KVM: VMX: Set IGMT bit in EPT entry
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blob7b2acc11f43f4acfb2d1a1a529786ed43edea5b2
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
28 * - inode_has_buffers
29 * - invalidate_inode_buffers
30 * - invalidate_bdev
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
43 * Famous last words.
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static struct kmem_cache * inode_cachep __read_mostly;
102 static void wake_up_inode(struct inode *inode)
105 * Prevent speculative execution through spin_unlock(&inode_lock);
107 smp_mb();
108 wake_up_bit(&inode->i_state, __I_LOCK);
111 static struct inode *alloc_inode(struct super_block *sb)
113 static const struct address_space_operations empty_aops;
114 static struct inode_operations empty_iops;
115 static const struct file_operations empty_fops;
116 struct inode *inode;
118 if (sb->s_op->alloc_inode)
119 inode = sb->s_op->alloc_inode(sb);
120 else
121 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
123 if (inode) {
124 struct address_space * const mapping = &inode->i_data;
126 inode->i_sb = sb;
127 inode->i_blkbits = sb->s_blocksize_bits;
128 inode->i_flags = 0;
129 atomic_set(&inode->i_count, 1);
130 inode->i_op = &empty_iops;
131 inode->i_fop = &empty_fops;
132 inode->i_nlink = 1;
133 atomic_set(&inode->i_writecount, 0);
134 inode->i_size = 0;
135 inode->i_blocks = 0;
136 inode->i_bytes = 0;
137 inode->i_generation = 0;
138 #ifdef CONFIG_QUOTA
139 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140 #endif
141 inode->i_pipe = NULL;
142 inode->i_bdev = NULL;
143 inode->i_cdev = NULL;
144 inode->i_rdev = 0;
145 inode->dirtied_when = 0;
146 if (security_inode_alloc(inode)) {
147 if (inode->i_sb->s_op->destroy_inode)
148 inode->i_sb->s_op->destroy_inode(inode);
149 else
150 kmem_cache_free(inode_cachep, (inode));
151 return NULL;
154 spin_lock_init(&inode->i_lock);
155 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
157 mutex_init(&inode->i_mutex);
158 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
160 init_rwsem(&inode->i_alloc_sem);
161 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
163 mapping->a_ops = &empty_aops;
164 mapping->host = inode;
165 mapping->flags = 0;
166 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
167 mapping->assoc_mapping = NULL;
168 mapping->backing_dev_info = &default_backing_dev_info;
169 mapping->writeback_index = 0;
172 * If the block_device provides a backing_dev_info for client
173 * inodes then use that. Otherwise the inode share the bdev's
174 * backing_dev_info.
176 if (sb->s_bdev) {
177 struct backing_dev_info *bdi;
179 bdi = sb->s_bdev->bd_inode_backing_dev_info;
180 if (!bdi)
181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 mapping->backing_dev_info = bdi;
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
187 return inode;
190 void destroy_inode(struct inode *inode)
192 BUG_ON(inode_has_buffers(inode));
193 security_inode_free(inode);
194 if (inode->i_sb->s_op->destroy_inode)
195 inode->i_sb->s_op->destroy_inode(inode);
196 else
197 kmem_cache_free(inode_cachep, (inode));
202 * These are initializations that only need to be done
203 * once, because the fields are idempotent across use
204 * of the inode, so let the slab aware of that.
206 void inode_init_once(struct inode *inode)
208 memset(inode, 0, sizeof(*inode));
209 INIT_HLIST_NODE(&inode->i_hash);
210 INIT_LIST_HEAD(&inode->i_dentry);
211 INIT_LIST_HEAD(&inode->i_devices);
212 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
213 spin_lock_init(&inode->i_data.tree_lock);
214 spin_lock_init(&inode->i_data.i_mmap_lock);
215 INIT_LIST_HEAD(&inode->i_data.private_list);
216 spin_lock_init(&inode->i_data.private_lock);
217 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
218 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
219 i_size_ordered_init(inode);
220 #ifdef CONFIG_INOTIFY
221 INIT_LIST_HEAD(&inode->inotify_watches);
222 mutex_init(&inode->inotify_mutex);
223 #endif
226 EXPORT_SYMBOL(inode_init_once);
228 static void init_once(void *foo)
230 struct inode * inode = (struct inode *) foo;
232 inode_init_once(inode);
236 * inode_lock must be held
238 void __iget(struct inode * inode)
240 if (atomic_read(&inode->i_count)) {
241 atomic_inc(&inode->i_count);
242 return;
244 atomic_inc(&inode->i_count);
245 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
246 list_move(&inode->i_list, &inode_in_use);
247 inodes_stat.nr_unused--;
251 * clear_inode - clear an inode
252 * @inode: inode to clear
254 * This is called by the filesystem to tell us
255 * that the inode is no longer useful. We just
256 * terminate it with extreme prejudice.
