producer (an IRQ) might have gotten
2561 * inbetween, making the ring free again. Since xmit is
2562 * serialized, this is the only situation we have to
2565 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2566 netif_wake_queue(dev
);
2569 dev
->trans_start
= jiffies
;
2570 return NETDEV_TX_OK
;
2574 * This race condition is unavoidable with lock-free drivers.
2575 * We wake up the queue _before_ tx_prd is advanced, so that we can
2576 * enter hard_start_xmit too early, while tx ring still looks closed.
2577 * This happens ~1-4 times per 100000 packets, so that we can allow
2578 * to loop syncing to other CPU. Probably, we need an additional
2579 * wmb() in ace_tx_intr as well.
2581 * Note that this race is relieved by reserving one more entry
2582 * in tx ring than it is necessary (see original non-SG driver).
2583 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2584 * is already overkill.
2586 * Alternative is to return with 1 not throttling queue. In this
2587 * case loop becomes longer, no more useful effects.
2589 if (time_before(jiffies
, maxjiff
)) {
2595 /* The ring is stuck full. */
2596 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2597 return NETDEV_TX_BUSY
;
2601 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2603 struct ace_private
*ap
= netdev_priv(dev
);
2604 struct ace_regs __iomem
*regs
= ap
->regs
;
2606 if (new_mtu
> ACE_JUMBO_MTU
)
2609 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2612 if (new_mtu
> ACE_STD_MTU
) {
2614 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2615 "support\n", dev
->name
);
2617 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2618 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2619 ace_set_rxtx_parms(dev
, 1);
2622 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2623 ace_sync_irq(dev
->irq
);
2624 ace_set_rxtx_parms(dev
, 0);
2628 cmd
.evt
= C_RESET_JUMBO_RNG
;
2631 ace_issue_cmd(regs
, &cmd
);
2638 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2640 struct ace_private
*ap
= netdev_priv(dev
);
2641 struct ace_regs __iomem
*regs
= ap
->regs
;
2644 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2646 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2647 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2648 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2649 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2651 ecmd
->port
= PORT_FIBRE
;
2652 ecmd
->transceiver
= XCVR_INTERNAL
;
2654 link
= readl(®s
->GigLnkState
);
2655 if (link
& LNK_1000MB
)
2656 ecmd
->speed
= SPEED_1000
;
2658 link
= readl(®s
->FastLnkState
);
2659 if (link
& LNK_100MB
)
2660 ecmd
->speed
= SPEED_100
;
2661 else if (link
& LNK_10MB
)
2662 ecmd
->speed
= SPEED_10
;
2666 if (link
& LNK_FULL_DUPLEX
)
2667 ecmd
->duplex
= DUPLEX_FULL
;
2669 ecmd
->duplex
= DUPLEX_HALF
;
2671 if (link
& LNK_NEGOTIATE
)
2672 ecmd
->autoneg
= AUTONEG_ENABLE
;
2674 ecmd
->autoneg
= AUTONEG_DISABLE
;
2678 * Current struct ethtool_cmd is insufficient
2680 ecmd
->trace
= readl(®s
->TuneTrace
);
2682 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2683 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2685 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2686 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2691 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2693 struct ace_private
*ap
= netdev_priv(dev
);
2694 struct ace_regs __iomem
*regs
= ap
->regs
;
2697 link
= readl(®s
->GigLnkState
);
2698 if (link
& LNK_1000MB
)
2701 link
= readl(®s
->FastLnkState
);
2702 if (link
& LNK_100MB
)
2704 else if (link
& LNK_10MB
)
2710 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2711 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2712 if (!ACE_IS_TIGON_I(ap
))
2713 link
|= LNK_TX_FLOW_CTL_Y
;
2714 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2715 link
|= LNK_NEGOTIATE
;
2716 if (ecmd
->speed
!= speed
) {
2717 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2731 if (ecmd
->duplex
== DUPLEX_FULL
)
2732 link
|= LNK_FULL_DUPLEX
;
2734 if (link
!= ap
->link
) {
2736 printk(KERN_INFO
"%s: Renegotiating link state\n",
2740 writel(link
, ®s
->TuneLink
);
2741 if (!ACE_IS_TIGON_I(ap
))
2742 writel(link
, ®s
->TuneFastLink
);
2745 cmd
.evt
= C_LNK_NEGOTIATION
;
2748 ace_issue_cmd(regs
, &cmd
);
2753 static void ace_get_drvinfo(struct net_device
*dev
,
2754 struct ethtool_drvinfo
*info
)
2756 struct ace_private
*ap
= netdev_priv(dev
);
2758 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2759 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2760 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2764 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2765 sizeof(info
->bus_info
));
2770 * Set the hardware MAC address.
