uwb: fix oops when terminating an already terminated reservation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / acenic.c
blob66de80b64b92a3f937edf821e49ec748c6478ed3
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
70 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
71 #include <linux/if_vlan.h>
72 #endif
74 #ifdef SIOCETHTOOL
75 #include <linux/ethtool.h>
76 #endif
78 #include <net/sock.h>
79 #include <net/ip.h>
81 #include <asm/system.h>
82 #include <asm/io.h>
83 #include <asm/irq.h>
84 #include <asm/byteorder.h>
85 #include <asm/uaccess.h>
88 #define DRV_NAME "acenic"
90 #undef INDEX_DEBUG
92 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
93 #define ACE_IS_TIGON_I(ap) 0
94 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
95 #else
96 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
97 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
98 #endif
100 #ifndef PCI_VENDOR_ID_ALTEON
101 #define PCI_VENDOR_ID_ALTEON 0x12ae
102 #endif
103 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
106 #endif
107 #ifndef PCI_DEVICE_ID_3COM_3C985
108 #define PCI_DEVICE_ID_3COM_3C985 0x0001
109 #endif
110 #ifndef PCI_VENDOR_ID_NETGEAR
111 #define PCI_VENDOR_ID_NETGEAR 0x1385
112 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
113 #endif
114 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
115 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
116 #endif
120 * Farallon used the DEC vendor ID by mistake and they seem not
121 * to care - stinky!
123 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
124 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
125 #endif
126 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
127 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
128 #endif
129 #ifndef PCI_VENDOR_ID_SGI
130 #define PCI_VENDOR_ID_SGI 0x10a9
131 #endif
132 #ifndef PCI_DEVICE_ID_SGI_ACENIC
133 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
134 #endif
136 static struct pci_device_id acenic_pci_tbl[] = {
137 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
148 * Farallon used the DEC vendor ID on their cards incorrectly,
149 * then later Alteon's ID.
151 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
152 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
153 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
156 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
159 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
161 #define ace_sync_irq(irq) synchronize_irq(irq)
163 #ifndef offset_in_page
164 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
165 #endif
167 #define ACE_MAX_MOD_PARMS 8
168 #define BOARD_IDX_STATIC 0
169 #define BOARD_IDX_OVERFLOW -1
171 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
172 defined(NETIF_F_HW_VLAN_RX)
173 #define ACENIC_DO_VLAN 1
174 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
175 #else
176 #define ACENIC_DO_VLAN 0
177 #define ACE_RCB_VLAN_FLAG 0
178 #endif
180 #include "acenic.h"
183 * These must be defined before the firmware is included.
185 #define MAX_TEXT_LEN 96*1024
186 #define MAX_RODATA_LEN 8*1024
187 #define MAX_DATA_LEN 2*1024
189 #include "acenic_firmware.h"
191 #ifndef tigon2FwReleaseLocal
192 #define tigon2FwReleaseLocal 0
193 #endif
196 * This driver currently supports Tigon I and Tigon II based cards
197 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
198 * GA620. The driver should also work on the SGI, DEC and Farallon
199 * versions of the card, however I have not been able to test that
200 * myself.
202 * This card is really neat, it supports receive hardware checksumming
203 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
204 * firmware. Also the programming interface is quite neat, except for
205 * the parts dealing with the i2c eeprom on the card ;-)
207 * Using jumbo frames:
209 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
210 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
211 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
212 * interface number and <MTU> being the MTU value.
214 * Module parameters:
216 * When compiled as a loadable module, the driver allows for a number
217 * of module parameters to be specified. The driver supports the
218 * following module parameters:
220 * trace=<val> - Firmware trace level. This requires special traced
221 * firmware to replace the firmware supplied with
222 * the driver - for debugging purposes only.
224 * link=<val> - Link state. Normally you want to use the default link
225 * parameters set by the driver. This can be used to
226 * override these in case your switch doesn't negotiate
227 * the link properly. Valid values are:
228 * 0x0001 - Force half duplex link.
229 * 0x0002 - Do not negotiate line speed with the other end.
230 * 0x0010 - 10Mbit/sec link.
231 * 0x0020 - 100Mbit/sec link.
232 * 0x0040 - 1000Mbit/sec link.
233 * 0x0100 - Do not negotiate flow control.
234 * 0x0200 - Enable RX flow control Y
235 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
236 * Default value is 0x0270, ie. enable link+flow
237 * control negotiation. Negotiating the highest
238 * possible link speed with RX flow control enabled.
240 * When disabling link speed negotiation, only one link
241 * speed is allowed to be specified!
243 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
244 * to wait for more packets to arive before
245 * interrupting the host, from the time the first
246 * packet arrives.
248 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive in the transmit ring,
250 * before interrupting the host, after transmitting the
251 * first packet in the ring.
253 * max_tx_desc=<val> - maximum number of transmit descriptors
254 * (packets) transmitted before interrupting the host.
256 * max_rx_desc=<val> - maximum number of receive descriptors
257 * (packets) received before interrupting the host.
259 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
260 * increments of the NIC's on board memory to be used for
261 * transmit and receive buffers. For the 1MB NIC app. 800KB
262 * is available, on the 1/2MB NIC app. 300KB is available.
263 * 68KB will always be available as a minimum for both
264 * directions. The default value is a 50/50 split.
265 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
266 * operations, default (1) is to always disable this as
267 * that is what Alteon does on NT. I have not been able
268 * to measure any real performance differences with
269 * this on my systems. Set <val>=0 if you want to
270 * enable these operations.
272 * If you use more than one NIC, specify the parameters for the
273 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
274 * run tracing on NIC #2 but not on NIC #1 and #3.
276 * TODO:
278 * - Proper multicast support.
279 * - NIC dump support.
280 * - More tuning parameters.
282 * The mini ring is not used under Linux and I am not sure it makes sense
283 * to actually use it.
285 * New interrupt handler strategy:
287 * The old interrupt handler worked using the traditional method of
288 * replacing an skbuff with a new one when a packet arrives. However
289 * the rx rings do not need to contain a static number of buffer
290 * descriptors, thus it makes sense to move the memory allocation out
291 * of the main interrupt handler and do it in a bottom half handler
292 * and only allocate new buffers when the number of buffers in the
293 * ring is below a certain threshold. In order to avoid starving the
294 * NIC under heavy load it is however necessary to force allocation
295 * when hitting a minimum threshold. The strategy for alloction is as
296 * follows:
298 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
299 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
300 * the buffers in the interrupt handler
301 * RX_RING_THRES - maximum number of buffers in the rx ring
302 * RX_MINI_THRES - maximum number of buffers in the mini ring
303 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
305 * One advantagous side effect of this allocation approach is that the
306 * entire rx processing can be done without holding any spin lock
307 * since the rx rings and registers are totally independent of the tx
308 * ring and its registers. This of course includes the kmalloc's of
309 * new skb's. Thus start_xmit can run in parallel with rx processing
310 * and the memory allocation on SMP systems.
312 * Note that running the skb reallocation in a bottom half opens up
313 * another can of races which needs to be handled properly. In
314 * particular it can happen that the interrupt handler tries to run
315 * the reallocation while the bottom half is either running on another
316 * CPU or was interrupted on the same CPU. To get around this the
317 * driver uses bitops to prevent the reallocation routines from being
318 * reentered.
320 * TX handling can also be done without holding any spin lock, wheee
321 * this is fun! since tx_ret_csm is only written to by the interrupt
322 * handler. The case to be aware of is when shutting down the device
323 * and cleaning up where it is necessary to make sure that
324 * start_xmit() is not running while this is happening. Well DaveM
325 * informs me that this case is already protected against ... bye bye
326 * Mr. Spin Lock, it was nice to know you.
328 * TX interrupts are now partly disabled so the NIC will only generate
329 * TX interrupts for the number of coal ticks, not for the number of
330 * TX packets in the queue. This should reduce the number of TX only,
331 * ie. when no RX processing is done, interrupts seen.
335 * Threshold values for RX buffer allocation - the low water marks for
336 * when to start refilling the rings are set to 75% of the ring
337 * sizes. It seems to make sense to refill the rings entirely from the
338 * intrrupt handler once it gets below the panic threshold, that way
339 * we don't risk that the refilling is moved to another CPU when the
340 * one running the interrupt handler just got the slab code hot in its
341 * cache.
343 #define RX_RING_SIZE 72
344 #define RX_MINI_SIZE 64
345 #define RX_JUMBO_SIZE 48
347 #define RX_PANIC_STD_THRES 16
348 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
349 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
350 #define RX_PANIC_MINI_THRES 12
351 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
352 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
353 #define RX_PANIC_JUMBO_THRES 6
354 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
355 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
359 * Size of the mini ring entries, basically these just should be big
360 * enough to take TCP ACKs
362 #define ACE_MINI_SIZE 100
364 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
365 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
366 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
369 * There seems to be a magic difference in the effect between 995 and 996
370 * but little difference between 900 and 995 ... no idea why.
372 * There is now a default set of tuning parameters which is set, depending
373 * on whether or not the user enables Jumbo frames. It's assumed that if
374 * Jumbo frames are enabled, the user wants optimal tuning for that case.
376 #define DEF_TX_COAL 400 /* 996 */
377 #define DEF_TX_MAX_DESC 60 /* was 40 */
378 #define DEF_RX_COAL 120 /* 1000 */
379 #define DEF_RX_MAX_DESC 25
380 #define DEF_TX_RATIO 21 /* 24 */
382 #define DEF_JUMBO_TX_COAL 20
383 #define DEF_JUMBO_TX_MAX_DESC 60
384 #define DEF_JUMBO_RX_COAL 30
385 #define DEF_JUMBO_RX_MAX_DESC 6
386 #define DEF_JUMBO_TX_RATIO 21
388 #if tigon2FwReleaseLocal < 20001118
390 * Standard firmware and early modifications duplicate
391 * IRQ load without this flag (coal timer is never reset).
392 * Note that with this flag tx_coal should be less than
393 * time to xmit full tx ring.
394 * 400usec is not so bad for tx ring size of 128.
396 #define TX_COAL_INTS_ONLY 1 /* worth it */
397 #else
399 * With modified firmware, this is not necessary, but still useful.