258 void clear_inode(struct inode *inode)
260 might_sleep();
261 invalidate_inode_buffers(inode);
263 BUG_ON(inode->i_data.nrpages);
264 BUG_ON(!(inode->i_state & I_FREEING));
265 BUG_ON(inode->i_state & I_CLEAR);
266 inode_sync_wait(inode);
267 DQUOT_DROP(inode);
268 if (inode->i_sb->s_op->clear_inode)
269 inode->i_sb->s_op->clear_inode(inode);
270 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
271 bd_forget(inode);
272 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
273 cd_forget(inode);
274 inode->i_state = I_CLEAR;
277 EXPORT_SYMBOL(clear_inode);
280 * dispose_list - dispose of the contents of a local list
281 * @head: the head of the list to free
283 * Dispose-list gets a local list with local inodes in it, so it doesn't
284 * need to worry about list corruption and SMP locks.
286 static void dispose_list(struct list_head *head)
288 int nr_disposed = 0;
290 while (!list_empty(head)) {
291 struct inode *inode;
293 inode = list_first_entry(head, struct inode, i_list);
294 list_del(&inode->i_list);
296 if (inode->i_data.nrpages)
297 truncate_inode_pages(&inode->i_data, 0);
298 clear_inode(inode);
300 spin_lock(&inode_lock);
301 hlist_del_init(&inode->i_hash);
302 list_del_init(&inode->i_sb_list);
303 spin_unlock(&inode_lock);
305 wake_up_inode(inode);
306 destroy_inode(inode);
307 nr_disposed++;
309 spin_lock(&inode_lock);
310 inodes_stat.nr_inodes -= nr_disposed;
311 spin_unlock(&inode_lock);
315 * Invalidate all inodes for a device.
317 static int invalidate_list(struct list_head *head, struct list_head *dispose)
319 struct list_head *next;
320 int busy = 0, count = 0;
322 next = head->next;
323 for (;;) {
324 struct list_head * tmp = next;
325 struct inode * inode;
328 * We can reschedule here without worrying about the list's
329 * consistency because the per-sb list of inodes must not
330 * change during umount anymore, and because iprune_mutex keeps
331 * shrink_icache_memory() away.
333 cond_resched_lock(&inode_lock);
335 next = next->next;
336 if (tmp == head)
337 break;
338 inode = list_entry(tmp, struct inode, i_sb_list);
339 invalidate_inode_buffers(inode);
340 if (!atomic_read(&inode->i_count)) {
341 list_move(&inode->i_list, dispose);
342 WARN_ON(inode->i_state & I_NEW);
343 inode->i_state |= I_FREEING;
344 count++;
345 continue;
347 busy = 1;
349 /* only unused inodes may be cached with i_count zero */
350 inodes_stat.nr_unused -= count;
351 return busy;
355 * invalidate_inodes - discard the inodes on a device
356 * @sb: superblock
358 * Discard all of the inodes for a given superblock. If the discard
359 * fails because there are busy inodes then a non zero value is returned.
360 * If the discard is successful all the inodes have been discarded.
362 int invalidate_inodes(struct super_block * sb)
364 int busy;
365 LIST_HEAD(throw_away);
367 mutex_lock(&iprune_mutex);
368 spin_lock(&inode_lock);
369 inotify_unmount_inodes(&sb->s_inodes);
370 busy = invalidate_list(&sb->s_inodes, &throw_away);
371 spin_unlock(&inode_lock);
373 dispose_list(&throw_away);
374 mutex_unlock(&iprune_mutex);
376 return busy;
379 EXPORT_SYMBOL(invalidate_inodes);
381 static int can_unuse(struct inode *inode)
383 if (inode->i_state)
384 return 0;
385 if (inode_has_buffers(inode))
386 return 0;
387 if (atomic_read(&inode->i_count))
388 return 0;
389 if (inode->i_data.nrpages)
390 return 0;
391 return 1;
395 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
396 * a temporary list and then are freed outside inode_lock by dispose_list().
398 * Any inodes which are pinned purely because of attached pagecache have their
399 * pagecache removed. We expect the final iput() on that inode to add it to
400 * the front of the inode_unused list. So look for it there and if the
401 * inode is still freeable, proceed. The right inode is found 99.9% of the
402 * time in testing on a 4-way.
404 * If the inode has metadata buffers attached to mapping->private_list then
405 * try to remove them.
