Btrfs: mark delayed refs as for cow
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blobdc8b9a834596470522f02b070039543cf6ead0a8
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
57 * Control how reservations are dealt with.
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 return (cache->flags & bits) == bits;
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 atomic_inc(&cache->count);
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
163 return 0;
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
206 return ret;
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
223 u64 start, end;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
264 kfree(logical);
266 return 0;
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
272 struct btrfs_caching_control *ctl;
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
292 static void put_caching_control(struct btrfs_caching_control *ctl)
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
337 return total_added;
340 static noinline void caching_thread(struct btrfs_work *work)
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
437 path->slots[0]++;
439 ret = 0;
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
455 free_excluded_extents(extent_root, block_group);
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
470 DEFINE_WAIT(wait);
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
473 int ret = 0;
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
486 spin_lock(&cache->lock);
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
497 * another.
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
507 schedule();
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
516 kfree(caching_ctl);
517 return 0;
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
555 } else {
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
581 btrfs_get_block_group(cache);
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585 return ret;
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 struct btrfs_block_group_cache *cache;
596 cache = block_group_cache_tree_search(info, bytenr, 0);
598 return cache;
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
608 struct btrfs_block_group_cache *cache;
610 cache = block_group_cache_tree_search(info, bytenr, 1);
612 return cache;
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
621 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
622 BTRFS_BLOCK_GROUP_METADATA;
624 rcu_read_lock();
625 list_for_each_entry_rcu(found, head, list) {
626 if (found->flags & flags) {
627 rcu_read_unlock();
628 return found;
631 rcu_read_unlock();
632 return NULL;
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 struct list_head *head = &info->space_info;
642 struct btrfs_space_info *found;
644 rcu_read_lock();
645 list_for_each_entry_rcu(found, head, list)
646 found->full = 0;
647 rcu_read_unlock();
650 static u64 div_factor(u64 num, int factor)
652 if (factor == 10)
653 return num;
654 num *= factor;
655 do_div(num, 10);
656 return num;
659 static u64 div_factor_fine(u64 num, int factor)
661 if (factor == 100)
662 return num;
663 num *= factor;
664 do_div(num, 100);
665 return num;
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 u64 search_start, u64 search_hint, int owner)
671 struct btrfs_block_group_cache *cache;
672 u64 used;
673 u64 last = max(search_hint, search_start);
674 u64 group_start = 0;
675 int full_search = 0;
676 int factor = 9;
677 int wrapped = 0;
678 again:
679 while (1) {
680 cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 if (!cache)
682 break;
684 spin_lock(&cache->lock);
685 last = cache->key.objectid + cache->key.offset;
686 used = btrfs_block_group_used(&cache->item);
688 if ((full_search || !cache->ro) &&
689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 if (used + cache->pinned + cache->reserved <
691 div_factor(cache->key.offset, factor)) {
692 group_start = cache->key.objectid;
693 spin_unlock(&cache->lock);
694 btrfs_put_block_group(cache);
695 goto found;
698 spin_unlock(&cache->lock);
699 btrfs_put_block_group(cache);
700 cond_resched();
702 if (!wrapped) {
703 last = search_start;
704 wrapped = 1;
705 goto again;
707 if (!full_search && factor < 10) {
708 last = search_start;
709 full_search = 1;
710 factor = 10;
711 goto again;
713 found:
714 return group_start;
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 int ret;
721 struct btrfs_key key;
722 struct btrfs_path *path;
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
728 key.objectid = start;
729 key.offset = len;
730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 0, 0);
733 btrfs_free_path(path);
734 return ret;
738 * helper function to lookup reference count and flags of extent.
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, u64 bytenr,
748 u64 num_bytes, u64 *refs, u64 *flags)
750 struct btrfs_delayed_ref_head *head;
751 struct btrfs_delayed_ref_root *delayed_refs;
752 struct btrfs_path *path;
753 struct btrfs_extent_item *ei;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 u32 item_size;
757 u64 num_refs;
758 u64 extent_flags;
759 int ret;
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
765 key.objectid = bytenr;
766 key.type = BTRFS_EXTENT_ITEM_KEY;
767 key.offset = num_bytes;
768 if (!trans) {
769 path->skip_locking = 1;
770 path->search_commit_root = 1;
772 again:
773 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 &key, path, 0, 0);
775 if (ret < 0)
776 goto out_free;
778 if (ret == 0) {
779 leaf = path->nodes[0];
780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 if (item_size >= sizeof(*ei)) {
782 ei = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_extent_item);
784 num_refs = btrfs_extent_refs(leaf, ei);
785 extent_flags = btrfs_extent_flags(leaf, ei);
786 } else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0 *ei0;
789 BUG_ON(item_size != sizeof(*ei0));
790 ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 struct btrfs_extent_item_v0);
792 num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 /* FIXME: this isn't correct for data */
794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 BUG();
797 #endif
799 BUG_ON(num_refs == 0);
800 } else {
801 num_refs = 0;
802 extent_flags = 0;
803 ret = 0;
806 if (!trans)
807 goto out;
809 delayed_refs = &trans->transaction->delayed_refs;
810 spin_lock(&delayed_refs->lock);
811 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (head) {
813 if (!mutex_trylock(&head->mutex)) {
814 atomic_inc(&head->node.refs);
815 spin_unlock(&delayed_refs->lock);
817 btrfs_release_path(path);
820 * Mutex was contended, block until it's released and try
821 * again
823 mutex_lock(&head->mutex);
824 mutex_unlock(&head->mutex);
825 btrfs_put_delayed_ref(&head->node);
826 goto again;
828 if (head->extent_op && head->extent_op->update_flags)
829 extent_flags |= head->extent_op->flags_to_set;
830 else
831 BUG_ON(num_refs == 0);
833 num_refs += head->node.ref_mod;
834 mutex_unlock(&head->mutex);
836 spin_unlock(&delayed_refs->lock);
837 out:
838 WARN_ON(num_refs == 0);
839 if (refs)
840 *refs = num_refs;
841 if (flags)
842 *flags = extent_flags;
843 out_free:
844 btrfs_free_path(path);
845 return ret;
849 * Back reference rules. Back refs have three main goals:
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
880 * When a tree block is COW'd through a tree, there are four cases:
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
900 * Back Reference Key composing:
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
905 * of back refs.
907 * File extents can be referenced by:
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
913 * The extent ref structure for the implicit back refs has fields for:
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
920 * The key offset for the implicit back refs is hash of the first
921 * three fields.
923 * The extent ref structure for the full back refs has field for:
925 * - number of pointers in the tree leaf
927 * The key offset for the implicit back refs is the first byte of
928 * the tree leaf
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
933 * (root_key.objectid, inode objectid, offset in file, 1)
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 * Btree extents can be referenced by:
942 * - Different subvolumes
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 struct btrfs_path *path,
958 u64 owner, u32 extra_size)
960 struct btrfs_extent_item *item;
961 struct btrfs_extent_item_v0 *ei0;
962 struct btrfs_extent_ref_v0 *ref0;
963 struct btrfs_tree_block_info *bi;
964 struct extent_buffer *leaf;
965 struct btrfs_key key;
966 struct btrfs_key found_key;
967 u32 new_size = sizeof(*item);
968 u64 refs;
969 int ret;
971 leaf = path->nodes[0];
972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_extent_item_v0);
977 refs = btrfs_extent_refs_v0(leaf, ei0);
979 if (owner == (u64)-1) {
980 while (1) {
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 return ret;
985 BUG_ON(ret > 0);
986 leaf = path->nodes[0];
988 btrfs_item_key_to_cpu(leaf, &found_key,
989 path->slots[0]);
990 BUG_ON(key.objectid != found_key.objectid);
991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 path->slots[0]++;
993 continue;
995 ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 struct btrfs_extent_ref_v0);
997 owner = btrfs_ref_objectid_v0(leaf, ref0);
998 break;
1001 btrfs_release_path(path);
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 new_size += sizeof(*bi);
1006 new_size -= sizeof(*ei0);
1007 ret = btrfs_search_slot(trans, root, &key, path,
1008 new_size + extra_size, 1);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret);
1013 ret = btrfs_extend_item(trans, root, path, new_size);
1015 leaf = path->nodes[0];
1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 btrfs_set_extent_refs(leaf, item, refs);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf, item, 0);
1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 btrfs_set_extent_flags(leaf, item,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 bi = (struct btrfs_tree_block_info *)(item + 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 } else {
1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 btrfs_mark_buffer_dirty(leaf);
1032 return 0;
1034 #endif
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 u32 high_crc = ~(u32)0;
1039 u32 low_crc = ~(u32)0;
1040 __le64 lenum;
1042 lenum = cpu_to_le64(root_objectid);
1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 lenum = cpu_to_le64(owner);
1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(offset);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049 return ((u64)high_crc << 31) ^ (u64)low_crc;
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 struct btrfs_extent_data_ref *ref)
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 btrfs_extent_data_ref_objectid(leaf, ref),
1057 btrfs_extent_data_ref_offset(leaf, ref));
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 struct btrfs_extent_data_ref *ref,
1062 u64 root_objectid, u64 owner, u64 offset)
1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 return 0;
1068 return 1;
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 u64 bytenr, u64 parent,
1075 u64 root_objectid,
1076 u64 owner, u64 offset)
1078 struct btrfs_key key;
1079 struct btrfs_extent_data_ref *ref;
1080 struct extent_buffer *leaf;
1081 u32 nritems;
1082 int ret;
1083 int recow;
1084 int err = -ENOENT;
1086 key.objectid = bytenr;
1087 if (parent) {
1088 key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 key.offset = parent;
1090 } else {
1091 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 key.offset = hash_extent_data_ref(root_objectid,
1093 owner, offset);
1095 again:
1096 recow = 0;
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0) {
1099 err = ret;
1100 goto fail;
1103 if (parent) {
1104 if (!ret)
1105 return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 btrfs_release_path(path);
1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 if (ret < 0) {
1111 err = ret;
1112 goto fail;
1114 if (!ret)
1115 return 0;
1116 #endif
1117 goto fail;
1120 leaf = path->nodes[0];
1121 nritems = btrfs_header_nritems(leaf);
1122 while (1) {
1123 if (path->slots[0] >= nritems) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret < 0)
1126 err = ret;
1127 if (ret)
1128 goto fail;
1130 leaf = path->nodes[0];
1131 nritems = btrfs_header_nritems(leaf);
1132 recow = 1;
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 if (key.objectid != bytenr ||
1137 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 goto fail;
1140 ref = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_extent_data_ref);
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1144 owner, offset)) {
1145 if (recow) {
1146 btrfs_release_path(path);
1147 goto again;
1149 err = 0;
1150 break;
1152 path->slots[0]++;
1154 fail:
1155 return err;
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid, u64 owner,
1163 u64 offset, int refs_to_add)
1165 struct btrfs_key key;
1166 struct extent_buffer *leaf;
1167 u32 size;
1168 u32 num_refs;
1169 int ret;
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 size = sizeof(struct btrfs_shared_data_ref);
1176 } else {
1177 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 key.offset = hash_extent_data_ref(root_objectid,
1179 owner, offset);
1180 size = sizeof(struct btrfs_extent_data_ref);
1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 if (ret && ret != -EEXIST)
1185 goto fail;
1187 leaf = path->nodes[0];
1188 if (parent) {
1189 struct btrfs_shared_data_ref *ref;
1190 ref = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_shared_data_ref);
1192 if (ret == 0) {
1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 } else {
1195 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 num_refs += refs_to_add;
1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 } else {
1200 struct btrfs_extent_data_ref *ref;
1201 while (ret == -EEXIST) {
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (match_extent_data_ref(leaf, ref, root_objectid,
1205 owner, offset))
1206 break;
1207 btrfs_release_path(path);
1208 key.offset++;
1209 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 size);
1211 if (ret && ret != -EEXIST)
1212 goto fail;
1214 leaf = path->nodes[0];
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_extent_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_extent_data_ref_root(leaf, ref,
1220 root_objectid);
1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1230 btrfs_mark_buffer_dirty(leaf);
1231 ret = 0;
1232 fail:
1233 btrfs_release_path(path);
1234 return ret;
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 int refs_to_drop)
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref1 = NULL;
1244 struct btrfs_shared_data_ref *ref2 = NULL;
1245 struct extent_buffer *leaf;
1246 u32 num_refs = 0;
1247 int ret = 0;
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 struct btrfs_extent_ref_v0 *ref0;
1263 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_extent_ref_v0);
1265 num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 } else {
1268 BUG();
1271 BUG_ON(num_refs < refs_to_drop);
1272 num_refs -= refs_to_drop;
1274 if (num_refs == 0) {
1275 ret = btrfs_del_item(trans, root, path);
1276 } else {
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 else {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 #endif
1289 btrfs_mark_buffer_dirty(leaf);
1291 return ret;
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_extent_inline_ref *iref)
1298 struct btrfs_key key;
1299 struct extent_buffer *leaf;
1300 struct btrfs_extent_data_ref *ref1;
1301 struct btrfs_shared_data_ref *ref2;
1302 u32 num_refs = 0;
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (iref) {
1307 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 BTRFS_EXTENT_DATA_REF_KEY) {
1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 } else {
1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_data_ref);
1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_shared_data_ref);
1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 struct btrfs_extent_ref_v0 *ref0;
1326 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_extent_ref_v0);
1328 num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 } else {
1331 WARN_ON(1);
1333 return num_refs;
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 u64 bytenr, u64 parent,
1340 u64 root_objectid)
1342 struct btrfs_key key;
1343 int ret;
1345 key.objectid = bytenr;
1346 if (parent) {
1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 key.offset = parent;
1349 } else {
1350 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 key.offset = root_objectid;
1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 if (ret > 0)
1356 ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret == -ENOENT && parent) {
1359 btrfs_release_path(path);
1360 key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 if (ret > 0)
1363 ret = -ENOENT;
1365 #endif
1366 return ret;
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1375 struct btrfs_key key;
1376 int ret;
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 btrfs_release_path(path);
1389 return ret;
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1394 int type;
1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 if (parent > 0)
1397 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 else
1399 type = BTRFS_TREE_BLOCK_REF_KEY;
1400 } else {
1401 if (parent > 0)
1402 type = BTRFS_SHARED_DATA_REF_KEY;
1403 else
1404 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 return type;
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 struct btrfs_key *key)
1413 for (; level < BTRFS_MAX_LEVEL; level++) {
1414 if (!path->nodes[level])
1415 break;
1416 if (path->slots[level] + 1 >=
1417 btrfs_header_nritems(path->nodes[level]))
1418 continue;
1419 if (level == 0)
1420 btrfs_item_key_to_cpu(path->nodes[level], key,
1421 path->slots[level] + 1);
1422 else
1423 btrfs_node_key_to_cpu(path->nodes[level], key,
1424 path->slots[level] + 1);
1425 return 0;
1427 return 1;
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref **ref_ret,
1448 u64 bytenr, u64 num_bytes,
1449 u64 parent, u64 root_objectid,
1450 u64 owner, u64 offset, int insert)
1452 struct btrfs_key key;
1453 struct extent_buffer *leaf;
1454 struct btrfs_extent_item *ei;
1455 struct btrfs_extent_inline_ref *iref;
1456 u64 flags;
1457 u64 item_size;
1458 unsigned long ptr;
1459 unsigned long end;
1460 int extra_size;
1461 int type;
1462 int want;
1463 int ret;
1464 int err = 0;
1466 key.objectid = bytenr;
1467 key.type = BTRFS_EXTENT_ITEM_KEY;
1468 key.offset = num_bytes;
1470 want = extent_ref_type(parent, owner);
1471 if (insert) {
1472 extra_size = btrfs_extent_inline_ref_size(want);
1473 path->keep_locks = 1;
1474 } else
1475 extra_size = -1;
1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 if (ret < 0) {
1478 err = ret;
1479 goto out;
1481 BUG_ON(ret);
1483 leaf = path->nodes[0];
1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size < sizeof(*ei)) {
1487 if (!insert) {
1488 err = -ENOENT;
1489 goto out;
1491 ret = convert_extent_item_v0(trans, root, path, owner,
1492 extra_size);
1493 if (ret < 0) {
1494 err = ret;
1495 goto out;
1497 leaf = path->nodes[0];
1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1500 #endif
1501 BUG_ON(item_size < sizeof(*ei));
1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 flags = btrfs_extent_flags(leaf, ei);
1506 ptr = (unsigned long)(ei + 1);
1507 end = (unsigned long)ei + item_size;
1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 ptr += sizeof(struct btrfs_tree_block_info);
1511 BUG_ON(ptr > end);
1512 } else {
1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1516 err = -ENOENT;
1517 while (1) {
1518 if (ptr >= end) {
1519 WARN_ON(ptr > end);
1520 break;
1522 iref = (struct btrfs_extent_inline_ref *)ptr;
1523 type = btrfs_extent_inline_ref_type(leaf, iref);
1524 if (want < type)
1525 break;
1526 if (want > type) {
1527 ptr += btrfs_extent_inline_ref_size(type);
1528 continue;
1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 struct btrfs_extent_data_ref *dref;
1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 if (match_extent_data_ref(leaf, dref, root_objectid,
1535 owner, offset)) {
1536 err = 0;
1537 break;
1539 if (hash_extent_data_ref_item(leaf, dref) <
1540 hash_extent_data_ref(root_objectid, owner, offset))
1541 break;
1542 } else {
1543 u64 ref_offset;
1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent > 0) {
1546 if (parent == ref_offset) {
1547 err = 0;
1548 break;
1550 if (ref_offset < parent)
1551 break;
1552 } else {
1553 if (root_objectid == ref_offset) {
1554 err = 0;
1555 break;
1557 if (ref_offset < root_objectid)
1558 break;
1561 ptr += btrfs_extent_inline_ref_size(type);
1563 if (err == -ENOENT && insert) {
1564 if (item_size + extra_size >=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 err = -EAGAIN;
1567 goto out;
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1575 if (find_next_key(path, 0, &key) == 0 &&
1576 key.objectid == bytenr &&
1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 err = -EAGAIN;
1579 goto out;
1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 if (insert) {
1585 path->keep_locks = 0;
1586 btrfs_unlock_up_safe(path, 1);
1588 return err;
1592 * helper to add new inline back ref
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref *iref,
1599 u64 parent, u64 root_objectid,
1600 u64 owner, u64 offset, int refs_to_add,
1601 struct btrfs_delayed_extent_op *extent_op)
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 unsigned long ptr;
1606 unsigned long end;
1607 unsigned long item_offset;
1608 u64 refs;
1609 int size;
1610 int type;
1611 int ret;
1613 leaf = path->nodes[0];
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 item_offset = (unsigned long)iref - (unsigned long)ei;
1617 type = extent_ref_type(parent, owner);
1618 size = btrfs_extent_inline_ref_size(type);
1620 ret = btrfs_extend_item(trans, root, path, size);
1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 refs = btrfs_extent_refs(leaf, ei);
1624 refs += refs_to_add;
1625 btrfs_set_extent_refs(leaf, ei, refs);
1626 if (extent_op)
1627 __run_delayed_extent_op(extent_op, leaf, ei);
1629 ptr = (unsigned long)ei + item_offset;
1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 if (ptr < end - size)
1632 memmove_extent_buffer(leaf, ptr + size, ptr,
1633 end - size - ptr);
1635 iref = (struct btrfs_extent_inline_ref *)ptr;
1636 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 struct btrfs_extent_data_ref *dref;
1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 struct btrfs_shared_data_ref *sref;
1646 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1654 btrfs_mark_buffer_dirty(leaf);
1655 return 0;
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path,
1661 struct btrfs_extent_inline_ref **ref_ret,
1662 u64 bytenr, u64 num_bytes, u64 parent,
1663 u64 root_objectid, u64 owner, u64 offset)
1665 int ret;
1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 bytenr, num_bytes, parent,
1669 root_objectid, owner, offset, 0);
1670 if (ret != -ENOENT)
1671 return ret;
1673 btrfs_release_path(path);
1674 *ref_ret = NULL;
1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 root_objectid);
1679 } else {
1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 root_objectid, owner, offset);
1683 return ret;
1687 * helper to update/remove inline back ref
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct btrfs_extent_inline_ref *iref,
1694 int refs_to_mod,
1695 struct btrfs_delayed_extent_op *extent_op)
1697 struct extent_buffer *leaf;
1698 struct btrfs_extent_item *ei;
1699 struct btrfs_extent_data_ref *dref = NULL;
1700 struct btrfs_shared_data_ref *sref = NULL;
1701 unsigned long ptr;
1702 unsigned long end;
1703 u32 item_size;
1704 int size;
1705 int type;
1706 int ret;
1707 u64 refs;
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1750 btrfs_mark_buffer_dirty(leaf);
1751 return 0;
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 u64 bytenr, u64 num_bytes, u64 parent,
1759 u64 root_objectid, u64 owner,
1760 u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1763 struct btrfs_extent_inline_ref *iref;
1764 int ret;
1766 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 bytenr, num_bytes, parent,
1768 root_objectid, owner, offset, 1);
1769 if (ret == 0) {
1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 ret = update_inline_extent_backref(trans, root, path, iref,
1772 refs_to_add, extent_op);
1773 } else if (ret == -ENOENT) {
1774 ret = setup_inline_extent_backref(trans, root, path, iref,