401 #define TX_COAL_INTS_ONLY 1
402 #endif
404 #define DEF_TRACE 0
405 #define DEF_STAT (2 * TICKS_PER_SEC)
408 static int link_state[ACE_MAX_MOD_PARMS];
409 static int trace[ACE_MAX_MOD_PARMS];
410 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
411 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
412 static int max_tx_desc[ACE_MAX_MOD_PARMS];
413 static int max_rx_desc[ACE_MAX_MOD_PARMS];
414 static int tx_ratio[ACE_MAX_MOD_PARMS];
415 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
417 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
418 MODULE_LICENSE("GPL");
419 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
421 module_param_array_named(link, link_state, int, NULL, 0);
422 module_param_array(trace, int, NULL, 0);
423 module_param_array(tx_coal_tick, int, NULL, 0);
424 module_param_array(max_tx_desc, int, NULL, 0);
425 module_param_array(rx_coal_tick, int, NULL, 0);
426 module_param_array(max_rx_desc, int, NULL, 0);
427 module_param_array(tx_ratio, int, NULL, 0);
428 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
429 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
430 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
431 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
432 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
433 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
434 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
437 static char version[] __devinitdata =
438 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
439 " http://home.cern.ch/~jes/gige/acenic.html\n";
441 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
442 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
443 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
445 static const struct ethtool_ops ace_ethtool_ops = {
446 .get_settings = ace_get_settings,
447 .set_settings = ace_set_settings,
448 .get_drvinfo = ace_get_drvinfo,
451 static void ace_watchdog(struct net_device *dev);
453 static int __devinit acenic_probe_one(struct pci_dev *pdev,
454 const struct pci_device_id *id)
456 struct net_device *dev;
457 struct ace_private *ap;
458 static int boards_found;
460 dev = alloc_etherdev(sizeof(struct ace_private));
461 if (dev == NULL) {
462 printk(KERN_ERR "acenic: Unable to allocate "
463 "net_device structure!\n");
464 return -ENOMEM;
467 SET_NETDEV_DEV(dev, &pdev->dev);
469 ap = dev->priv;
470 ap->pdev = pdev;
471 ap->name = pci_name(pdev);
473 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
474 #if ACENIC_DO_VLAN
475 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
476 dev->vlan_rx_register = ace_vlan_rx_register;
477 #endif
479 dev->tx_timeout = &ace_watchdog;
480 dev->watchdog_timeo = 5*HZ;
482 dev->open = &ace_open;
483 dev->stop = &ace_close;
484 dev->hard_start_xmit = &ace_start_xmit;
485 dev->get_stats = &ace_get_stats;
486 dev->set_multicast_list = &ace_set_multicast_list;
487 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
488 dev->set_mac_address = &ace_set_mac_addr;
489 dev->change_mtu = &ace_change_mtu;
491 /* we only display this string ONCE */
492 if (!boards_found)
493 printk(version);
495 if (pci_enable_device(pdev))
496 goto fail_free_netdev;
499 * Enable master mode before we start playing with the
500 * pci_command word since pci_set_master() will modify
501 * it.
503 pci_set_master(pdev);
505 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
507 /* OpenFirmware on Mac's does not set this - DOH.. */
508 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
509 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
510 "access - was not enabled by BIOS/Firmware\n",
511 ap->name);
512 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
513 pci_write_config_word(ap->pdev, PCI_COMMAND,
514 ap->pci_command);
515 wmb();
518 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
519 if (ap->pci_latency <= 0x40) {
520 ap->pci_latency = 0x40;
521 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
525 * Remap the regs into kernel space - this is abuse of
526 * dev->base_addr since it was means for I/O port
527 * addresses but who gives a damn.
529 dev->base_addr = pci_resource_start(pdev, 0);
530 ap->regs = ioremap(dev->base_addr, 0x4000);
531 if (!ap->regs) {
532 printk(KERN_ERR "%s: Unable to map I/O register, "
533 "AceNIC %i will be disabled.\n",
534 ap->name, boards_found);
535 goto fail_free_netdev;
538 switch(pdev->vendor) {
539 case PCI_VENDOR_ID_ALTEON:
540 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
541 printk(KERN_INFO "%s: Farallon PN9100-T ",
542 ap->name);
543 } else {
544 printk(KERN_INFO "%s: Alteon AceNIC ",
545 ap->name);
547 break;
548 case PCI_VENDOR_ID_3COM:
549 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
550 break;
551 case PCI_VENDOR_ID_NETGEAR:
552 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
553 break;
554 case PCI_VENDOR_ID_DEC:
555 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
556 printk(KERN_INFO "%s: Farallon PN9000-SX ",
557 ap->name);
558 break;
560 case PCI_VENDOR_ID_SGI:
561 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
562 break;
563 default:
564 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
565 break;
568 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
569 printk("irq %d\n", pdev->irq);
571 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
572 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
573 printk(KERN_ERR "%s: Driver compiled without Tigon I"
574 " support - NIC disabled\n", dev->name);
575 goto fail_uninit;
577 #endif
579 if (ace_allocate_descriptors(dev))
580 goto fail_free_netdev;
582 #ifdef MODULE
583 if (boards_found >= ACE_MAX_MOD_PARMS)
584 ap->board_idx = BOARD_IDX_OVERFLOW;
585 else
586 ap->board_idx = boards_found;
587 #else
588 ap->board_idx = BOARD_IDX_STATIC;
589 #endif
591 if (ace_init(dev))
592 goto fail_free_netdev;
594 if (register_netdev(dev)) {
595 printk(KERN_ERR "acenic: device registration failed\n");
596 goto fail_uninit;
598 ap->name = dev->name;
600 if (ap->pci_using_dac)
601 dev->features |= NETIF_F_HIGHDMA;
603 pci_set_drvdata(pdev, dev);
605 boards_found++;
606 return 0;
608 fail_uninit:
609 ace_init_cleanup(dev);
610 fail_free_netdev:
611 free_netdev(dev);
612 return -ENODEV;
615 static void __devexit acenic_remove_one(struct pci_dev *pdev)
617 struct net_device *dev = pci_get_drvdata(pdev);
618 struct ace_private *ap = netdev_priv(dev);
619 struct ace_regs __iomem *regs = ap->regs;
620 short i;
622 unregister_netdev(dev);
624 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
625 if (ap->version >= 2)
626 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
629 * This clears any pending interrupts
631 writel(1, &regs->Mb0Lo);
632 readl(&regs->CpuCtrl); /* flush */
635 * Make sure no other CPUs are processing interrupts
636 * on the card before the buffers are being released.
637 * Otherwise one might experience some `interesting'
638 * effects.
640 * Then release the RX buffers - jumbo buffers were
641 * already released in ace_close().
643 ace_sync_irq(dev->irq);
645 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
646 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
648 if (skb) {
649 struct ring_info *ringp;
650 dma_addr_t mapping;
652 ringp = &ap->skb->rx_std_skbuff[i];
653 mapping = pci_unmap_addr(ringp, mapping);
654 pci_unmap_page(ap->pdev, mapping,
655 ACE_STD_BUFSIZE,
656 PCI_DMA_FROMDEVICE);
658 ap->rx_std_ring[i].size = 0;
659 ap->skb->rx_std_skbuff[i].skb = NULL;
660 dev_kfree_skb(skb);
664 if (ap->version >= 2) {
665 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
666 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
668 if (skb) {
669 struct ring_info *ringp;
670 dma_addr_t mapping;
672 ringp = &ap->skb->rx_mini_skbuff[i];
673 mapping = pci_unmap_addr(ringp,mapping);
674 pci_unmap_page(ap->pdev, mapping,
675 ACE_MINI_BUFSIZE,
676 PCI_DMA_FROMDEVICE);
678 ap->rx_mini_ring[i].size = 0;
679 ap->skb->rx_mini_skbuff[i].skb = NULL;
680 dev_kfree_skb(skb);
685 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
686 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
687 if (skb) {
688 struct ring_info *ringp;
689 dma_addr_t mapping;
691 ringp = &ap->skb->rx_jumbo_skbuff[i];
692 mapping = pci_unmap_addr(ringp, mapping);
693 pci_unmap_page(ap->pdev, mapping,
694 ACE_JUMBO_BUFSIZE,
695 PCI_DMA_FROMDEVICE);
697 ap->rx_jumbo_ring[i].size = 0;
698 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
699 dev_kfree_skb(skb);
703 ace_init_cleanup(dev);
704 free_netdev(dev);
707 static struct pci_driver acenic_pci_driver = {
708 .name = "acenic",
709 .id_table = acenic_pci_tbl,
710 .probe = acenic_probe_one,
711 .remove = __devexit_p(acenic_remove_one),
714 static int __init acenic_init(void)
716 return pci_register_driver(&acenic_pci_driver);
719 static void __exit acenic_exit(void)
721 pci_unregister_driver(&acenic_pci_driver);
724 module_init(acenic_init);
725 module_exit(acenic_exit);
727 static void ace_free_descriptors(struct net_device *dev)
729 struct ace_private *ap = netdev_priv(dev);
730 int size;
732 if (ap->rx_std_ring != NULL) {
733 size = (sizeof(struct rx_desc) *
734 (RX_STD_RING_ENTRIES +
735 RX_JUMBO_RING_ENTRIES +
736 RX_MINI_RING_ENTRIES +
737 RX_RETURN_RING_ENTRIES));
738 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
739 ap->rx_ring_base_dma);
740 ap->rx_std_ring = NULL;
741 ap->rx_jumbo_ring = NULL;
742 ap->rx_mini_ring = NULL;
743 ap->rx_return_ring = NULL;
745 if (ap->evt_ring != NULL) {
746 size = (sizeof(struct event) * EVT_RING_ENTRIES);
747 pci_free_consistent(ap->pdev, size, ap->evt_ring,
748 ap->evt_ring_dma);
749 ap->evt_ring = NULL;
751 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
752 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
753 pci_free_consistent(ap->pdev, size, ap->tx_ring,
754 ap->tx_ring_dma);
756 ap->tx_ring = NULL;
758 if (ap->evt_prd != NULL) {
759 pci_free_consistent(ap->pdev, sizeof(u32),
760 (void *)ap->evt_prd, ap->evt_prd_dma);
761 ap->evt_prd = NULL;
763 if (ap->rx_ret_prd != NULL) {
764 pci_free_consistent(ap->pdev, sizeof(u32),
765 (void *)ap->rx_ret_prd,
766 ap->rx_ret_prd_dma);
767 ap->rx_ret_prd = NULL;
769 if (ap->tx_csm != NULL) {
770 pci_free_consistent(ap->pdev, sizeof(u32),
771 (void *)ap->tx_csm, ap->tx_csm_dma);
772 ap->tx_csm = NULL;
777 static int ace_allocate_descriptors(struct net_device *dev)
779 struct ace_private *ap = netdev_priv(dev);
780 int size;
782 size = (sizeof(struct rx_desc) *
783 (RX_STD_RING_ENTRIES +
784 RX_JUMBO_RING_ENTRIES +
785 RX_MINI_RING_ENTRIES +
786 RX_RETURN_RING_ENTRIES));
788 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
789 &ap->rx_ring_base_dma);
790 if (ap->rx_std_ring == NULL)
791 goto fail;
793 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
794 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
795 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
797 size = (sizeof(struct event) * EVT_RING_ENTRIES);
799 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
801 if (ap->evt_ring == NULL)
802 goto fail;
805 * Only allocate a host TX ring for the Tigon II, the Tigon I
806 * has to use PCI registers for this ;-(
808 if (!ACE_IS_TIGON_I(ap)) {
809 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
811 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
812 &ap->tx_ring_dma);
814 if (ap->tx_ring == NULL)
815 goto fail;
818 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
819 &ap->evt_prd_dma);
820 if (ap->evt_prd == NULL)
821 goto fail;
823 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
824 &ap->rx_ret_prd_dma);
825 if (ap->rx_ret_prd == NULL)
826 goto fail;
828 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
829 &ap->tx_csm_dma);
830 if (ap->tx_csm == NULL)
831 goto fail;
833 return 0;
835 fail:
836 /* Clean up. */
837 ace_init_cleanup(dev);
838 return 1;
843 * Generic cleanup handling data allocated during init. Used when the
844 * module is unloaded or if an error occurs during initialization
846 static void ace_init_cleanup(struct net_device *dev)
848 struct ace_private *ap;
850 ap = netdev_priv(dev);
852 ace_free_descriptors(dev);
854 if (ap->info)
855 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
856 ap->info, ap->info_dma);
857 kfree(ap->skb);
858 kfree(ap->trace_buf);
860 if (dev->irq)
861 free_irq(dev->irq, dev);
863 iounmap(ap->regs);
868 * Commands are considered to be slow.