407 static void prune_icache(int nr_to_scan)
409 LIST_HEAD(freeable);
410 int nr_pruned = 0;
411 int nr_scanned;
412 unsigned long reap = 0;
414 mutex_lock(&iprune_mutex);
415 spin_lock(&inode_lock);
416 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
417 struct inode *inode;
419 if (list_empty(&inode_unused))
420 break;
422 inode = list_entry(inode_unused.prev, struct inode, i_list);
424 if (inode->i_state || atomic_read(&inode->i_count)) {
425 list_move(&inode->i_list, &inode_unused);
426 continue;
428 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
429 __iget(inode);
430 spin_unlock(&inode_lock);
431 if (remove_inode_buffers(inode))
432 reap += invalidate_mapping_pages(&inode->i_data,
433 0, -1);
434 iput(inode);
435 spin_lock(&inode_lock);
437 if (inode != list_entry(inode_unused.next,
438 struct inode, i_list))
439 continue; /* wrong inode or list_empty */
440 if (!can_unuse(inode))
441 continue;
443 list_move(&inode->i_list, &freeable);
444 WARN_ON(inode->i_state & I_NEW);
445 inode->i_state |= I_FREEING;
446 nr_pruned++;
448 inodes_stat.nr_unused -= nr_pruned;
449 if (current_is_kswapd())
450 __count_vm_events(KSWAPD_INODESTEAL, reap);
451 else
452 __count_vm_events(PGINODESTEAL, reap);
453 spin_unlock(&inode_lock);
455 dispose_list(&freeable);
456 mutex_unlock(&iprune_mutex);
460 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
461 * "unused" means that no dentries are referring to the inodes: the files are
462 * not open and the dcache references to those inodes have already been
463 * reclaimed.
465 * This function is passed the number of inodes to scan, and it returns the
466 * total number of remaining possibly-reclaimable inodes.
468 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
470 if (nr) {
472 * Nasty deadlock avoidance. We may hold various FS locks,
473 * and we don't want to recurse into the FS that called us
474 * in clear_inode() and friends..
476 if (!(gfp_mask & __GFP_FS))
477 return -1;
478 prune_icache(nr);
480 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
483 static struct shrinker icache_shrinker = {
484 .shrink = shrink_icache_memory,
485 .seeks = DEFAULT_SEEKS,
488 static void __wait_on_freeing_inode(struct inode *inode);
490 * Called with the inode lock held.
491 * NOTE: we are not increasing the inode-refcount, you must call __iget()
492 * by hand after calling find_inode now! This simplifies iunique and won't
493 * add any additional branch in the common code.
495 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
497 struct hlist_node *node;
498 struct inode * inode = NULL;
500 repeat:
501 hlist_for_each_entry(inode, node, head, i_hash) {
502 if (inode->i_sb != sb)
503 continue;
504 if (!test(inode, data))
505 continue;
506 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
507 __wait_on_freeing_inode(inode);
508 goto repeat;
510 break;
512 return node ? inode : NULL;
516 * find_inode_fast is the fast path version of find_inode, see the comment at
517 * iget_locked for details.
519 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
521 struct hlist_node *node;
522 struct inode * inode = NULL;
524 repeat:
525 hlist_for_each_entry(inode, node, head, i_hash) {
526 if (inode->i_ino != ino)
527 continue;
528 if (inode->i_sb != sb)
529 continue;
530 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
531 __wait_on_freeing_inode(inode);
532 goto repeat;
534 break;
536 return node ? inode : NULL;
540 * new_inode - obtain an inode
541 * @sb: superblock
543 * Allocates a new inode for given superblock. The default gfp_mask
544 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
545 * If HIGHMEM pages are unsuitable or it is known that pages allocated
546 * for the page cache are not reclaimable or migratable,
547 * mapping_set_gfp_mask() must be called with suitable flags on the
548 * newly created inode's mapping
551 struct inode *new_inode(struct super_block *sb)
554 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
555 * error if st_ino won't fit in target struct field. Use 32bit counter
556 * here to attempt to avoid that.
558 static unsigned int last_ino;
559 struct inode * inode;
561 spin_lock_prefetch(&inode_lock);
563 inode = alloc_inode(sb);
564 if (inode) {
565 spin_lock(&inode_lock);
566 inodes_stat.nr_inodes++;
567 list_add(&inode->i_list, &inode_in_use);
568 list_add(&inode->i_sb_list, &sb->s_inodes);
569 inode->i_ino = ++last_ino;
570 inode->i_state = 0;
571 spin_unlock(&inode_lock);
573 return inode;
576 EXPORT_SYMBOL(new_inode);
578 void unlock_new_inode(struct inode *inode)
580 #ifdef CONFIG_DEBUG_LOCK_ALLOC
581 if (inode->i_mode & S_IFDIR) {
582 struct file_system_type *type = inode->i_sb->s_type;
585 * ensure nobody is actually holding i_mutex
587 mutex_destroy(&inode->i_mutex);
588 mutex_init(&inode->i_mutex);
589 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
591 #endif
593 * This is special! We do not need the spinlock
594 * when clearing I_LOCK, because we're guaranteed
595 * that nobody else tries to do anything about the
596 * state of the inode when it is locked, as we
597 * just created it (so there can be no old holders
598 * that haven't tested I_LOCK).