1775 parent, root_objectid,
1776 owner, offset, refs_to_add,
1777 extent_op);
1779 return ret;
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_path *path,
1785 u64 bytenr, u64 parent, u64 root_objectid,
1786 u64 owner, u64 offset, int refs_to_add)
1788 int ret;
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 BUG_ON(refs_to_add != 1);
1791 ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 parent, root_objectid);
1793 } else {
1794 ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 parent, root_objectid,
1796 owner, offset, refs_to_add);
1798 return ret;
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path,
1804 struct btrfs_extent_inline_ref *iref,
1805 int refs_to_drop, int is_data)
1807 int ret;
1809 BUG_ON(!is_data && refs_to_drop != 1);
1810 if (iref) {
1811 ret = update_inline_extent_backref(trans, root, path, iref,
1812 -refs_to_drop, NULL);
1813 } else if (is_data) {
1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 } else {
1816 ret = btrfs_del_item(trans, root, path);
1818 return ret;
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 u64 start, u64 len)
1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 u64 num_bytes, u64 *actual_bytes)
1830 int ret;
1831 u64 discarded_bytes = 0;
1832 struct btrfs_bio *bbio = NULL;
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 bytenr, &num_bytes, &bbio, 0);
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break;
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1860 ret = 0;
1862 kfree(bbio);
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1869 return ret;
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root,
1874 u64 bytenr, u64 num_bytes, u64 parent,
1875 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1877 int ret;
1878 struct btrfs_fs_info *fs_info = root->fs_info;
1880 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1881 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1884 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 num_bytes,
1886 parent, root_objectid, (int)owner,
1887 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 } else {
1889 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 num_bytes,
1891 parent, root_objectid, owner, offset,
1892 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1894 return ret;
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root,
1899 u64 bytenr, u64 num_bytes,
1900 u64 parent, u64 root_objectid,
1901 u64 owner, u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1904 struct btrfs_path *path;
1905 struct extent_buffer *leaf;
1906 struct btrfs_extent_item *item;
1907 u64 refs;
1908 int ret;
1909 int err = 0;
1911 path = btrfs_alloc_path();
1912 if (!path)
1913 return -ENOMEM;
1915 path->reada = 1;
1916 path->leave_spinning = 1;
1917 /* this will setup the path even if it fails to insert the back ref */
1918 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1919 path, bytenr, num_bytes, parent,
1920 root_objectid, owner, offset,
1921 refs_to_add, extent_op);
1922 if (ret == 0)
1923 goto out;
1925 if (ret != -EAGAIN) {
1926 err = ret;
1927 goto out;
1930 leaf = path->nodes[0];
1931 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 refs = btrfs_extent_refs(leaf, item);
1933 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 if (extent_op)
1935 __run_delayed_extent_op(extent_op, leaf, item);
1937 btrfs_mark_buffer_dirty(leaf);
1938 btrfs_release_path(path);
1940 path->reada = 1;
1941 path->leave_spinning = 1;
1943 /* now insert the actual backref */
1944 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1945 path, bytenr, parent, root_objectid,
1946 owner, offset, refs_to_add);
1947 BUG_ON(ret);
1948 out:
1949 btrfs_free_path(path);
1950 return err;
1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1954 struct btrfs_root *root,
1955 struct btrfs_delayed_ref_node *node,
1956 struct btrfs_delayed_extent_op *extent_op,
1957 int insert_reserved)
1959 int ret = 0;
1960 struct btrfs_delayed_data_ref *ref;
1961 struct btrfs_key ins;
1962 u64 parent = 0;
1963 u64 ref_root = 0;
1964 u64 flags = 0;
1966 ins.objectid = node->bytenr;
1967 ins.offset = node->num_bytes;
1968 ins.type = BTRFS_EXTENT_ITEM_KEY;
1970 ref = btrfs_delayed_node_to_data_ref(node);
1971 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1972 parent = ref->parent;
1973 else
1974 ref_root = ref->root;
1976 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 if (extent_op) {
1978 BUG_ON(extent_op->update_key);
1979 flags |= extent_op->flags_to_set;
1981 ret = alloc_reserved_file_extent(trans, root,
1982 parent, ref_root, flags,
1983 ref->objectid, ref->offset,
1984 &ins, node->ref_mod);
1985 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1986 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1987 node->num_bytes, parent,
1988 ref_root, ref->objectid,
1989 ref->offset, node->ref_mod,
1990 extent_op);
1991 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1992 ret = __btrfs_free_extent(trans, root, node->bytenr,
1993 node->num_bytes, parent,
1994 ref_root, ref->objectid,
1995 ref->offset, node->ref_mod,
1996 extent_op);
1997 } else {
1998 BUG();
2000 return ret;
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2004 struct extent_buffer *leaf,
2005 struct btrfs_extent_item *ei)
2007 u64 flags = btrfs_extent_flags(leaf, ei);
2008 if (extent_op->update_flags) {
2009 flags |= extent_op->flags_to_set;
2010 btrfs_set_extent_flags(leaf, ei, flags);
2013 if (extent_op->update_key) {
2014 struct btrfs_tree_block_info *bi;
2015 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2016 bi = (struct btrfs_tree_block_info *)(ei + 1);
2017 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op)
2026 struct btrfs_key key;
2027 struct btrfs_path *path;
2028 struct btrfs_extent_item *ei;
2029 struct extent_buffer *leaf;
2030 u32 item_size;
2031 int ret;
2032 int err = 0;
2034 path = btrfs_alloc_path();
2035 if (!path)
2036 return -ENOMEM;
2038 key.objectid = node->bytenr;
2039 key.type = BTRFS_EXTENT_ITEM_KEY;
2040 key.offset = node->num_bytes;
2042 path->reada = 1;
2043 path->leave_spinning = 1;
2044 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2045 path, 0, 1);
2046 if (ret < 0) {
2047 err = ret;
2048 goto out;
2050 if (ret > 0) {
2051 err = -EIO;
2052 goto out;
2055 leaf = path->nodes[0];
2056 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 if (item_size < sizeof(*ei)) {
2059 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2060 path, (u64)-1, 0);
2061 if (ret < 0) {
2062 err = ret;
2063 goto out;
2065 leaf = path->nodes[0];
2066 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2068 #endif
2069 BUG_ON(item_size < sizeof(*ei));
2070 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2071 __run_delayed_extent_op(extent_op, leaf, ei);
2073 btrfs_mark_buffer_dirty(leaf);
2074 out:
2075 btrfs_free_path(path);
2076 return err;
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2080 struct btrfs_root *root,
2081 struct btrfs_delayed_ref_node *node,
2082 struct btrfs_delayed_extent_op *extent_op,
2083 int insert_reserved)
2085 int ret = 0;
2086 struct btrfs_delayed_tree_ref *ref;
2087 struct btrfs_key ins;
2088 u64 parent = 0;
2089 u64 ref_root = 0;
2091 ins.objectid = node->bytenr;
2092 ins.offset = node->num_bytes;
2093 ins.type = BTRFS_EXTENT_ITEM_KEY;
2095 ref = btrfs_delayed_node_to_tree_ref(node);
2096 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 parent = ref->parent;
2098 else
2099 ref_root = ref->root;
2101 BUG_ON(node->ref_mod != 1);
2102 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2103 BUG_ON(!extent_op || !extent_op->update_flags ||
2104 !extent_op->update_key);
2105 ret = alloc_reserved_tree_block(trans, root,
2106 parent, ref_root,
2107 extent_op->flags_to_set,
2108 &extent_op->key,
2109 ref->level, &ins);
2110 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2111 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2112 node->num_bytes, parent, ref_root,
2113 ref->level, 0, 1, extent_op);
2114 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2115 ret = __btrfs_free_extent(trans, root, node->bytenr,
2116 node->num_bytes, parent, ref_root,
2117 ref->level, 0, 1, extent_op);
2118 } else {
2119 BUG();
2121 return ret;
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op,
2129 int insert_reserved)
2131 int ret;
2132 if (btrfs_delayed_ref_is_head(node)) {
2133 struct btrfs_delayed_ref_head *head;
2135 * we've hit the end of the chain and we were supposed
2136 * to insert this extent into the tree. But, it got
2137 * deleted before we ever needed to insert it, so all
2138 * we have to do is clean up the accounting
2140 BUG_ON(extent_op);
2141 head = btrfs_delayed_node_to_head(node);
2142 if (insert_reserved) {
2143 btrfs_pin_extent(root, node->bytenr,
2144 node->num_bytes, 1);
2145 if (head->is_data) {
2146 ret = btrfs_del_csums(trans, root,
2147 node->bytenr,
2148 node->num_bytes);
2149 BUG_ON(ret);
2152 mutex_unlock(&head->mutex);
2153 return 0;
2156 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2157 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2161 node->type == BTRFS_SHARED_DATA_REF_KEY)
2162 ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 insert_reserved);
2164 else
2165 BUG();
2166 return ret;
2169 static noinline struct btrfs_delayed_ref_node *
2170 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2172 struct rb_node *node;
2173 struct btrfs_delayed_ref_node *ref;
2174 int action = BTRFS_ADD_DELAYED_REF;
2175 again:
2177 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 * this prevents ref count from going down to zero when
2179 * there still are pending delayed ref.
2181 node = rb_prev(&head->node.rb_node);
2182 while (1) {
2183 if (!node)
2184 break;
2185 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 rb_node);
2187 if (ref->bytenr != head->node.bytenr)
2188 break;
2189 if (ref->action == action)
2190 return ref;
2191 node = rb_prev(node);
2193 if (action == BTRFS_ADD_DELAYED_REF) {
2194 action = BTRFS_DROP_DELAYED_REF;
2195 goto again;
2197 return NULL;
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct list_head *cluster)
2204 struct btrfs_delayed_ref_root *delayed_refs;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 struct btrfs_delayed_extent_op *extent_op;
2208 int ret;
2209 int count = 0;
2210 int must_insert_reserved = 0;
2212 delayed_refs = &trans->transaction->delayed_refs;
2213 while (1) {
2214 if (!locked_ref) {
2215 /* pick a new head ref from the cluster list */
2216 if (list_empty(cluster))
2217 break;
2219 locked_ref = list_entry(cluster->next,
2220 struct btrfs_delayed_ref_head, cluster);
2222 /* grab the lock that says we are going to process
2223 * all the refs for this head */
2224 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2227 * we may have dropped the spin lock to get the head
2228 * mutex lock, and that might have given someone else
2229 * time to free the head. If that's true, it has been
2230 * removed from our list and we can move on.
2232 if (ret == -EAGAIN) {
2233 locked_ref = NULL;
2234 count++;
2235 continue;
2240 * record the must insert reserved flag before we
2241 * drop the spin lock.
2243 must_insert_reserved = locked_ref->must_insert_reserved;
2244 locked_ref->must_insert_reserved = 0;
2246 extent_op = locked_ref->extent_op;
2247 locked_ref->extent_op = NULL;
2250 * locked_ref is the head node, so we have to go one
2251 * node back for any delayed ref updates
2253 ref = select_delayed_ref(locked_ref);
2254 if (!ref) {
2255 /* All delayed refs have been processed, Go ahead
2256 * and send the head node to run_one_delayed_ref,
2257 * so that any accounting fixes can happen
2259 ref = &locked_ref->node;
2261 if (extent_op && must_insert_reserved) {
2262 kfree(extent_op);
2263 extent_op = NULL;
2266 if (extent_op) {
2267 spin_unlock(&delayed_refs->lock);
2269 ret = run_delayed_extent_op(trans, root,
2270 ref, extent_op);
2271 BUG_ON(ret);
2272 kfree(extent_op);
2274 cond_resched();
2275 spin_lock(&delayed_refs->lock);
2276 continue;
2279 list_del_init(&locked_ref->cluster);
2280 locked_ref = NULL;
2283 ref->in_tree = 0;
2284 rb_erase(&ref->rb_node, &delayed_refs->root);
2285 delayed_refs->num_entries--;
2287 spin_unlock(&delayed_refs->lock);
2289 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2290 must_insert_reserved);
2291 BUG_ON(ret);
2293 btrfs_put_delayed_ref(ref);
2294 kfree(extent_op);
2295 count++;
2297 cond_resched();
2298 spin_lock(&delayed_refs->lock);
2300 return count;
2304 * this starts processing the delayed reference count updates and
2305 * extent insertions we have queued up so far. count can be
2306 * 0, which means to process everything in the tree at the start
2307 * of the run (but not newly added entries), or it can be some target
2308 * number you'd like to process.
2310 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2311 struct btrfs_root *root, unsigned long count)
2313 struct rb_node *node;
2314 struct btrfs_delayed_ref_root *delayed_refs;
2315 struct btrfs_delayed_ref_node *ref;
2316 struct list_head cluster;
2317 int ret;
2318 int run_all = count == (unsigned long)-1;
2319 int run_most = 0;
2321 if (root == root->fs_info->extent_root)
2322 root = root->fs_info->tree_root;
2324 delayed_refs = &trans->transaction->delayed_refs;
2325 INIT_LIST_HEAD(&cluster);
2326 again:
2327 spin_lock(&delayed_refs->lock);
2328 if (count == 0) {
2329 count = delayed_refs->num_entries * 2;
2330 run_most = 1;
2332 while (1) {
2333 if (!(run_all || run_most) &&
2334 delayed_refs->num_heads_ready < 64)
2335 break;
2338 * go find something we can process in the rbtree. We start at
2339 * the beginning of the tree, and then build a cluster
2340 * of refs to process starting at the first one we are able to
2341 * lock
2343 ret = btrfs_find_ref_cluster(trans, &cluster,
2344 delayed_refs->run_delayed_start);
2345 if (ret)
2346 break;
2348 ret = run_clustered_refs(trans, root, &cluster);
2349 BUG_ON(ret < 0);
2351 count -= min_t(unsigned long, ret, count);
2353 if (count == 0)
2354 break;
2357 if (run_all) {
2358 node = rb_first(&delayed_refs->root);
2359 if (!node)
2360 goto out;
2361 count = (unsigned long)-1;
2363 while (node) {
2364 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2365 rb_node);
2366 if (btrfs_delayed_ref_is_head(ref)) {
2367 struct btrfs_delayed_ref_head *head;
2369 head = btrfs_delayed_node_to_head(ref);
2370 atomic_inc(&ref->refs);
2372 spin_unlock(&delayed_refs->lock);
2374 * Mutex was contended, block until it's
2375 * released and try again
2377 mutex_lock(&head->mutex);
2378 mutex_unlock(&head->mutex);
2380 btrfs_put_delayed_ref(ref);
2381 cond_resched();
2382 goto again;
2384 node = rb_next(node);
2386 spin_unlock(&delayed_refs->lock);
2387 schedule_timeout(1);
2388 goto again;
2390 out:
2391 spin_unlock(&delayed_refs->lock);
2392 return 0;
2395 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2396 struct btrfs_root *root,
2397 u64 bytenr, u64 num_bytes, u64 flags,
2398 int is_data)
2400 struct btrfs_delayed_extent_op *extent_op;
2401 int ret;
2403 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2404 if (!extent_op)
2405 return -ENOMEM;
2407 extent_op->flags_to_set = flags;
2408 extent_op->update_flags = 1;
2409 extent_op->update_key = 0;
2410 extent_op->is_data = is_data ? 1 : 0;
2412 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2413 num_bytes, extent_op);
2414 if (ret)
2415 kfree(extent_op);
2416 return ret;
2419 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root,
2421 struct btrfs_path *path,
2422 u64 objectid, u64 offset, u64 bytenr)
2424 struct btrfs_delayed_ref_head *head;
2425 struct btrfs_delayed_ref_node *ref;
2426 struct btrfs_delayed_data_ref *data_ref;
2427 struct btrfs_delayed_ref_root *delayed_refs;
2428 struct rb_node *node;
2429 int ret = 0;
2431 ret = -ENOENT;
2432 delayed_refs = &trans->transaction->delayed_refs;
2433 spin_lock(&delayed_refs->lock);
2434 head = btrfs_find_delayed_ref_head(trans, bytenr);
2435 if (!head)
2436 goto out;
2438 if (!mutex_trylock(&head->mutex)) {
2439 atomic_inc(&head->node.refs);
2440 spin_unlock(&delayed_refs->lock);
2442 btrfs_release_path(path);
2445 * Mutex was contended, block until it's released and let
2446 * caller try again
2448 mutex_lock(&head->mutex);
2449 mutex_unlock(&head->mutex);
2450 btrfs_put_delayed_ref(&head->node);
2451 return -EAGAIN;
2454 node = rb_prev(&head->node.rb_node);
2455 if (!node)
2456 goto out_unlock;
2458 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2460 if (ref->bytenr != bytenr)
2461 goto out_unlock;
2463 ret = 1;
2464 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2465 goto out_unlock;
2467 data_ref = btrfs_delayed_node_to_data_ref(ref);
2469 node = rb_prev(node);
2470 if (node) {
2471 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2472 if (ref->bytenr == bytenr)
2473 goto out_unlock;
2476 if (data_ref->root != root->root_key.objectid ||
2477 data_ref->objectid != objectid || data_ref->offset != offset)
2478 goto out_unlock;
2480 ret = 0;
2481 out_unlock:
2482 mutex_unlock(&head->mutex);
2483 out:
2484 spin_unlock(&delayed_refs->lock);
2485 return ret;
2488 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2489 struct btrfs_root *root,
2490 struct btrfs_path *path,
2491 u64 objectid, u64 offset, u64 bytenr)
2493 struct btrfs_root *extent_root = root->fs_info->extent_root;
2494 struct extent_buffer *leaf;
2495 struct btrfs_extent_data_ref *ref;
2496 struct btrfs_extent_inline_ref *iref;
2497 struct btrfs_extent_item *ei;
2498 struct btrfs_key key;
2499 u32 item_size;
2500 int ret;
2502 key.objectid = bytenr;
2503 key.offset = (u64)-1;
2504 key.type = BTRFS_EXTENT_ITEM_KEY;
2506 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2507 if (ret < 0)
2508 goto out;
2509 BUG_ON(ret == 0);
2511 ret = -ENOENT;
2512 if (path->slots[0] == 0)
2513 goto out;
2515 path->slots[0]--;
2516 leaf = path->nodes[0];
2517 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2519 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2520 goto out;
2522 ret = 1;
2523 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2524 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2525 if (item_size < sizeof(*ei)) {
2526 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2527 goto out;
2529 #endif
2530 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2532 if (item_size != sizeof(*ei) +
2533 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2534 goto out;
2536 if (btrfs_extent_generation(leaf, ei) <=
2537 btrfs_root_last_snapshot(&root->root_item))
2538 goto out;
2540 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2541 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2542 BTRFS_EXTENT_DATA_REF_KEY)
2543 goto out;
2545 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2546 if (btrfs_extent_refs(leaf, ei) !=
2547 btrfs_extent_data_ref_count(leaf, ref) ||
2548 btrfs_extent_data_ref_root(leaf, ref) !=
2549 root->root_key.objectid ||
2550 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2551 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2552 goto out;
2554 ret = 0;
2555 out:
2556 return ret;
2559 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2560 struct btrfs_root *root,
2561 u64 objectid, u64 offset, u64 bytenr)
2563 struct btrfs_path *path;
2564 int ret;
2565 int ret2;
2567 path = btrfs_alloc_path();
2568 if (!path)
2569 return -ENOENT;
2571 do {
2572 ret = check_committed_ref(trans, root, path, objectid,
2573 offset, bytenr);
2574 if (ret && ret != -ENOENT)
2575 goto out;
2577 ret2 = check_delayed_ref(trans, root, path, objectid,
2578 offset, bytenr);
2579 } while (ret2 == -EAGAIN);
2581 if (ret2 && ret2 != -ENOENT) {
2582 ret = ret2;
2583 goto out;
2586 if (ret != -ENOENT || ret2 != -ENOENT)
2587 ret = 0;
2588 out:
2589 btrfs_free_path(path);
2590 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2591 WARN_ON(ret > 0);
2592 return ret;
2595 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2596 struct btrfs_root *root,
2597 struct extent_buffer *buf,
2598 int full_backref, int inc, int for_cow)
2600 u64 bytenr;
2601 u64 num_bytes;
2602 u64 parent;
2603 u64 ref_root;
2604 u32 nritems;
2605 struct btrfs_key key;
2606 struct btrfs_file_extent_item *fi;
2607 int i;
2608 int level;
2609 int ret = 0;
2610 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2611 u64, u64, u64, u64, u64, u64, int);
2613 ref_root = btrfs_header_owner(buf);
2614 nritems = btrfs_header_nritems(buf);
2615 level = btrfs_header_level(buf);
2617 if (!root->ref_cows && level == 0)
2618 return 0;
2620 if (inc)
2621 process_func = btrfs_inc_extent_ref;
2622 else
2623 process_func = btrfs_free_extent;
2625 if (full_backref)
2626 parent = buf->start;
2627 else
2628 parent = 0;
2630 for (i = 0; i < nritems; i++) {
2631 if (level == 0) {
2632 btrfs_item_key_to_cpu(buf, &key, i);
2633 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2634 continue;
2635 fi = btrfs_item_ptr(buf, i,
2636 struct btrfs_file_extent_item);
2637 if (btrfs_file_extent_type(buf, fi) ==
2638 BTRFS_FILE_EXTENT_INLINE)
2639 continue;
2640 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2641 if (bytenr == 0)
2642 continue;
2644 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2645 key.offset -= btrfs_file_extent_offset(buf, fi);
2646 ret = process_func(trans, root, bytenr, num_bytes,
2647 parent, ref_root, key.objectid,
2648 key.offset, for_cow);
2649 if (ret)
2650 goto fail;
2651 } else {
2652 bytenr = btrfs_node_blockptr(buf, i);
2653 num_bytes = btrfs_level_size(root, level - 1);
2654 ret = process_func(trans, root, bytenr, num_bytes,
2655 parent, ref_root, level - 1, 0,
2656 for_cow);
2657 if (ret)
2658 goto fail;
2661 return 0;
2662 fail:
2663 BUG();
2664 return ret;
2667 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2668 struct extent_buffer *buf, int full_backref, int for_cow)
2670 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2673 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2674 struct extent_buffer *buf, int full_backref, int for_cow)
2676 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2679 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path,
2682 struct btrfs_block_group_cache *cache)
2684 int ret;
2685 struct btrfs_root *extent_root = root->fs_info->extent_root;
2686 unsigned long bi;
2687 struct extent_buffer *leaf;
2689 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2690 if (ret < 0)
2691 goto fail;
2692 BUG_ON(ret);
2694 leaf = path->nodes[0];
2695 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2696 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2697 btrfs_mark_buffer_dirty(leaf);
2698 btrfs_release_path(path);
2699 fail:
2700 if (ret)
2701 return ret;
2702 return 0;
2706 static struct btrfs_block_group_cache *
2707 next_block_group(struct btrfs_root *root,
2708 struct btrfs_block_group_cache *cache)
2710 struct rb_node *node;
2711 spin_lock(&root->fs_info->block_group_cache_lock);
2712 node = rb_next(&cache->cache_node);
2713 btrfs_put_block_group(cache);
2714 if (node) {
2715 cache = rb_entry(node, struct btrfs_block_group_cache,
2716 cache_node);
2717 btrfs_get_block_group(cache);
2718 } else
2719 cache = NULL;
2720 spin_unlock(&root->fs_info->block_group_cache_lock);
2721 return cache;
2724 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2725 struct btrfs_trans_handle *trans,
2726 struct btrfs_path *path)
2728 struct btrfs_root *root = block_group->fs_info->tree_root;
2729 struct inode *inode = NULL;
2730 u64 alloc_hint = 0;
2731 int dcs = BTRFS_DC_ERROR;
2732 int num_pages = 0;
2733 int retries = 0;
2734 int ret = 0;
2737 * If this block group is smaller than 100 megs don't bother caching the
2738 * block group.
2740 if (block_group->key.offset < (100 * 1024 * 1024)) {
2741 spin_lock(&block_group->lock);
2742 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2743 spin_unlock(&block_group->lock);
2744 return 0;
2747 again:
2748 inode = lookup_free_space_inode(root, block_group, path);
2749 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2750 ret = PTR_ERR(inode);
2751 btrfs_release_path(path);
2752 goto out;
2755 if (IS_ERR(inode)) {
2756 BUG_ON(retries);
2757 retries++;
2759 if (block_group->ro)
2760 goto out_free;
2762 ret = create_free_space_inode(root, trans, block_group, path);
2763 if (ret)
2764 goto out_free;
2765 goto again;
2768 /* We've already setup this transaction, go ahead and exit */
2769 if (block_group->cache_generation == trans->transid &&
2770 i_size_read(inode)) {
2771 dcs = BTRFS_DC_SETUP;
2772 goto out_put;
2776 * We want to set the generation to 0, that way if anything goes wrong
2777 * from here on out we know not to trust this cache when we load up next
2778 * time.