870 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
872 u32 idx;
874 idx = readl(&regs->CmdPrd);
876 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
877 idx = (idx + 1) % CMD_RING_ENTRIES;
879 writel(idx, &regs->CmdPrd);
883 static int __devinit ace_init(struct net_device *dev)
885 struct ace_private *ap;
886 struct ace_regs __iomem *regs;
887 struct ace_info *info = NULL;
888 struct pci_dev *pdev;
889 unsigned long myjif;
890 u64 tmp_ptr;
891 u32 tig_ver, mac1, mac2, tmp, pci_state;
892 int board_idx, ecode = 0;
893 short i;
894 unsigned char cache_size;
895 DECLARE_MAC_BUF(mac);
897 ap = netdev_priv(dev);
898 regs = ap->regs;
900 board_idx = ap->board_idx;
903 * aman@sgi.com - its useful to do a NIC reset here to
904 * address the `Firmware not running' problem subsequent
905 * to any crashes involving the NIC
907 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
908 readl(&regs->HostCtrl); /* PCI write posting */
909 udelay(5);
912 * Don't access any other registers before this point!
914 #ifdef __BIG_ENDIAN
916 * This will most likely need BYTE_SWAP once we switch
917 * to using __raw_writel()
919 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
920 &regs->HostCtrl);
921 #else
922 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
923 &regs->HostCtrl);
924 #endif
925 readl(&regs->HostCtrl); /* PCI write posting */
928 * Stop the NIC CPU and clear pending interrupts
930 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
931 readl(&regs->CpuCtrl); /* PCI write posting */
932 writel(0, &regs->Mb0Lo);
934 tig_ver = readl(&regs->HostCtrl) >> 28;
936 switch(tig_ver){
937 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
938 case 4:
939 case 5:
940 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
941 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
942 tigonFwReleaseFix);
943 writel(0, &regs->LocalCtrl);
944 ap->version = 1;
945 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
946 break;
947 #endif
948 case 6:
949 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
950 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
951 tigon2FwReleaseFix);
952 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
953 readl(&regs->CpuBCtrl); /* PCI write posting */
955 * The SRAM bank size does _not_ indicate the amount
956 * of memory on the card, it controls the _bank_ size!
957 * Ie. a 1MB AceNIC will have two banks of 512KB.
959 writel(SRAM_BANK_512K, &regs->LocalCtrl);
960 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
961 ap->version = 2;
962 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
963 break;
964 default:
965 printk(KERN_WARNING " Unsupported Tigon version detected "
966 "(%i)\n", tig_ver);
967 ecode = -ENODEV;
968 goto init_error;
972 * ModeStat _must_ be set after the SRAM settings as this change
973 * seems to corrupt the ModeStat and possible other registers.
974 * The SRAM settings survive resets and setting it to the same
975 * value a second time works as well. This is what caused the
976 * `Firmware not running' problem on the Tigon II.
978 #ifdef __BIG_ENDIAN
979 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
980 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
981 #else
982 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
983 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
984 #endif
985 readl(&regs->ModeStat); /* PCI write posting */
987 mac1 = 0;
988 for(i = 0; i < 4; i++) {
989 int t;
991 mac1 = mac1 << 8;
992 t = read_eeprom_byte(dev, 0x8c+i);
993 if (t < 0) {
994 ecode = -EIO;
995 goto init_error;
996 } else
997 mac1 |= (t & 0xff);
999 mac2 = 0;
1000 for(i = 4; i < 8; i++) {
1001 int t;
1003 mac2 = mac2 << 8;
1004 t = read_eeprom_byte(dev, 0x8c+i);
1005 if (t < 0) {
1006 ecode = -EIO;
1007 goto init_error;
1008 } else
1009 mac2 |= (t & 0xff);
1012 writel(mac1, &regs->MacAddrHi);
1013 writel(mac2, &regs->MacAddrLo);
1015 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1016 dev->dev_addr[1] = mac1 & 0xff;
1017 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1018 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1019 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1020 dev->dev_addr[5] = mac2 & 0xff;
1022 printk("MAC: %s\n", print_mac(mac, dev->dev_addr));
1025 * Looks like this is necessary to deal with on all architectures,
1026 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1027 * Ie. having two NICs in the machine, one will have the cache
1028 * line set at boot time, the other will not.
1030 pdev = ap->pdev;
1031 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1032 cache_size <<= 2;
1033 if (cache_size != SMP_CACHE_BYTES) {
1034 printk(KERN_INFO " PCI cache line size set incorrectly "
1035 "(%i bytes) by BIOS/FW, ", cache_size);
1036 if (cache_size > SMP_CACHE_BYTES)
1037 printk("expecting %i\n", SMP_CACHE_BYTES);
1038 else {
1039 printk("correcting to %i\n", SMP_CACHE_BYTES);
1040 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1041 SMP_CACHE_BYTES >> 2);
1045 pci_state = readl(&regs->PciState);
1046 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1047 "latency: %i clks\n",
1048 (pci_state & PCI_32BIT) ? 32 : 64,
1049 (pci_state & PCI_66MHZ) ? 66 : 33,
1050 ap->pci_latency);
1053 * Set the max DMA transfer size. Seems that for most systems
1054 * the performance is better when no MAX parameter is
1055 * set. However for systems enabling PCI write and invalidate,
1056 * DMA writes must be set to the L1 cache line size to get
1057 * optimal performance.
1059 * The default is now to turn the PCI write and invalidate off
1060 * - that is what Alteon does for NT.
1062 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1063 if (ap->version >= 2) {
1064 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1066 * Tuning parameters only supported for 8 cards
1068 if (board_idx == BOARD_IDX_OVERFLOW ||
1069 dis_pci_mem_inval[board_idx]) {
1070 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1071 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1072 pci_write_config_word(pdev, PCI_COMMAND,
1073 ap->pci_command);
1074 printk(KERN_INFO " Disabling PCI memory "
1075 "write and invalidate\n");
1077 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1078 printk(KERN_INFO " PCI memory write & invalidate "
1079 "enabled by BIOS, enabling counter measures\n");
1081 switch(SMP_CACHE_BYTES) {
1082 case 16:
1083 tmp |= DMA_WRITE_MAX_16;
1084 break;
1085 case 32:
1086 tmp |= DMA_WRITE_MAX_32;
1087 break;
1088 case 64:
1089 tmp |= DMA_WRITE_MAX_64;
1090 break;
1091 case 128:
1092 tmp |= DMA_WRITE_MAX_128;
1093 break;
1094 default:
1095 printk(KERN_INFO " Cache line size %i not "
1096 "supported, PCI write and invalidate "
1097 "disabled\n", SMP_CACHE_BYTES);
1098 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1099 pci_write_config_word(pdev, PCI_COMMAND,
1100 ap->pci_command);
1105 #ifdef __sparc__
1107 * On this platform, we know what the best dma settings
1108 * are. We use 64-byte maximum bursts, because if we
1109 * burst larger than the cache line size (or even cross
1110 * a 64byte boundary in a single burst) the UltraSparc
1111 * PCI controller will disconnect at 64-byte multiples.
1113 * Read-multiple will be properly enabled above, and when
1114 * set will give the PCI controller proper hints about
1115 * prefetching.
1117 tmp &= ~DMA_READ_WRITE_MASK;
1118 tmp |= DMA_READ_MAX_64;
1119 tmp |= DMA_WRITE_MAX_64;
1120 #endif
1121 #ifdef __alpha__
1122 tmp &= ~DMA_READ_WRITE_MASK;
1123 tmp |= DMA_READ_MAX_128;
1125 * All the docs say MUST NOT. Well, I did.
1126 * Nothing terrible happens, if we load wrong size.
1127 * Bit w&i still works better!
1129 tmp |= DMA_WRITE_MAX_128;
1130 #endif
1131 writel(tmp, &regs->PciState);
1133 #if 0
1135 * The Host PCI bus controller driver has to set FBB.
1136 * If all devices on that PCI bus support FBB, then the controller
1137 * can enable FBB support in the Host PCI Bus controller (or on
1138 * the PCI-PCI bridge if that applies).
1139 * -ggg
1142 * I have received reports from people having problems when this
1143 * bit is enabled.
1145 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1146 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1147 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1148 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1150 #endif
1153 * Configure DMA attributes.
1155 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1156 ap->pci_using_dac = 1;
1157 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1158 ap->pci_using_dac = 0;
1159 } else {
1160 ecode = -ENODEV;
1161 goto init_error;
1165 * Initialize the generic info block and the command+event rings
1166 * and the control blocks for the transmit and receive rings
1167 * as they need to be setup once and for all.
1169 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1170 &ap->info_dma))) {
1171 ecode = -EAGAIN;
1172 goto init_error;
1174 ap->info = info;
1177 * Get the memory for the skb rings.