2772 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2774 struct ace_private
*ap
= netdev_priv(dev
);
2775 struct ace_regs __iomem
*regs
= ap
->regs
;
2776 struct sockaddr
*addr
=p
;
2780 if(netif_running(dev
))
2783 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2785 da
= (u8
*)dev
->dev_addr
;
2787 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2788 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2791 cmd
.evt
= C_SET_MAC_ADDR
;
2794 ace_issue_cmd(regs
, &cmd
);
2800 static void ace_set_multicast_list(struct net_device
*dev
)
2802 struct ace_private
*ap
= netdev_priv(dev
);
2803 struct ace_regs __iomem
*regs
= ap
->regs
;
2806 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2807 cmd
.evt
= C_SET_MULTICAST_MODE
;
2808 cmd
.code
= C_C_MCAST_ENABLE
;
2810 ace_issue_cmd(regs
, &cmd
);
2812 } else if (ap
->mcast_all
) {
2813 cmd
.evt
= C_SET_MULTICAST_MODE
;
2814 cmd
.code
= C_C_MCAST_DISABLE
;
2816 ace_issue_cmd(regs
, &cmd
);
2820 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2821 cmd
.evt
= C_SET_PROMISC_MODE
;
2822 cmd
.code
= C_C_PROMISC_ENABLE
;
2824 ace_issue_cmd(regs
, &cmd
);
2826 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2827 cmd
.evt
= C_SET_PROMISC_MODE
;
2828 cmd
.code
= C_C_PROMISC_DISABLE
;
2830 ace_issue_cmd(regs
, &cmd
);
2835 * For the time being multicast relies on the upper layers
2836 * filtering it properly. The Firmware does not allow one to
2837 * set the entire multicast list at a time and keeping track of
2838 * it here is going to be messy.
2840 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2841 cmd
.evt
= C_SET_MULTICAST_MODE
;
2842 cmd
.code
= C_C_MCAST_ENABLE
;
2844 ace_issue_cmd(regs
, &cmd
);
2845 }else if (!ap
->mcast_all
) {
2846 cmd
.evt
= C_SET_MULTICAST_MODE
;
2847 cmd
.code
= C_C_MCAST_DISABLE
;
2849 ace_issue_cmd(regs
, &cmd
);
2854 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2856 struct ace_private
*ap
= netdev_priv(dev
);
2857 struct ace_mac_stats __iomem
*mac_stats
=
2858 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2860 dev
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2861 dev
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2862 dev
->stats
.collisions
= readl(&mac_stats
->coll
);
2868 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2871 void __iomem
*tdest
;
2879 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2880 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2881 tdest
= (void __iomem
*) ®s
->Window
+
2882 (dest
& (ACE_WINDOW_SIZE
- 1));
2883 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2885 * This requires byte swapping on big endian, however
2886 * writel does that for us
2889 for (i
= 0; i
< (tsize
/ 4); i
++) {
2890 writel(wsrc
[i
], tdest
+ i
*4);
2901 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2903 void __iomem
*tdest
;
2910 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2911 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2912 tdest
= (void __iomem
*) ®s
->Window
+
2913 (dest
& (ACE_WINDOW_SIZE
- 1));
2914 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2916 for (i
= 0; i
< (tsize
/ 4); i
++) {
2917 writel(0, tdest
+ i
*4);
2929 * Download the firmware into the SRAM on the NIC
2931 * This operation requires the NIC to be halted and is performed with
2932 * interrupts disabled and with the spinlock hold.