2780 BTRFS_I(inode)->generation = 0;
2781 ret = btrfs_update_inode(trans, root, inode);
2782 WARN_ON(ret);
2784 if (i_size_read(inode) > 0) {
2785 ret = btrfs_truncate_free_space_cache(root, trans, path,
2786 inode);
2787 if (ret)
2788 goto out_put;
2791 spin_lock(&block_group->lock);
2792 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2793 /* We're not cached, don't bother trying to write stuff out */
2794 dcs = BTRFS_DC_WRITTEN;
2795 spin_unlock(&block_group->lock);
2796 goto out_put;
2798 spin_unlock(&block_group->lock);
2800 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2801 if (!num_pages)
2802 num_pages = 1;
2805 * Just to make absolutely sure we have enough space, we're going to
2806 * preallocate 12 pages worth of space for each block group. In
2807 * practice we ought to use at most 8, but we need extra space so we can
2808 * add our header and have a terminator between the extents and the
2809 * bitmaps.
2811 num_pages *= 16;
2812 num_pages *= PAGE_CACHE_SIZE;
2814 ret = btrfs_check_data_free_space(inode, num_pages);
2815 if (ret)
2816 goto out_put;
2818 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2819 num_pages, num_pages,
2820 &alloc_hint);
2821 if (!ret)
2822 dcs = BTRFS_DC_SETUP;
2823 btrfs_free_reserved_data_space(inode, num_pages);
2825 out_put:
2826 iput(inode);
2827 out_free:
2828 btrfs_release_path(path);
2829 out:
2830 spin_lock(&block_group->lock);
2831 if (!ret)
2832 block_group->cache_generation = trans->transid;
2833 block_group->disk_cache_state = dcs;
2834 spin_unlock(&block_group->lock);
2836 return ret;
2839 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2840 struct btrfs_root *root)
2842 struct btrfs_block_group_cache *cache;
2843 int err = 0;
2844 struct btrfs_path *path;
2845 u64 last = 0;
2847 path = btrfs_alloc_path();
2848 if (!path)
2849 return -ENOMEM;
2851 again:
2852 while (1) {
2853 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2854 while (cache) {
2855 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2856 break;
2857 cache = next_block_group(root, cache);
2859 if (!cache) {
2860 if (last == 0)
2861 break;
2862 last = 0;
2863 continue;
2865 err = cache_save_setup(cache, trans, path);
2866 last = cache->key.objectid + cache->key.offset;
2867 btrfs_put_block_group(cache);
2870 while (1) {
2871 if (last == 0) {
2872 err = btrfs_run_delayed_refs(trans, root,
2873 (unsigned long)-1);
2874 BUG_ON(err);
2877 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2878 while (cache) {
2879 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2880 btrfs_put_block_group(cache);
2881 goto again;
2884 if (cache->dirty)
2885 break;
2886 cache = next_block_group(root, cache);
2888 if (!cache) {
2889 if (last == 0)
2890 break;
2891 last = 0;
2892 continue;
2895 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2896 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2897 cache->dirty = 0;
2898 last = cache->key.objectid + cache->key.offset;
2900 err = write_one_cache_group(trans, root, path, cache);
2901 BUG_ON(err);
2902 btrfs_put_block_group(cache);
2905 while (1) {
2907 * I don't think this is needed since we're just marking our
2908 * preallocated extent as written, but just in case it can't
2909 * hurt.
2911 if (last == 0) {
2912 err = btrfs_run_delayed_refs(trans, root,
2913 (unsigned long)-1);
2914 BUG_ON(err);
2917 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2918 while (cache) {
2920 * Really this shouldn't happen, but it could if we
2921 * couldn't write the entire preallocated extent and
2922 * splitting the extent resulted in a new block.
2924 if (cache->dirty) {
2925 btrfs_put_block_group(cache);
2926 goto again;
2928 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2929 break;
2930 cache = next_block_group(root, cache);
2932 if (!cache) {
2933 if (last == 0)
2934 break;
2935 last = 0;
2936 continue;
2939 btrfs_write_out_cache(root, trans, cache, path);
2942 * If we didn't have an error then the cache state is still
2943 * NEED_WRITE, so we can set it to WRITTEN.
2945 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2946 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2947 last = cache->key.objectid + cache->key.offset;
2948 btrfs_put_block_group(cache);
2951 btrfs_free_path(path);
2952 return 0;
2955 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2957 struct btrfs_block_group_cache *block_group;
2958 int readonly = 0;
2960 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2961 if (!block_group || block_group->ro)
2962 readonly = 1;
2963 if (block_group)
2964 btrfs_put_block_group(block_group);
2965 return readonly;
2968 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2969 u64 total_bytes, u64 bytes_used,
2970 struct btrfs_space_info **space_info)
2972 struct btrfs_space_info *found;
2973 int i;
2974 int factor;
2976 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2977 BTRFS_BLOCK_GROUP_RAID10))
2978 factor = 2;
2979 else
2980 factor = 1;
2982 found = __find_space_info(info, flags);
2983 if (found) {
2984 spin_lock(&found->lock);
2985 found->total_bytes += total_bytes;
2986 found->disk_total += total_bytes * factor;
2987 found->bytes_used += bytes_used;
2988 found->disk_used += bytes_used * factor;
2989 found->full = 0;
2990 spin_unlock(&found->lock);
2991 *space_info = found;
2992 return 0;
2994 found = kzalloc(sizeof(*found), GFP_NOFS);
2995 if (!found)
2996 return -ENOMEM;
2998 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2999 INIT_LIST_HEAD(&found->block_groups[i]);
3000 init_rwsem(&found->groups_sem);
3001 spin_lock_init(&found->lock);
3002 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3003 BTRFS_BLOCK_GROUP_SYSTEM |
3004 BTRFS_BLOCK_GROUP_METADATA);
3005 found->total_bytes = total_bytes;
3006 found->disk_total = total_bytes * factor;
3007 found->bytes_used = bytes_used;
3008 found->disk_used = bytes_used * factor;
3009 found->bytes_pinned = 0;
3010 found->bytes_reserved = 0;
3011 found->bytes_readonly = 0;
3012 found->bytes_may_use = 0;
3013 found->full = 0;
3014 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3015 found->chunk_alloc = 0;
3016 found->flush = 0;
3017 init_waitqueue_head(&found->wait);
3018 *space_info = found;
3019 list_add_rcu(&found->list, &info->space_info);
3020 return 0;
3023 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3025 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3026 BTRFS_BLOCK_GROUP_RAID1 |
3027 BTRFS_BLOCK_GROUP_RAID10 |
3028 BTRFS_BLOCK_GROUP_DUP);
3029 if (extra_flags) {
3030 if (flags & BTRFS_BLOCK_GROUP_DATA)
3031 fs_info->avail_data_alloc_bits |= extra_flags;
3032 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3033 fs_info->avail_metadata_alloc_bits |= extra_flags;
3034 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3035 fs_info->avail_system_alloc_bits |= extra_flags;
3039 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042 * we add in the count of missing devices because we want
3043 * to make sure that any RAID levels on a degraded FS
3044 * continue to be honored.
3046 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3047 root->fs_info->fs_devices->missing_devices;
3049 if (num_devices == 1)
3050 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3051 if (num_devices < 4)
3052 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3054 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3055 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3056 BTRFS_BLOCK_GROUP_RAID10))) {
3057 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3061 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3062 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3066 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3067 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3068 (flags & BTRFS_BLOCK_GROUP_DUP)))
3069 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3070 return flags;
3073 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3075 if (flags & BTRFS_BLOCK_GROUP_DATA)
3076 flags |= root->fs_info->avail_data_alloc_bits &
3077 root->fs_info->data_alloc_profile;
3078 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3079 flags |= root->fs_info->avail_system_alloc_bits &
3080 root->fs_info->system_alloc_profile;
3081 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3082 flags |= root->fs_info->avail_metadata_alloc_bits &
3083 root->fs_info->metadata_alloc_profile;
3084 return btrfs_reduce_alloc_profile(root, flags);
3087 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3089 u64 flags;
3091 if (data)
3092 flags = BTRFS_BLOCK_GROUP_DATA;
3093 else if (root == root->fs_info->chunk_root)
3094 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3095 else
3096 flags = BTRFS_BLOCK_GROUP_METADATA;
3098 return get_alloc_profile(root, flags);
3101 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3103 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3104 BTRFS_BLOCK_GROUP_DATA);
3108 * This will check the space that the inode allocates from to make sure we have
3109 * enough space for bytes.
3111 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3113 struct btrfs_space_info *data_sinfo;
3114 struct btrfs_root *root = BTRFS_I(inode)->root;
3115 u64 used;
3116 int ret = 0, committed = 0, alloc_chunk = 1;
3118 /* make sure bytes are sectorsize aligned */
3119 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3121 if (root == root->fs_info->tree_root ||
3122 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3123 alloc_chunk = 0;
3124 committed = 1;
3127 data_sinfo = BTRFS_I(inode)->space_info;
3128 if (!data_sinfo)
3129 goto alloc;
3131 again:
3132 /* make sure we have enough space to handle the data first */
3133 spin_lock(&data_sinfo->lock);
3134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3136 data_sinfo->bytes_may_use;
3138 if (used + bytes > data_sinfo->total_bytes) {
3139 struct btrfs_trans_handle *trans;
3142 * if we don't have enough free bytes in this space then we need
3143 * to alloc a new chunk.
3145 if (!data_sinfo->full && alloc_chunk) {
3146 u64 alloc_target;
3148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3149 spin_unlock(&data_sinfo->lock);
3150 alloc:
3151 alloc_target = btrfs_get_alloc_profile(root, 1);
3152 trans = btrfs_join_transaction(root);
3153 if (IS_ERR(trans))
3154 return PTR_ERR(trans);
3156 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3157 bytes + 2 * 1024 * 1024,
3158 alloc_target,
3159 CHUNK_ALLOC_NO_FORCE);
3160 btrfs_end_transaction(trans, root);
3161 if (ret < 0) {
3162 if (ret != -ENOSPC)
3163 return ret;
3164 else
3165 goto commit_trans;
3168 if (!data_sinfo) {
3169 btrfs_set_inode_space_info(root, inode);
3170 data_sinfo = BTRFS_I(inode)->space_info;
3172 goto again;
3176 * If we have less pinned bytes than we want to allocate then
3177 * don't bother committing the transaction, it won't help us.
3179 if (data_sinfo->bytes_pinned < bytes)
3180 committed = 1;
3181 spin_unlock(&data_sinfo->lock);
3183 /* commit the current transaction and try again */
3184 commit_trans:
3185 if (!committed &&
3186 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3187 committed = 1;
3188 trans = btrfs_join_transaction(root);
3189 if (IS_ERR(trans))
3190 return PTR_ERR(trans);
3191 ret = btrfs_commit_transaction(trans, root);
3192 if (ret)
3193 return ret;
3194 goto again;
3197 return -ENOSPC;
3199 data_sinfo->bytes_may_use += bytes;
3200 spin_unlock(&data_sinfo->lock);
3202 return 0;
3206 * Called if we need to clear a data reservation for this inode.
3208 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3210 struct btrfs_root *root = BTRFS_I(inode)->root;
3211 struct btrfs_space_info *data_sinfo;
3213 /* make sure bytes are sectorsize aligned */
3214 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3216 data_sinfo = BTRFS_I(inode)->space_info;
3217 spin_lock(&data_sinfo->lock);
3218 data_sinfo->bytes_may_use -= bytes;
3219 spin_unlock(&data_sinfo->lock);
3222 static void force_metadata_allocation(struct btrfs_fs_info *info)
3224 struct list_head *head = &info->space_info;
3225 struct btrfs_space_info *found;
3227 rcu_read_lock();
3228 list_for_each_entry_rcu(found, head, list) {
3229 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3230 found->force_alloc = CHUNK_ALLOC_FORCE;
3232 rcu_read_unlock();
3235 static int should_alloc_chunk(struct btrfs_root *root,
3236 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3237 int force)
3239 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3240 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3241 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3242 u64 thresh;
3244 if (force == CHUNK_ALLOC_FORCE)
3245 return 1;
3248 * We need to take into account the global rsv because for all intents
3249 * and purposes it's used space. Don't worry about locking the
3250 * global_rsv, it doesn't change except when the transaction commits.
3252 num_allocated += global_rsv->size;
3255 * in limited mode, we want to have some free space up to
3256 * about 1% of the FS size.
3258 if (force == CHUNK_ALLOC_LIMITED) {
3259 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3260 thresh = max_t(u64, 64 * 1024 * 1024,
3261 div_factor_fine(thresh, 1));
3263 if (num_bytes - num_allocated < thresh)
3264 return 1;
3268 * we have two similar checks here, one based on percentage
3269 * and once based on a hard number of 256MB. The idea
3270 * is that if we have a good amount of free
3271 * room, don't allocate a chunk. A good mount is
3272 * less than 80% utilized of the chunks we have allocated,
3273 * or more than 256MB free
3275 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3276 return 0;
3278 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3279 return 0;
3281 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3283 /* 256MB or 5% of the FS */
3284 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3286 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3287 return 0;
3288 return 1;
3291 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *extent_root, u64 alloc_bytes,
3293 u64 flags, int force)
3295 struct btrfs_space_info *space_info;
3296 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3297 int wait_for_alloc = 0;
3298 int ret = 0;
3300 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3302 space_info = __find_space_info(extent_root->fs_info, flags);
3303 if (!space_info) {
3304 ret = update_space_info(extent_root->fs_info, flags,
3305 0, 0, &space_info);
3306 BUG_ON(ret);
3308 BUG_ON(!space_info);
3310 again:
3311 spin_lock(&space_info->lock);
3312 if (space_info->force_alloc)
3313 force = space_info->force_alloc;
3314 if (space_info->full) {
3315 spin_unlock(&space_info->lock);
3316 return 0;
3319 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3320 spin_unlock(&space_info->lock);
3321 return 0;
3322 } else if (space_info->chunk_alloc) {
3323 wait_for_alloc = 1;
3324 } else {
3325 space_info->chunk_alloc = 1;
3328 spin_unlock(&space_info->lock);
3330 mutex_lock(&fs_info->chunk_mutex);
3333 * The chunk_mutex is held throughout the entirety of a chunk
3334 * allocation, so once we've acquired the chunk_mutex we know that the
3335 * other guy is done and we need to recheck and see if we should
3336 * allocate.
3338 if (wait_for_alloc) {
3339 mutex_unlock(&fs_info->chunk_mutex);
3340 wait_for_alloc = 0;
3341 goto again;
3345 * If we have mixed data/metadata chunks we want to make sure we keep
3346 * allocating mixed chunks instead of individual chunks.
3348 if (btrfs_mixed_space_info(space_info))
3349 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3352 * if we're doing a data chunk, go ahead and make sure that
3353 * we keep a reasonable number of metadata chunks allocated in the
3354 * FS as well.
3356 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3357 fs_info->data_chunk_allocations++;
3358 if (!(fs_info->data_chunk_allocations %
3359 fs_info->metadata_ratio))
3360 force_metadata_allocation(fs_info);
3363 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3364 if (ret < 0 && ret != -ENOSPC)
3365 goto out;
3367 spin_lock(&space_info->lock);
3368 if (ret)
3369 space_info->full = 1;
3370 else
3371 ret = 1;
3373 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3374 space_info->chunk_alloc = 0;
3375 spin_unlock(&space_info->lock);
3376 out:
3377 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3378 return ret;
3382 * shrink metadata reservation for delalloc
3384 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3385 bool wait_ordered)
3387 struct btrfs_block_rsv *block_rsv;
3388 struct btrfs_space_info *space_info;
3389 struct btrfs_trans_handle *trans;
3390 u64 reserved;
3391 u64 max_reclaim;
3392 u64 reclaimed = 0;
3393 long time_left;
3394 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3395 int loops = 0;
3396 unsigned long progress;
3398 trans = (struct btrfs_trans_handle *)current->journal_info;
3399 block_rsv = &root->fs_info->delalloc_block_rsv;
3400 space_info = block_rsv->space_info;
3402 smp_mb();
3403 reserved = space_info->bytes_may_use;
3404 progress = space_info->reservation_progress;
3406 if (reserved == 0)
3407 return 0;
3409 smp_mb();
3410 if (root->fs_info->delalloc_bytes == 0) {
3411 if (trans)
3412 return 0;
3413 btrfs_wait_ordered_extents(root, 0, 0);
3414 return 0;
3417 max_reclaim = min(reserved, to_reclaim);
3418 nr_pages = max_t(unsigned long, nr_pages,
3419 max_reclaim >> PAGE_CACHE_SHIFT);
3420 while (loops < 1024) {
3421 /* have the flusher threads jump in and do some IO */
3422 smp_mb();
3423 nr_pages = min_t(unsigned long, nr_pages,
3424 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3425 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3427 spin_lock(&space_info->lock);
3428 if (reserved > space_info->bytes_may_use)
3429 reclaimed += reserved - space_info->bytes_may_use;
3430 reserved = space_info->bytes_may_use;
3431 spin_unlock(&space_info->lock);
3433 loops++;
3435 if (reserved == 0 || reclaimed >= max_reclaim)
3436 break;
3438 if (trans && trans->transaction->blocked)
3439 return -EAGAIN;
3441 if (wait_ordered && !trans) {
3442 btrfs_wait_ordered_extents(root, 0, 0);
3443 } else {
3444 time_left = schedule_timeout_interruptible(1);
3446 /* We were interrupted, exit */
3447 if (time_left)
3448 break;
3451 /* we've kicked the IO a few times, if anything has been freed,
3452 * exit. There is no sense in looping here for a long time
3453 * when we really need to commit the transaction, or there are
3454 * just too many writers without enough free space
3457 if (loops > 3) {
3458 smp_mb();
3459 if (progress != space_info->reservation_progress)
3460 break;
3465 return reclaimed >= to_reclaim;
3469 * maybe_commit_transaction - possibly commit the transaction if its ok to
3470 * @root - the root we're allocating for
3471 * @bytes - the number of bytes we want to reserve
3472 * @force - force the commit
3474 * This will check to make sure that committing the transaction will actually
3475 * get us somewhere and then commit the transaction if it does. Otherwise it
3476 * will return -ENOSPC.
3478 static int may_commit_transaction(struct btrfs_root *root,
3479 struct btrfs_space_info *space_info,
3480 u64 bytes, int force)
3482 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3483 struct btrfs_trans_handle *trans;
3485 trans = (struct btrfs_trans_handle *)current->journal_info;
3486 if (trans)
3487 return -EAGAIN;
3489 if (force)
3490 goto commit;
3492 /* See if there is enough pinned space to make this reservation */
3493 spin_lock(&space_info->lock);
3494 if (space_info->bytes_pinned >= bytes) {
3495 spin_unlock(&space_info->lock);
3496 goto commit;
3498 spin_unlock(&space_info->lock);
3501 * See if there is some space in the delayed insertion reservation for
3502 * this reservation.
3504 if (space_info != delayed_rsv->space_info)
3505 return -ENOSPC;
3507 spin_lock(&delayed_rsv->lock);
3508 if (delayed_rsv->size < bytes) {
3509 spin_unlock(&delayed_rsv->lock);
3510 return -ENOSPC;
3512 spin_unlock(&delayed_rsv->lock);
3514 commit:
3515 trans = btrfs_join_transaction(root);
3516 if (IS_ERR(trans))
3517 return -ENOSPC;
3519 return btrfs_commit_transaction(trans, root);
3523 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3524 * @root - the root we're allocating for
3525 * @block_rsv - the block_rsv we're allocating for
3526 * @orig_bytes - the number of bytes we want
3527 * @flush - wether or not we can flush to make our reservation
3529 * This will reserve orgi_bytes number of bytes from the space info associated
3530 * with the block_rsv. If there is not enough space it will make an attempt to
3531 * flush out space to make room. It will do this by flushing delalloc if
3532 * possible or committing the transaction. If flush is 0 then no attempts to
3533 * regain reservations will be made and this will fail if there is not enough
3534 * space already.
3536 static int reserve_metadata_bytes(struct btrfs_root *root,
3537 struct btrfs_block_rsv *block_rsv,
3538 u64 orig_bytes, int flush)
3540 struct btrfs_space_info *space_info = block_rsv->space_info;
3541 u64 used;
3542 u64 num_bytes = orig_bytes;
3543 int retries = 0;
3544 int ret = 0;
3545 bool committed = false;
3546 bool flushing = false;
3547 bool wait_ordered = false;
3549 again:
3550 ret = 0;
3551 spin_lock(&space_info->lock);
3553 * We only want to wait if somebody other than us is flushing and we are
3554 * actually alloed to flush.
3556 while (flush && !flushing && space_info->flush) {
3557 spin_unlock(&space_info->lock);
3559 * If we have a trans handle we can't wait because the flusher
3560 * may have to commit the transaction, which would mean we would
3561 * deadlock since we are waiting for the flusher to finish, but
3562 * hold the current transaction open.
3564 if (current->journal_info)
3565 return -EAGAIN;
3566 ret = wait_event_interruptible(space_info->wait,
3567 !space_info->flush);
3568 /* Must have been interrupted, return */
3569 if (ret)
3570 return -EINTR;
3572 spin_lock(&space_info->lock);
3575 ret = -ENOSPC;
3576 used = space_info->bytes_used + space_info->bytes_reserved +
3577 space_info->bytes_pinned + space_info->bytes_readonly +
3578 space_info->bytes_may_use;
3581 * The idea here is that we've not already over-reserved the block group
3582 * then we can go ahead and save our reservation first and then start
3583 * flushing if we need to. Otherwise if we've already overcommitted
3584 * lets start flushing stuff first and then come back and try to make
3585 * our reservation.
3587 if (used <= space_info->total_bytes) {
3588 if (used + orig_bytes <= space_info->total_bytes) {
3589 space_info->bytes_may_use += orig_bytes;
3590 ret = 0;
3591 } else {
3593 * Ok set num_bytes to orig_bytes since we aren't
3594 * overocmmitted, this way we only try and reclaim what
3595 * we need.
3597 num_bytes = orig_bytes;
3599 } else {
3601 * Ok we're over committed, set num_bytes to the overcommitted
3602 * amount plus the amount of bytes that we need for this
3603 * reservation.
3605 wait_ordered = true;
3606 num_bytes = used - space_info->total_bytes +
3607 (orig_bytes * (retries + 1));
3610 if (ret) {
3611 u64 profile = btrfs_get_alloc_profile(root, 0);
3612 u64 avail;
3615 * If we have a lot of space that's pinned, don't bother doing
3616 * the overcommit dance yet and just commit the transaction.