1179 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1180 ecode = -EAGAIN;
1181 goto init_error;
1184 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1185 DRV_NAME, dev);
1186 if (ecode) {
1187 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1188 DRV_NAME, pdev->irq);
1189 goto init_error;
1190 } else
1191 dev->irq = pdev->irq;
1193 #ifdef INDEX_DEBUG
1194 spin_lock_init(&ap->debug_lock);
1195 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1196 ap->last_std_rx = 0;
1197 ap->last_mini_rx = 0;
1198 #endif
1200 memset(ap->info, 0, sizeof(struct ace_info));
1201 memset(ap->skb, 0, sizeof(struct ace_skb));
1203 ace_load_firmware(dev);
1204 ap->fw_running = 0;
1206 tmp_ptr = ap->info_dma;
1207 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1208 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1210 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1212 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1213 info->evt_ctrl.flags = 0;
1215 *(ap->evt_prd) = 0;
1216 wmb();
1217 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1218 writel(0, &regs->EvtCsm);
1220 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1221 info->cmd_ctrl.flags = 0;
1222 info->cmd_ctrl.max_len = 0;
1224 for (i = 0; i < CMD_RING_ENTRIES; i++)
1225 writel(0, &regs->CmdRng[i]);
1227 writel(0, &regs->CmdPrd);
1228 writel(0, &regs->CmdCsm);
1230 tmp_ptr = ap->info_dma;
1231 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1232 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1234 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1235 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1236 info->rx_std_ctrl.flags =
1237 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1239 memset(ap->rx_std_ring, 0,
1240 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1242 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1243 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1245 ap->rx_std_skbprd = 0;
1246 atomic_set(&ap->cur_rx_bufs, 0);
1248 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1249 (ap->rx_ring_base_dma +
1250 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1251 info->rx_jumbo_ctrl.max_len = 0;
1252 info->rx_jumbo_ctrl.flags =
1253 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1255 memset(ap->rx_jumbo_ring, 0,
1256 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1258 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1259 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1261 ap->rx_jumbo_skbprd = 0;
1262 atomic_set(&ap->cur_jumbo_bufs, 0);
1264 memset(ap->rx_mini_ring, 0,
1265 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1267 if (ap->version >= 2) {
1268 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1269 (ap->rx_ring_base_dma +
1270 (sizeof(struct rx_desc) *
1271 (RX_STD_RING_ENTRIES +
1272 RX_JUMBO_RING_ENTRIES))));
1273 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1274 info->rx_mini_ctrl.flags =
1275 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1277 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1278 ap->rx_mini_ring[i].flags =
1279 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1280 } else {
1281 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1282 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1283 info->rx_mini_ctrl.max_len = 0;
1286 ap->rx_mini_skbprd = 0;
1287 atomic_set(&ap->cur_mini_bufs, 0);
1289 set_aceaddr(&info->rx_return_ctrl.rngptr,
1290 (ap->rx_ring_base_dma +
1291 (sizeof(struct rx_desc) *
1292 (RX_STD_RING_ENTRIES +
1293 RX_JUMBO_RING_ENTRIES +
1294 RX_MINI_RING_ENTRIES))));
1295 info->rx_return_ctrl.flags = 0;
1296 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1298 memset(ap->rx_return_ring, 0,
1299 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1301 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1302 *(ap->rx_ret_prd) = 0;
1304 writel(TX_RING_BASE, &regs->WinBase);
1306 if (ACE_IS_TIGON_I(ap)) {
1307 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1308 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1309 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1310 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1312 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1313 } else {
1314 memset(ap->tx_ring, 0,
1315 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1317 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1320 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1321 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1324 * The Tigon I does not like having the TX ring in host memory ;-(
1326 if (!ACE_IS_TIGON_I(ap))
1327 tmp |= RCB_FLG_TX_HOST_RING;
1328 #if TX_COAL_INTS_ONLY
1329 tmp |= RCB_FLG_COAL_INT_ONLY;
1330 #endif
1331 info->tx_ctrl.flags = tmp;
1333 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1336 * Potential item for tuning parameter
1338 #if 0 /* NO */
1339 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1340 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1341 #else
1342 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1343 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1344 #endif
1346 writel(0, &regs->MaskInt);
1347 writel(1, &regs->IfIdx);
1348 #if 0
1350 * McKinley boxes do not like us fiddling with AssistState
1351 * this early
1353 writel(1, &regs->AssistState);
1354 #endif
1356 writel(DEF_STAT, &regs->TuneStatTicks);
1357 writel(DEF_TRACE, &regs->TuneTrace);
1359 ace_set_rxtx_parms(dev, 0);
1361 if (board_idx == BOARD_IDX_OVERFLOW) {
1362 printk(KERN_WARNING "%s: more than %i NICs detected, "
1363 "ignoring module parameters!\n",
1364 ap->name, ACE_MAX_MOD_PARMS);
1365 } else if (board_idx >= 0) {
1366 if (tx_coal_tick[board_idx])
1367 writel(tx_coal_tick[board_idx],
1368 &regs->TuneTxCoalTicks);
1369 if (max_tx_desc[board_idx])
1370 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1372 if (rx_coal_tick[board_idx])
1373 writel(rx_coal_tick[board_idx],
1374 &regs->TuneRxCoalTicks);
1375 if (max_rx_desc[board_idx])
1376 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1378 if (trace[board_idx])
1379 writel(trace[board_idx], &regs->TuneTrace);
1381 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1382 writel(tx_ratio[board_idx], &regs->TxBufRat);
1386 * Default link parameters
1388 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1389 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1390 if(ap->version >= 2)
1391 tmp |= LNK_TX_FLOW_CTL_Y;
1394 * Override link default parameters
1396 if ((board_idx >= 0) && link_state[board_idx]) {
1397 int option = link_state[board_idx];
1399 tmp = LNK_ENABLE;
1401 if (option & 0x01) {
1402 printk(KERN_INFO "%s: Setting half duplex link\n",
1403 ap->name);
1404 tmp &= ~LNK_FULL_DUPLEX;
1406 if (option & 0x02)
1407 tmp &= ~LNK_NEGOTIATE;
1408 if (option & 0x10)
1409 tmp |= LNK_10MB;
1410 if (option & 0x20)
1411 tmp |= LNK_100MB;
1412 if (option & 0x40)
1413 tmp |= LNK_1000MB;
1414 if ((option & 0x70) == 0) {
1415 printk(KERN_WARNING "%s: No media speed specified, "
1416 "forcing auto negotiation\n", ap->name);
1417 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1418 LNK_100MB | LNK_10MB;
1420 if ((option & 0x100) == 0)
1421 tmp |= LNK_NEG_FCTL;
1422 else
1423 printk(KERN_INFO "%s: Disabling flow control "
1424 "negotiation\n", ap->name);
1425 if (option & 0x200)
1426 tmp |= LNK_RX_FLOW_CTL_Y;
1427 if ((option & 0x400) && (ap->version >= 2)) {
1428 printk(KERN_INFO "%s: Enabling TX flow control\n",
1429 ap->name);
1430 tmp |= LNK_TX_FLOW_CTL_Y;
1434 ap->link = tmp;
1435 writel(tmp, &regs->TuneLink);
1436 if (ap->version >= 2)
1437 writel(tmp, &regs->TuneFastLink);
1439 if (ACE_IS_TIGON_I(ap))
1440 writel(tigonFwStartAddr, &regs->Pc);
1441 if (ap->version == 2)
1442 writel(tigon2FwStartAddr, &regs->Pc);
1444 writel(0, &regs->Mb0Lo);
1447 * Set tx_csm before we start receiving interrupts, otherwise
1448 * the interrupt handler might think it is supposed to process
1449 * tx ints before we are up and running, which may cause a null
1450 * pointer access in the int handler.
1452 ap->cur_rx = 0;
1453 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1455 wmb();
1456 ace_set_txprd(regs, ap, 0);
1457 writel(0, &regs->RxRetCsm);
1460 * Enable DMA engine now.
1461 * If we do this sooner, Mckinley box pukes.
1462 * I assume it's because Tigon II DMA engine wants to check
1463 * *something* even before the CPU is started.
1465 writel(1, &regs->AssistState); /* enable DMA */
1468 * Start the NIC CPU
1470 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1471 readl(&regs->CpuCtrl);
1474 * Wait for the firmware to spin up - max 3 seconds.
1476 myjif = jiffies + 3 * HZ;
1477 while (time_before(jiffies, myjif) && !ap->fw_running)
1478 cpu_relax();
1480 if (!ap->fw_running) {
1481 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1483 ace_dump_trace(ap);
1484 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1485 readl(&regs->CpuCtrl);
1487 /* aman@sgi.com - account for badly behaving firmware/NIC:
1488 * - have observed that the NIC may continue to generate
1489 * interrupts for some reason; attempt to stop it - halt
1490 * second CPU for Tigon II cards, and also clear Mb0
1491 * - if we're a module, we'll fail to load if this was
1492 * the only GbE card in the system => if the kernel does
1493 * see an interrupt from the NIC, code to handle it is
1494 * gone and OOps! - so free_irq also
1496 if (ap->version >= 2)
1497 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1498 &regs->CpuBCtrl);
1499 writel(0, &regs->Mb0Lo);
1500 readl(&regs->Mb0Lo);
1502 ecode = -EBUSY;
1503 goto init_error;
1507 * We load the ring here as there seem to be no way to tell the
1508 * firmware to wipe the ring without re-initializing it.
1510 if (!test_and_set_bit(0, &ap->std_refill_busy))
1511 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1512 else
1513 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1514 ap->name);
1515 if (ap->version >= 2) {
1516 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1517 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1518 else
1519 printk(KERN_ERR "%s: Someone is busy refilling "
1520 "the RX mini ring\n", ap->name);
1522 return 0;
1524 init_error:
1525 ace_init_cleanup(dev);
1526 return ecode;
1530 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1532 struct ace_private *ap = netdev_priv(dev);
1533 struct ace_regs __iomem *regs = ap->regs;
1534 int board_idx = ap->board_idx;
1536 if (board_idx >= 0) {
1537 if (!jumbo) {
1538 if (!tx_coal_tick[board_idx])
1539 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1540 if (!max_tx_desc[board_idx])
1541 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1542 if (!rx_coal_tick[board_idx])
1543 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1544 if (!max_rx_desc[board_idx])
1545 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1546 if (!tx_ratio[board_idx])
1547 writel(DEF_TX_RATIO, &regs->TxBufRat);
1548 } else {
1549 if (!tx_coal_tick[board_idx])
1550 writel(DEF_JUMBO_TX_COAL,
1551 &regs->TuneTxCoalTicks);
1552 if (!max_tx_desc[board_idx])
1553 writel(DEF_JUMBO_TX_MAX_DESC,
1554 &regs->TuneMaxTxDesc);
1555 if (!rx_coal_tick[board_idx])
1556 writel(DEF_JUMBO_RX_COAL,
1557 &regs->TuneRxCoalTicks);
1558 if (!max_rx_desc[board_idx])
1559 writel(DEF_JUMBO_RX_MAX_DESC,
1560 &regs->TuneMaxRxDesc);
1561 if (!tx_ratio[board_idx])
1562 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1568 static void ace_watchdog(struct net_device *data)
1570 struct net_device *dev = data;
1571 struct ace_private *ap = netdev_priv(dev);
1572 struct ace_regs __iomem *regs = ap->regs;
1575 * We haven't received a stats update event for more than 2.5
1576 * seconds and there is data in the transmit queue, thus we
1577 * asume the card is stuck.
1579 if (*ap->tx_csm != ap->tx_ret_csm) {
1580 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1581 dev->name, (unsigned int)readl(&regs->HostCtrl));
1582 /* This can happen due to ieee flow control. */
1583 } else {
1584 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1585 dev->name);
1586 #if 0
1587 netif_wake_queue(dev);
1588 #endif
1593 static void ace_tasklet(unsigned long dev)
1595 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1596 int cur_size;
1598 cur_size = atomic_read(&ap->cur_rx_bufs);
1599 if ((cur_size < RX_LOW_STD_THRES) &&
1600 !test_and_set_bit(0, &ap->std_refill_busy)) {
1601 #ifdef DEBUG
1602 printk("refilling buffers (current %i)\n", cur_size);
1603 #endif
1604 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1607 if (ap->version >= 2) {
1608 cur_size = atomic_read(&ap->cur_mini_bufs);
1609 if ((cur_size < RX_LOW_MINI_THRES) &&
1610 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1611 #ifdef DEBUG
1612 printk("refilling mini buffers (current %i)\n",
1613 cur_size);
1614 #endif
1615 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1619 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1620 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1621 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1622 #ifdef DEBUG
1623 printk("refilling jumbo buffers (current %i)\n", cur_size);
1624 #endif
1625 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1627 ap->tasklet_pending = 0;
1632 * Copy the contents of the NIC's trace buffer to kernel memory.
1634 static void ace_dump_trace(struct ace_private *ap)
1636 #if 0
1637 if (!ap->trace_buf)
1638 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1639 return;
1640 #endif
1645 * Load the standard rx ring.
1647 * Loading rings is safe without holding the spin lock since this is
1648 * done only before the device is enabled, thus no interrupts are
1649 * generated and by the interrupt handler/tasklet handler.