600 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
601 inode->i_state &= ~(I_LOCK|I_NEW);
602 wake_up_inode(inode);
605 EXPORT_SYMBOL(unlock_new_inode);
608 * This is called without the inode lock held.. Be careful.
610 * We no longer cache the sb_flags in i_flags - see fs.h
611 * -- rmk@arm.uk.linux.org
613 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
615 struct inode * inode;
617 inode = alloc_inode(sb);
618 if (inode) {
619 struct inode * old;
621 spin_lock(&inode_lock);
622 /* We released the lock, so.. */
623 old = find_inode(sb, head, test, data);
624 if (!old) {
625 if (set(inode, data))
626 goto set_failed;
628 inodes_stat.nr_inodes++;
629 list_add(&inode->i_list, &inode_in_use);
630 list_add(&inode->i_sb_list, &sb->s_inodes);
631 hlist_add_head(&inode->i_hash, head);
632 inode->i_state = I_LOCK|I_NEW;
633 spin_unlock(&inode_lock);
635 /* Return the locked inode with I_NEW set, the
636 * caller is responsible for filling in the contents
638 return inode;
642 * Uhhuh, somebody else created the same inode under
643 * us. Use the old inode instead of the one we just
644 * allocated.
646 __iget(old);
647 spin_unlock(&inode_lock);
648 destroy_inode(inode);
649 inode = old;
650 wait_on_inode(inode);
652 return inode;
654 set_failed:
655 spin_unlock(&inode_lock);
656 destroy_inode(inode);
657 return NULL;
661 * get_new_inode_fast is the fast path version of get_new_inode, see the
662 * comment at iget_locked for details.
664 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
666 struct inode * inode;
668 inode = alloc_inode(sb);
669 if (inode) {
670 struct inode * old;
672 spin_lock(&inode_lock);
673 /* We released the lock, so.. */
674 old = find_inode_fast(sb, head, ino);
675 if (!old) {
676 inode->i_ino = ino;
677 inodes_stat.nr_inodes++;
678 list_add(&inode->i_list, &inode_in_use);
679 list_add(&inode->i_sb_list, &sb->s_inodes);
680 hlist_add_head(&inode->i_hash, head);
681 inode->i_state = I_LOCK|I_NEW;
682 spin_unlock(&inode_lock);
684 /* Return the locked inode with I_NEW set, the
685 * caller is responsible for filling in the contents
687 return inode;
691 * Uhhuh, somebody else created the same inode under
692 * us. Use the old inode instead of the one we just
693 * allocated.
695 __iget(old);
696 spin_unlock(&inode_lock);
697 destroy_inode(inode);
698 inode = old;
699 wait_on_inode(inode);
701 return inode;
704 static unsigned long hash(struct super_block *sb, unsigned long hashval)
706 unsigned long tmp;
708 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
709 L1_CACHE_BYTES;
710 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
711 return tmp & I_HASHMASK;
715 * iunique - get a unique inode number
716 * @sb: superblock
717 * @max_reserved: highest reserved inode number
719 * Obtain an inode number that is unique on the system for a given
720 * superblock. This is used by file systems that have no natural
721 * permanent inode numbering system. An inode number is returned that
722 * is higher than the reserved limit but unique.
724 * BUGS:
725 * With a large number of inodes live on the file system this function
726 * currently becomes quite slow.
728 ino_t iunique(struct super_block *sb, ino_t max_reserved)
731 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
732 * error if st_ino won't fit in target struct field. Use 32bit counter
733 * here to attempt to avoid that.
735 static unsigned int counter;
736 struct inode *inode;
737 struct hlist_head *head;
738 ino_t res;
740 spin_lock(&inode_lock);
741 do {
742 if (counter <= max_reserved)
743 counter = max_reserved + 1;
744 res = counter++;
745 head = inode_hashtable + hash(sb, res);
746 inode = find_inode_fast(sb, head, res);
747 } while (inode != NULL);
748 spin_unlock(&inode_lock);
750 return res;
752 EXPORT_SYMBOL(iunique);
754 struct inode *igrab(struct inode *inode)
756 spin_lock(&inode_lock);
757 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
758 __iget(inode);
759 else
761 * Handle the case where s_op->clear_inode is not been
762 * called yet, and somebody is calling igrab
763 * while the inode is getting freed.
765 inode = NULL;
766 spin_unlock(&inode_lock);
767 return inode;
770 EXPORT_SYMBOL(igrab);
773 * ifind - internal function, you want ilookup5() or iget5().