3618 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3619 do_div(avail, 10);
3620 if (space_info->bytes_pinned >= avail && flush && !committed) {
3621 space_info->flush = 1;
3622 flushing = true;
3623 spin_unlock(&space_info->lock);
3624 ret = may_commit_transaction(root, space_info,
3625 orig_bytes, 1);
3626 if (ret)
3627 goto out;
3628 committed = true;
3629 goto again;
3632 spin_lock(&root->fs_info->free_chunk_lock);
3633 avail = root->fs_info->free_chunk_space;
3636 * If we have dup, raid1 or raid10 then only half of the free
3637 * space is actually useable.
3639 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3640 BTRFS_BLOCK_GROUP_RAID1 |
3641 BTRFS_BLOCK_GROUP_RAID10))
3642 avail >>= 1;
3645 * If we aren't flushing don't let us overcommit too much, say
3646 * 1/8th of the space. If we can flush, let it overcommit up to
3647 * 1/2 of the space.
3649 if (flush)
3650 avail >>= 3;
3651 else
3652 avail >>= 1;
3653 spin_unlock(&root->fs_info->free_chunk_lock);
3655 if (used + num_bytes < space_info->total_bytes + avail) {
3656 space_info->bytes_may_use += orig_bytes;
3657 ret = 0;
3658 } else {
3659 wait_ordered = true;
3664 * Couldn't make our reservation, save our place so while we're trying
3665 * to reclaim space we can actually use it instead of somebody else
3666 * stealing it from us.
3668 if (ret && flush) {
3669 flushing = true;
3670 space_info->flush = 1;
3673 spin_unlock(&space_info->lock);
3675 if (!ret || !flush)
3676 goto out;
3679 * We do synchronous shrinking since we don't actually unreserve
3680 * metadata until after the IO is completed.
3682 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3683 if (ret < 0)
3684 goto out;
3686 ret = 0;
3689 * So if we were overcommitted it's possible that somebody else flushed
3690 * out enough space and we simply didn't have enough space to reclaim,
3691 * so go back around and try again.
3693 if (retries < 2) {
3694 wait_ordered = true;
3695 retries++;
3696 goto again;
3699 ret = -ENOSPC;
3700 if (committed)
3701 goto out;
3703 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3704 if (!ret) {
3705 committed = true;
3706 goto again;
3709 out:
3710 if (flushing) {
3711 spin_lock(&space_info->lock);
3712 space_info->flush = 0;
3713 wake_up_all(&space_info->wait);
3714 spin_unlock(&space_info->lock);
3716 return ret;
3719 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3720 struct btrfs_root *root)
3722 struct btrfs_block_rsv *block_rsv = NULL;
3724 if (root->ref_cows || root == root->fs_info->csum_root)
3725 block_rsv = trans->block_rsv;
3727 if (!block_rsv)
3728 block_rsv = root->block_rsv;
3730 if (!block_rsv)
3731 block_rsv = &root->fs_info->empty_block_rsv;
3733 return block_rsv;
3736 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3737 u64 num_bytes)
3739 int ret = -ENOSPC;
3740 spin_lock(&block_rsv->lock);
3741 if (block_rsv->reserved >= num_bytes) {
3742 block_rsv->reserved -= num_bytes;
3743 if (block_rsv->reserved < block_rsv->size)
3744 block_rsv->full = 0;
3745 ret = 0;
3747 spin_unlock(&block_rsv->lock);
3748 return ret;
3751 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3752 u64 num_bytes, int update_size)
3754 spin_lock(&block_rsv->lock);
3755 block_rsv->reserved += num_bytes;
3756 if (update_size)
3757 block_rsv->size += num_bytes;
3758 else if (block_rsv->reserved >= block_rsv->size)
3759 block_rsv->full = 1;
3760 spin_unlock(&block_rsv->lock);
3763 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3764 struct btrfs_block_rsv *dest, u64 num_bytes)
3766 struct btrfs_space_info *space_info = block_rsv->space_info;
3768 spin_lock(&block_rsv->lock);
3769 if (num_bytes == (u64)-1)
3770 num_bytes = block_rsv->size;
3771 block_rsv->size -= num_bytes;
3772 if (block_rsv->reserved >= block_rsv->size) {
3773 num_bytes = block_rsv->reserved - block_rsv->size;
3774 block_rsv->reserved = block_rsv->size;
3775 block_rsv->full = 1;
3776 } else {
3777 num_bytes = 0;
3779 spin_unlock(&block_rsv->lock);
3781 if (num_bytes > 0) {
3782 if (dest) {
3783 spin_lock(&dest->lock);
3784 if (!dest->full) {
3785 u64 bytes_to_add;
3787 bytes_to_add = dest->size - dest->reserved;
3788 bytes_to_add = min(num_bytes, bytes_to_add);
3789 dest->reserved += bytes_to_add;
3790 if (dest->reserved >= dest->size)
3791 dest->full = 1;
3792 num_bytes -= bytes_to_add;
3794 spin_unlock(&dest->lock);
3796 if (num_bytes) {
3797 spin_lock(&space_info->lock);
3798 space_info->bytes_may_use -= num_bytes;
3799 space_info->reservation_progress++;
3800 spin_unlock(&space_info->lock);
3805 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3806 struct btrfs_block_rsv *dst, u64 num_bytes)
3808 int ret;
3810 ret = block_rsv_use_bytes(src, num_bytes);
3811 if (ret)
3812 return ret;
3814 block_rsv_add_bytes(dst, num_bytes, 1);
3815 return 0;
3818 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3820 memset(rsv, 0, sizeof(*rsv));
3821 spin_lock_init(&rsv->lock);
3824 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3826 struct btrfs_block_rsv *block_rsv;
3827 struct btrfs_fs_info *fs_info = root->fs_info;
3829 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3830 if (!block_rsv)
3831 return NULL;
3833 btrfs_init_block_rsv(block_rsv);
3834 block_rsv->space_info = __find_space_info(fs_info,
3835 BTRFS_BLOCK_GROUP_METADATA);
3836 return block_rsv;
3839 void btrfs_free_block_rsv(struct btrfs_root *root,
3840 struct btrfs_block_rsv *rsv)
3842 btrfs_block_rsv_release(root, rsv, (u64)-1);
3843 kfree(rsv);
3846 static inline int __block_rsv_add(struct btrfs_root *root,
3847 struct btrfs_block_rsv *block_rsv,
3848 u64 num_bytes, int flush)
3850 int ret;
3852 if (num_bytes == 0)
3853 return 0;
3855 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3856 if (!ret) {
3857 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3858 return 0;
3861 return ret;
3864 int btrfs_block_rsv_add(struct btrfs_root *root,
3865 struct btrfs_block_rsv *block_rsv,
3866 u64 num_bytes)
3868 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3871 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3872 struct btrfs_block_rsv *block_rsv,
3873 u64 num_bytes)
3875 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3878 int btrfs_block_rsv_check(struct btrfs_root *root,
3879 struct btrfs_block_rsv *block_rsv, int min_factor)
3881 u64 num_bytes = 0;
3882 int ret = -ENOSPC;
3884 if (!block_rsv)
3885 return 0;
3887 spin_lock(&block_rsv->lock);
3888 num_bytes = div_factor(block_rsv->size, min_factor);
3889 if (block_rsv->reserved >= num_bytes)
3890 ret = 0;
3891 spin_unlock(&block_rsv->lock);
3893 return ret;
3896 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
3897 struct btrfs_block_rsv *block_rsv,
3898 u64 min_reserved, int flush)
3900 u64 num_bytes = 0;
3901 int ret = -ENOSPC;
3903 if (!block_rsv)
3904 return 0;
3906 spin_lock(&block_rsv->lock);
3907 num_bytes = min_reserved;
3908 if (block_rsv->reserved >= num_bytes)
3909 ret = 0;
3910 else
3911 num_bytes -= block_rsv->reserved;
3912 spin_unlock(&block_rsv->lock);
3914 if (!ret)
3915 return 0;
3917 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3918 if (!ret) {
3919 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3920 return 0;
3923 return ret;
3926 int btrfs_block_rsv_refill(struct btrfs_root *root,
3927 struct btrfs_block_rsv *block_rsv,
3928 u64 min_reserved)
3930 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
3933 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
3934 struct btrfs_block_rsv *block_rsv,
3935 u64 min_reserved)
3937 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
3940 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3941 struct btrfs_block_rsv *dst_rsv,
3942 u64 num_bytes)
3944 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3947 void btrfs_block_rsv_release(struct btrfs_root *root,
3948 struct btrfs_block_rsv *block_rsv,
3949 u64 num_bytes)
3951 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3952 if (global_rsv->full || global_rsv == block_rsv ||
3953 block_rsv->space_info != global_rsv->space_info)
3954 global_rsv = NULL;
3955 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3959 * helper to calculate size of global block reservation.
3960 * the desired value is sum of space used by extent tree,
3961 * checksum tree and root tree
3963 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3965 struct btrfs_space_info *sinfo;
3966 u64 num_bytes;
3967 u64 meta_used;
3968 u64 data_used;
3969 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3971 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3972 spin_lock(&sinfo->lock);
3973 data_used = sinfo->bytes_used;
3974 spin_unlock(&sinfo->lock);
3976 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3977 spin_lock(&sinfo->lock);
3978 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3979 data_used = 0;
3980 meta_used = sinfo->bytes_used;
3981 spin_unlock(&sinfo->lock);
3983 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3984 csum_size * 2;
3985 num_bytes += div64_u64(data_used + meta_used, 50);
3987 if (num_bytes * 3 > meta_used)
3988 num_bytes = div64_u64(meta_used, 3);
3990 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3993 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3995 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3996 struct btrfs_space_info *sinfo = block_rsv->space_info;
3997 u64 num_bytes;
3999 num_bytes = calc_global_metadata_size(fs_info);
4001 spin_lock(&block_rsv->lock);
4002 spin_lock(&sinfo->lock);
4004 block_rsv->size = num_bytes;
4006 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4007 sinfo->bytes_reserved + sinfo->bytes_readonly +
4008 sinfo->bytes_may_use;
4010 if (sinfo->total_bytes > num_bytes) {
4011 num_bytes = sinfo->total_bytes - num_bytes;
4012 block_rsv->reserved += num_bytes;
4013 sinfo->bytes_may_use += num_bytes;
4016 if (block_rsv->reserved >= block_rsv->size) {
4017 num_bytes = block_rsv->reserved - block_rsv->size;
4018 sinfo->bytes_may_use -= num_bytes;
4019 sinfo->reservation_progress++;
4020 block_rsv->reserved = block_rsv->size;
4021 block_rsv->full = 1;
4024 spin_unlock(&sinfo->lock);
4025 spin_unlock(&block_rsv->lock);
4028 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4030 struct btrfs_space_info *space_info;
4032 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4033 fs_info->chunk_block_rsv.space_info = space_info;
4035 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4036 fs_info->global_block_rsv.space_info = space_info;
4037 fs_info->delalloc_block_rsv.space_info = space_info;
4038 fs_info->trans_block_rsv.space_info = space_info;
4039 fs_info->empty_block_rsv.space_info = space_info;
4040 fs_info->delayed_block_rsv.space_info = space_info;
4042 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4043 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4044 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4045 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4046 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4048 update_global_block_rsv(fs_info);
4051 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4053 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
4054 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4055 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4056 WARN_ON(fs_info->trans_block_rsv.size > 0);
4057 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4058 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4059 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4060 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4061 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4064 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4065 struct btrfs_root *root)
4067 if (!trans->bytes_reserved)
4068 return;
4070 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4071 trans->bytes_reserved = 0;
4074 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4075 struct inode *inode)
4077 struct btrfs_root *root = BTRFS_I(inode)->root;
4078 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4079 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4082 * We need to hold space in order to delete our orphan item once we've
4083 * added it, so this takes the reservation so we can release it later
4084 * when we are truly done with the orphan item.
4086 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4087 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4090 void btrfs_orphan_release_metadata(struct inode *inode)
4092 struct btrfs_root *root = BTRFS_I(inode)->root;
4093 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4094 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4097 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4098 struct btrfs_pending_snapshot *pending)
4100 struct btrfs_root *root = pending->root;
4101 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4102 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4104 * two for root back/forward refs, two for directory entries
4105 * and one for root of the snapshot.
4107 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4108 dst_rsv->space_info = src_rsv->space_info;
4109 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4113 * drop_outstanding_extent - drop an outstanding extent
4114 * @inode: the inode we're dropping the extent for
4116 * This is called when we are freeing up an outstanding extent, either called
4117 * after an error or after an extent is written. This will return the number of
4118 * reserved extents that need to be freed. This must be called with
4119 * BTRFS_I(inode)->lock held.
4121 static unsigned drop_outstanding_extent(struct inode *inode)
4123 unsigned drop_inode_space = 0;
4124 unsigned dropped_extents = 0;
4126 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4127 BTRFS_I(inode)->outstanding_extents--;
4129 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4130 BTRFS_I(inode)->delalloc_meta_reserved) {
4131 drop_inode_space = 1;
4132 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4136 * If we have more or the same amount of outsanding extents than we have
4137 * reserved then we need to leave the reserved extents count alone.
4139 if (BTRFS_I(inode)->outstanding_extents >=
4140 BTRFS_I(inode)->reserved_extents)
4141 return drop_inode_space;
4143 dropped_extents = BTRFS_I(inode)->reserved_extents -
4144 BTRFS_I(inode)->outstanding_extents;
4145 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4146 return dropped_extents + drop_inode_space;
4150 * calc_csum_metadata_size - return the amount of metada space that must be
4151 * reserved/free'd for the given bytes.
4152 * @inode: the inode we're manipulating
4153 * @num_bytes: the number of bytes in question
4154 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4156 * This adjusts the number of csum_bytes in the inode and then returns the
4157 * correct amount of metadata that must either be reserved or freed. We
4158 * calculate how many checksums we can fit into one leaf and then divide the
4159 * number of bytes that will need to be checksumed by this value to figure out
4160 * how many checksums will be required. If we are adding bytes then the number
4161 * may go up and we will return the number of additional bytes that must be
4162 * reserved. If it is going down we will return the number of bytes that must
4163 * be freed.
4165 * This must be called with BTRFS_I(inode)->lock held.
4167 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4168 int reserve)
4170 struct btrfs_root *root = BTRFS_I(inode)->root;
4171 u64 csum_size;
4172 int num_csums_per_leaf;
4173 int num_csums;
4174 int old_csums;
4176 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4177 BTRFS_I(inode)->csum_bytes == 0)
4178 return 0;
4180 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4181 if (reserve)
4182 BTRFS_I(inode)->csum_bytes += num_bytes;
4183 else
4184 BTRFS_I(inode)->csum_bytes -= num_bytes;
4185 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4186 num_csums_per_leaf = (int)div64_u64(csum_size,
4187 sizeof(struct btrfs_csum_item) +
4188 sizeof(struct btrfs_disk_key));
4189 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4190 num_csums = num_csums + num_csums_per_leaf - 1;
4191 num_csums = num_csums / num_csums_per_leaf;
4193 old_csums = old_csums + num_csums_per_leaf - 1;
4194 old_csums = old_csums / num_csums_per_leaf;
4196 /* No change, no need to reserve more */
4197 if (old_csums == num_csums)
4198 return 0;
4200 if (reserve)
4201 return btrfs_calc_trans_metadata_size(root,
4202 num_csums - old_csums);
4204 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4207 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4209 struct btrfs_root *root = BTRFS_I(inode)->root;
4210 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4211 u64 to_reserve = 0;
4212 unsigned nr_extents = 0;
4213 int flush = 1;
4214 int ret;
4216 if (btrfs_is_free_space_inode(root, inode))
4217 flush = 0;
4219 if (flush && btrfs_transaction_in_commit(root->fs_info))
4220 schedule_timeout(1);
4222 num_bytes = ALIGN(num_bytes, root->sectorsize);
4224 spin_lock(&BTRFS_I(inode)->lock);
4225 BTRFS_I(inode)->outstanding_extents++;
4227 if (BTRFS_I(inode)->outstanding_extents >
4228 BTRFS_I(inode)->reserved_extents) {
4229 nr_extents = BTRFS_I(inode)->outstanding_extents -
4230 BTRFS_I(inode)->reserved_extents;
4231 BTRFS_I(inode)->reserved_extents += nr_extents;
4235 * Add an item to reserve for updating the inode when we complete the
4236 * delalloc io.
4238 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4239 nr_extents++;
4240 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4243 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4244 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4245 spin_unlock(&BTRFS_I(inode)->lock);
4247 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4248 if (ret) {
4249 u64 to_free = 0;
4250 unsigned dropped;
4252 spin_lock(&BTRFS_I(inode)->lock);
4253 dropped = drop_outstanding_extent(inode);
4254 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4255 spin_unlock(&BTRFS_I(inode)->lock);
4256 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4259 * Somebody could have come in and twiddled with the
4260 * reservation, so if we have to free more than we would have
4261 * reserved from this reservation go ahead and release those
4262 * bytes.
4264 to_free -= to_reserve;
4265 if (to_free)
4266 btrfs_block_rsv_release(root, block_rsv, to_free);
4267 return ret;
4270 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4272 return 0;
4276 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4277 * @inode: the inode to release the reservation for
4278 * @num_bytes: the number of bytes we're releasing
4280 * This will release the metadata reservation for an inode. This can be called
4281 * once we complete IO for a given set of bytes to release their metadata
4282 * reservations.
4284 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4286 struct btrfs_root *root = BTRFS_I(inode)->root;
4287 u64 to_free = 0;
4288 unsigned dropped;
4290 num_bytes = ALIGN(num_bytes, root->sectorsize);
4291 spin_lock(&BTRFS_I(inode)->lock);
4292 dropped = drop_outstanding_extent(inode);
4294 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4295 spin_unlock(&BTRFS_I(inode)->lock);
4296 if (dropped > 0)
4297 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4299 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4300 to_free);
4304 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4305 * @inode: inode we're writing to
4306 * @num_bytes: the number of bytes we want to allocate
4308 * This will do the following things
4310 * o reserve space in the data space info for num_bytes
4311 * o reserve space in the metadata space info based on number of outstanding
4312 * extents and how much csums will be needed
4313 * o add to the inodes ->delalloc_bytes
4314 * o add it to the fs_info's delalloc inodes list.
4316 * This will return 0 for success and -ENOSPC if there is no space left.
4318 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4320 int ret;
4322 ret = btrfs_check_data_free_space(inode, num_bytes);
4323 if (ret)
4324 return ret;
4326 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4327 if (ret) {
4328 btrfs_free_reserved_data_space(inode, num_bytes);
4329 return ret;
4332 return 0;
4336 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4337 * @inode: inode we're releasing space for
4338 * @num_bytes: the number of bytes we want to free up
4340 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4341 * called in the case that we don't need the metadata AND data reservations
4342 * anymore. So if there is an error or we insert an inline extent.
4344 * This function will release the metadata space that was not used and will
4345 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4346 * list if there are no delalloc bytes left.
4348 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4350 btrfs_delalloc_release_metadata(inode, num_bytes);
4351 btrfs_free_reserved_data_space(inode, num_bytes);
4354 static int update_block_group(struct btrfs_trans_handle *trans,
4355 struct btrfs_root *root,
4356 u64 bytenr, u64 num_bytes, int alloc)
4358 struct btrfs_block_group_cache *cache = NULL;
4359 struct btrfs_fs_info *info = root->fs_info;
4360 u64 total = num_bytes;
4361 u64 old_val;
4362 u64 byte_in_group;
4363 int factor;
4365 /* block accounting for super block */
4366 spin_lock(&info->delalloc_lock);
4367 old_val = btrfs_super_bytes_used(info->super_copy);
4368 if (alloc)
4369 old_val += num_bytes;
4370 else
4371 old_val -= num_bytes;
4372 btrfs_set_super_bytes_used(info->super_copy, old_val);
4373 spin_unlock(&info->delalloc_lock);
4375 while (total) {
4376 cache = btrfs_lookup_block_group(info, bytenr);
4377 if (!cache)
4378 return -1;
4379 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4380 BTRFS_BLOCK_GROUP_RAID1 |
4381 BTRFS_BLOCK_GROUP_RAID10))
4382 factor = 2;
4383 else
4384 factor = 1;
4386 * If this block group has free space cache written out, we
4387 * need to make sure to load it if we are removing space. This
4388 * is because we need the unpinning stage to actually add the
4389 * space back to the block group, otherwise we will leak space.
4391 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4392 cache_block_group(cache, trans, NULL, 1);
4394 byte_in_group = bytenr - cache->key.objectid;
4395 WARN_ON(byte_in_group > cache->key.offset);
4397 spin_lock(&cache->space_info->lock);
4398 spin_lock(&cache->lock);
4400 if (btrfs_test_opt(root, SPACE_CACHE) &&
4401 cache->disk_cache_state < BTRFS_DC_CLEAR)
4402 cache->disk_cache_state = BTRFS_DC_CLEAR;
4404 cache->dirty = 1;
4405 old_val = btrfs_block_group_used(&cache->item);
4406 num_bytes = min(total, cache->key.offset - byte_in_group);
4407 if (alloc) {
4408 old_val += num_bytes;
4409 btrfs_set_block_group_used(&cache->item, old_val);
4410 cache->reserved -= num_bytes;
4411 cache->space_info->bytes_reserved -= num_bytes;
4412 cache->space_info->bytes_used += num_bytes;
4413 cache->space_info->disk_used += num_bytes * factor;
4414 spin_unlock(&cache->lock);
4415 spin_unlock(&cache->space_info->lock);
4416 } else {
4417 old_val -= num_bytes;
4418 btrfs_set_block_group_used(&cache->item, old_val);
4419 cache->pinned += num_bytes;
4420 cache->space_info->bytes_pinned += num_bytes;
4421 cache->space_info->bytes_used -= num_bytes;
4422 cache->space_info->disk_used -= num_bytes * factor;
4423 spin_unlock(&cache->lock);
4424 spin_unlock(&cache->space_info->lock);
4426 set_extent_dirty(info->pinned_extents,
4427 bytenr, bytenr + num_bytes - 1,
4428 GFP_NOFS | __GFP_NOFAIL);
4430 btrfs_put_block_group(cache);
4431 total -= num_bytes;
4432 bytenr += num_bytes;
4434 return 0;
4437 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4439 struct btrfs_block_group_cache *cache;
4440 u64 bytenr;
4442 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4443 if (!cache)
4444 return 0;
4446 bytenr = cache->key.objectid;
4447 btrfs_put_block_group(cache);
4449 return bytenr;
4452 static int pin_down_extent(struct btrfs_root *root,
4453 struct btrfs_block_group_cache *cache,
4454 u64 bytenr, u64 num_bytes, int reserved)
4456 spin_lock(&cache->space_info->lock);
4457 spin_lock(&cache->lock);
4458 cache->pinned += num_bytes;
4459 cache->space_info->bytes_pinned += num_bytes;
4460 if (reserved) {
4461 cache->reserved -= num_bytes;
4462 cache->space_info->bytes_reserved -= num_bytes;
4464 spin_unlock(&cache->lock);
4465 spin_unlock(&cache->space_info->lock);
4467 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4468 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4469 return 0;
4473 * this function must be called within transaction
4475 int btrfs_pin_extent(struct btrfs_root *root,
4476 u64 bytenr, u64 num_bytes, int reserved)
4478 struct btrfs_block_group_cache *cache;
4480 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4481 BUG_ON(!cache);
4483 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4485 btrfs_put_block_group(cache);
4486 return 0;
4490 * this function must be called within transaction
4492 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4493 struct btrfs_root *root,
4494 u64 bytenr, u64 num_bytes)
4496 struct btrfs_block_group_cache *cache;
4498 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4499 BUG_ON(!cache);
4502 * pull in the free space cache (if any) so that our pin
4503 * removes the free space from the cache. We have load_only set
4504 * to one because the slow code to read in the free extents does check
4505 * the pinned extents.