1651 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1653 struct ace_regs __iomem *regs = ap->regs;
1654 short i, idx;
1657 prefetchw(&ap->cur_rx_bufs);
1659 idx = ap->rx_std_skbprd;
1661 for (i = 0; i < nr_bufs; i++) {
1662 struct sk_buff *skb;
1663 struct rx_desc *rd;
1664 dma_addr_t mapping;
1666 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1667 if (!skb)
1668 break;
1670 skb_reserve(skb, NET_IP_ALIGN);
1671 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1672 offset_in_page(skb->data),
1673 ACE_STD_BUFSIZE,
1674 PCI_DMA_FROMDEVICE);
1675 ap->skb->rx_std_skbuff[idx].skb = skb;
1676 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1677 mapping, mapping);
1679 rd = &ap->rx_std_ring[idx];
1680 set_aceaddr(&rd->addr, mapping);
1681 rd->size = ACE_STD_BUFSIZE;
1682 rd->idx = idx;
1683 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1686 if (!i)
1687 goto error_out;
1689 atomic_add(i, &ap->cur_rx_bufs);
1690 ap->rx_std_skbprd = idx;
1692 if (ACE_IS_TIGON_I(ap)) {
1693 struct cmd cmd;
1694 cmd.evt = C_SET_RX_PRD_IDX;
1695 cmd.code = 0;
1696 cmd.idx = ap->rx_std_skbprd;
1697 ace_issue_cmd(regs, &cmd);
1698 } else {
1699 writel(idx, &regs->RxStdPrd);
1700 wmb();
1703 out:
1704 clear_bit(0, &ap->std_refill_busy);
1705 return;
1707 error_out:
1708 printk(KERN_INFO "Out of memory when allocating "
1709 "standard receive buffers\n");
1710 goto out;
1714 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1716 struct ace_regs __iomem *regs = ap->regs;
1717 short i, idx;
1719 prefetchw(&ap->cur_mini_bufs);
1721 idx = ap->rx_mini_skbprd;
1722 for (i = 0; i < nr_bufs; i++) {
1723 struct sk_buff *skb;
1724 struct rx_desc *rd;
1725 dma_addr_t mapping;
1727 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1728 if (!skb)
1729 break;
1731 skb_reserve(skb, NET_IP_ALIGN);
1732 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1733 offset_in_page(skb->data),
1734 ACE_MINI_BUFSIZE,
1735 PCI_DMA_FROMDEVICE);
1736 ap->skb->rx_mini_skbuff[idx].skb = skb;
1737 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1738 mapping, mapping);
1740 rd = &ap->rx_mini_ring[idx];
1741 set_aceaddr(&rd->addr, mapping);
1742 rd->size = ACE_MINI_BUFSIZE;
1743 rd->idx = idx;
1744 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1747 if (!i)
1748 goto error_out;
1750 atomic_add(i, &ap->cur_mini_bufs);
1752 ap->rx_mini_skbprd = idx;
1754 writel(idx, &regs->RxMiniPrd);
1755 wmb();
1757 out:
1758 clear_bit(0, &ap->mini_refill_busy);
1759 return;
1760 error_out:
1761 printk(KERN_INFO "Out of memory when allocating "
1762 "mini receive buffers\n");
1763 goto out;
1768 * Load the jumbo rx ring, this may happen at any time if the MTU
1769 * is changed to a value > 1500.
1771 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1773 struct ace_regs __iomem *regs = ap->regs;
1774 short i, idx;
1776 idx = ap->rx_jumbo_skbprd;
1778 for (i = 0; i < nr_bufs; i++) {
1779 struct sk_buff *skb;
1780 struct rx_desc *rd;
1781 dma_addr_t mapping;
1783 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1784 if (!skb)
1785 break;
1787 skb_reserve(skb, NET_IP_ALIGN);
1788 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1789 offset_in_page(skb->data),
1790 ACE_JUMBO_BUFSIZE,
1791 PCI_DMA_FROMDEVICE);
1792 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1793 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1794 mapping, mapping);
1796 rd = &ap->rx_jumbo_ring[idx];
1797 set_aceaddr(&rd->addr, mapping);
1798 rd->size = ACE_JUMBO_BUFSIZE;
1799 rd->idx = idx;
1800 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1803 if (!i)
1804 goto error_out;
1806 atomic_add(i, &ap->cur_jumbo_bufs);
1807 ap->rx_jumbo_skbprd = idx;
1809 if (ACE_IS_TIGON_I(ap)) {
1810 struct cmd cmd;
1811 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1812 cmd.code = 0;
1813 cmd.idx = ap->rx_jumbo_skbprd;
1814 ace_issue_cmd(regs, &cmd);
1815 } else {
1816 writel(idx, &regs->RxJumboPrd);
1817 wmb();
1820 out:
1821 clear_bit(0, &ap->jumbo_refill_busy);
1822 return;
1823 error_out:
1824 if (net_ratelimit())
1825 printk(KERN_INFO "Out of memory when allocating "
1826 "jumbo receive buffers\n");
1827 goto out;
1832 * All events are considered to be slow (RX/TX ints do not generate
1833 * events) and are handled here, outside the main interrupt handler,
1834 * to reduce the size of the handler.
1836 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1838 struct ace_private *ap;
1840 ap = netdev_priv(dev);
1842 while (evtcsm != evtprd) {
1843 switch (ap->evt_ring[evtcsm].evt) {
1844 case E_FW_RUNNING:
1845 printk(KERN_INFO "%s: Firmware up and running\n",
1846 ap->name);
1847 ap->fw_running = 1;
1848 wmb();
1849 break;
1850 case E_STATS_UPDATED:
1851 break;
1852 case E_LNK_STATE:
1854 u16 code = ap->evt_ring[evtcsm].code;
1855 switch (code) {
1856 case E_C_LINK_UP:
1858 u32 state = readl(&ap->regs->GigLnkState);
1859 printk(KERN_WARNING "%s: Optical link UP "
1860 "(%s Duplex, Flow Control: %s%s)\n",
1861 ap->name,
1862 state & LNK_FULL_DUPLEX ? "Full":"Half",
1863 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1864 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1865 break;
1867 case E_C_LINK_DOWN:
1868 printk(KERN_WARNING "%s: Optical link DOWN\n",
1869 ap->name);
1870 break;
1871 case E_C_LINK_10_100:
1872 printk(KERN_WARNING "%s: 10/100BaseT link "
1873 "UP\n", ap->name);
1874 break;
1875 default:
1876 printk(KERN_ERR "%s: Unknown optical link "
1877 "state %02x\n", ap->name, code);
1879 break;
1881 case E_ERROR:
1882 switch(ap->evt_ring[evtcsm].code) {
1883 case E_C_ERR_INVAL_CMD:
1884 printk(KERN_ERR "%s: invalid command error\n",
1885 ap->name);
1886 break;
1887 case E_C_ERR_UNIMP_CMD:
1888 printk(KERN_ERR "%s: unimplemented command "
1889 "error\n", ap->name);
1890 break;
1891 case E_C_ERR_BAD_CFG:
1892 printk(KERN_ERR "%s: bad config error\n",
1893 ap->name);
1894 break;
1895 default:
1896 printk(KERN_ERR "%s: unknown error %02x\n",
1897 ap->name, ap->evt_ring[evtcsm].code);
1899 break;
1900 case E_RESET_JUMBO_RNG:
1902 int i;
1903 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1904 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1905 ap->rx_jumbo_ring[i].size = 0;
1906 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1907 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1908 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1912 if (ACE_IS_TIGON_I(ap)) {
1913 struct cmd cmd;
1914 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1915 cmd.code = 0;
1916 cmd.idx = 0;
1917 ace_issue_cmd(ap->regs, &cmd);
1918 } else {
1919 writel(0, &((ap->regs)->RxJumboPrd));
1920 wmb();
1923 ap->jumbo = 0;
1924 ap->rx_jumbo_skbprd = 0;
1925 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1926 ap->name);
1927 clear_bit(0, &ap->jumbo_refill_busy);
1928 break;
1930 default:
1931 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1932 ap->name, ap->evt_ring[evtcsm].evt);
1934 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1937 return evtcsm;
1941 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1943 struct ace_private *ap = netdev_priv(dev);
1944 u32 idx;
1945 int mini_count = 0, std_count = 0;
1947 idx = rxretcsm;
1949 prefetchw(&ap->cur_rx_bufs);
1950 prefetchw(&ap->cur_mini_bufs);
1952 while (idx != rxretprd) {
1953 struct ring_info *rip;
1954 struct sk_buff *skb;
1955 struct rx_desc *rxdesc, *retdesc;
1956 u32 skbidx;
1957 int bd_flags, desc_type, mapsize;
1958 u16 csum;
1961 /* make sure the rx descriptor isn't read before rxretprd */
1962 if (idx == rxretcsm)
1963 rmb();
1965 retdesc = &ap->rx_return_ring[idx];
1966 skbidx = retdesc->idx;
1967 bd_flags = retdesc->flags;
1968 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1970 switch(desc_type) {
1972 * Normal frames do not have any flags set
1974 * Mini and normal frames arrive frequently,
1975 * so use a local counter to avoid doing
1976 * atomic operations for each packet arriving.
1978 case 0:
1979 rip = &ap->skb->rx_std_skbuff[skbidx];
1980 mapsize = ACE_STD_BUFSIZE;
1981 rxdesc = &ap->rx_std_ring[skbidx];
1982 std_count++;
1983 break;
1984 case BD_FLG_JUMBO:
1985 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1986 mapsize = ACE_JUMBO_BUFSIZE;
1987 rxdesc = &ap->rx_jumbo_ring[skbidx];
1988 atomic_dec(&ap->cur_jumbo_bufs);
1989 break;
1990 case BD_FLG_MINI:
1991 rip = &ap->skb->rx_mini_skbuff[skbidx];
1992 mapsize = ACE_MINI_BUFSIZE;
1993 rxdesc = &ap->rx_mini_ring[skbidx];
1994 mini_count++;
1995 break;
1996 default:
1997 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1998 "returned by NIC\n", dev->name,
1999 retdesc->flags);
2000 goto error;
2003 skb = rip->skb;
2004 rip->skb = NULL;
2005 pci_unmap_page(ap->pdev,
2006 pci_unmap_addr(rip, mapping),
2007 mapsize,
2008 PCI_DMA_FROMDEVICE);
2009 skb_put(skb, retdesc->size);
2012 * Fly baby, fly!
2014 csum = retdesc->tcp_udp_csum;
2016 skb->protocol = eth_type_trans(skb, dev);
2019 * Instead of forcing the poor tigon mips cpu to calculate
2020 * pseudo hdr checksum, we do this ourselves.