774 * @sb: super block of file system to search
775 * @head: the head of the list to search
776 * @test: callback used for comparisons between inodes
777 * @data: opaque data pointer to pass to @test
778 * @wait: if true wait for the inode to be unlocked, if false do not
780 * ifind() searches for the inode specified by @data in the inode
781 * cache. This is a generalized version of ifind_fast() for file systems where
782 * the inode number is not sufficient for unique identification of an inode.
784 * If the inode is in the cache, the inode is returned with an incremented
785 * reference count.
787 * Otherwise NULL is returned.
789 * Note, @test is called with the inode_lock held, so can't sleep.
791 static struct inode *ifind(struct super_block *sb,
792 struct hlist_head *head, int (*test)(struct inode *, void *),
793 void *data, const int wait)
795 struct inode *inode;
797 spin_lock(&inode_lock);
798 inode = find_inode(sb, head, test, data);
799 if (inode) {
800 __iget(inode);
801 spin_unlock(&inode_lock);
802 if (likely(wait))
803 wait_on_inode(inode);
804 return inode;
806 spin_unlock(&inode_lock);
807 return NULL;
811 * ifind_fast - internal function, you want ilookup() or iget().
812 * @sb: super block of file system to search
813 * @head: head of the list to search
814 * @ino: inode number to search for
816 * ifind_fast() searches for the inode @ino in the inode cache. This is for
817 * file systems where the inode number is sufficient for unique identification
818 * of an inode.
820 * If the inode is in the cache, the inode is returned with an incremented
821 * reference count.
823 * Otherwise NULL is returned.
825 static struct inode *ifind_fast(struct super_block *sb,
826 struct hlist_head *head, unsigned long ino)
828 struct inode *inode;
830 spin_lock(&inode_lock);
831 inode = find_inode_fast(sb, head, ino);
832 if (inode) {
833 __iget(inode);
834 spin_unlock(&inode_lock);
835 wait_on_inode(inode);
836 return inode;
838 spin_unlock(&inode_lock);
839 return NULL;
843 * ilookup5_nowait - search for an inode in the inode cache
844 * @sb: super block of file system to search
845 * @hashval: hash value (usually inode number) to search for
846 * @test: callback used for comparisons between inodes
847 * @data: opaque data pointer to pass to @test
849 * ilookup5() uses ifind() to search for the inode specified by @hashval and
850 * @data in the inode cache. This is a generalized version of ilookup() for
851 * file systems where the inode number is not sufficient for unique
852 * identification of an inode.
854 * If the inode is in the cache, the inode is returned with an incremented
855 * reference count. Note, the inode lock is not waited upon so you have to be
856 * very careful what you do with the returned inode. You probably should be
857 * using ilookup5() instead.
859 * Otherwise NULL is returned.
861 * Note, @test is called with the inode_lock held, so can't sleep.
863 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
864 int (*test)(struct inode *, void *), void *data)
866 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
868 return ifind(sb, head, test, data, 0);
871 EXPORT_SYMBOL(ilookup5_nowait);
874 * ilookup5 - search for an inode in the inode cache
875 * @sb: super block of file system to search
876 * @hashval: hash value (usually inode number) to search for
877 * @test: callback used for comparisons between inodes
878 * @data: opaque data pointer to pass to @test
880 * ilookup5() uses ifind() to search for the inode specified by @hashval and
881 * @data in the inode cache. This is a generalized version of ilookup() for
882 * file systems where the inode number is not sufficient for unique
883 * identification of an inode.
885 * If the inode is in the cache, the inode lock is waited upon and the inode is
886 * returned with an incremented reference count.
888 * Otherwise NULL is returned.
890 * Note, @test is called with the inode_lock held, so can't sleep.
892 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
893 int (*test)(struct inode *, void *), void *data)
895 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
897 return ifind(sb, head, test, data, 1);
900 EXPORT_SYMBOL(ilookup5);
903 * ilookup - search for an inode in the inode cache
904 * @sb: super block of file system to search
905 * @ino: inode number to search for
907 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
908 * This is for file systems where the inode number is sufficient for unique
909 * identification of an inode.
911 * If the inode is in the cache, the inode is returned with an incremented
912 * reference count.
914 * Otherwise NULL is returned.
916 struct inode *ilookup(struct super_block *sb, unsigned long ino)
918 struct hlist_head *head = inode_hashtable + hash(sb, ino);
920 return ifind_fast(sb, head, ino);
923 EXPORT_SYMBOL(ilookup);
926 * iget5_locked - obtain an inode from a mounted file system
927 * @sb: super block of file system
928 * @hashval: hash value (usually inode number) to get
929 * @test: callback used for comparisons between inodes
930 * @set: callback used to initialize a new struct inode
931 * @data: opaque data pointer to pass to @test and @set
933 * iget5_locked() uses ifind() to search for the inode specified by @hashval
934 * and @data in the inode cache and if present it is returned with an increased
935 * reference count. This is a generalized version of iget_locked() for file
936 * systems where the inode number is not sufficient for unique identification
937 * of an inode.
939 * If the inode is not in cache, get_new_inode() is called to allocate a new
940 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
941 * file system gets to fill it in before unlocking it via unlock_new_inode().
943 * Note both @test and @set are called with the inode_lock held, so can't sleep.
945 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
946 int (*test)(struct inode *, void *),
947 int (*set)(struct inode *, void *), void *data)
949 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
950 struct inode *inode;
952 inode = ifind(sb, head, test, data, 1);
953 if (inode)
954 return inode;
956 * get_new_inode() will do the right thing, re-trying the search
957 * in case it had to block at any point.
959 return get_new_inode(sb, head, test, set, data);
962 EXPORT_SYMBOL(iget5_locked);
965 * iget_locked - obtain an inode from a mounted file system
966 * @sb: super block of file system
967 * @ino: inode number to get
969 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
970 * the inode cache and if present it is returned with an increased reference
971 * count. This is for file systems where the inode number is sufficient for
972 * unique identification of an inode.
974 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
975 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
976 * The file system gets to fill it in before unlocking it via
977 * unlock_new_inode().
979 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
981 struct hlist_head *head = inode_hashtable + hash(sb, ino);
982 struct inode *inode;
984 inode = ifind_fast(sb, head, ino);
985 if (inode)
986 return inode;
988 * get_new_inode_fast() will do the right thing, re-trying the search
989 * in case it had to block at any point.
991 return get_new_inode_fast(sb, head, ino);
994 EXPORT_SYMBOL(iget_locked);
997 * __insert_inode_hash - hash an inode
998 * @inode: unhashed inode
999 * @hashval: unsigned long value used to locate this object in the
1000 * inode_hashtable.
1002 * Add an inode to the inode hash for this superblock.
1004 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1006 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1007 spin_lock(&inode_lock);
1008 hlist_add_head(&inode->i_hash, head);
1009 spin_unlock(&inode_lock);
1012 EXPORT_SYMBOL(__insert_inode_hash);
1015 * remove_inode_hash - remove an inode from the hash
1016 * @inode: inode to unhash
1018 * Remove an inode from the superblock.
1020 void remove_inode_hash(struct inode *inode)
1022 spin_lock(&inode_lock);
1023 hlist_del_init(&inode->i_hash);
1024 spin_unlock(&inode_lock);
1027 EXPORT_SYMBOL(remove_inode_hash);
1030 * Tell the filesystem that this inode is no longer of any interest and should
1031 * be completely destroyed.
1033 * We leave the inode in the inode hash table until *after* the filesystem's
1034 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1035 * instigate) will always find up-to-date information either in the hash or on
1036 * disk.
1038 * I_FREEING is set so that no-one will take a new reference to the inode while
1039 * it is being deleted.
1041 void generic_delete_inode(struct inode *inode)
1043 const struct super_operations *op = inode->i_sb->s_op;
1045 list_del_init(&inode->i_list);
1046 list_del_init(&inode->i_sb_list);
1047 WARN_ON(inode->i_state & I_NEW);
1048 inode->i_state |= I_FREEING;
1049 inodes_stat.nr_inodes--;
1050 spin_unlock(&inode_lock);
1052 security_inode_delete(inode);
1054 if (op->delete_inode) {
1055 void (*delete)(struct inode *) = op->delete_inode;
1056 if (!is_bad_inode(inode))
1057 DQUOT_INIT(inode);
1058 /* Filesystems implementing their own
1059 * s_op->delete_inode are required to call
1060 * truncate_inode_pages and clear_inode()
1061 * internally */
1062 delete(inode);
1063 } else {
1064 truncate_inode_pages(&inode->i_data, 0);
1065 clear_inode(inode);
1067 spin_lock(&inode_lock);
1068 hlist_del_init(&inode->i_hash);
1069 spin_unlock(&inode_lock);
1070 wake_up_inode(inode);
1071 BUG_ON(inode->i_state != I_CLEAR);
1072 destroy_inode(inode);
1075 EXPORT_SYMBOL(generic_delete_inode);
1077 static void generic_forget_inode(struct inode *inode)
1079 struct super_block *sb = inode->i_sb;
1081 if (!hlist_unhashed(&inode->i_hash)) {
1082 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1083 list_move(&inode->i_list, &inode_unused);
1084 inodes_stat.nr_unused++;
1085 if (sb->s_flags & MS_ACTIVE) {
1086 spin_unlock(&inode_lock);
1087 return;
1089 WARN_ON(inode->i_state & I_NEW);
1090 inode->i_state |= I_WILL_FREE;
1091 spin_unlock(&inode_lock);
1092 write_inode_now(inode, 1);
1093 spin_lock(&inode_lock);
1094 WARN_ON(inode->i_state & I_NEW);
1095 inode->i_state &= ~I_WILL_FREE;
1096 inodes_stat.nr_unused--;
1097 hlist_del_init(&inode->i_hash);
1099 list_del_init(&inode->i_list);
1100 list_del_init(&inode->i_sb_list);
1101 WARN_ON(inode->i_state & I_NEW);
1102 inode->i_state |= I_FREEING;
1103 inodes_stat.nr_inodes--;
1104 spin_unlock(&inode_lock);
1105 if (inode->i_data.nrpages)
1106 truncate_inode_pages(&inode->i_data, 0);
1107 clear_inode(inode);
1108 wake_up_inode(inode);
1109 destroy_inode(inode);
1113 * Normal UNIX filesystem behaviour: delete the
1114 * inode when the usage count drops to zero, and
1115 * i_nlink is zero.