4507 cache_block_group(cache, trans, root, 1);
4509 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4511 /* remove us from the free space cache (if we're there at all) */
4512 btrfs_remove_free_space(cache, bytenr, num_bytes);
4513 btrfs_put_block_group(cache);
4514 return 0;
4518 * btrfs_update_reserved_bytes - update the block_group and space info counters
4519 * @cache: The cache we are manipulating
4520 * @num_bytes: The number of bytes in question
4521 * @reserve: One of the reservation enums
4523 * This is called by the allocator when it reserves space, or by somebody who is
4524 * freeing space that was never actually used on disk. For example if you
4525 * reserve some space for a new leaf in transaction A and before transaction A
4526 * commits you free that leaf, you call this with reserve set to 0 in order to
4527 * clear the reservation.
4529 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4530 * ENOSPC accounting. For data we handle the reservation through clearing the
4531 * delalloc bits in the io_tree. We have to do this since we could end up
4532 * allocating less disk space for the amount of data we have reserved in the
4533 * case of compression.
4535 * If this is a reservation and the block group has become read only we cannot
4536 * make the reservation and return -EAGAIN, otherwise this function always
4537 * succeeds.
4539 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4540 u64 num_bytes, int reserve)
4542 struct btrfs_space_info *space_info = cache->space_info;
4543 int ret = 0;
4544 spin_lock(&space_info->lock);
4545 spin_lock(&cache->lock);
4546 if (reserve != RESERVE_FREE) {
4547 if (cache->ro) {
4548 ret = -EAGAIN;
4549 } else {
4550 cache->reserved += num_bytes;
4551 space_info->bytes_reserved += num_bytes;
4552 if (reserve == RESERVE_ALLOC) {
4553 BUG_ON(space_info->bytes_may_use < num_bytes);
4554 space_info->bytes_may_use -= num_bytes;
4557 } else {
4558 if (cache->ro)
4559 space_info->bytes_readonly += num_bytes;
4560 cache->reserved -= num_bytes;
4561 space_info->bytes_reserved -= num_bytes;
4562 space_info->reservation_progress++;
4564 spin_unlock(&cache->lock);
4565 spin_unlock(&space_info->lock);
4566 return ret;
4569 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4570 struct btrfs_root *root)
4572 struct btrfs_fs_info *fs_info = root->fs_info;
4573 struct btrfs_caching_control *next;
4574 struct btrfs_caching_control *caching_ctl;
4575 struct btrfs_block_group_cache *cache;
4577 down_write(&fs_info->extent_commit_sem);
4579 list_for_each_entry_safe(caching_ctl, next,
4580 &fs_info->caching_block_groups, list) {
4581 cache = caching_ctl->block_group;
4582 if (block_group_cache_done(cache)) {
4583 cache->last_byte_to_unpin = (u64)-1;
4584 list_del_init(&caching_ctl->list);
4585 put_caching_control(caching_ctl);
4586 } else {
4587 cache->last_byte_to_unpin = caching_ctl->progress;
4591 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4592 fs_info->pinned_extents = &fs_info->freed_extents[1];
4593 else
4594 fs_info->pinned_extents = &fs_info->freed_extents[0];
4596 up_write(&fs_info->extent_commit_sem);
4598 update_global_block_rsv(fs_info);
4599 return 0;
4602 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4604 struct btrfs_fs_info *fs_info = root->fs_info;
4605 struct btrfs_block_group_cache *cache = NULL;
4606 u64 len;
4608 while (start <= end) {
4609 if (!cache ||
4610 start >= cache->key.objectid + cache->key.offset) {
4611 if (cache)
4612 btrfs_put_block_group(cache);
4613 cache = btrfs_lookup_block_group(fs_info, start);
4614 BUG_ON(!cache);
4617 len = cache->key.objectid + cache->key.offset - start;
4618 len = min(len, end + 1 - start);
4620 if (start < cache->last_byte_to_unpin) {
4621 len = min(len, cache->last_byte_to_unpin - start);
4622 btrfs_add_free_space(cache, start, len);
4625 start += len;
4627 spin_lock(&cache->space_info->lock);
4628 spin_lock(&cache->lock);
4629 cache->pinned -= len;
4630 cache->space_info->bytes_pinned -= len;
4631 if (cache->ro)
4632 cache->space_info->bytes_readonly += len;
4633 spin_unlock(&cache->lock);
4634 spin_unlock(&cache->space_info->lock);
4637 if (cache)
4638 btrfs_put_block_group(cache);
4639 return 0;
4642 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4643 struct btrfs_root *root)
4645 struct btrfs_fs_info *fs_info = root->fs_info;
4646 struct extent_io_tree *unpin;
4647 u64 start;
4648 u64 end;
4649 int ret;
4651 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4652 unpin = &fs_info->freed_extents[1];
4653 else
4654 unpin = &fs_info->freed_extents[0];
4656 while (1) {
4657 ret = find_first_extent_bit(unpin, 0, &start, &end,
4658 EXTENT_DIRTY);
4659 if (ret)
4660 break;
4662 if (btrfs_test_opt(root, DISCARD))
4663 ret = btrfs_discard_extent(root, start,
4664 end + 1 - start, NULL);
4666 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4667 unpin_extent_range(root, start, end);
4668 cond_resched();
4671 return 0;
4674 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4675 struct btrfs_root *root,
4676 u64 bytenr, u64 num_bytes, u64 parent,
4677 u64 root_objectid, u64 owner_objectid,
4678 u64 owner_offset, int refs_to_drop,
4679 struct btrfs_delayed_extent_op *extent_op)
4681 struct btrfs_key key;
4682 struct btrfs_path *path;
4683 struct btrfs_fs_info *info = root->fs_info;
4684 struct btrfs_root *extent_root = info->extent_root;
4685 struct extent_buffer *leaf;
4686 struct btrfs_extent_item *ei;
4687 struct btrfs_extent_inline_ref *iref;
4688 int ret;
4689 int is_data;
4690 int extent_slot = 0;
4691 int found_extent = 0;
4692 int num_to_del = 1;
4693 u32 item_size;
4694 u64 refs;
4696 path = btrfs_alloc_path();
4697 if (!path)
4698 return -ENOMEM;
4700 path->reada = 1;
4701 path->leave_spinning = 1;
4703 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4704 BUG_ON(!is_data && refs_to_drop != 1);
4706 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4707 bytenr, num_bytes, parent,
4708 root_objectid, owner_objectid,
4709 owner_offset);
4710 if (ret == 0) {
4711 extent_slot = path->slots[0];
4712 while (extent_slot >= 0) {
4713 btrfs_item_key_to_cpu(path->nodes[0], &key,
4714 extent_slot);
4715 if (key.objectid != bytenr)
4716 break;
4717 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4718 key.offset == num_bytes) {
4719 found_extent = 1;
4720 break;
4722 if (path->slots[0] - extent_slot > 5)
4723 break;
4724 extent_slot--;
4726 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4727 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4728 if (found_extent && item_size < sizeof(*ei))
4729 found_extent = 0;
4730 #endif
4731 if (!found_extent) {
4732 BUG_ON(iref);
4733 ret = remove_extent_backref(trans, extent_root, path,
4734 NULL, refs_to_drop,
4735 is_data);
4736 BUG_ON(ret);
4737 btrfs_release_path(path);
4738 path->leave_spinning = 1;
4740 key.objectid = bytenr;
4741 key.type = BTRFS_EXTENT_ITEM_KEY;
4742 key.offset = num_bytes;
4744 ret = btrfs_search_slot(trans, extent_root,
4745 &key, path, -1, 1);
4746 if (ret) {
4747 printk(KERN_ERR "umm, got %d back from search"
4748 ", was looking for %llu\n", ret,
4749 (unsigned long long)bytenr);
4750 if (ret > 0)
4751 btrfs_print_leaf(extent_root,
4752 path->nodes[0]);
4754 BUG_ON(ret);
4755 extent_slot = path->slots[0];
4757 } else {
4758 btrfs_print_leaf(extent_root, path->nodes[0]);
4759 WARN_ON(1);
4760 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4761 "parent %llu root %llu owner %llu offset %llu\n",
4762 (unsigned long long)bytenr,
4763 (unsigned long long)parent,
4764 (unsigned long long)root_objectid,
4765 (unsigned long long)owner_objectid,
4766 (unsigned long long)owner_offset);
4769 leaf = path->nodes[0];
4770 item_size = btrfs_item_size_nr(leaf, extent_slot);
4771 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4772 if (item_size < sizeof(*ei)) {
4773 BUG_ON(found_extent || extent_slot != path->slots[0]);
4774 ret = convert_extent_item_v0(trans, extent_root, path,
4775 owner_objectid, 0);
4776 BUG_ON(ret < 0);
4778 btrfs_release_path(path);
4779 path->leave_spinning = 1;
4781 key.objectid = bytenr;
4782 key.type = BTRFS_EXTENT_ITEM_KEY;
4783 key.offset = num_bytes;
4785 ret = btrfs_search_slot(trans, extent_root, &key, path,
4786 -1, 1);
4787 if (ret) {
4788 printk(KERN_ERR "umm, got %d back from search"
4789 ", was looking for %llu\n", ret,
4790 (unsigned long long)bytenr);
4791 btrfs_print_leaf(extent_root, path->nodes[0]);
4793 BUG_ON(ret);
4794 extent_slot = path->slots[0];
4795 leaf = path->nodes[0];
4796 item_size = btrfs_item_size_nr(leaf, extent_slot);
4798 #endif
4799 BUG_ON(item_size < sizeof(*ei));
4800 ei = btrfs_item_ptr(leaf, extent_slot,
4801 struct btrfs_extent_item);
4802 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4803 struct btrfs_tree_block_info *bi;
4804 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4805 bi = (struct btrfs_tree_block_info *)(ei + 1);
4806 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4809 refs = btrfs_extent_refs(leaf, ei);
4810 BUG_ON(refs < refs_to_drop);
4811 refs -= refs_to_drop;
4813 if (refs > 0) {
4814 if (extent_op)
4815 __run_delayed_extent_op(extent_op, leaf, ei);
4817 * In the case of inline back ref, reference count will
4818 * be updated by remove_extent_backref
4820 if (iref) {
4821 BUG_ON(!found_extent);
4822 } else {
4823 btrfs_set_extent_refs(leaf, ei, refs);
4824 btrfs_mark_buffer_dirty(leaf);
4826 if (found_extent) {
4827 ret = remove_extent_backref(trans, extent_root, path,
4828 iref, refs_to_drop,
4829 is_data);
4830 BUG_ON(ret);
4832 } else {
4833 if (found_extent) {
4834 BUG_ON(is_data && refs_to_drop !=
4835 extent_data_ref_count(root, path, iref));
4836 if (iref) {
4837 BUG_ON(path->slots[0] != extent_slot);
4838 } else {
4839 BUG_ON(path->slots[0] != extent_slot + 1);
4840 path->slots[0] = extent_slot;
4841 num_to_del = 2;
4845 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4846 num_to_del);
4847 BUG_ON(ret);
4848 btrfs_release_path(path);
4850 if (is_data) {
4851 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4852 BUG_ON(ret);
4853 } else {
4854 invalidate_mapping_pages(info->btree_inode->i_mapping,
4855 bytenr >> PAGE_CACHE_SHIFT,
4856 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4859 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4860 BUG_ON(ret);
4862 btrfs_free_path(path);
4863 return ret;
4867 * when we free an block, it is possible (and likely) that we free the last
4868 * delayed ref for that extent as well. This searches the delayed ref tree for
4869 * a given extent, and if there are no other delayed refs to be processed, it
4870 * removes it from the tree.
4872 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4873 struct btrfs_root *root, u64 bytenr)
4875 struct btrfs_delayed_ref_head *head;
4876 struct btrfs_delayed_ref_root *delayed_refs;
4877 struct btrfs_delayed_ref_node *ref;
4878 struct rb_node *node;
4879 int ret = 0;
4881 delayed_refs = &trans->transaction->delayed_refs;
4882 spin_lock(&delayed_refs->lock);
4883 head = btrfs_find_delayed_ref_head(trans, bytenr);
4884 if (!head)
4885 goto out;
4887 node = rb_prev(&head->node.rb_node);
4888 if (!node)
4889 goto out;
4891 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4893 /* there are still entries for this ref, we can't drop it */
4894 if (ref->bytenr == bytenr)
4895 goto out;
4897 if (head->extent_op) {
4898 if (!head->must_insert_reserved)
4899 goto out;
4900 kfree(head->extent_op);
4901 head->extent_op = NULL;
4905 * waiting for the lock here would deadlock. If someone else has it
4906 * locked they are already in the process of dropping it anyway
4908 if (!mutex_trylock(&head->mutex))
4909 goto out;
4912 * at this point we have a head with no other entries. Go
4913 * ahead and process it.
4915 head->node.in_tree = 0;
4916 rb_erase(&head->node.rb_node, &delayed_refs->root);
4918 delayed_refs->num_entries--;
4921 * we don't take a ref on the node because we're removing it from the
4922 * tree, so we just steal the ref the tree was holding.
4924 delayed_refs->num_heads--;
4925 if (list_empty(&head->cluster))
4926 delayed_refs->num_heads_ready--;
4928 list_del_init(&head->cluster);
4929 spin_unlock(&delayed_refs->lock);
4931 BUG_ON(head->extent_op);
4932 if (head->must_insert_reserved)
4933 ret = 1;
4935 mutex_unlock(&head->mutex);
4936 btrfs_put_delayed_ref(&head->node);
4937 return ret;
4938 out:
4939 spin_unlock(&delayed_refs->lock);
4940 return 0;
4943 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4944 struct btrfs_root *root,
4945 struct extent_buffer *buf,
4946 u64 parent, int last_ref, int for_cow)
4948 struct btrfs_block_group_cache *cache = NULL;
4949 int ret;
4951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4952 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
4953 buf->start, buf->len,
4954 parent, root->root_key.objectid,
4955 btrfs_header_level(buf),
4956 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
4957 BUG_ON(ret);
4960 if (!last_ref)
4961 return;
4963 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4965 if (btrfs_header_generation(buf) == trans->transid) {
4966 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4967 ret = check_ref_cleanup(trans, root, buf->start);
4968 if (!ret)
4969 goto out;
4972 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4973 pin_down_extent(root, cache, buf->start, buf->len, 1);
4974 goto out;
4977 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4979 btrfs_add_free_space(cache, buf->start, buf->len);
4980 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4982 out:
4984 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4985 * anymore.
4987 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4988 btrfs_put_block_group(cache);
4991 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4992 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
4993 u64 owner, u64 offset, int for_cow)
4995 int ret;
4996 struct btrfs_fs_info *fs_info = root->fs_info;
4999 * tree log blocks never actually go into the extent allocation
5000 * tree, just update pinning info and exit early.
5002 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5003 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5004 /* unlocks the pinned mutex */
5005 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5006 ret = 0;
5007 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5008 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5009 num_bytes,
5010 parent, root_objectid, (int)owner,
5011 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5012 BUG_ON(ret);
5013 } else {
5014 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5015 num_bytes,
5016 parent, root_objectid, owner,
5017 offset, BTRFS_DROP_DELAYED_REF,
5018 NULL, for_cow);
5019 BUG_ON(ret);
5021 return ret;
5024 static u64 stripe_align(struct btrfs_root *root, u64 val)
5026 u64 mask = ((u64)root->stripesize - 1);
5027 u64 ret = (val + mask) & ~mask;
5028 return ret;
5032 * when we wait for progress in the block group caching, its because
5033 * our allocation attempt failed at least once. So, we must sleep
5034 * and let some progress happen before we try again.
5036 * This function will sleep at least once waiting for new free space to
5037 * show up, and then it will check the block group free space numbers
5038 * for our min num_bytes. Another option is to have it go ahead
5039 * and look in the rbtree for a free extent of a given size, but this
5040 * is a good start.
5042 static noinline int
5043 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5044 u64 num_bytes)
5046 struct btrfs_caching_control *caching_ctl;
5047 DEFINE_WAIT(wait);
5049 caching_ctl = get_caching_control(cache);
5050 if (!caching_ctl)
5051 return 0;
5053 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5054 (cache->free_space_ctl->free_space >= num_bytes));
5056 put_caching_control(caching_ctl);
5057 return 0;
5060 static noinline int
5061 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5063 struct btrfs_caching_control *caching_ctl;
5064 DEFINE_WAIT(wait);
5066 caching_ctl = get_caching_control(cache);
5067 if (!caching_ctl)
5068 return 0;
5070 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5072 put_caching_control(caching_ctl);
5073 return 0;
5076 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5078 int index;
5079 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5080 index = 0;
5081 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5082 index = 1;
5083 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5084 index = 2;
5085 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5086 index = 3;
5087 else
5088 index = 4;
5089 return index;
5092 enum btrfs_loop_type {
5093 LOOP_FIND_IDEAL = 0,
5094 LOOP_CACHING_NOWAIT = 1,
5095 LOOP_CACHING_WAIT = 2,
5096 LOOP_ALLOC_CHUNK = 3,
5097 LOOP_NO_EMPTY_SIZE = 4,
5101 * walks the btree of allocated extents and find a hole of a given size.
5102 * The key ins is changed to record the hole:
5103 * ins->objectid == block start
5104 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5105 * ins->offset == number of blocks
5106 * Any available blocks before search_start are skipped.
5108 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5109 struct btrfs_root *orig_root,
5110 u64 num_bytes, u64 empty_size,
5111 u64 search_start, u64 search_end,
5112 u64 hint_byte, struct btrfs_key *ins,
5113 u64 data)
5115 int ret = 0;
5116 struct btrfs_root *root = orig_root->fs_info->extent_root;
5117 struct btrfs_free_cluster *last_ptr = NULL;
5118 struct btrfs_block_group_cache *block_group = NULL;
5119 int empty_cluster = 2 * 1024 * 1024;
5120 int allowed_chunk_alloc = 0;
5121 int done_chunk_alloc = 0;
5122 struct btrfs_space_info *space_info;
5123 int last_ptr_loop = 0;
5124 int loop = 0;
5125 int index = 0;
5126 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5127 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5128 bool found_uncached_bg = false;
5129 bool failed_cluster_refill = false;
5130 bool failed_alloc = false;
5131 bool use_cluster = true;
5132 bool have_caching_bg = false;
5133 u64 ideal_cache_percent = 0;
5134 u64 ideal_cache_offset = 0;
5136 WARN_ON(num_bytes < root->sectorsize);
5137 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5138 ins->objectid = 0;
5139 ins->offset = 0;
5141 space_info = __find_space_info(root->fs_info, data);
5142 if (!space_info) {
5143 printk(KERN_ERR "No space info for %llu\n", data);
5144 return -ENOSPC;
5148 * If the space info is for both data and metadata it means we have a
5149 * small filesystem and we can't use the clustering stuff.
5151 if (btrfs_mixed_space_info(space_info))
5152 use_cluster = false;
5154 if (orig_root->ref_cows || empty_size)
5155 allowed_chunk_alloc = 1;
5157 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5158 last_ptr = &root->fs_info->meta_alloc_cluster;
5159 if (!btrfs_test_opt(root, SSD))
5160 empty_cluster = 64 * 1024;
5163 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5164 btrfs_test_opt(root, SSD)) {
5165 last_ptr = &root->fs_info->data_alloc_cluster;
5168 if (last_ptr) {
5169 spin_lock(&last_ptr->lock);
5170 if (last_ptr->block_group)
5171 hint_byte = last_ptr->window_start;
5172 spin_unlock(&last_ptr->lock);
5175 search_start = max(search_start, first_logical_byte(root, 0));
5176 search_start = max(search_start, hint_byte);
5178 if (!last_ptr)
5179 empty_cluster = 0;
5181 if (search_start == hint_byte) {
5182 ideal_cache:
5183 block_group = btrfs_lookup_block_group(root->fs_info,
5184 search_start);
5186 * we don't want to use the block group if it doesn't match our
5187 * allocation bits, or if its not cached.
5189 * However if we are re-searching with an ideal block group
5190 * picked out then we don't care that the block group is cached.
5192 if (block_group && block_group_bits(block_group, data) &&
5193 (block_group->cached != BTRFS_CACHE_NO ||
5194 search_start == ideal_cache_offset)) {
5195 down_read(&space_info->groups_sem);
5196 if (list_empty(&block_group->list) ||
5197 block_group->ro) {
5199 * someone is removing this block group,
5200 * we can't jump into the have_block_group
5201 * target because our list pointers are not
5202 * valid
5204 btrfs_put_block_group(block_group);
5205 up_read(&space_info->groups_sem);
5206 } else {
5207 index = get_block_group_index(block_group);
5208 goto have_block_group;
5210 } else if (block_group) {
5211 btrfs_put_block_group(block_group);
5214 search:
5215 have_caching_bg = false;
5216 down_read(&space_info->groups_sem);
5217 list_for_each_entry(block_group, &space_info->block_groups[index],
5218 list) {
5219 u64 offset;
5220 int cached;
5222 btrfs_get_block_group(block_group);
5223 search_start = block_group->key.objectid;
5226 * this can happen if we end up cycling through all the
5227 * raid types, but we want to make sure we only allocate
5228 * for the proper type.
5230 if (!block_group_bits(block_group, data)) {
5231 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5232 BTRFS_BLOCK_GROUP_RAID1 |
5233 BTRFS_BLOCK_GROUP_RAID10;
5236 * if they asked for extra copies and this block group
5237 * doesn't provide them, bail. This does allow us to
5238 * fill raid0 from raid1.
5240 if ((data & extra) && !(block_group->flags & extra))
5241 goto loop;
5244 have_block_group:
5245 cached = block_group_cache_done(block_group);
5246 if (unlikely(!cached)) {
5247 u64 free_percent;
5249 found_uncached_bg = true;
5250 ret = cache_block_group(block_group, trans,
5251 orig_root, 1);
5252 if (block_group->cached == BTRFS_CACHE_FINISHED)
5253 goto alloc;
5255 free_percent = btrfs_block_group_used(&block_group->item);
5256 free_percent *= 100;
5257 free_percent = div64_u64(free_percent,
5258 block_group->key.offset);
5259 free_percent = 100 - free_percent;
5260 if (free_percent > ideal_cache_percent &&
5261 likely(!block_group->ro)) {
5262 ideal_cache_offset = block_group->key.objectid;
5263 ideal_cache_percent = free_percent;
5267 * The caching workers are limited to 2 threads, so we
5268 * can queue as much work as we care to.