2022 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2023 skb->csum = htons(csum);
2024 skb->ip_summed = CHECKSUM_COMPLETE;
2025 } else {
2026 skb->ip_summed = CHECKSUM_NONE;
2029 /* send it up */
2030 #if ACENIC_DO_VLAN
2031 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2032 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2033 } else
2034 #endif
2035 netif_rx(skb);
2037 dev->last_rx = jiffies;
2038 dev->stats.rx_packets++;
2039 dev->stats.rx_bytes += retdesc->size;
2041 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2044 atomic_sub(std_count, &ap->cur_rx_bufs);
2045 if (!ACE_IS_TIGON_I(ap))
2046 atomic_sub(mini_count, &ap->cur_mini_bufs);
2048 out:
2050 * According to the documentation RxRetCsm is obsolete with
2051 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2053 if (ACE_IS_TIGON_I(ap)) {
2054 writel(idx, &ap->regs->RxRetCsm);
2056 ap->cur_rx = idx;
2058 return;
2059 error:
2060 idx = rxretprd;
2061 goto out;
2065 static inline void ace_tx_int(struct net_device *dev,
2066 u32 txcsm, u32 idx)
2068 struct ace_private *ap = netdev_priv(dev);
2070 do {
2071 struct sk_buff *skb;
2072 dma_addr_t mapping;
2073 struct tx_ring_info *info;
2075 info = ap->skb->tx_skbuff + idx;
2076 skb = info->skb;
2077 mapping = pci_unmap_addr(info, mapping);
2079 if (mapping) {
2080 pci_unmap_page(ap->pdev, mapping,
2081 pci_unmap_len(info, maplen),
2082 PCI_DMA_TODEVICE);
2083 pci_unmap_addr_set(info, mapping, 0);
2086 if (skb) {
2087 dev->stats.tx_packets++;
2088 dev->stats.tx_bytes += skb->len;
2089 dev_kfree_skb_irq(skb);
2090 info->skb = NULL;
2093 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2094 } while (idx != txcsm);
2096 if (netif_queue_stopped(dev))
2097 netif_wake_queue(dev);
2099 wmb();
2100 ap->tx_ret_csm = txcsm;
2102 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2104 * We could try to make it before. In this case we would get
2105 * the following race condition: hard_start_xmit on other cpu
2106 * enters after we advanced tx_ret_csm and fills space,
2107 * which we have just freed, so that we make illegal device wakeup.
2108 * There is no good way to workaround this (at entry
2109 * to ace_start_xmit detects this condition and prevents
2110 * ring corruption, but it is not a good workaround.)
2112 * When tx_ret_csm is advanced after, we wake up device _only_
2113 * if we really have some space in ring (though the core doing
2114 * hard_start_xmit can see full ring for some period and has to
2115 * synchronize.) Superb.
2116 * BUT! We get another subtle race condition. hard_start_xmit
2117 * may think that ring is full between wakeup and advancing
2118 * tx_ret_csm and will stop device instantly! It is not so bad.
2119 * We are guaranteed that there is something in ring, so that
2120 * the next irq will resume transmission. To speedup this we could
2121 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2122 * (see ace_start_xmit).
2124 * Well, this dilemma exists in all lock-free devices.
2125 * We, following scheme used in drivers by Donald Becker,
2126 * select the least dangerous.
2127 * --ANK
2132 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2134 struct net_device *dev = (struct net_device *)dev_id;
2135 struct ace_private *ap = netdev_priv(dev);
2136 struct ace_regs __iomem *regs = ap->regs;
2137 u32 idx;
2138 u32 txcsm, rxretcsm, rxretprd;
2139 u32 evtcsm, evtprd;
2142 * In case of PCI shared interrupts or spurious interrupts,
2143 * we want to make sure it is actually our interrupt before
2144 * spending any time in here.
2146 if (!(readl(&regs->HostCtrl) & IN_INT))
2147 return IRQ_NONE;
2150 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2151 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2152 * writel(0, &regs->Mb0Lo).
2154 * "IRQ avoidance" recommended in docs applies to IRQs served
2155 * threads and it is wrong even for that case.
2157 writel(0, &regs->Mb0Lo);
2158 readl(&regs->Mb0Lo);
2161 * There is no conflict between transmit handling in
2162 * start_xmit and receive processing, thus there is no reason
2163 * to take a spin lock for RX handling. Wait until we start
2164 * working on the other stuff - hey we don't need a spin lock
2165 * anymore.
2167 rxretprd = *ap->rx_ret_prd;
2168 rxretcsm = ap->cur_rx;
2170 if (rxretprd != rxretcsm)
2171 ace_rx_int(dev, rxretprd, rxretcsm);
2173 txcsm = *ap->tx_csm;
2174 idx = ap->tx_ret_csm;
2176 if (txcsm != idx) {
2178 * If each skb takes only one descriptor this check degenerates
2179 * to identity, because new space has just been opened.
2180 * But if skbs are fragmented we must check that this index
2181 * update releases enough of space, otherwise we just
2182 * wait for device to make more work.
2184 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2185 ace_tx_int(dev, txcsm, idx);
2188 evtcsm = readl(&regs->EvtCsm);
2189 evtprd = *ap->evt_prd;
2191 if (evtcsm != evtprd) {
2192 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2193 writel(evtcsm, &regs->EvtCsm);
2197 * This has to go last in the interrupt handler and run with
2198 * the spin lock released ... what lock?
2200 if (netif_running(dev)) {
2201 int cur_size;
2202 int run_tasklet = 0;
2204 cur_size = atomic_read(&ap->cur_rx_bufs);
2205 if (cur_size < RX_LOW_STD_THRES) {
2206 if ((cur_size < RX_PANIC_STD_THRES) &&
2207 !test_and_set_bit(0, &ap->std_refill_busy)) {
2208 #ifdef DEBUG
2209 printk("low on std buffers %i\n", cur_size);
2210 #endif
2211 ace_load_std_rx_ring(ap,
2212 RX_RING_SIZE - cur_size);
2213 } else
2214 run_tasklet = 1;
2217 if (!ACE_IS_TIGON_I(ap)) {
2218 cur_size = atomic_read(&ap->cur_mini_bufs);
2219 if (cur_size < RX_LOW_MINI_THRES) {
2220 if ((cur_size < RX_PANIC_MINI_THRES) &&
2221 !test_and_set_bit(0,
2222 &ap->mini_refill_busy)) {
2223 #ifdef DEBUG
2224 printk("low on mini buffers %i\n",
2225 cur_size);
2226 #endif
2227 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2228 } else
2229 run_tasklet = 1;
2233 if (ap->jumbo) {
2234 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2235 if (cur_size < RX_LOW_JUMBO_THRES) {
2236 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2237 !test_and_set_bit(0,
2238 &ap->jumbo_refill_busy)){
2239 #ifdef DEBUG
2240 printk("low on jumbo buffers %i\n",
2241 cur_size);
2242 #endif
2243 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2244 } else
2245 run_tasklet = 1;
2248 if (run_tasklet && !ap->tasklet_pending) {
2249 ap->tasklet_pending = 1;
2250 tasklet_schedule(&ap->ace_tasklet);
2254 return IRQ_HANDLED;
2258 #if ACENIC_DO_VLAN
2259 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2261 struct ace_private *ap = netdev_priv(dev);
2262 unsigned long flags;
2264 local_irq_save(flags);
2265 ace_mask_irq(dev);
2267 ap->vlgrp = grp;
2269 ace_unmask_irq(dev);
2270 local_irq_restore(flags);
2272 #endif /* ACENIC_DO_VLAN */
2275 static int ace_open(struct net_device *dev)
2277 struct ace_private *ap = netdev_priv(dev);
2278 struct ace_regs __iomem *regs = ap->regs;
2279 struct cmd cmd;
2281 if (!(ap->fw_running)) {
2282 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2283 return -EBUSY;
2286 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2288 cmd.evt = C_CLEAR_STATS;
2289 cmd.code = 0;
2290 cmd.idx = 0;
2291 ace_issue_cmd(regs, &cmd);
2293 cmd.evt = C_HOST_STATE;
2294 cmd.code = C_C_STACK_UP;
2295 cmd.idx = 0;
2296 ace_issue_cmd(regs, &cmd);
2298 if (ap->jumbo &&
2299 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2300 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2302 if (dev->flags & IFF_PROMISC) {
2303 cmd.evt = C_SET_PROMISC_MODE;
2304 cmd.code = C_C_PROMISC_ENABLE;
2305 cmd.idx = 0;
2306 ace_issue_cmd(regs, &cmd);
2308 ap->promisc = 1;
2309 }else
2310 ap->promisc = 0;
2311 ap->mcast_all = 0;
2313 #if 0
2314 cmd.evt = C_LNK_NEGOTIATION;
2315 cmd.code = 0;
2316 cmd.idx = 0;
2317 ace_issue_cmd(regs, &cmd);
2318 #endif
2320 netif_start_queue(dev);
2323 * Setup the bottom half rx ring refill handler
2325 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2326 return 0;
2330 static int ace_close(struct net_device *dev)
2332 struct ace_private *ap = netdev_priv(dev);
2333 struct ace_regs __iomem *regs = ap->regs;
2334 struct cmd cmd;
2335 unsigned long flags;
2336 short i;
2339 * Without (or before) releasing irq and stopping hardware, this
2340 * is an absolute non-sense, by the way. It will be reset instantly
2341 * by the first irq.
2343 netif_stop_queue(dev);
2346 if (ap->promisc) {
2347 cmd.evt = C_SET_PROMISC_MODE;
2348 cmd.code = C_C_PROMISC_DISABLE;
2349 cmd.idx = 0;
2350 ace_issue_cmd(regs, &cmd);
2351 ap->promisc = 0;
2354 cmd.evt = C_HOST_STATE;
2355 cmd.code = C_C_STACK_DOWN;
2356 cmd.idx = 0;
2357 ace_issue_cmd(regs, &cmd);
2359 tasklet_kill(&ap->ace_tasklet);
2362 * Make sure one CPU is not processing packets while
2363 * buffers are being released by another.