2934 static int __devinit
ace_load_firmware(struct net_device
*dev
)
2936 struct ace_private
*ap
= netdev_priv(dev
);
2937 struct ace_regs __iomem
*regs
= ap
->regs
;
2939 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2940 printk(KERN_ERR
"%s: trying to download firmware while the "
2941 "CPU is running!\n", ap
->name
);
2946 * Do not try to clear more than 512KB or we end up seeing
2947 * funny things on NICs with only 512KB SRAM
2949 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2950 if (ACE_IS_TIGON_I(ap
)) {
2951 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2952 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2953 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2955 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2956 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2957 }else if (ap
->version
== 2) {
2958 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2959 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2960 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
2961 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
2963 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
2971 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2973 * Accessing the EEPROM is `interesting' to say the least - don't read
2974 * this code right after dinner.
2976 * This is all about black magic and bit-banging the device .... I
2977 * wonder in what hospital they have put the guy who designed the i2c
2980 * Oh yes, this is only the beginning!
2982 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2983 * code i2c readout code by beta testing all my hacks.
2985 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
2989 readl(®s
->LocalCtrl
);
2990 udelay(ACE_SHORT_DELAY
);
2991 local
= readl(®s
->LocalCtrl
);
2992 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
2993 writel(local
, ®s
->LocalCtrl
);
2994 readl(®s
->LocalCtrl
);
2996 udelay(ACE_SHORT_DELAY
);
2997 local
|= EEPROM_CLK_OUT
;
2998 writel(local
, ®s
->LocalCtrl
);
2999 readl(®s
->LocalCtrl
);
3001 udelay(ACE_SHORT_DELAY
);
3002 local
&= ~EEPROM_DATA_OUT
;
3003 writel(local
, ®s
->LocalCtrl
);
3004 readl(®s
->LocalCtrl
);
3006 udelay(ACE_SHORT_DELAY
);
3007 local
&= ~EEPROM_CLK_OUT
;
3008 writel(local
, ®s
->LocalCtrl
);
3009 readl(®s
->LocalCtrl
);
3014 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3019 udelay(ACE_SHORT_DELAY
);
3020 local
= readl(®s
->LocalCtrl
);
3021 local
&= ~EEPROM_DATA_OUT
;
3022 local
|= EEPROM_WRITE_ENABLE
;
3023 writel(local
, ®s
->LocalCtrl
);
3024 readl(®s
->LocalCtrl
);
3027 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3028 udelay(ACE_SHORT_DELAY
);
3030 local
|= EEPROM_DATA_OUT
;
3032 local
&= ~EEPROM_DATA_OUT
;
3033 writel(local
, ®s
->LocalCtrl
);
3034 readl(®s
->LocalCtrl
);
3037 udelay(ACE_SHORT_DELAY
);
3038 local
|= EEPROM_CLK_OUT
;
3039 writel(local
, ®s
->LocalCtrl
);
3040 readl(®s
->LocalCtrl
);
3042 udelay(ACE_SHORT_DELAY
);
3043 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3044 writel(local
, ®s
->LocalCtrl
);
3045 readl(®s
->LocalCtrl
);
3051 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3056 local
= readl(®s
->LocalCtrl
);
3057 local
&= ~EEPROM_WRITE_ENABLE
;
3058 writel(local
, ®s
->LocalCtrl
);
3059 readl(®s
->LocalCtrl
);
3061 udelay(ACE_LONG_DELAY
);
3062 local
|= EEPROM_CLK_OUT
;
3063 writel(local
, ®s
->LocalCtrl
);
3064 readl(®s
->LocalCtrl
);
3066 udelay(ACE_SHORT_DELAY
);
3067 /* sample data in middle of high clk */
3068 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3069 udelay(ACE_SHORT_DELAY
);
3071 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3072 readl(®s
->LocalCtrl
);
3079 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3083 udelay(ACE_SHORT_DELAY
);
3084 local
= readl(®s
->LocalCtrl
);
3085 local
|= EEPROM_WRITE_ENABLE
;
3086 writel(local
, ®s
->LocalCtrl
);
3087 readl(®s
->LocalCtrl
);
3089 udelay(ACE_SHORT_DELAY
);
3090 local
&= ~EEPROM_DATA_OUT
;
3091 writel(local
, ®s
->LocalCtrl
);
3092 readl(®s
->LocalCtrl
);
3094 udelay(ACE_SHORT_DELAY
);
3095 local
|= EEPROM_CLK_OUT
;
3096 writel(local
, ®s
->LocalCtrl
);
3097 readl(®s
->LocalCtrl
);
3099 udelay(ACE_SHORT_DELAY
);
3100 local
|= EEPROM_DATA_OUT
;
3101 writel(local
, ®s
->LocalCtrl
);
3102 readl(®s
->LocalCtrl
);
3104 udelay(ACE_LONG_DELAY
);
3105 local
&= ~EEPROM_CLK_OUT
;
3106 writel(local
, ®s
->LocalCtrl
);
3112 * Read a whole byte from the EEPROM.
3114 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3115 unsigned long offset
)
3117 struct ace_private
*ap
= netdev_priv(dev
);
3118 struct ace_regs __iomem
*regs
= ap
->regs
;
3119 unsigned long flags
;
3125 * Don't take interrupts on this CPU will bit banging
3126 * the %#%#@$ I2C device
3128 local_irq_save(flags
);
3132 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3133 if (eeprom_check_ack(regs
)) {
3134 local_irq_restore(flags
);
3135 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3137 goto eeprom_read_error
;
3140 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3141 if (eeprom_check_ack(regs
)) {
3142 local_irq_restore(flags
);
3143 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3146 goto eeprom_read_error
;
3149 eeprom_prep(regs
, offset
& 0xff);
3150 if (eeprom_check_ack(regs
)) {
3151 local_irq_restore(flags
);
3152 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3155 goto eeprom_read_error
;
3159 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3160 if (eeprom_check_ack(regs
)) {
3161 local_irq_restore(flags
);
3162 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3165 goto eeprom_read_error
;
3168 for (i
= 0; i
< 8; i
++) {
3169 local
= readl(®s
->LocalCtrl
);
3170 local
&= ~EEPROM_WRITE_ENABLE
;
3171 writel(local
, ®s
->LocalCtrl
);
3172 readl(®s
->LocalCtrl
);
3173 udelay(ACE_LONG_DELAY
);
3175 local
|= EEPROM_CLK_OUT
;
3176 writel(local
, ®s
->LocalCtrl
);
3177 readl(®s
->LocalCtrl
);
3179 udelay(ACE_SHORT_DELAY
);
3180 /* sample data mid high clk */
3181 result
= (result
<< 1) |
3182 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3183 udelay(ACE_SHORT_DELAY
);
3185 local
= readl(®s
->LocalCtrl
);
3186 local
&= ~EEPROM_CLK_OUT
;
3187 writel(local
, ®s
->LocalCtrl
);
3188 readl(®s
->LocalCtrl
);
3189 udelay(ACE_SHORT_DELAY
);
3192 local
|= EEPROM_WRITE_ENABLE
;
3193 writel(local
, ®s
->LocalCtrl
);
3194 readl(®s
->LocalCtrl
);
3196 udelay(ACE_SHORT_DELAY
);
3200 local
|= EEPROM_DATA_OUT
;
3201 writel(local
, ®s
->LocalCtrl
);
3202 readl(®s
->LocalCtrl
);
3204 udelay(ACE_SHORT_DELAY
);
3205 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3206 readl(®s
->LocalCtrl
);
3207 udelay(ACE_LONG_DELAY
);
3208 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3209 readl(®s
->LocalCtrl
);
3211 udelay(ACE_SHORT_DELAY
);
3214 local_irq_restore(flags
);
3219 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3227 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"