5270 if (loop > LOOP_FIND_IDEAL) {
5271 ret = cache_block_group(block_group, trans,
5272 orig_root, 0);
5273 BUG_ON(ret);
5277 * If loop is set for cached only, try the next block
5278 * group.
5280 if (loop == LOOP_FIND_IDEAL)
5281 goto loop;
5284 alloc:
5285 if (unlikely(block_group->ro))
5286 goto loop;
5288 spin_lock(&block_group->free_space_ctl->tree_lock);
5289 if (cached &&
5290 block_group->free_space_ctl->free_space <
5291 num_bytes + empty_cluster + empty_size) {
5292 spin_unlock(&block_group->free_space_ctl->tree_lock);
5293 goto loop;
5295 spin_unlock(&block_group->free_space_ctl->tree_lock);
5298 * Ok we want to try and use the cluster allocator, so lets look
5299 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5300 * have tried the cluster allocator plenty of times at this
5301 * point and not have found anything, so we are likely way too
5302 * fragmented for the clustering stuff to find anything, so lets
5303 * just skip it and let the allocator find whatever block it can
5304 * find
5306 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5308 * the refill lock keeps out other
5309 * people trying to start a new cluster
5311 spin_lock(&last_ptr->refill_lock);
5312 if (!last_ptr->block_group ||
5313 last_ptr->block_group->ro ||
5314 !block_group_bits(last_ptr->block_group, data))
5315 goto refill_cluster;
5317 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5318 num_bytes, search_start);
5319 if (offset) {
5320 /* we have a block, we're done */
5321 spin_unlock(&last_ptr->refill_lock);
5322 goto checks;
5325 spin_lock(&last_ptr->lock);
5327 * whoops, this cluster doesn't actually point to
5328 * this block group. Get a ref on the block
5329 * group is does point to and try again
5331 if (!last_ptr_loop && last_ptr->block_group &&
5332 last_ptr->block_group != block_group &&
5333 index <=
5334 get_block_group_index(last_ptr->block_group)) {
5336 btrfs_put_block_group(block_group);
5337 block_group = last_ptr->block_group;
5338 btrfs_get_block_group(block_group);
5339 spin_unlock(&last_ptr->lock);
5340 spin_unlock(&last_ptr->refill_lock);
5342 last_ptr_loop = 1;
5343 search_start = block_group->key.objectid;
5345 * we know this block group is properly
5346 * in the list because
5347 * btrfs_remove_block_group, drops the
5348 * cluster before it removes the block
5349 * group from the list
5351 goto have_block_group;
5353 spin_unlock(&last_ptr->lock);
5354 refill_cluster:
5356 * this cluster didn't work out, free it and
5357 * start over
5359 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5361 last_ptr_loop = 0;
5363 /* allocate a cluster in this block group */
5364 ret = btrfs_find_space_cluster(trans, root,
5365 block_group, last_ptr,
5366 search_start, num_bytes,
5367 empty_cluster + empty_size);
5368 if (ret == 0) {
5370 * now pull our allocation out of this
5371 * cluster
5373 offset = btrfs_alloc_from_cluster(block_group,
5374 last_ptr, num_bytes,
5375 search_start);
5376 if (offset) {
5377 /* we found one, proceed */
5378 spin_unlock(&last_ptr->refill_lock);
5379 goto checks;
5381 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5382 && !failed_cluster_refill) {
5383 spin_unlock(&last_ptr->refill_lock);
5385 failed_cluster_refill = true;
5386 wait_block_group_cache_progress(block_group,
5387 num_bytes + empty_cluster + empty_size);
5388 goto have_block_group;
5392 * at this point we either didn't find a cluster
5393 * or we weren't able to allocate a block from our
5394 * cluster. Free the cluster we've been trying
5395 * to use, and go to the next block group
5397 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5398 spin_unlock(&last_ptr->refill_lock);
5399 goto loop;
5402 offset = btrfs_find_space_for_alloc(block_group, search_start,
5403 num_bytes, empty_size);
5405 * If we didn't find a chunk, and we haven't failed on this
5406 * block group before, and this block group is in the middle of
5407 * caching and we are ok with waiting, then go ahead and wait
5408 * for progress to be made, and set failed_alloc to true.
5410 * If failed_alloc is true then we've already waited on this
5411 * block group once and should move on to the next block group.
5413 if (!offset && !failed_alloc && !cached &&
5414 loop > LOOP_CACHING_NOWAIT) {
5415 wait_block_group_cache_progress(block_group,
5416 num_bytes + empty_size);
5417 failed_alloc = true;
5418 goto have_block_group;
5419 } else if (!offset) {
5420 if (!cached)
5421 have_caching_bg = true;
5422 goto loop;
5424 checks:
5425 search_start = stripe_align(root, offset);
5426 /* move on to the next group */
5427 if (search_start + num_bytes >= search_end) {
5428 btrfs_add_free_space(block_group, offset, num_bytes);
5429 goto loop;
5432 /* move on to the next group */
5433 if (search_start + num_bytes >
5434 block_group->key.objectid + block_group->key.offset) {
5435 btrfs_add_free_space(block_group, offset, num_bytes);
5436 goto loop;
5439 ins->objectid = search_start;
5440 ins->offset = num_bytes;
5442 if (offset < search_start)
5443 btrfs_add_free_space(block_group, offset,
5444 search_start - offset);
5445 BUG_ON(offset > search_start);
5447 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5448 alloc_type);
5449 if (ret == -EAGAIN) {
5450 btrfs_add_free_space(block_group, offset, num_bytes);
5451 goto loop;
5454 /* we are all good, lets return */
5455 ins->objectid = search_start;
5456 ins->offset = num_bytes;
5458 if (offset < search_start)
5459 btrfs_add_free_space(block_group, offset,
5460 search_start - offset);
5461 BUG_ON(offset > search_start);
5462 btrfs_put_block_group(block_group);
5463 break;
5464 loop:
5465 failed_cluster_refill = false;
5466 failed_alloc = false;
5467 BUG_ON(index != get_block_group_index(block_group));
5468 btrfs_put_block_group(block_group);
5470 up_read(&space_info->groups_sem);
5472 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5473 goto search;
5475 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5476 goto search;
5478 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5479 * for them to make caching progress. Also
5480 * determine the best possible bg to cache
5481 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5482 * caching kthreads as we move along
5483 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5484 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5485 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5486 * again
5488 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5489 index = 0;
5490 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5491 found_uncached_bg = false;
5492 loop++;
5493 if (!ideal_cache_percent)
5494 goto search;
5497 * 1 of the following 2 things have happened so far
5499 * 1) We found an ideal block group for caching that
5500 * is mostly full and will cache quickly, so we might
5501 * as well wait for it.
5503 * 2) We searched for cached only and we didn't find
5504 * anything, and we didn't start any caching kthreads
5505 * either, so chances are we will loop through and
5506 * start a couple caching kthreads, and then come back
5507 * around and just wait for them. This will be slower
5508 * because we will have 2 caching kthreads reading at
5509 * the same time when we could have just started one
5510 * and waited for it to get far enough to give us an
5511 * allocation, so go ahead and go to the wait caching
5512 * loop.
5514 loop = LOOP_CACHING_WAIT;
5515 search_start = ideal_cache_offset;
5516 ideal_cache_percent = 0;
5517 goto ideal_cache;
5518 } else if (loop == LOOP_FIND_IDEAL) {
5520 * Didn't find a uncached bg, wait on anything we find
5521 * next.
5523 loop = LOOP_CACHING_WAIT;
5524 goto search;
5527 loop++;
5529 if (loop == LOOP_ALLOC_CHUNK) {
5530 if (allowed_chunk_alloc) {
5531 ret = do_chunk_alloc(trans, root, num_bytes +
5532 2 * 1024 * 1024, data,
5533 CHUNK_ALLOC_LIMITED);
5534 allowed_chunk_alloc = 0;
5535 if (ret == 1)
5536 done_chunk_alloc = 1;
5537 } else if (!done_chunk_alloc &&
5538 space_info->force_alloc ==
5539 CHUNK_ALLOC_NO_FORCE) {
5540 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5544 * We didn't allocate a chunk, go ahead and drop the
5545 * empty size and loop again.
5547 if (!done_chunk_alloc)
5548 loop = LOOP_NO_EMPTY_SIZE;
5551 if (loop == LOOP_NO_EMPTY_SIZE) {
5552 empty_size = 0;
5553 empty_cluster = 0;
5556 goto search;
5557 } else if (!ins->objectid) {
5558 ret = -ENOSPC;
5559 } else if (ins->objectid) {
5560 ret = 0;
5563 return ret;
5566 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5567 int dump_block_groups)
5569 struct btrfs_block_group_cache *cache;
5570 int index = 0;
5572 spin_lock(&info->lock);
5573 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5574 (unsigned long long)info->flags,
5575 (unsigned long long)(info->total_bytes - info->bytes_used -
5576 info->bytes_pinned - info->bytes_reserved -
5577 info->bytes_readonly),
5578 (info->full) ? "" : "not ");
5579 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5580 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5581 (unsigned long long)info->total_bytes,
5582 (unsigned long long)info->bytes_used,
5583 (unsigned long long)info->bytes_pinned,
5584 (unsigned long long)info->bytes_reserved,
5585 (unsigned long long)info->bytes_may_use,
5586 (unsigned long long)info->bytes_readonly);
5587 spin_unlock(&info->lock);
5589 if (!dump_block_groups)
5590 return;
5592 down_read(&info->groups_sem);
5593 again:
5594 list_for_each_entry(cache, &info->block_groups[index], list) {
5595 spin_lock(&cache->lock);
5596 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5597 "%llu pinned %llu reserved\n",
5598 (unsigned long long)cache->key.objectid,
5599 (unsigned long long)cache->key.offset,
5600 (unsigned long long)btrfs_block_group_used(&cache->item),
5601 (unsigned long long)cache->pinned,
5602 (unsigned long long)cache->reserved);
5603 btrfs_dump_free_space(cache, bytes);
5604 spin_unlock(&cache->lock);
5606 if (++index < BTRFS_NR_RAID_TYPES)
5607 goto again;
5608 up_read(&info->groups_sem);
5611 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5612 struct btrfs_root *root,
5613 u64 num_bytes, u64 min_alloc_size,
5614 u64 empty_size, u64 hint_byte,
5615 u64 search_end, struct btrfs_key *ins,
5616 u64 data)
5618 int ret;
5619 u64 search_start = 0;
5621 data = btrfs_get_alloc_profile(root, data);
5622 again:
5624 * the only place that sets empty_size is btrfs_realloc_node, which
5625 * is not called recursively on allocations
5627 if (empty_size || root->ref_cows)
5628 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5629 num_bytes + 2 * 1024 * 1024, data,
5630 CHUNK_ALLOC_NO_FORCE);
5632 WARN_ON(num_bytes < root->sectorsize);
5633 ret = find_free_extent(trans, root, num_bytes, empty_size,
5634 search_start, search_end, hint_byte,
5635 ins, data);
5637 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5638 num_bytes = num_bytes >> 1;
5639 num_bytes = num_bytes & ~(root->sectorsize - 1);
5640 num_bytes = max(num_bytes, min_alloc_size);
5641 do_chunk_alloc(trans, root->fs_info->extent_root,
5642 num_bytes, data, CHUNK_ALLOC_FORCE);
5643 goto again;
5645 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5646 struct btrfs_space_info *sinfo;
5648 sinfo = __find_space_info(root->fs_info, data);
5649 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5650 "wanted %llu\n", (unsigned long long)data,
5651 (unsigned long long)num_bytes);
5652 dump_space_info(sinfo, num_bytes, 1);
5655 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5657 return ret;
5660 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5661 u64 start, u64 len, int pin)
5663 struct btrfs_block_group_cache *cache;
5664 int ret = 0;
5666 cache = btrfs_lookup_block_group(root->fs_info, start);
5667 if (!cache) {
5668 printk(KERN_ERR "Unable to find block group for %llu\n",
5669 (unsigned long long)start);
5670 return -ENOSPC;
5673 if (btrfs_test_opt(root, DISCARD))
5674 ret = btrfs_discard_extent(root, start, len, NULL);
5676 if (pin)
5677 pin_down_extent(root, cache, start, len, 1);
5678 else {
5679 btrfs_add_free_space(cache, start, len);
5680 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5682 btrfs_put_block_group(cache);
5684 trace_btrfs_reserved_extent_free(root, start, len);
5686 return ret;
5689 int btrfs_free_reserved_extent(struct btrfs_root *root,
5690 u64 start, u64 len)
5692 return __btrfs_free_reserved_extent(root, start, len, 0);
5695 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5696 u64 start, u64 len)
5698 return __btrfs_free_reserved_extent(root, start, len, 1);
5701 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5702 struct btrfs_root *root,
5703 u64 parent, u64 root_objectid,
5704 u64 flags, u64 owner, u64 offset,
5705 struct btrfs_key *ins, int ref_mod)
5707 int ret;
5708 struct btrfs_fs_info *fs_info = root->fs_info;
5709 struct btrfs_extent_item *extent_item;
5710 struct btrfs_extent_inline_ref *iref;
5711 struct btrfs_path *path;
5712 struct extent_buffer *leaf;
5713 int type;
5714 u32 size;
5716 if (parent > 0)
5717 type = BTRFS_SHARED_DATA_REF_KEY;
5718 else
5719 type = BTRFS_EXTENT_DATA_REF_KEY;
5721 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5723 path = btrfs_alloc_path();
5724 if (!path)
5725 return -ENOMEM;
5727 path->leave_spinning = 1;
5728 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5729 ins, size);
5730 BUG_ON(ret);
5732 leaf = path->nodes[0];
5733 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5734 struct btrfs_extent_item);
5735 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5736 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5737 btrfs_set_extent_flags(leaf, extent_item,
5738 flags | BTRFS_EXTENT_FLAG_DATA);
5740 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5741 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5742 if (parent > 0) {
5743 struct btrfs_shared_data_ref *ref;
5744 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5745 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5746 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5747 } else {
5748 struct btrfs_extent_data_ref *ref;
5749 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5750 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5751 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5752 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5753 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5756 btrfs_mark_buffer_dirty(path->nodes[0]);
5757 btrfs_free_path(path);
5759 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5760 if (ret) {
5761 printk(KERN_ERR "btrfs update block group failed for %llu "
5762 "%llu\n", (unsigned long long)ins->objectid,
5763 (unsigned long long)ins->offset);
5764 BUG();
5766 return ret;
5769 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5770 struct btrfs_root *root,
5771 u64 parent, u64 root_objectid,
5772 u64 flags, struct btrfs_disk_key *key,
5773 int level, struct btrfs_key *ins)
5775 int ret;
5776 struct btrfs_fs_info *fs_info = root->fs_info;
5777 struct btrfs_extent_item *extent_item;
5778 struct btrfs_tree_block_info *block_info;
5779 struct btrfs_extent_inline_ref *iref;
5780 struct btrfs_path *path;
5781 struct extent_buffer *leaf;
5782 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5784 path = btrfs_alloc_path();
5785 if (!path)
5786 return -ENOMEM;
5788 path->leave_spinning = 1;
5789 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5790 ins, size);
5791 BUG_ON(ret);
5793 leaf = path->nodes[0];
5794 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5795 struct btrfs_extent_item);
5796 btrfs_set_extent_refs(leaf, extent_item, 1);
5797 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5798 btrfs_set_extent_flags(leaf, extent_item,
5799 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5800 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5802 btrfs_set_tree_block_key(leaf, block_info, key);
5803 btrfs_set_tree_block_level(leaf, block_info, level);
5805 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5806 if (parent > 0) {
5807 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5808 btrfs_set_extent_inline_ref_type(leaf, iref,
5809 BTRFS_SHARED_BLOCK_REF_KEY);
5810 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5811 } else {
5812 btrfs_set_extent_inline_ref_type(leaf, iref,
5813 BTRFS_TREE_BLOCK_REF_KEY);
5814 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5817 btrfs_mark_buffer_dirty(leaf);
5818 btrfs_free_path(path);
5820 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5821 if (ret) {
5822 printk(KERN_ERR "btrfs update block group failed for %llu "
5823 "%llu\n", (unsigned long long)ins->objectid,
5824 (unsigned long long)ins->offset);
5825 BUG();
5827 return ret;
5830 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5831 struct btrfs_root *root,
5832 u64 root_objectid, u64 owner,
5833 u64 offset, struct btrfs_key *ins)
5835 int ret;
5837 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5839 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
5840 ins->offset, 0,
5841 root_objectid, owner, offset,
5842 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
5843 return ret;
5847 * this is used by the tree logging recovery code. It records that
5848 * an extent has been allocated and makes sure to clear the free
5849 * space cache bits as well
5851 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5852 struct btrfs_root *root,
5853 u64 root_objectid, u64 owner, u64 offset,
5854 struct btrfs_key *ins)
5856 int ret;
5857 struct btrfs_block_group_cache *block_group;
5858 struct btrfs_caching_control *caching_ctl;
5859 u64 start = ins->objectid;
5860 u64 num_bytes = ins->offset;
5862 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5863 cache_block_group(block_group, trans, NULL, 0);
5864 caching_ctl = get_caching_control(block_group);
5866 if (!caching_ctl) {
5867 BUG_ON(!block_group_cache_done(block_group));
5868 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5869 BUG_ON(ret);
5870 } else {
5871 mutex_lock(&caching_ctl->mutex);
5873 if (start >= caching_ctl->progress) {
5874 ret = add_excluded_extent(root, start, num_bytes);
5875 BUG_ON(ret);
5876 } else if (start + num_bytes <= caching_ctl->progress) {
5877 ret = btrfs_remove_free_space(block_group,
5878 start, num_bytes);
5879 BUG_ON(ret);
5880 } else {
5881 num_bytes = caching_ctl->progress - start;
5882 ret = btrfs_remove_free_space(block_group,
5883 start, num_bytes);
5884 BUG_ON(ret);
5886 start = caching_ctl->progress;
5887 num_bytes = ins->objectid + ins->offset -
5888 caching_ctl->progress;
5889 ret = add_excluded_extent(root, start, num_bytes);
5890 BUG_ON(ret);
5893 mutex_unlock(&caching_ctl->mutex);
5894 put_caching_control(caching_ctl);
5897 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5898 RESERVE_ALLOC_NO_ACCOUNT);
5899 BUG_ON(ret);
5900 btrfs_put_block_group(block_group);
5901 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5902 0, owner, offset, ins, 1);
5903 return ret;
5906 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5907 struct btrfs_root *root,
5908 u64 bytenr, u32 blocksize,
5909 int level)
5911 struct extent_buffer *buf;
5913 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5914 if (!buf)
5915 return ERR_PTR(-ENOMEM);
5916 btrfs_set_header_generation(buf, trans->transid);
5917 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5918 btrfs_tree_lock(buf);
5919 clean_tree_block(trans, root, buf);
5921 btrfs_set_lock_blocking(buf);
5922 btrfs_set_buffer_uptodate(buf);
5924 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5926 * we allow two log transactions at a time, use different
5927 * EXENT bit to differentiate dirty pages.
5929 if (root->log_transid % 2 == 0)
5930 set_extent_dirty(&root->dirty_log_pages, buf->start,
5931 buf->start + buf->len - 1, GFP_NOFS);
5932 else
5933 set_extent_new(&root->dirty_log_pages, buf->start,
5934 buf->start + buf->len - 1, GFP_NOFS);
5935 } else {
5936 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5937 buf->start + buf->len - 1, GFP_NOFS);
5939 trans->blocks_used++;
5940 /* this returns a buffer locked for blocking */
5941 return buf;
5944 static struct btrfs_block_rsv *
5945 use_block_rsv(struct btrfs_trans_handle *trans,
5946 struct btrfs_root *root, u32 blocksize)
5948 struct btrfs_block_rsv *block_rsv;
5949 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5950 int ret;
5952 block_rsv = get_block_rsv(trans, root);
5954 if (block_rsv->size == 0) {
5955 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5957 * If we couldn't reserve metadata bytes try and use some from
5958 * the global reserve.
5960 if (ret && block_rsv != global_rsv) {
5961 ret = block_rsv_use_bytes(global_rsv, blocksize);
5962 if (!ret)
5963 return global_rsv;
5964 return ERR_PTR(ret);
5965 } else if (ret) {
5966 return ERR_PTR(ret);
5968 return block_rsv;
5971 ret = block_rsv_use_bytes(block_rsv, blocksize);
5972 if (!ret)
5973 return block_rsv;
5974 if (ret) {
5975 static DEFINE_RATELIMIT_STATE(_rs,
5976 DEFAULT_RATELIMIT_INTERVAL,
5977 /*DEFAULT_RATELIMIT_BURST*/ 2);
5978 if (__ratelimit(&_rs)) {
5979 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5980 WARN_ON(1);
5982 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5983 if (!ret) {
5984 return block_rsv;
5985 } else if (ret && block_rsv != global_rsv) {
5986 ret = block_rsv_use_bytes(global_rsv, blocksize);
5987 if (!ret)
5988 return global_rsv;
5992 return ERR_PTR(-ENOSPC);
5995 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5997 block_rsv_add_bytes(block_rsv, blocksize, 0);
5998 block_rsv_release_bytes(block_rsv, NULL, 0);
6002 * finds a free extent and does all the dirty work required for allocation
6003 * returns the key for the extent through ins, and a tree buffer for
6004 * the first block of the extent through buf.
6006 * returns the tree buffer or NULL.
6008 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6009 struct btrfs_root *root, u32 blocksize,
6010 u64 parent, u64 root_objectid,
6011 struct btrfs_disk_key *key, int level,
6012 u64 hint, u64 empty_size, int for_cow)
6014 struct btrfs_key ins;
6015 struct btrfs_block_rsv *block_rsv;
6016 struct extent_buffer *buf;
6017 u64 flags = 0;
6018 int ret;
6021 block_rsv = use_block_rsv(trans, root, blocksize);
6022 if (IS_ERR(block_rsv))
6023 return ERR_CAST(block_rsv);
6025 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6026 empty_size, hint, (u64)-1, &ins, 0);
6027 if (ret) {
6028 unuse_block_rsv(block_rsv, blocksize);
6029 return ERR_PTR(ret);
6032 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6033 blocksize, level);
6034 BUG_ON(IS_ERR(buf));
6036 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6037 if (parent == 0)
6038 parent = ins.objectid;
6039 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6040 } else
6041 BUG_ON(parent > 0);
6043 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6044 struct btrfs_delayed_extent_op *extent_op;
6045 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6046 BUG_ON(!extent_op);
6047 if (key)
6048 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6049 else
6050 memset(&extent_op->key, 0, sizeof(extent_op->key));
6051 extent_op->flags_to_set = flags;
6052 extent_op->update_key = 1;
6053 extent_op->update_flags = 1;
6054 extent_op->is_data = 0;
6056 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6057 ins.objectid,
6058 ins.offset, parent, root_objectid,
6059 level, BTRFS_ADD_DELAYED_EXTENT,
6060 extent_op, for_cow);
6061 BUG_ON(ret);
6063 return buf;
6066 struct walk_control {
6067 u64 refs[BTRFS_MAX_LEVEL];
6068 u64 flags[BTRFS_MAX_LEVEL];
6069 struct btrfs_key update_progress;
6070 int stage;
6071 int level;
6072 int shared_level;
6073 int update_ref;
6074 int keep_locks;
6075 int reada_slot;
6076 int reada_count;
6077 int for_reloc;
6080 #define DROP_REFERENCE 1
6081 #define UPDATE_BACKREF 2
6083 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6084 struct btrfs_root *root,
6085 struct walk_control *wc,
6086 struct btrfs_path *path)
6088 u64 bytenr;
6089 u64 generation;
6090 u64 refs;
6091 u64 flags;
6092 u32 nritems;
6093 u32 blocksize;
6094 struct btrfs_key key;
6095 struct extent_buffer *eb;
6096 int ret;
6097 int slot;
6098 int nread = 0;
6100 if (path->slots[wc->level] < wc->reada_slot) {
6101 wc->reada_count = wc->reada_count * 2 / 3;
6102 wc->reada_count = max(wc->reada_count, 2);
6103 } else {
6104 wc->reada_count = wc->reada_count * 3 / 2;
6105 wc->reada_count = min_t(int, wc->reada_count,
6106 BTRFS_NODEPTRS_PER_BLOCK(root));
6109 eb = path->nodes[wc->level];
6110 nritems = btrfs_header_nritems(eb);
6111 blocksize = btrfs_level_size(root, wc->level - 1);
6113 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6114 if (nread >= wc->reada_count)
6115 break;
6117 cond_resched();
6118 bytenr = btrfs_node_blockptr(eb, slot);
6119 generation = btrfs_node_ptr_generation(eb, slot);
6121 if (slot == path->slots[wc->level])
6122 goto reada;
6124 if (wc->stage == UPDATE_BACKREF &&
6125 generation <= root->root_key.offset)
6126 continue;
6128 /* We don't lock the tree block, it's OK to be racy here */
6129 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6130 &refs, &flags);
6131 BUG_ON(ret);
6132 BUG_ON(refs == 0);
6134 if (wc->stage == DROP_REFERENCE) {
6135 if (refs == 1)
6136 goto reada;
6138 if (wc->level == 1 &&
6139 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6140 continue;
6141 if (!wc->update_ref ||
6142 generation <= root->root_key.offset)
6143 continue;
6144 btrfs_node_key_to_cpu(eb, &key, slot);
6145 ret = btrfs_comp_cpu_keys(&key,
6146 &wc->update_progress);
6147 if (ret < 0)
6148 continue;
6149 } else {
6150 if (wc->level == 1 &&
6151 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6152 continue;
6154 reada:
6155 ret = readahead_tree_block(root, bytenr, blocksize,
6156 generation);
6157 if (ret)
6158 break;
6159 nread++;
6161 wc->reada_slot = slot;
6165 * hepler to process tree block while walking down the tree.
6167 * when wc->stage == UPDATE_BACKREF, this function updates
6168 * back refs for pointers in the block.
6170 * NOTE: return value 1 means we should stop walking down.
6172 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6173 struct btrfs_root *root,
6174 struct btrfs_path *path,
6175 struct walk_control *wc, int lookup_info)
6177 int level = wc->level;
6178 struct extent_buffer *eb = path->nodes[level];
6179 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6180 int ret;
6182 if (wc->stage == UPDATE_BACKREF &&
6183 btrfs_header_owner(eb) != root->root_key.objectid)
6184 return 1;
6187 * when reference count of tree block is 1, it won't increase
6188 * again. once full backref flag is set, we never clear it.
6190 if (lookup_info &&
6191 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6192 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6193 BUG_ON(!path->locks[level]);
6194 ret = btrfs_lookup_extent_info(trans, root,
6195 eb->start, eb->len,
6196 &wc->refs[level],
6197 &wc->flags[level]);
6198 BUG_ON(ret);
6199 BUG_ON(wc->refs[level] == 0);
6202 if (wc->stage == DROP_REFERENCE) {
6203 if (wc->refs[level] > 1)
6204 return 1;
6206 if (path->locks[level] && !wc->keep_locks) {
6207 btrfs_tree_unlock_rw(eb, path->locks[level]);
6208 path->locks[level] = 0;
6210 return 0;
6213 /* wc->stage == UPDATE_BACKREF */
6214 if (!(wc->flags[level] & flag)) {
6215 BUG_ON(!path->locks[level]);
6216 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6217 BUG_ON(ret);
6218 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6219 BUG_ON(ret);
6220 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6221 eb->len, flag, 0);
6222 BUG_ON(ret);
6223 wc->flags[level] |= flag;
6227 * the block is shared by multiple trees, so it's not good to
6228 * keep the tree lock
6230 if (path->locks[level] && level > 0) {
6231 btrfs_tree_unlock_rw(eb, path->locks[level]);
6232 path->locks[level] = 0;
6234 return 0;
6238 * hepler to process tree block pointer.
6240 * when wc->stage == DROP_REFERENCE, this function checks
6241 * reference count of the block pointed to. if the block
6242 * is shared and we need update back refs for the subtree
6243 * rooted at the block, this function changes wc->stage to
6244 * UPDATE_BACKREF. if the block is shared and there is no
6245 * need to update back, this function drops the reference
6246 * to the block.
6248 * NOTE: return value 1 means we should stop walking down.
6250 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6251 struct btrfs_root *root,
6252 struct btrfs_path *path,
6253 struct walk_control *wc, int *lookup_info)
6255 u64 bytenr;
6256 u64 generation;
6257 u64 parent;
6258 u32 blocksize;
6259 struct btrfs_key key;
6260 struct extent_buffer *next;
6261 int level = wc->level;
6262 int reada = 0;
6263 int ret = 0;
6265 generation = btrfs_node_ptr_generation(path->nodes[level],
6266 path->slots[level]);
6268 * if the lower level block was created before the snapshot
6269 * was created, we know there is no need to update back refs
6270 * for the subtree
6272 if (wc->stage == UPDATE_BACKREF &&
6273 generation <= root->root_key.offset) {
6274 *lookup_info = 1;
6275 return 1;
6278 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6279 blocksize = btrfs_level_size(root, level - 1);
6281 next = btrfs_find_tree_block(root, bytenr, blocksize);
6282 if (!next) {
6283 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6284 if (!next)
6285 return -ENOMEM;
6286 reada = 1;
6288 btrfs_tree_lock(next);
6289 btrfs_set_lock_blocking(next);
6291 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6292 &wc->refs[level - 1],
6293 &wc->flags[level - 1]);
6294 BUG_ON(ret);
6295 BUG_ON(wc->refs[level - 1] == 0);
6296 *lookup_info = 0;
6298 if (wc->stage == DROP_REFERENCE) {
6299 if (wc->refs[level - 1] > 1) {
6300 if (level == 1 &&
6301 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6302 goto skip;
6304 if (!wc->update_ref ||
6305 generation <= root->root_key.offset)
6306 goto skip;
6308 btrfs_node_key_to_cpu(path->nodes[level], &key,
6309 path->slots[level]);
6310 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6311 if (ret < 0)
6312 goto skip;
6314 wc->stage = UPDATE_BACKREF;
6315 wc->shared_level = level - 1;
6317 } else {
6318 if (level == 1 &&
6319 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6320 goto skip;
6323 if (!btrfs_buffer_uptodate(next, generation)) {
6324 btrfs_tree_unlock(next);
6325 free_extent_buffer(next);
6326 next = NULL;
6327 *lookup_info = 1;
6330 if (!next) {
6331 if (reada && level == 1)
6332 reada_walk_down(trans, root, wc, path);
6333 next = read_tree_block(root, bytenr, blocksize, generation);
6334 if (!next)
6335 return -EIO;
6336 btrfs_tree_lock(next);
6337 btrfs_set_lock_blocking(next);
6340 level--;
6341 BUG_ON(level != btrfs_header_level(next));
6342 path->nodes[level] = next;
6343 path->slots[level] = 0;
6344 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6345 wc->level = level;
6346 if (wc->level == 1)
6347 wc->reada_slot = 0;
6348 return 0;
6349 skip:
6350 wc->refs[level - 1] = 0;
6351 wc->flags[level - 1] = 0;
6352 if (wc->stage == DROP_REFERENCE) {
6353 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6354 parent = path->nodes[level]->start;
6355 } else {
6356 BUG_ON(root->root_key.objectid !=
6357 btrfs_header_owner(path->nodes[level]));
6358 parent = 0;
6361 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6362 root->root_key.objectid, level - 1, 0, 0);
6363 BUG_ON(ret);
6365 btrfs_tree_unlock(next);
6366 free_extent_buffer(next);
6367 *lookup_info = 1;
6368 return 1;
6372 * hepler to process tree block while walking up the tree.
6374 * when wc->stage == DROP_REFERENCE, this function drops
6375 * reference count on the block.
6377 * when wc->stage == UPDATE_BACKREF, this function changes
6378 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6379 * to UPDATE_BACKREF previously while processing the block.
6381 * NOTE: return value 1 means we should stop walking up.
6383 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6384 struct btrfs_root *root,
6385 struct btrfs_path *path,
6386 struct walk_control *wc)
6388 int ret;
6389 int level = wc->level;
6390 struct extent_buffer *eb = path->nodes[level];
6391 u64 parent = 0;
6393 if (wc->stage == UPDATE_BACKREF) {
6394 BUG_ON(wc->shared_level < level);
6395 if (level < wc->shared_level)
6396 goto out;
6398 ret = find_next_key(path, level + 1, &wc->update_progress);
6399 if (ret > 0)
6400 wc->update_ref = 0;
6402 wc->stage = DROP_REFERENCE;
6403 wc->shared_level = -1;
6404 path->slots[level] = 0;
6407 * check reference count again if the block isn't locked.
6408 * we should start walking down the tree again if reference
6409 * count is one.
6411 if (!path->locks[level]) {
6412 BUG_ON(level == 0);
6413 btrfs_tree_lock(eb);
6414 btrfs_set_lock_blocking(eb);
6415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6417 ret = btrfs_lookup_extent_info(trans, root,
6418 eb->start, eb->len,
6419 &wc->refs[level],
6420 &wc->flags[level]);
6421 BUG_ON(ret);
6422 BUG_ON(wc->refs[level] == 0);
6423 if (wc->refs[level] == 1) {
6424 btrfs_tree_unlock_rw(eb, path->locks[level]);
6425 return 1;
6430 /* wc->stage == DROP_REFERENCE */
6431 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6433 if (wc->refs[level] == 1) {
6434 if (level == 0) {
6435 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6436 ret = btrfs_dec_ref(trans, root, eb, 1,
6437 wc->for_reloc);
6438 else
6439 ret = btrfs_dec_ref(trans, root, eb, 0,
6440 wc->for_reloc);
6441 BUG_ON(ret);
6443 /* make block locked assertion in clean_tree_block happy */
6444 if (!path->locks[level] &&
6445 btrfs_header_generation(eb) == trans->transid) {
6446 btrfs_tree_lock(eb);
6447 btrfs_set_lock_blocking(eb);
6448 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6450 clean_tree_block(trans, root, eb);
6453 if (eb == root->node) {
6454 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6455 parent = eb->start;
6456 else
6457 BUG_ON(root->root_key.objectid !=
6458 btrfs_header_owner(eb));
6459 } else {
6460 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6461 parent = path->nodes[level + 1]->start;
6462 else
6463 BUG_ON(root->root_key.objectid !=
6464 btrfs_header_owner(path->nodes[level + 1]));
6467 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6468 out:
6469 wc->refs[level] = 0;
6470 wc->flags[level] = 0;
6471 return 0;
6474 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6475 struct btrfs_root *root,
6476 struct btrfs_path *path,
6477 struct walk_control *wc)
6479 int level = wc->level;
6480 int lookup_info = 1;
6481 int ret;
6483 while (level >= 0) {
6484 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6485 if (ret > 0)
6486 break;
6488 if (level == 0)
6489 break;
6491 if (path->slots[level] >=
6492 btrfs_header_nritems(path->nodes[level]))
6493 break;
6495 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6496 if (ret > 0) {
6497 path->slots[level]++;
6498 continue;
6499 } else if (ret < 0)
6500 return ret;
6501 level = wc->level;
6503 return 0;
6506 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6507 struct btrfs_root *root,
6508 struct btrfs_path *path,
6509 struct walk_control *wc, int max_level)
6511 int level = wc->level;
6512 int ret;
6514 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6515 while (level < max_level && path->nodes[level]) {
6516 wc->level = level;
6517 if (path->slots[level] + 1 <
6518 btrfs_header_nritems(path->nodes[level])) {
6519 path->slots[level]++;
6520 return 0;
6521 } else {
6522 ret = walk_up_proc(trans, root, path, wc);
6523 if (ret > 0)
6524 return 0;
6526 if (path->locks[level]) {
6527 btrfs_tree_unlock_rw(path->nodes[level],
6528 path->locks[level]);
6529 path->locks[level] = 0;
6531 free_extent_buffer(path->nodes[level]);
6532 path->nodes[level] = NULL;
6533 level++;
6536 return 1;
6540 * drop a subvolume tree.
6542 * this function traverses the tree freeing any blocks that only
6543 * referenced by the tree.
6545 * when a shared tree block is found. this function decreases its
6546 * reference count by one. if update_ref is true, this function
6547 * also make sure backrefs for the shared block and all lower level
6548 * blocks are properly updated.
6550 void btrfs_drop_snapshot(struct btrfs_root *root,
6551 struct btrfs_block_rsv *block_rsv, int update_ref,
6552 int for_reloc)
6554 struct btrfs_path *path;
6555 struct btrfs_trans_handle *trans;
6556 struct btrfs_root *tree_root = root->fs_info->tree_root;
6557 struct btrfs_root_item *root_item = &root->root_item;
6558 struct walk_control *wc;
6559 struct btrfs_key key;
6560 int err = 0;
6561 int ret;
6562 int level;
6564 path = btrfs_alloc_path();
6565 if (!path) {
6566 err = -ENOMEM;
6567 goto out;
6570 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6571 if (!wc) {
6572 btrfs_free_path(path);
6573 err = -ENOMEM;
6574 goto out;
6577 trans = btrfs_start_transaction(tree_root, 0);
6578 BUG_ON(IS_ERR(trans));
6580 if (block_rsv)
6581 trans->block_rsv = block_rsv;
6583 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6584 level = btrfs_header_level(root->node);
6585 path->nodes[level] = btrfs_lock_root_node(root);
6586 btrfs_set_lock_blocking(path->nodes[level]);
6587 path->slots[level] = 0;
6588 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6589 memset(&wc->update_progress, 0,
6590 sizeof(wc->update_progress));
6591 } else {
6592 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6593 memcpy(&wc->update_progress, &key,
6594 sizeof(wc->update_progress));
6596 level = root_item->drop_level;
6597 BUG_ON(level == 0);
6598 path->lowest_level = level;
6599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6600 path->lowest_level = 0;
6601 if (ret < 0) {
6602 err = ret;
6603 goto out_free;
6605 WARN_ON(ret > 0);
6608 * unlock our path, this is safe because only this
6609 * function is allowed to delete this snapshot
6611 btrfs_unlock_up_safe(path, 0);
6613 level = btrfs_header_level(root->node);
6614 while (1) {
6615 btrfs_tree_lock(path->nodes[level]);
6616 btrfs_set_lock_blocking(path->nodes[level]);
6618 ret = btrfs_lookup_extent_info(trans, root,
6619 path->nodes[level]->start,
6620 path->nodes[level]->len,
6621 &wc->refs[level],
6622 &wc->flags[level]);
6623 BUG_ON(ret);
6624 BUG_ON(wc->refs[level] == 0);
6626 if (level == root_item->drop_level)
6627 break;
6629 btrfs_tree_unlock(path->nodes[level]);
6630 WARN_ON(wc->refs[level] != 1);
6631 level--;
6635 wc->level = level;
6636 wc->shared_level = -1;
6637 wc->stage = DROP_REFERENCE;
6638 wc->update_ref = update_ref;
6639 wc->keep_locks = 0;
6640 wc->for_reloc = for_reloc;
6641 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6643 while (1) {
6644 ret = walk_down_tree(trans, root, path, wc);
6645 if (ret < 0) {
6646 err = ret;
6647 break;
6650 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6651 if (ret < 0) {
6652 err = ret;
6653 break;
6656 if (ret > 0) {
6657 BUG_ON(wc->stage != DROP_REFERENCE);
6658 break;
6661 if (wc->stage == DROP_REFERENCE) {
6662 level = wc->level;
6663 btrfs_node_key(path->nodes[level],
6664 &root_item->drop_progress,
6665 path->slots[level]);
6666 root_item->drop_level = level;
6669 BUG_ON(wc->level == 0);
6670 if (btrfs_should_end_transaction(trans, tree_root)) {
6671 ret = btrfs_update_root(trans, tree_root,
6672 &root->root_key,
6673 root_item);
6674 BUG_ON(ret);
6676 btrfs_end_transaction_throttle(trans, tree_root);
6677 trans = btrfs_start_transaction(tree_root, 0);
6678 BUG_ON(IS_ERR(trans));
6679 if (block_rsv)
6680 trans->block_rsv = block_rsv;
6683 btrfs_release_path(path);
6684 BUG_ON(err);
6686 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6687 BUG_ON(ret);
6689 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6690 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6691 NULL, NULL);
6692 BUG_ON(ret < 0);
6693 if (ret > 0) {
6694 /* if we fail to delete the orphan item this time
6695 * around, it'll get picked up the next time.
6697 * The most common failure here is just -ENOENT.
6699 btrfs_del_orphan_item(trans, tree_root,
6700 root->root_key.objectid);
6704 if (root->in_radix) {
6705 btrfs_free_fs_root(tree_root->fs_info, root);
6706 } else {
6707 free_extent_buffer(root->node);
6708 free_extent_buffer(root->commit_root);
6709 kfree(root);
6711 out_free:
6712 btrfs_end_transaction_throttle(trans, tree_root);
6713 kfree(wc);
6714 btrfs_free_path(path);
6715 out:
6716 if (err)
6717 btrfs_std_error(root->fs_info, err);
6718 return;
6722 * drop subtree rooted at tree block 'node'.
6724 * NOTE: this function will unlock and release tree block 'node'
6725 * only used by relocation code
6727 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6728 struct btrfs_root *root,
6729 struct extent_buffer *node,
6730 struct extent_buffer *parent)
6732 struct btrfs_path *path;
6733 struct walk_control *wc;
6734 int level;
6735 int parent_level;
6736 int ret = 0;
6737 int wret;
6739 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6741 path = btrfs_alloc_path();
6742 if (!path)
6743 return -ENOMEM;
6745 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6746 if (!wc) {
6747 btrfs_free_path(path);
6748 return -ENOMEM;
6751 btrfs_assert_tree_locked(parent);
6752 parent_level = btrfs_header_level(parent);
6753 extent_buffer_get(parent);
6754 path->nodes[parent_level] = parent;
6755 path->slots[parent_level] = btrfs_header_nritems(parent);
6757 btrfs_assert_tree_locked(node);
6758 level = btrfs_header_level(node);
6759 path->nodes[level] = node;
6760 path->slots[level] = 0;
6761 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6763 wc->refs[parent_level] = 1;
6764 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6765 wc->level = level;
6766 wc->shared_level = -1;
6767 wc->stage = DROP_REFERENCE;
6768 wc->update_ref = 0;
6769 wc->keep_locks = 1;
6770 wc->for_reloc = 1;
6771 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6773 while (1) {
6774 wret = walk_down_tree(trans, root, path, wc);
6775 if (wret < 0) {
6776 ret = wret;
6777 break;
6780 wret = walk_up_tree(trans, root, path, wc, parent_level);
6781 if (wret < 0)
6782 ret = wret;
6783 if (wret != 0)
6784 break;
6787 kfree(wc);
6788 btrfs_free_path(path);
6789 return ret;
6792 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6794 u64 num_devices;
6795 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6799 * we add in the count of missing devices because we want
6800 * to make sure that any RAID levels on a degraded FS
6801 * continue to be honored.
6803 num_devices = root->fs_info->fs_devices->rw_devices +
6804 root->fs_info->fs_devices->missing_devices;
6806 if (num_devices == 1) {
6807 stripped |= BTRFS_BLOCK_GROUP_DUP;
6808 stripped = flags & ~stripped;
6810 /* turn raid0 into single device chunks */
6811 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6812 return stripped;
6814 /* turn mirroring into duplication */
6815 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6816 BTRFS_BLOCK_GROUP_RAID10))
6817 return stripped | BTRFS_BLOCK_GROUP_DUP;
6818 return flags;
6819 } else {
6820 /* they already had raid on here, just return */
6821 if (flags & stripped)
6822 return flags;
6824 stripped |= BTRFS_BLOCK_GROUP_DUP;
6825 stripped = flags & ~stripped;
6827 /* switch duplicated blocks with raid1 */
6828 if (flags & BTRFS_BLOCK_GROUP_DUP)
6829 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6831 /* turn single device chunks into raid0 */
6832 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6834 return flags;
6837 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6839 struct btrfs_space_info *sinfo = cache->space_info;
6840 u64 num_bytes;
6841 u64 min_allocable_bytes;
6842 int ret = -ENOSPC;
6846 * We need some metadata space and system metadata space for
6847 * allocating chunks in some corner cases until we force to set
6848 * it to be readonly.
6850 if ((sinfo->flags &
6851 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6852 !force)
6853 min_allocable_bytes = 1 * 1024 * 1024;
6854 else
6855 min_allocable_bytes = 0;
6857 spin_lock(&sinfo->lock);
6858 spin_lock(&cache->lock);
6860 if (cache->ro) {
6861 ret = 0;
6862 goto out;
6865 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6866 cache->bytes_super - btrfs_block_group_used(&cache->item);
6868 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6869 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6870 min_allocable_bytes <= sinfo->total_bytes) {
6871 sinfo->bytes_readonly += num_bytes;
6872 cache->ro = 1;
6873 ret = 0;
6875 out:
6876 spin_unlock(&cache->lock);
6877 spin_unlock(&sinfo->lock);
6878 return ret;
6881 int btrfs_set_block_group_ro(struct btrfs_root *root,
6882 struct btrfs_block_group_cache *cache)
6885 struct btrfs_trans_handle *trans;
6886 u64 alloc_flags;
6887 int ret;
6889 BUG_ON(cache->ro);
6891 trans = btrfs_join_transaction(root);
6892 BUG_ON(IS_ERR(trans));
6894 alloc_flags = update_block_group_flags(root, cache->flags);
6895 if (alloc_flags != cache->flags)
6896 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6897 CHUNK_ALLOC_FORCE);
6899 ret = set_block_group_ro(cache, 0);
6900 if (!ret)
6901 goto out;
6902 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6903 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6904 CHUNK_ALLOC_FORCE);
6905 if (ret < 0)
6906 goto out;
6907 ret = set_block_group_ro(cache, 0);
6908 out:
6909 btrfs_end_transaction(trans, root);
6910 return ret;
6913 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6914 struct btrfs_root *root, u64 type)
6916 u64 alloc_flags = get_alloc_profile(root, type);
6917 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6918 CHUNK_ALLOC_FORCE);
6922 * helper to account the unused space of all the readonly block group in the
6923 * list. takes mirrors into account.