2366 local_irq_save(flags);
2367 ace_mask_irq(dev);
2369 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2370 struct sk_buff *skb;
2371 dma_addr_t mapping;
2372 struct tx_ring_info *info;
2374 info = ap->skb->tx_skbuff + i;
2375 skb = info->skb;
2376 mapping = pci_unmap_addr(info, mapping);
2378 if (mapping) {
2379 if (ACE_IS_TIGON_I(ap)) {
2380 /* NB: TIGON_1 is special, tx_ring is in io space */
2381 struct tx_desc __iomem *tx;
2382 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2383 writel(0, &tx->addr.addrhi);
2384 writel(0, &tx->addr.addrlo);
2385 writel(0, &tx->flagsize);
2386 } else
2387 memset(ap->tx_ring + i, 0,
2388 sizeof(struct tx_desc));
2389 pci_unmap_page(ap->pdev, mapping,
2390 pci_unmap_len(info, maplen),
2391 PCI_DMA_TODEVICE);
2392 pci_unmap_addr_set(info, mapping, 0);
2394 if (skb) {
2395 dev_kfree_skb(skb);
2396 info->skb = NULL;
2400 if (ap->jumbo) {
2401 cmd.evt = C_RESET_JUMBO_RNG;
2402 cmd.code = 0;
2403 cmd.idx = 0;
2404 ace_issue_cmd(regs, &cmd);
2407 ace_unmask_irq(dev);
2408 local_irq_restore(flags);
2410 return 0;
2414 static inline dma_addr_t
2415 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2416 struct sk_buff *tail, u32 idx)
2418 dma_addr_t mapping;
2419 struct tx_ring_info *info;
2421 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2422 offset_in_page(skb->data),
2423 skb->len, PCI_DMA_TODEVICE);
2425 info = ap->skb->tx_skbuff + idx;
2426 info->skb = tail;
2427 pci_unmap_addr_set(info, mapping, mapping);
2428 pci_unmap_len_set(info, maplen, skb->len);
2429 return mapping;
2433 static inline void
2434 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2435 u32 flagsize, u32 vlan_tag)
2437 #if !USE_TX_COAL_NOW
2438 flagsize &= ~BD_FLG_COAL_NOW;
2439 #endif
2441 if (ACE_IS_TIGON_I(ap)) {
2442 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2443 writel(addr >> 32, &io->addr.addrhi);
2444 writel(addr & 0xffffffff, &io->addr.addrlo);
2445 writel(flagsize, &io->flagsize);
2446 #if ACENIC_DO_VLAN
2447 writel(vlan_tag, &io->vlanres);
2448 #endif
2449 } else {
2450 desc->addr.addrhi = addr >> 32;
2451 desc->addr.addrlo = addr;
2452 desc->flagsize = flagsize;
2453 #if ACENIC_DO_VLAN
2454 desc->vlanres = vlan_tag;
2455 #endif
2460 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2462 struct ace_private *ap = netdev_priv(dev);
2463 struct ace_regs __iomem *regs = ap->regs;
2464 struct tx_desc *desc;
2465 u32 idx, flagsize;
2466 unsigned long maxjiff = jiffies + 3*HZ;
2468 restart:
2469 idx = ap->tx_prd;
2471 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2472 goto overflow;
2474 if (!skb_shinfo(skb)->nr_frags) {
2475 dma_addr_t mapping;
2476 u32 vlan_tag = 0;
2478 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2479 flagsize = (skb->len << 16) | (BD_FLG_END);
2480 if (skb->ip_summed == CHECKSUM_PARTIAL)
2481 flagsize |= BD_FLG_TCP_UDP_SUM;
2482 #if ACENIC_DO_VLAN
2483 if (vlan_tx_tag_present(skb)) {
2484 flagsize |= BD_FLG_VLAN_TAG;
2485 vlan_tag = vlan_tx_tag_get(skb);
2487 #endif
2488 desc = ap->tx_ring + idx;
2489 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2491 /* Look at ace_tx_int for explanations. */
2492 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2493 flagsize |= BD_FLG_COAL_NOW;
2495 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2496 } else {
2497 dma_addr_t mapping;
2498 u32 vlan_tag = 0;
2499 int i, len = 0;
2501 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2502 flagsize = (skb_headlen(skb) << 16);
2503 if (skb->ip_summed == CHECKSUM_PARTIAL)
2504 flagsize |= BD_FLG_TCP_UDP_SUM;
2505 #if ACENIC_DO_VLAN
2506 if (vlan_tx_tag_present(skb)) {
2507 flagsize |= BD_FLG_VLAN_TAG;
2508 vlan_tag = vlan_tx_tag_get(skb);
2510 #endif
2512 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2514 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518 struct tx_ring_info *info;
2520 len += frag->size;
2521 info = ap->skb->tx_skbuff + idx;
2522 desc = ap->tx_ring + idx;
2524 mapping = pci_map_page(ap->pdev, frag->page,
2525 frag->page_offset, frag->size,
2526 PCI_DMA_TODEVICE);
2528 flagsize = (frag->size << 16);
2529 if (skb->ip_summed == CHECKSUM_PARTIAL)
2530 flagsize |= BD_FLG_TCP_UDP_SUM;
2531 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2533 if (i == skb_shinfo(skb)->nr_frags - 1) {
2534 flagsize |= BD_FLG_END;
2535 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2536 flagsize |= BD_FLG_COAL_NOW;
2539 * Only the last fragment frees
2540 * the skb!
2542 info->skb = skb;
2543 } else {
2544 info->skb = NULL;
2546 pci_unmap_addr_set(info, mapping, mapping);
2547 pci_unmap_len_set(info, maplen, frag->size);
2548 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2552 wmb();
2553 ap->tx_prd = idx;
2554 ace_set_txprd(regs, ap, idx);
2556 if (flagsize & BD_FLG_COAL_NOW) {
2557 netif_stop_queue(dev);
2560 * A TX-descriptor producer (an IRQ) might have gotten
2561 * inbetween, making the ring free again. Since xmit is
2562 * serialized, this is the only situation we have to
2563 * re-test.
2565 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2566 netif_wake_queue(dev);
2569 dev->trans_start = jiffies;
2570 return NETDEV_TX_OK;
2572 overflow:
2574 * This race condition is unavoidable with lock-free drivers.
2575 * We wake up the queue _before_ tx_prd is advanced, so that we can
2576 * enter hard_start_xmit too early, while tx ring still looks closed.
2577 * This happens ~1-4 times per 100000 packets, so that we can allow
2578 * to loop syncing to other CPU. Probably, we need an additional
2579 * wmb() in ace_tx_intr as well.
2581 * Note that this race is relieved by reserving one more entry
2582 * in tx ring than it is necessary (see original non-SG driver).
2583 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2584 * is already overkill.
2586 * Alternative is to return with 1 not throttling queue. In this
2587 * case loop becomes longer, no more useful effects.
2589 if (time_before(jiffies, maxjiff)) {
2590 barrier();
2591 cpu_relax();
2592 goto restart;
2595 /* The ring is stuck full. */
2596 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2597 return NETDEV_TX_BUSY;
2601 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2603 struct ace_private *ap = netdev_priv(dev);
2604 struct ace_regs __iomem *regs = ap->regs;
2606 if (new_mtu > ACE_JUMBO_MTU)
2607 return -EINVAL;
2609 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2610 dev->mtu = new_mtu;
2612 if (new_mtu > ACE_STD_MTU) {
2613 if (!(ap->jumbo)) {
2614 printk(KERN_INFO "%s: Enabling Jumbo frame "
2615 "support\n", dev->name);
2616 ap->jumbo = 1;
2617 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2618 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2619 ace_set_rxtx_parms(dev, 1);
2621 } else {
2622 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2623 ace_sync_irq(dev->irq);
2624 ace_set_rxtx_parms(dev, 0);
2625 if (ap->jumbo) {
2626 struct cmd cmd;
2628 cmd.evt = C_RESET_JUMBO_RNG;
2629 cmd.code = 0;
2630 cmd.idx = 0;
2631 ace_issue_cmd(regs, &cmd);
2635 return 0;
2638 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2640 struct ace_private *ap = netdev_priv(dev);
2641 struct ace_regs __iomem *regs = ap->regs;
2642 u32 link;
2644 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2645 ecmd->supported =
2646 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2647 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2648 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2649 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2651 ecmd->port = PORT_FIBRE;
2652 ecmd->transceiver = XCVR_INTERNAL;
2654 link = readl(&regs->GigLnkState);
2655 if (link & LNK_1000MB)
2656 ecmd->speed = SPEED_1000;
2657 else {
2658 link = readl(&regs->FastLnkState);
2659 if (link & LNK_100MB)
2660 ecmd->speed = SPEED_100;
2661 else if (link & LNK_10MB)
2662 ecmd->speed = SPEED_10;
2663 else
2664 ecmd->speed = 0;
2666 if (link & LNK_FULL_DUPLEX)
2667 ecmd->duplex = DUPLEX_FULL;
2668 else
2669 ecmd->duplex = DUPLEX_HALF;
2671 if (link & LNK_NEGOTIATE)
2672 ecmd->autoneg = AUTONEG_ENABLE;
2673 else
2674 ecmd->autoneg = AUTONEG_DISABLE;
2676 #if 0
2678 * Current struct ethtool_cmd is insufficient
2680 ecmd->trace = readl(&regs->TuneTrace);
2682 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2683 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2684 #endif
2685 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2686 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2688 return 0;
2691 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2693 struct ace_private *ap = netdev_priv(dev);
2694 struct ace_regs __iomem *regs = ap->regs;
2695 u32 link, speed;
2697 link = readl(&regs->GigLnkState);
2698 if (link & LNK_1000MB)
2699 speed = SPEED_1000;
2700 else {
2701 link = readl(&regs->FastLnkState);
2702 if (link & LNK_100MB)
2703 speed = SPEED_100;
2704 else if (link & LNK_10MB)
2705 speed = SPEED_10;
2706 else
2707 speed = SPEED_100;
2710 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2711 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2712 if (!ACE_IS_TIGON_I(ap))
2713 link |= LNK_TX_FLOW_CTL_Y;
2714 if (ecmd->autoneg == AUTONEG_ENABLE)
2715 link |= LNK_NEGOTIATE;
2716 if (ecmd->speed != speed) {
2717 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2718 switch (speed) {
2719 case SPEED_1000:
2720 link |= LNK_1000MB;
2721 break;
2722 case SPEED_100:
2723 link |= LNK_100MB;
2724 break;
2725 case SPEED_10:
2726 link |= LNK_10MB;
2727 break;
2731 if (ecmd->duplex == DUPLEX_FULL)
2732 link |= LNK_FULL_DUPLEX;
2734 if (link != ap->link) {
2735 struct cmd cmd;
2736 printk(KERN_INFO "%s: Renegotiating link state\n",
2737 dev->name);
2739 ap->link = link;
2740 writel(link, &regs->TuneLink);
2741 if (!ACE_IS_TIGON_I(ap))
2742 writel(link, &regs->TuneFastLink);
2743 wmb();
2745 cmd.evt = C_LNK_NEGOTIATION;
2746 cmd.code = 0;
2747 cmd.idx = 0;
2748 ace_issue_cmd(regs, &cmd);
2750 return 0;
2753 static void ace_get_drvinfo(struct net_device *dev,
2754 struct ethtool_drvinfo *info)
2756 struct ace_private *ap = netdev_priv(dev);
2758 strlcpy(info->driver, "acenic", sizeof(info->driver));
2759 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2760 tigonFwReleaseMajor, tigonFwReleaseMinor,
2761 tigonFwReleaseFix);
2763 if (ap->pdev)
2764 strlcpy(info->bus_info, pci_name(ap->pdev),
2765 sizeof(info->bus_info));
2770 * Set the hardware MAC address.
2772 static int ace_set_mac_addr(struct net_device *dev, void *p)
2774 struct ace_private *ap = netdev_priv(dev);
2775 struct ace_regs __iomem *regs = ap->regs;
2776 struct sockaddr *addr=p;
2777 u8 *da;
2778 struct cmd cmd;
2780 if(netif_running(dev))
2781 return -EBUSY;
2783 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2785 da = (u8 *)dev->dev_addr;
2787 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2788 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2789 &regs->MacAddrLo);
2791 cmd.evt = C_SET_MAC_ADDR;
2792 cmd.code = 0;
2793 cmd.idx = 0;
2794 ace_issue_cmd(regs, &cmd);
2796 return 0;
2800 static void ace_set_multicast_list(struct net_device *dev)
2802 struct ace_private *ap = netdev_priv(dev);
2803 struct ace_regs __iomem *regs = ap->regs;
2804 struct cmd cmd;
2806 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2807 cmd.evt = C_SET_MULTICAST_MODE;
2808 cmd.code = C_C_MCAST_ENABLE;
2809 cmd.idx = 0;
2810 ace_issue_cmd(regs, &cmd);
2811 ap->mcast_all = 1;
2812 } else if (ap->mcast_all) {
2813 cmd.evt = C_SET_MULTICAST_MODE;
2814 cmd.code = C_C_MCAST_DISABLE;
2815 cmd.idx = 0;
2816 ace_issue_cmd(regs, &cmd);
2817 ap->mcast_all = 0;
2820 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2821 cmd.evt = C_SET_PROMISC_MODE;
2822 cmd.code = C_C_PROMISC_ENABLE;
2823 cmd.idx = 0;
2824 ace_issue_cmd(regs, &cmd);
2825 ap->promisc = 1;
2826 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2827 cmd.evt = C_SET_PROMISC_MODE;
2828 cmd.code = C_C_PROMISC_DISABLE;
2829 cmd.idx = 0;
2830 ace_issue_cmd(regs, &cmd);
2831 ap->promisc = 0;
2835 * For the time being multicast relies on the upper layers
2836 * filtering it properly. The Firmware does not allow one to
2837 * set the entire multicast list at a time and keeping track of
2838 * it here is going to be messy.