1117 void generic_drop_inode(struct inode *inode)
1119 if (!inode->i_nlink)
1120 generic_delete_inode(inode);
1121 else
1122 generic_forget_inode(inode);
1125 EXPORT_SYMBOL_GPL(generic_drop_inode);
1128 * Called when we're dropping the last reference
1129 * to an inode.
1131 * Call the FS "drop()" function, defaulting to
1132 * the legacy UNIX filesystem behaviour..
1134 * NOTE! NOTE! NOTE! We're called with the inode lock
1135 * held, and the drop function is supposed to release
1136 * the lock!
1138 static inline void iput_final(struct inode *inode)
1140 const struct super_operations *op = inode->i_sb->s_op;
1141 void (*drop)(struct inode *) = generic_drop_inode;
1143 if (op && op->drop_inode)
1144 drop = op->drop_inode;
1145 drop(inode);
1149 * iput - put an inode
1150 * @inode: inode to put
1152 * Puts an inode, dropping its usage count. If the inode use count hits
1153 * zero, the inode is then freed and may also be destroyed.
1155 * Consequently, iput() can sleep.
1157 void iput(struct inode *inode)
1159 if (inode) {
1160 BUG_ON(inode->i_state == I_CLEAR);
1162 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1163 iput_final(inode);
1167 EXPORT_SYMBOL(iput);
1170 * bmap - find a block number in a file
1171 * @inode: inode of file
1172 * @block: block to find
1174 * Returns the block number on the device holding the inode that
1175 * is the disk block number for the block of the file requested.
1176 * That is, asked for block 4 of inode 1 the function will return the
1177 * disk block relative to the disk start that holds that block of the
1178 * file.
1180 sector_t bmap(struct inode * inode, sector_t block)
1182 sector_t res = 0;
1183 if (inode->i_mapping->a_ops->bmap)
1184 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1185 return res;
1187 EXPORT_SYMBOL(bmap);
1190 * touch_atime - update the access time
1191 * @mnt: mount the inode is accessed on
1192 * @dentry: dentry accessed
1194 * Update the accessed time on an inode and mark it for writeback.
1195 * This function automatically handles read only file systems and media,
1196 * as well as the "noatime" flag and inode specific "noatime" markers.
1198 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1200 struct inode *inode = dentry->d_inode;
1201 struct timespec now;
1203 if (mnt_want_write(mnt))
1204 return;
1205 if (inode->i_flags & S_NOATIME)
1206 goto out;
1207 if (IS_NOATIME(inode))
1208 goto out;
1209 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1210 goto out;
1212 if (mnt->mnt_flags & MNT_NOATIME)
1213 goto out;
1214 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1215 goto out;
1216 if (mnt->mnt_flags & MNT_RELATIME) {
1218 * With relative atime, only update atime if the previous
1219 * atime is earlier than either the ctime or mtime.
1221 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
1222 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
1223 goto out;
1226 now = current_fs_time(inode->i_sb);
1227 if (timespec_equal(&inode->i_atime, &now))
1228 goto out;
1230 inode->i_atime = now;
1231 mark_inode_dirty_sync(inode);
1232 out:
1233 mnt_drop_write(mnt);
1235 EXPORT_SYMBOL(touch_atime);
1238 * file_update_time - update mtime and ctime time
1239 * @file: file accessed
1241 * Update the mtime and ctime members of an inode and mark the inode
1242 * for writeback. Note that this function is meant exclusively for
1243 * usage in the file write path of filesystems, and filesystems may
1244 * choose to explicitly ignore update via this function with the
1245 * S_NOCTIME inode flag, e.g. for network filesystem where these
1246 * timestamps are handled by the server.
1249 void file_update_time(struct file *file)
1251 struct inode *inode = file->f_path.dentry->d_inode;
1252 struct timespec now;
1253 int sync_it = 0;
1254 int err;
1256 if (IS_NOCMTIME(inode))
1257 return;
1259 err = mnt_want_write(file->f_path.mnt);
1260 if (err)
1261 return;
1263 now = current_fs_time(inode->i_sb);
1264 if (!timespec_equal(&inode->i_mtime, &now)) {
1265 inode->i_mtime = now;
1266 sync_it = 1;
1269 if (!timespec_equal(&inode->i_ctime, &now)) {
1270 inode->i_ctime = now;
1271 sync_it = 1;
1274 if (IS_I_VERSION(inode)) {
1275 inode_inc_iversion(inode);
1276 sync_it = 1;
1279 if (sync_it)
1280 mark_inode_dirty_sync(inode);
1281 mnt_drop_write(file->f_path.mnt);
1284 EXPORT_SYMBOL(file_update_time);
1286 int inode_needs_sync(struct inode *inode)
1288 if (IS_SYNC(inode))
1289 return 1;
1290 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1291 return 1;
1292 return 0;
1295 EXPORT_SYMBOL(inode_needs_sync);
1297 int inode_wait(void *word)
1299 schedule();
1300 return 0;
1304 * If we try to find an inode in the inode hash while it is being
1305 * deleted, we have to wait until the filesystem completes its
1306 * deletion before reporting that it isn't found. This function waits
1307 * until the deletion _might_ have completed. Callers are responsible
1308 * to recheck inode state.
1310 * It doesn't matter if I_LOCK is not set initially, a call to
1311 * wake_up_inode() after removing from the hash list will DTRT.
1313 * This is called with inode_lock held.
1315 static void __wait_on_freeing_inode(struct inode *inode)
1317 wait_queue_head_t *wq;
1318 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1319 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1320 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1321 spin_unlock(&inode_lock);
1322 schedule();
1323 finish_wait(wq, &wait.wait);
1324 spin_lock(&inode_lock);
1328 * We rarely want to lock two inodes that do not have a parent/child
1329 * relationship (such as directory, child inode) simultaneously. The
1330 * vast majority of file systems should be able to get along fine
1331 * without this. Do not use these functions except as a last resort.
1333 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1335 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1336 if (inode1)
1337 mutex_lock(&inode1->i_mutex);
1338 else if (inode2)
1339 mutex_lock(&inode2->i_mutex);
1340 return;
1343 if (inode1 < inode2) {
1344 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1345 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1346 } else {
1347 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1348 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1351 EXPORT_SYMBOL(inode_double_lock);
1353 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1355 if (inode1)
1356 mutex_unlock(&inode1->i_mutex);
1358 if (inode2 && inode2 != inode1)
1359 mutex_unlock(&inode2->i_mutex);
1361 EXPORT_SYMBOL(inode_double_unlock);
1363 static __initdata unsigned long ihash_entries;
1364 static int __init set_ihash_entries(char *str)
1366 if (!str)
1367 return 0;
1368 ihash_entries = simple_strtoul(str, &str, 0);
1369 return 1;
1371 __setup("ihash_entries=", set_ihash_entries);
1374 * Initialize the waitqueues and inode hash table.
1376 void __init inode_init_early(void)
1378 int loop;
1380 /* If hashes are distributed across NUMA nodes, defer
1381 * hash allocation until vmalloc space is available.
1383 if (hashdist)
1384 return;
1386 inode_hashtable =
1387 alloc_large_system_hash("Inode-cache",
1388 sizeof(struct hlist_head),
1389 ihash_entries,
1391 HASH_EARLY,
1392 &i_hash_shift,
1393 &i_hash_mask,
1396 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1397 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1400 void __init inode_init(void)
1402 int loop;
1404 /* inode slab cache */
1405 inode_cachep = kmem_cache_create("inode_cache",
1406 sizeof(struct inode),
1408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1409 SLAB_MEM_SPREAD),
1410 init_once);
1411 register_shrinker(&icache_shrinker);
1413 /* Hash may have been set up in inode_init_early */
1414 if (!hashdist)
1415 return;
1417 inode_hashtable =
1418 alloc_large_system_hash("Inode-cache",
1419 sizeof(struct hlist_head),
1420 ihash_entries,
1423 &i_hash_shift,
1424 &i_hash_mask,
1427 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1428 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1431 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1433 inode->i_mode = mode;
1434 if (S_ISCHR(mode)) {
1435 inode->i_fop = &def_chr_fops;
1436 inode->i_rdev = rdev;
1437 } else if (S_ISBLK(mode)) {
1438 inode->i_fop = &def_blk_fops;
1439 inode->i_rdev = rdev;
1440 } else if (S_ISFIFO(mode))
1441 inode->i_fop = &def_fifo_fops;
1442 else if (S_ISSOCK(mode))
1443 inode->i_fop = &bad_sock_fops;
1444 else
1445 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1446 mode);
1448 EXPORT_SYMBOL(init_special_inode);