6925 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6927 struct btrfs_block_group_cache *block_group;
6928 u64 free_bytes = 0;
6929 int factor;
6931 list_for_each_entry(block_group, groups_list, list) {
6932 spin_lock(&block_group->lock);
6934 if (!block_group->ro) {
6935 spin_unlock(&block_group->lock);
6936 continue;
6939 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6940 BTRFS_BLOCK_GROUP_RAID10 |
6941 BTRFS_BLOCK_GROUP_DUP))
6942 factor = 2;
6943 else
6944 factor = 1;
6946 free_bytes += (block_group->key.offset -
6947 btrfs_block_group_used(&block_group->item)) *
6948 factor;
6950 spin_unlock(&block_group->lock);
6953 return free_bytes;
6957 * helper to account the unused space of all the readonly block group in the
6958 * space_info. takes mirrors into account.
6960 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6962 int i;
6963 u64 free_bytes = 0;
6965 spin_lock(&sinfo->lock);
6967 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6968 if (!list_empty(&sinfo->block_groups[i]))
6969 free_bytes += __btrfs_get_ro_block_group_free_space(
6970 &sinfo->block_groups[i]);
6972 spin_unlock(&sinfo->lock);
6974 return free_bytes;
6977 int btrfs_set_block_group_rw(struct btrfs_root *root,
6978 struct btrfs_block_group_cache *cache)
6980 struct btrfs_space_info *sinfo = cache->space_info;
6981 u64 num_bytes;
6983 BUG_ON(!cache->ro);
6985 spin_lock(&sinfo->lock);
6986 spin_lock(&cache->lock);
6987 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6988 cache->bytes_super - btrfs_block_group_used(&cache->item);
6989 sinfo->bytes_readonly -= num_bytes;
6990 cache->ro = 0;
6991 spin_unlock(&cache->lock);
6992 spin_unlock(&sinfo->lock);
6993 return 0;
6997 * checks to see if its even possible to relocate this block group.
6999 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7000 * ok to go ahead and try.
7002 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7004 struct btrfs_block_group_cache *block_group;
7005 struct btrfs_space_info *space_info;
7006 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7007 struct btrfs_device *device;
7008 u64 min_free;
7009 u64 dev_min = 1;
7010 u64 dev_nr = 0;
7011 int index;
7012 int full = 0;
7013 int ret = 0;
7015 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7017 /* odd, couldn't find the block group, leave it alone */
7018 if (!block_group)
7019 return -1;
7021 min_free = btrfs_block_group_used(&block_group->item);
7023 /* no bytes used, we're good */
7024 if (!min_free)
7025 goto out;
7027 space_info = block_group->space_info;
7028 spin_lock(&space_info->lock);
7030 full = space_info->full;
7033 * if this is the last block group we have in this space, we can't
7034 * relocate it unless we're able to allocate a new chunk below.
7036 * Otherwise, we need to make sure we have room in the space to handle
7037 * all of the extents from this block group. If we can, we're good
7039 if ((space_info->total_bytes != block_group->key.offset) &&
7040 (space_info->bytes_used + space_info->bytes_reserved +
7041 space_info->bytes_pinned + space_info->bytes_readonly +
7042 min_free < space_info->total_bytes)) {
7043 spin_unlock(&space_info->lock);
7044 goto out;
7046 spin_unlock(&space_info->lock);
7049 * ok we don't have enough space, but maybe we have free space on our
7050 * devices to allocate new chunks for relocation, so loop through our
7051 * alloc devices and guess if we have enough space. However, if we
7052 * were marked as full, then we know there aren't enough chunks, and we
7053 * can just return.
7055 ret = -1;
7056 if (full)
7057 goto out;
7060 * index:
7061 * 0: raid10
7062 * 1: raid1
7063 * 2: dup
7064 * 3: raid0
7065 * 4: single
7067 index = get_block_group_index(block_group);
7068 if (index == 0) {
7069 dev_min = 4;
7070 /* Divide by 2 */
7071 min_free >>= 1;
7072 } else if (index == 1) {
7073 dev_min = 2;
7074 } else if (index == 2) {
7075 /* Multiply by 2 */
7076 min_free <<= 1;
7077 } else if (index == 3) {
7078 dev_min = fs_devices->rw_devices;
7079 do_div(min_free, dev_min);
7082 mutex_lock(&root->fs_info->chunk_mutex);
7083 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7084 u64 dev_offset;
7087 * check to make sure we can actually find a chunk with enough
7088 * space to fit our block group in.
7090 if (device->total_bytes > device->bytes_used + min_free) {
7091 ret = find_free_dev_extent(NULL, device, min_free,
7092 &dev_offset, NULL);
7093 if (!ret)
7094 dev_nr++;
7096 if (dev_nr >= dev_min)
7097 break;
7099 ret = -1;
7102 mutex_unlock(&root->fs_info->chunk_mutex);
7103 out:
7104 btrfs_put_block_group(block_group);
7105 return ret;
7108 static int find_first_block_group(struct btrfs_root *root,
7109 struct btrfs_path *path, struct btrfs_key *key)
7111 int ret = 0;
7112 struct btrfs_key found_key;
7113 struct extent_buffer *leaf;
7114 int slot;
7116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7117 if (ret < 0)
7118 goto out;
7120 while (1) {
7121 slot = path->slots[0];
7122 leaf = path->nodes[0];
7123 if (slot >= btrfs_header_nritems(leaf)) {
7124 ret = btrfs_next_leaf(root, path);
7125 if (ret == 0)
7126 continue;
7127 if (ret < 0)
7128 goto out;
7129 break;
7131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7133 if (found_key.objectid >= key->objectid &&
7134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7135 ret = 0;
7136 goto out;
7138 path->slots[0]++;
7140 out:
7141 return ret;
7144 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7146 struct btrfs_block_group_cache *block_group;
7147 u64 last = 0;
7149 while (1) {
7150 struct inode *inode;
7152 block_group = btrfs_lookup_first_block_group(info, last);
7153 while (block_group) {
7154 spin_lock(&block_group->lock);
7155 if (block_group->iref)
7156 break;
7157 spin_unlock(&block_group->lock);
7158 block_group = next_block_group(info->tree_root,
7159 block_group);
7161 if (!block_group) {
7162 if (last == 0)
7163 break;
7164 last = 0;
7165 continue;
7168 inode = block_group->inode;
7169 block_group->iref = 0;
7170 block_group->inode = NULL;
7171 spin_unlock(&block_group->lock);
7172 iput(inode);
7173 last = block_group->key.objectid + block_group->key.offset;
7174 btrfs_put_block_group(block_group);
7178 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7180 struct btrfs_block_group_cache *block_group;
7181 struct btrfs_space_info *space_info;
7182 struct btrfs_caching_control *caching_ctl;
7183 struct rb_node *n;
7185 down_write(&info->extent_commit_sem);
7186 while (!list_empty(&info->caching_block_groups)) {
7187 caching_ctl = list_entry(info->caching_block_groups.next,
7188 struct btrfs_caching_control, list);
7189 list_del(&caching_ctl->list);
7190 put_caching_control(caching_ctl);
7192 up_write(&info->extent_commit_sem);
7194 spin_lock(&info->block_group_cache_lock);
7195 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7196 block_group = rb_entry(n, struct btrfs_block_group_cache,
7197 cache_node);
7198 rb_erase(&block_group->cache_node,
7199 &info->block_group_cache_tree);
7200 spin_unlock(&info->block_group_cache_lock);
7202 down_write(&block_group->space_info->groups_sem);
7203 list_del(&block_group->list);
7204 up_write(&block_group->space_info->groups_sem);
7206 if (block_group->cached == BTRFS_CACHE_STARTED)
7207 wait_block_group_cache_done(block_group);
7210 * We haven't cached this block group, which means we could
7211 * possibly have excluded extents on this block group.
7213 if (block_group->cached == BTRFS_CACHE_NO)
7214 free_excluded_extents(info->extent_root, block_group);
7216 btrfs_remove_free_space_cache(block_group);
7217 btrfs_put_block_group(block_group);
7219 spin_lock(&info->block_group_cache_lock);
7221 spin_unlock(&info->block_group_cache_lock);
7223 /* now that all the block groups are freed, go through and
7224 * free all the space_info structs. This is only called during
7225 * the final stages of unmount, and so we know nobody is
7226 * using them. We call synchronize_rcu() once before we start,
7227 * just to be on the safe side.
7229 synchronize_rcu();
7231 release_global_block_rsv(info);
7233 while(!list_empty(&info->space_info)) {
7234 space_info = list_entry(info->space_info.next,
7235 struct btrfs_space_info,
7236 list);
7237 if (space_info->bytes_pinned > 0 ||
7238 space_info->bytes_reserved > 0 ||
7239 space_info->bytes_may_use > 0) {
7240 WARN_ON(1);
7241 dump_space_info(space_info, 0, 0);
7243 list_del(&space_info->list);
7244 kfree(space_info);
7246 return 0;
7249 static void __link_block_group(struct btrfs_space_info *space_info,
7250 struct btrfs_block_group_cache *cache)
7252 int index = get_block_group_index(cache);
7254 down_write(&space_info->groups_sem);
7255 list_add_tail(&cache->list, &space_info->block_groups[index]);
7256 up_write(&space_info->groups_sem);
7259 int btrfs_read_block_groups(struct btrfs_root *root)
7261 struct btrfs_path *path;
7262 int ret;
7263 struct btrfs_block_group_cache *cache;
7264 struct btrfs_fs_info *info = root->fs_info;
7265 struct btrfs_space_info *space_info;
7266 struct btrfs_key key;
7267 struct btrfs_key found_key;
7268 struct extent_buffer *leaf;
7269 int need_clear = 0;
7270 u64 cache_gen;
7272 root = info->extent_root;
7273 key.objectid = 0;
7274 key.offset = 0;
7275 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7276 path = btrfs_alloc_path();
7277 if (!path)
7278 return -ENOMEM;
7279 path->reada = 1;
7281 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7282 if (btrfs_test_opt(root, SPACE_CACHE) &&
7283 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7284 need_clear = 1;
7285 if (btrfs_test_opt(root, CLEAR_CACHE))
7286 need_clear = 1;
7288 while (1) {
7289 ret = find_first_block_group(root, path, &key);
7290 if (ret > 0)
7291 break;
7292 if (ret != 0)
7293 goto error;
7294 leaf = path->nodes[0];
7295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7296 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7297 if (!cache) {
7298 ret = -ENOMEM;
7299 goto error;
7301 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7302 GFP_NOFS);
7303 if (!cache->free_space_ctl) {
7304 kfree(cache);
7305 ret = -ENOMEM;
7306 goto error;
7309 atomic_set(&cache->count, 1);
7310 spin_lock_init(&cache->lock);
7311 cache->fs_info = info;
7312 INIT_LIST_HEAD(&cache->list);
7313 INIT_LIST_HEAD(&cache->cluster_list);
7315 if (need_clear)
7316 cache->disk_cache_state = BTRFS_DC_CLEAR;
7318 read_extent_buffer(leaf, &cache->item,
7319 btrfs_item_ptr_offset(leaf, path->slots[0]),
7320 sizeof(cache->item));
7321 memcpy(&cache->key, &found_key, sizeof(found_key));
7323 key.objectid = found_key.objectid + found_key.offset;
7324 btrfs_release_path(path);
7325 cache->flags = btrfs_block_group_flags(&cache->item);
7326 cache->sectorsize = root->sectorsize;
7328 btrfs_init_free_space_ctl(cache);
7331 * We need to exclude the super stripes now so that the space
7332 * info has super bytes accounted for, otherwise we'll think
7333 * we have more space than we actually do.
7335 exclude_super_stripes(root, cache);
7338 * check for two cases, either we are full, and therefore
7339 * don't need to bother with the caching work since we won't
7340 * find any space, or we are empty, and we can just add all
7341 * the space in and be done with it. This saves us _alot_ of
7342 * time, particularly in the full case.
7344 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7345 cache->last_byte_to_unpin = (u64)-1;
7346 cache->cached = BTRFS_CACHE_FINISHED;
7347 free_excluded_extents(root, cache);
7348 } else if (btrfs_block_group_used(&cache->item) == 0) {
7349 cache->last_byte_to_unpin = (u64)-1;
7350 cache->cached = BTRFS_CACHE_FINISHED;
7351 add_new_free_space(cache, root->fs_info,
7352 found_key.objectid,
7353 found_key.objectid +
7354 found_key.offset);
7355 free_excluded_extents(root, cache);
7358 ret = update_space_info(info, cache->flags, found_key.offset,
7359 btrfs_block_group_used(&cache->item),
7360 &space_info);
7361 BUG_ON(ret);
7362 cache->space_info = space_info;
7363 spin_lock(&cache->space_info->lock);
7364 cache->space_info->bytes_readonly += cache->bytes_super;
7365 spin_unlock(&cache->space_info->lock);
7367 __link_block_group(space_info, cache);
7369 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7370 BUG_ON(ret);
7372 set_avail_alloc_bits(root->fs_info, cache->flags);
7373 if (btrfs_chunk_readonly(root, cache->key.objectid))
7374 set_block_group_ro(cache, 1);
7377 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7378 if (!(get_alloc_profile(root, space_info->flags) &
7379 (BTRFS_BLOCK_GROUP_RAID10 |
7380 BTRFS_BLOCK_GROUP_RAID1 |
7381 BTRFS_BLOCK_GROUP_DUP)))
7382 continue;
7384 * avoid allocating from un-mirrored block group if there are
7385 * mirrored block groups.
7387 list_for_each_entry(cache, &space_info->block_groups[3], list)
7388 set_block_group_ro(cache, 1);
7389 list_for_each_entry(cache, &space_info->block_groups[4], list)
7390 set_block_group_ro(cache, 1);
7393 init_global_block_rsv(info);
7394 ret = 0;
7395 error:
7396 btrfs_free_path(path);
7397 return ret;
7400 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7401 struct btrfs_root *root, u64 bytes_used,
7402 u64 type, u64 chunk_objectid, u64 chunk_offset,
7403 u64 size)
7405 int ret;
7406 struct btrfs_root *extent_root;
7407 struct btrfs_block_group_cache *cache;
7409 extent_root = root->fs_info->extent_root;
7411 root->fs_info->last_trans_log_full_commit = trans->transid;
7413 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7414 if (!cache)
7415 return -ENOMEM;
7416 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7417 GFP_NOFS);
7418 if (!cache->free_space_ctl) {
7419 kfree(cache);
7420 return -ENOMEM;
7423 cache->key.objectid = chunk_offset;
7424 cache->key.offset = size;
7425 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7426 cache->sectorsize = root->sectorsize;
7427 cache->fs_info = root->fs_info;
7429 atomic_set(&cache->count, 1);
7430 spin_lock_init(&cache->lock);
7431 INIT_LIST_HEAD(&cache->list);
7432 INIT_LIST_HEAD(&cache->cluster_list);
7434 btrfs_init_free_space_ctl(cache);
7436 btrfs_set_block_group_used(&cache->item, bytes_used);
7437 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7438 cache->flags = type;
7439 btrfs_set_block_group_flags(&cache->item, type);
7441 cache->last_byte_to_unpin = (u64)-1;
7442 cache->cached = BTRFS_CACHE_FINISHED;
7443 exclude_super_stripes(root, cache);
7445 add_new_free_space(cache, root->fs_info, chunk_offset,
7446 chunk_offset + size);
7448 free_excluded_extents(root, cache);
7450 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7451 &cache->space_info);
7452 BUG_ON(ret);
7454 spin_lock(&cache->space_info->lock);
7455 cache->space_info->bytes_readonly += cache->bytes_super;
7456 spin_unlock(&cache->space_info->lock);
7458 __link_block_group(cache->space_info, cache);
7460 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7461 BUG_ON(ret);
7463 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7464 sizeof(cache->item));
7465 BUG_ON(ret);
7467 set_avail_alloc_bits(extent_root->fs_info, type);
7469 return 0;
7472 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7473 struct btrfs_root *root, u64 group_start)
7475 struct btrfs_path *path;
7476 struct btrfs_block_group_cache *block_group;
7477 struct btrfs_free_cluster *cluster;
7478 struct btrfs_root *tree_root = root->fs_info->tree_root;
7479 struct btrfs_key key;
7480 struct inode *inode;
7481 int ret;
7482 int factor;
7484 root = root->fs_info->extent_root;
7486 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7487 BUG_ON(!block_group);
7488 BUG_ON(!block_group->ro);
7491 * Free the reserved super bytes from this block group before
7492 * remove it.
7494 free_excluded_extents(root, block_group);
7496 memcpy(&key, &block_group->key, sizeof(key));
7497 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7498 BTRFS_BLOCK_GROUP_RAID1 |
7499 BTRFS_BLOCK_GROUP_RAID10))
7500 factor = 2;
7501 else
7502 factor = 1;
7504 /* make sure this block group isn't part of an allocation cluster */
7505 cluster = &root->fs_info->data_alloc_cluster;
7506 spin_lock(&cluster->refill_lock);
7507 btrfs_return_cluster_to_free_space(block_group, cluster);
7508 spin_unlock(&cluster->refill_lock);
7511 * make sure this block group isn't part of a metadata
7512 * allocation cluster
7514 cluster = &root->fs_info->meta_alloc_cluster;
7515 spin_lock(&cluster->refill_lock);
7516 btrfs_return_cluster_to_free_space(block_group, cluster);
7517 spin_unlock(&cluster->refill_lock);
7519 path = btrfs_alloc_path();
7520 if (!path) {
7521 ret = -ENOMEM;
7522 goto out;
7525 inode = lookup_free_space_inode(tree_root, block_group, path);
7526 if (!IS_ERR(inode)) {
7527 ret = btrfs_orphan_add(trans, inode);
7528 BUG_ON(ret);
7529 clear_nlink(inode);
7530 /* One for the block groups ref */
7531 spin_lock(&block_group->lock);
7532 if (block_group->iref) {
7533 block_group->iref = 0;
7534 block_group->inode = NULL;
7535 spin_unlock(&block_group->lock);
7536 iput(inode);
7537 } else {
7538 spin_unlock(&block_group->lock);
7540 /* One for our lookup ref */
7541 btrfs_add_delayed_iput(inode);
7544 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7545 key.offset = block_group->key.objectid;
7546 key.type = 0;
7548 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7549 if (ret < 0)
7550 goto out;
7551 if (ret > 0)
7552 btrfs_release_path(path);
7553 if (ret == 0) {
7554 ret = btrfs_del_item(trans, tree_root, path);
7555 if (ret)
7556 goto out;
7557 btrfs_release_path(path);
7560 spin_lock(&root->fs_info->block_group_cache_lock);
7561 rb_erase(&block_group->cache_node,
7562 &root->fs_info->block_group_cache_tree);
7563 spin_unlock(&root->fs_info->block_group_cache_lock);
7565 down_write(&block_group->space_info->groups_sem);
7567 * we must use list_del_init so people can check to see if they
7568 * are still on the list after taking the semaphore
7570 list_del_init(&block_group->list);
7571 up_write(&block_group->space_info->groups_sem);
7573 if (block_group->cached == BTRFS_CACHE_STARTED)
7574 wait_block_group_cache_done(block_group);
7576 btrfs_remove_free_space_cache(block_group);
7578 spin_lock(&block_group->space_info->lock);
7579 block_group->space_info->total_bytes -= block_group->key.offset;
7580 block_group->space_info->bytes_readonly -= block_group->key.offset;
7581 block_group->space_info->disk_total -= block_group->key.offset * factor;
7582 spin_unlock(&block_group->space_info->lock);
7584 memcpy(&key, &block_group->key, sizeof(key));
7586 btrfs_clear_space_info_full(root->fs_info);
7588 btrfs_put_block_group(block_group);
7589 btrfs_put_block_group(block_group);
7591 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7592 if (ret > 0)
7593 ret = -EIO;
7594 if (ret < 0)
7595 goto out;
7597 ret = btrfs_del_item(trans, root, path);
7598 out:
7599 btrfs_free_path(path);
7600 return ret;
7603 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7605 struct btrfs_space_info *space_info;
7606 struct btrfs_super_block *disk_super;
7607 u64 features;
7608 u64 flags;
7609 int mixed = 0;
7610 int ret;
7612 disk_super = fs_info->super_copy;
7613 if (!btrfs_super_root(disk_super))
7614 return 1;
7616 features = btrfs_super_incompat_flags(disk_super);
7617 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7618 mixed = 1;
7620 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7621 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7622 if (ret)
7623 goto out;
7625 if (mixed) {
7626 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7627 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7628 } else {
7629 flags = BTRFS_BLOCK_GROUP_METADATA;
7630 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7631 if (ret)
7632 goto out;
7634 flags = BTRFS_BLOCK_GROUP_DATA;
7635 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7637 out:
7638 return ret;
7641 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7643 return unpin_extent_range(root, start, end);
7646 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7647 u64 num_bytes, u64 *actual_bytes)
7649 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7652 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7654 struct btrfs_fs_info *fs_info = root->fs_info;
7655 struct btrfs_block_group_cache *cache = NULL;
7656 u64 group_trimmed;
7657 u64 start;
7658 u64 end;
7659 u64 trimmed = 0;
7660 int ret = 0;
7662 cache = btrfs_lookup_block_group(fs_info, range->start);
7664 while (cache) {
7665 if (cache->key.objectid >= (range->start + range->len)) {
7666 btrfs_put_block_group(cache);
7667 break;
7670 start = max(range->start, cache->key.objectid);
7671 end = min(range->start + range->len,
7672 cache->key.objectid + cache->key.offset);
7674 if (end - start >= range->minlen) {
7675 if (!block_group_cache_done(cache)) {
7676 ret = cache_block_group(cache, NULL, root, 0);
7677 if (!ret)
7678 wait_block_group_cache_done(cache);
7680 ret = btrfs_trim_block_group(cache,
7681 &group_trimmed,
7682 start,
7683 end,
7684 range->minlen);
7686 trimmed += group_trimmed;
7687 if (ret) {
7688 btrfs_put_block_group(cache);
7689 break;
7693 cache = next_block_group(fs_info->tree_root, cache);
7696 range->len = trimmed;
7697 return ret;