2840 if ((dev->mc_count) && !(ap->mcast_all)) {
2841 cmd.evt = C_SET_MULTICAST_MODE;
2842 cmd.code = C_C_MCAST_ENABLE;
2843 cmd.idx = 0;
2844 ace_issue_cmd(regs, &cmd);
2845 }else if (!ap->mcast_all) {
2846 cmd.evt = C_SET_MULTICAST_MODE;
2847 cmd.code = C_C_MCAST_DISABLE;
2848 cmd.idx = 0;
2849 ace_issue_cmd(regs, &cmd);
2854 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2856 struct ace_private *ap = netdev_priv(dev);
2857 struct ace_mac_stats __iomem *mac_stats =
2858 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2860 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2861 dev->stats.multicast = readl(&mac_stats->kept_mc);
2862 dev->stats.collisions = readl(&mac_stats->coll);
2864 return &dev->stats;
2868 static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2869 u32 dest, int size)
2871 void __iomem *tdest;
2872 u32 *wsrc;
2873 short tsize, i;
2875 if (size <= 0)
2876 return;
2878 while (size > 0) {
2879 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2880 min_t(u32, size, ACE_WINDOW_SIZE));
2881 tdest = (void __iomem *) &regs->Window +
2882 (dest & (ACE_WINDOW_SIZE - 1));
2883 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2885 * This requires byte swapping on big endian, however
2886 * writel does that for us
2888 wsrc = src;
2889 for (i = 0; i < (tsize / 4); i++) {
2890 writel(wsrc[i], tdest + i*4);
2892 dest += tsize;
2893 src += tsize;
2894 size -= tsize;
2897 return;
2901 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2903 void __iomem *tdest;
2904 short tsize = 0, i;
2906 if (size <= 0)
2907 return;
2909 while (size > 0) {
2910 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2911 min_t(u32, size, ACE_WINDOW_SIZE));
2912 tdest = (void __iomem *) &regs->Window +
2913 (dest & (ACE_WINDOW_SIZE - 1));
2914 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2916 for (i = 0; i < (tsize / 4); i++) {
2917 writel(0, tdest + i*4);
2920 dest += tsize;
2921 size -= tsize;
2924 return;
2929 * Download the firmware into the SRAM on the NIC
2931 * This operation requires the NIC to be halted and is performed with
2932 * interrupts disabled and with the spinlock hold.
2934 static int __devinit ace_load_firmware(struct net_device *dev)
2936 struct ace_private *ap = netdev_priv(dev);
2937 struct ace_regs __iomem *regs = ap->regs;
2939 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2940 printk(KERN_ERR "%s: trying to download firmware while the "
2941 "CPU is running!\n", ap->name);
2942 return -EFAULT;
2946 * Do not try to clear more than 512KB or we end up seeing
2947 * funny things on NICs with only 512KB SRAM
2949 ace_clear(regs, 0x2000, 0x80000-0x2000);
2950 if (ACE_IS_TIGON_I(ap)) {
2951 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2952 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2953 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2954 tigonFwRodataLen);
2955 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2956 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2957 }else if (ap->version == 2) {
2958 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2959 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2960 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2961 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2962 tigon2FwRodataLen);
2963 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
2966 return 0;
2971 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2973 * Accessing the EEPROM is `interesting' to say the least - don't read
2974 * this code right after dinner.
2976 * This is all about black magic and bit-banging the device .... I
2977 * wonder in what hospital they have put the guy who designed the i2c
2978 * specs.
2980 * Oh yes, this is only the beginning!
2982 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2983 * code i2c readout code by beta testing all my hacks.
2985 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
2987 u32 local;
2989 readl(&regs->LocalCtrl);
2990 udelay(ACE_SHORT_DELAY);
2991 local = readl(&regs->LocalCtrl);
2992 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2993 writel(local, &regs->LocalCtrl);
2994 readl(&regs->LocalCtrl);
2995 mb();
2996 udelay(ACE_SHORT_DELAY);
2997 local |= EEPROM_CLK_OUT;
2998 writel(local, &regs->LocalCtrl);
2999 readl(&regs->LocalCtrl);
3000 mb();
3001 udelay(ACE_SHORT_DELAY);
3002 local &= ~EEPROM_DATA_OUT;
3003 writel(local, &regs->LocalCtrl);
3004 readl(&regs->LocalCtrl);
3005 mb();
3006 udelay(ACE_SHORT_DELAY);
3007 local &= ~EEPROM_CLK_OUT;
3008 writel(local, &regs->LocalCtrl);
3009 readl(&regs->LocalCtrl);
3010 mb();
3014 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3016 short i;
3017 u32 local;
3019 udelay(ACE_SHORT_DELAY);
3020 local = readl(&regs->LocalCtrl);
3021 local &= ~EEPROM_DATA_OUT;
3022 local |= EEPROM_WRITE_ENABLE;
3023 writel(local, &regs->LocalCtrl);
3024 readl(&regs->LocalCtrl);
3025 mb();
3027 for (i = 0; i < 8; i++, magic <<= 1) {
3028 udelay(ACE_SHORT_DELAY);
3029 if (magic & 0x80)
3030 local |= EEPROM_DATA_OUT;
3031 else
3032 local &= ~EEPROM_DATA_OUT;
3033 writel(local, &regs->LocalCtrl);
3034 readl(&regs->LocalCtrl);
3035 mb();
3037 udelay(ACE_SHORT_DELAY);
3038 local |= EEPROM_CLK_OUT;
3039 writel(local, &regs->LocalCtrl);
3040 readl(&regs->LocalCtrl);
3041 mb();
3042 udelay(ACE_SHORT_DELAY);
3043 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3044 writel(local, &regs->LocalCtrl);
3045 readl(&regs->LocalCtrl);
3046 mb();
3051 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3053 int state;
3054 u32 local;
3056 local = readl(&regs->LocalCtrl);
3057 local &= ~EEPROM_WRITE_ENABLE;
3058 writel(local, &regs->LocalCtrl);
3059 readl(&regs->LocalCtrl);
3060 mb();
3061 udelay(ACE_LONG_DELAY);
3062 local |= EEPROM_CLK_OUT;
3063 writel(local, &regs->LocalCtrl);
3064 readl(&regs->LocalCtrl);
3065 mb();
3066 udelay(ACE_SHORT_DELAY);
3067 /* sample data in middle of high clk */
3068 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3069 udelay(ACE_SHORT_DELAY);
3070 mb();
3071 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3072 readl(&regs->LocalCtrl);
3073 mb();
3075 return state;
3079 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3081 u32 local;
3083 udelay(ACE_SHORT_DELAY);
3084 local = readl(&regs->LocalCtrl);
3085 local |= EEPROM_WRITE_ENABLE;
3086 writel(local, &regs->LocalCtrl);
3087 readl(&regs->LocalCtrl);
3088 mb();
3089 udelay(ACE_SHORT_DELAY);
3090 local &= ~EEPROM_DATA_OUT;
3091 writel(local, &regs->LocalCtrl);
3092 readl(&regs->LocalCtrl);
3093 mb();
3094 udelay(ACE_SHORT_DELAY);
3095 local |= EEPROM_CLK_OUT;
3096 writel(local, &regs->LocalCtrl);
3097 readl(&regs->LocalCtrl);
3098 mb();
3099 udelay(ACE_SHORT_DELAY);
3100 local |= EEPROM_DATA_OUT;
3101 writel(local, &regs->LocalCtrl);
3102 readl(&regs->LocalCtrl);
3103 mb();
3104 udelay(ACE_LONG_DELAY);
3105 local &= ~EEPROM_CLK_OUT;
3106 writel(local, &regs->LocalCtrl);
3107 mb();
3112 * Read a whole byte from the EEPROM.
3114 static int __devinit read_eeprom_byte(struct net_device *dev,
3115 unsigned long offset)
3117 struct ace_private *ap = netdev_priv(dev);
3118 struct ace_regs __iomem *regs = ap->regs;
3119 unsigned long flags;
3120 u32 local;
3121 int result = 0;
3122 short i;
3125 * Don't take interrupts on this CPU will bit banging
3126 * the %#%#@$ I2C device
3128 local_irq_save(flags);
3130 eeprom_start(regs);
3132 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3133 if (eeprom_check_ack(regs)) {
3134 local_irq_restore(flags);
3135 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3136 result = -EIO;
3137 goto eeprom_read_error;
3140 eeprom_prep(regs, (offset >> 8) & 0xff);
3141 if (eeprom_check_ack(regs)) {
3142 local_irq_restore(flags);
3143 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3144 ap->name);
3145 result = -EIO;
3146 goto eeprom_read_error;
3149 eeprom_prep(regs, offset & 0xff);
3150 if (eeprom_check_ack(regs)) {
3151 local_irq_restore(flags);
3152 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3153 ap->name);
3154 result = -EIO;
3155 goto eeprom_read_error;
3158 eeprom_start(regs);
3159 eeprom_prep(regs, EEPROM_READ_SELECT);
3160 if (eeprom_check_ack(regs)) {
3161 local_irq_restore(flags);
3162 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3163 ap->name);
3164 result = -EIO;
3165 goto eeprom_read_error;
3168 for (i = 0; i < 8; i++) {
3169 local = readl(&regs->LocalCtrl);
3170 local &= ~EEPROM_WRITE_ENABLE;
3171 writel(local, &regs->LocalCtrl);
3172 readl(&regs->LocalCtrl);
3173 udelay(ACE_LONG_DELAY);
3174 mb();
3175 local |= EEPROM_CLK_OUT;
3176 writel(local, &regs->LocalCtrl);
3177 readl(&regs->LocalCtrl);
3178 mb();
3179 udelay(ACE_SHORT_DELAY);
3180 /* sample data mid high clk */
3181 result = (result << 1) |
3182 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3183 udelay(ACE_SHORT_DELAY);
3184 mb();
3185 local = readl(&regs->LocalCtrl);
3186 local &= ~EEPROM_CLK_OUT;
3187 writel(local, &regs->LocalCtrl);
3188 readl(&regs->LocalCtrl);
3189 udelay(ACE_SHORT_DELAY);
3190 mb();
3191 if (i == 7) {
3192 local |= EEPROM_WRITE_ENABLE;
3193 writel(local, &regs->LocalCtrl);
3194 readl(&regs->LocalCtrl);
3195 mb();
3196 udelay(ACE_SHORT_DELAY);
3200 local |= EEPROM_DATA_OUT;
3201 writel(local, &regs->LocalCtrl);
3202 readl(&regs->LocalCtrl);
3203 mb();
3204 udelay(ACE_SHORT_DELAY);
3205 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3206 readl(&regs->LocalCtrl);
3207 udelay(ACE_LONG_DELAY);
3208 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3209 readl(&regs->LocalCtrl);
3210 mb();
3211 udelay(ACE_SHORT_DELAY);
3212 eeprom_stop(regs);
3214 local_irq_restore(flags);
3215 out:
3216 return result;
3218 eeprom_read_error:
3219 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3220 ap->name, offset);
3221 goto out;
3226 * Local variables:
3227 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3228 * End: