KVM: VMX: Set IGMT bit in EPT entry
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-iops.c
blob40fbf420632513b95b9012a5217310bc53cb65dc
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
32 * Conventional PIO operations for ATA devices
35 static u8 ide_inb (unsigned long port)
37 return (u8) inb(port);
40 static void ide_outb (u8 val, unsigned long port)
42 outb(val, port);
46 * MMIO operations, typically used for SATA controllers
49 static u8 ide_mm_inb (unsigned long port)
51 return (u8) readb((void __iomem *) port);
54 static void ide_mm_outb (u8 value, unsigned long port)
56 writeb(value, (void __iomem *) port);
59 void SELECT_DRIVE (ide_drive_t *drive)
61 ide_hwif_t *hwif = drive->hwif;
62 const struct ide_port_ops *port_ops = hwif->port_ops;
63 ide_task_t task;
65 if (port_ops && port_ops->selectproc)
66 port_ops->selectproc(drive);
68 memset(&task, 0, sizeof(task));
69 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
71 drive->hwif->tp_ops->tf_load(drive, &task);
74 void SELECT_MASK(ide_drive_t *drive, int mask)
76 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
78 if (port_ops && port_ops->maskproc)
79 port_ops->maskproc(drive, mask);
82 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
84 if (hwif->host_flags & IDE_HFLAG_MMIO)
85 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86 else
87 outb(cmd, hwif->io_ports.command_addr);
89 EXPORT_SYMBOL_GPL(ide_exec_command);
91 u8 ide_read_status(ide_hwif_t *hwif)
93 if (hwif->host_flags & IDE_HFLAG_MMIO)
94 return readb((void __iomem *)hwif->io_ports.status_addr);
95 else
96 return inb(hwif->io_ports.status_addr);
98 EXPORT_SYMBOL_GPL(ide_read_status);
100 u8 ide_read_altstatus(ide_hwif_t *hwif)
102 if (hwif->host_flags & IDE_HFLAG_MMIO)
103 return readb((void __iomem *)hwif->io_ports.ctl_addr);
104 else
105 return inb(hwif->io_ports.ctl_addr);
107 EXPORT_SYMBOL_GPL(ide_read_altstatus);
109 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
111 if (hwif->host_flags & IDE_HFLAG_MMIO)
112 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
113 else
114 return inb(hwif->dma_base + ATA_DMA_STATUS);
116 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
118 void ide_set_irq(ide_hwif_t *hwif, int on)
120 u8 ctl = ATA_DEVCTL_OBS;
122 if (on == 4) { /* hack for SRST */
123 ctl |= 4;
124 on &= ~4;
127 ctl |= on ? 0 : 2;
129 if (hwif->host_flags & IDE_HFLAG_MMIO)
130 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
131 else
132 outb(ctl, hwif->io_ports.ctl_addr);
134 EXPORT_SYMBOL_GPL(ide_set_irq);
136 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
138 ide_hwif_t *hwif = drive->hwif;
139 struct ide_io_ports *io_ports = &hwif->io_ports;
140 struct ide_taskfile *tf = &task->tf;
141 void (*tf_outb)(u8 addr, unsigned long port);
142 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
143 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
145 if (mmio)
146 tf_outb = ide_mm_outb;
147 else
148 tf_outb = ide_outb;
150 if (task->tf_flags & IDE_TFLAG_FLAGGED)
151 HIHI = 0xFF;
153 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
154 u16 data = (tf->hob_data << 8) | tf->data;
156 if (mmio)
157 writew(data, (void __iomem *)io_ports->data_addr);
158 else
159 outw(data, io_ports->data_addr);
162 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
163 tf_outb(tf->hob_feature, io_ports->feature_addr);
164 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
165 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
166 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
167 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
168 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
169 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
170 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
171 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
173 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
174 tf_outb(tf->feature, io_ports->feature_addr);
175 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
176 tf_outb(tf->nsect, io_ports->nsect_addr);
177 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
178 tf_outb(tf->lbal, io_ports->lbal_addr);
179 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
180 tf_outb(tf->lbam, io_ports->lbam_addr);
181 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
182 tf_outb(tf->lbah, io_ports->lbah_addr);
184 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
185 tf_outb((tf->device & HIHI) | drive->select.all,
186 io_ports->device_addr);
188 EXPORT_SYMBOL_GPL(ide_tf_load);
190 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
192 ide_hwif_t *hwif = drive->hwif;
193 struct ide_io_ports *io_ports = &hwif->io_ports;
194 struct ide_taskfile *tf = &task->tf;
195 void (*tf_outb)(u8 addr, unsigned long port);
196 u8 (*tf_inb)(unsigned long port);
197 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
199 if (mmio) {
200 tf_outb = ide_mm_outb;
201 tf_inb = ide_mm_inb;
202 } else {
203 tf_outb = ide_outb;
204 tf_inb = ide_inb;
207 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
208 u16 data;
210 if (mmio)
211 data = readw((void __iomem *)io_ports->data_addr);
212 else
213 data = inw(io_ports->data_addr);
215 tf->data = data & 0xff;
216 tf->hob_data = (data >> 8) & 0xff;
219 /* be sure we're looking at the low order bits */
220 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
222 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
223 tf->feature = tf_inb(io_ports->feature_addr);
224 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
225 tf->nsect = tf_inb(io_ports->nsect_addr);
226 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
227 tf->lbal = tf_inb(io_ports->lbal_addr);
228 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
229 tf->lbam = tf_inb(io_ports->lbam_addr);
230 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
231 tf->lbah = tf_inb(io_ports->lbah_addr);
232 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
233 tf->device = tf_inb(io_ports->device_addr);
235 if (task->tf_flags & IDE_TFLAG_LBA48) {
236 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
238 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
239 tf->hob_feature = tf_inb(io_ports->feature_addr);
240 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
241 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
242 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
243 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
244 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
245 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
246 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
247 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
250 EXPORT_SYMBOL_GPL(ide_tf_read);
253 * Some localbus EIDE interfaces require a special access sequence
254 * when using 32-bit I/O instructions to transfer data. We call this
255 * the "vlb_sync" sequence, which consists of three successive reads
256 * of the sector count register location, with interrupts disabled
257 * to ensure that the reads all happen together.
259 static void ata_vlb_sync(unsigned long port)
261 (void)inb(port);
262 (void)inb(port);
263 (void)inb(port);
267 * This is used for most PIO data transfers *from* the IDE interface
269 * These routines will round up any request for an odd number of bytes,
270 * so if an odd len is specified, be sure that there's at least one
271 * extra byte allocated for the buffer.
273 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
274 unsigned int len)
276 ide_hwif_t *hwif = drive->hwif;
277 struct ide_io_ports *io_ports = &hwif->io_ports;
278 unsigned long data_addr = io_ports->data_addr;
279 u8 io_32bit = drive->io_32bit;
280 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
282 len++;
284 if (io_32bit) {
285 unsigned long uninitialized_var(flags);
287 if ((io_32bit & 2) && !mmio) {
288 local_irq_save(flags);
289 ata_vlb_sync(io_ports->nsect_addr);
292 if (mmio)
293 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
294 else
295 insl(data_addr, buf, len / 4);
297 if ((io_32bit & 2) && !mmio)
298 local_irq_restore(flags);
300 if ((len & 3) >= 2) {
301 if (mmio)
302 __ide_mm_insw((void __iomem *)data_addr,
303 (u8 *)buf + (len & ~3), 1);
304 else
305 insw(data_addr, (u8 *)buf + (len & ~3), 1);
307 } else {
308 if (mmio)
309 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
310 else
311 insw(data_addr, buf, len / 2);
314 EXPORT_SYMBOL_GPL(ide_input_data);
317 * This is used for most PIO data transfers *to* the IDE interface
319 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
320 unsigned int len)
322 ide_hwif_t *hwif = drive->hwif;
323 struct ide_io_ports *io_ports = &hwif->io_ports;
324 unsigned long data_addr = io_ports->data_addr;
325 u8 io_32bit = drive->io_32bit;
326 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
328 len++;
330 if (io_32bit) {
331 unsigned long uninitialized_var(flags);
333 if ((io_32bit & 2) && !mmio) {
334 local_irq_save(flags);
335 ata_vlb_sync(io_ports->nsect_addr);
338 if (mmio)
339 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
340 else
341 outsl(data_addr, buf, len / 4);
343 if ((io_32bit & 2) && !mmio)
344 local_irq_restore(flags);
346 if ((len & 3) >= 2) {
347 if (mmio)
348 __ide_mm_outsw((void __iomem *)data_addr,
349 (u8 *)buf + (len & ~3), 1);
350 else
351 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
353 } else {
354 if (mmio)
355 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
356 else
357 outsw(data_addr, buf, len / 2);
360 EXPORT_SYMBOL_GPL(ide_output_data);
362 u8 ide_read_error(ide_drive_t *drive)
364 ide_task_t task;
366 memset(&task, 0, sizeof(task));
367 task.tf_flags = IDE_TFLAG_IN_FEATURE;
369 drive->hwif->tp_ops->tf_read(drive, &task);
371 return task.tf.error;
373 EXPORT_SYMBOL_GPL(ide_read_error);
375 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
377 ide_task_t task;
379 memset(&task, 0, sizeof(task));
380 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
381 IDE_TFLAG_IN_NSECT;
383 drive->hwif->tp_ops->tf_read(drive, &task);
385 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
386 *ireason = task.tf.nsect & 3;
388 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
390 const struct ide_tp_ops default_tp_ops = {
391 .exec_command = ide_exec_command,
392 .read_status = ide_read_status,
393 .read_altstatus = ide_read_altstatus,
394 .read_sff_dma_status = ide_read_sff_dma_status,
396 .set_irq = ide_set_irq,
398 .tf_load = ide_tf_load,
399 .tf_read = ide_tf_read,
401 .input_data = ide_input_data,
402 .output_data = ide_output_data,
405 void ide_fix_driveid (struct hd_driveid *id)
407 #ifndef __LITTLE_ENDIAN
408 # ifdef __BIG_ENDIAN
409 int i;
410 u16 *stringcast;
412 id->config = __le16_to_cpu(id->config);
413 id->cyls = __le16_to_cpu(id->cyls);
414 id->reserved2 = __le16_to_cpu(id->reserved2);
415 id->heads = __le16_to_cpu(id->heads);
416 id->track_bytes = __le16_to_cpu(id->track_bytes);
417 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
418 id->sectors = __le16_to_cpu(id->sectors);
419 id->vendor0 = __le16_to_cpu(id->vendor0);
420 id->vendor1 = __le16_to_cpu(id->vendor1);
421 id->vendor2 = __le16_to_cpu(id->vendor2);
422 stringcast = (u16 *)&id->serial_no[0];
423 for (i = 0; i < (20/2); i++)
424 stringcast[i] = __le16_to_cpu(stringcast[i]);
425 id->buf_type = __le16_to_cpu(id->buf_type);
426 id->buf_size = __le16_to_cpu(id->buf_size);
427 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
428 stringcast = (u16 *)&id->fw_rev[0];
429 for (i = 0; i < (8/2); i++)
430 stringcast[i] = __le16_to_cpu(stringcast[i]);
431 stringcast = (u16 *)&id->model[0];
432 for (i = 0; i < (40/2); i++)
433 stringcast[i] = __le16_to_cpu(stringcast[i]);
434 id->dword_io = __le16_to_cpu(id->dword_io);
435 id->reserved50 = __le16_to_cpu(id->reserved50);
436 id->field_valid = __le16_to_cpu(id->field_valid);
437 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
438 id->cur_heads = __le16_to_cpu(id->cur_heads);
439 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
440 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
441 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
442 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
443 id->dma_1word = __le16_to_cpu(id->dma_1word);
444 id->dma_mword = __le16_to_cpu(id->dma_mword);
445 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
446 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
447 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
448 id->eide_pio = __le16_to_cpu(id->eide_pio);
449 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
450 for (i = 0; i < 2; ++i)
451 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
452 for (i = 0; i < 4; ++i)
453 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
454 id->queue_depth = __le16_to_cpu(id->queue_depth);
455 for (i = 0; i < 4; ++i)
456 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
457 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
458 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
459 id->command_set_1 = __le16_to_cpu(id->command_set_1);
460 id->command_set_2 = __le16_to_cpu(id->command_set_2);
461 id->cfsse = __le16_to_cpu(id->cfsse);
462 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
463 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
464 id->csf_default = __le16_to_cpu(id->csf_default);
465 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
466 id->trseuc = __le16_to_cpu(id->trseuc);
467 id->trsEuc = __le16_to_cpu(id->trsEuc);
468 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
469 id->mprc = __le16_to_cpu(id->mprc);
470 id->hw_config = __le16_to_cpu(id->hw_config);
471 id->acoustic = __le16_to_cpu(id->acoustic);
472 id->msrqs = __le16_to_cpu(id->msrqs);
473 id->sxfert = __le16_to_cpu(id->sxfert);
474 id->sal = __le16_to_cpu(id->sal);
475 id->spg = __le32_to_cpu(id->spg);
476 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
477 for (i = 0; i < 22; i++)
478 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
479 id->last_lun = __le16_to_cpu(id->last_lun);
480 id->word127 = __le16_to_cpu(id->word127);
481 id->dlf = __le16_to_cpu(id->dlf);
482 id->csfo = __le16_to_cpu(id->csfo);
483 for (i = 0; i < 26; i++)
484 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
485 id->word156 = __le16_to_cpu(id->word156);
486 for (i = 0; i < 3; i++)
487 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
488 id->cfa_power = __le16_to_cpu(id->cfa_power);
489 for (i = 0; i < 15; i++)
490 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
491 for (i = 0; i < 30; i++)
492 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
493 for (i = 0; i < 49; i++)
494 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
495 id->integrity_word = __le16_to_cpu(id->integrity_word);
496 # else
497 # error "Please fix <asm/byteorder.h>"
498 # endif
499 #endif
503 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
504 * removing leading/trailing blanks and compressing internal blanks.
505 * It is primarily used to tidy up the model name/number fields as
506 * returned by the WIN_[P]IDENTIFY commands.
509 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
511 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
513 if (byteswap) {
514 /* convert from big-endian to host byte order */
515 for (p = end ; p != s;)
516 be16_to_cpus((u16 *)(p -= 2));
518 /* strip leading blanks */
519 while (s != end && *s == ' ')
520 ++s;
521 /* compress internal blanks and strip trailing blanks */
522 while (s != end && *s) {
523 if (*s++ != ' ' || (s != end && *s && *s != ' '))
524 *p++ = *(s-1);
526 /* wipe out trailing garbage */
527 while (p != end)
528 *p++ = '\0';
531 EXPORT_SYMBOL(ide_fixstring);
534 * Needed for PCI irq sharing
536 int drive_is_ready (ide_drive_t *drive)
538 ide_hwif_t *hwif = HWIF(drive);
539 u8 stat = 0;
541 if (drive->waiting_for_dma)
542 return hwif->dma_ops->dma_test_irq(drive);
544 #if 0
545 /* need to guarantee 400ns since last command was issued */
546 udelay(1);
547 #endif
550 * We do a passive status test under shared PCI interrupts on
551 * cards that truly share the ATA side interrupt, but may also share
552 * an interrupt with another pci card/device. We make no assumptions
553 * about possible isa-pnp and pci-pnp issues yet.
555 if (hwif->io_ports.ctl_addr)
556 stat = hwif->tp_ops->read_altstatus(hwif);
557 else
558 /* Note: this may clear a pending IRQ!! */
559 stat = hwif->tp_ops->read_status(hwif);
561 if (stat & BUSY_STAT)
562 /* drive busy: definitely not interrupting */
563 return 0;
565 /* drive ready: *might* be interrupting */
566 return 1;
569 EXPORT_SYMBOL(drive_is_ready);
572 * This routine busy-waits for the drive status to be not "busy".
573 * It then checks the status for all of the "good" bits and none
574 * of the "bad" bits, and if all is okay it returns 0. All other
575 * cases return error -- caller may then invoke ide_error().
577 * This routine should get fixed to not hog the cpu during extra long waits..
578 * That could be done by busy-waiting for the first jiffy or two, and then
579 * setting a timer to wake up at half second intervals thereafter,
580 * until timeout is achieved, before timing out.
582 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
584 ide_hwif_t *hwif = drive->hwif;
585 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
586 unsigned long flags;
587 int i;
588 u8 stat;
590 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
591 stat = tp_ops->read_status(hwif);
593 if (stat & BUSY_STAT) {
594 local_irq_set(flags);
595 timeout += jiffies;
596 while ((stat = tp_ops->read_status(hwif)) & BUSY_STAT) {
597 if (time_after(jiffies, timeout)) {
599 * One last read after the timeout in case
600 * heavy interrupt load made us not make any
601 * progress during the timeout..
603 stat = tp_ops->read_status(hwif);
604 if (!(stat & BUSY_STAT))
605 break;
607 local_irq_restore(flags);
608 *rstat = stat;
609 return -EBUSY;
612 local_irq_restore(flags);
615 * Allow status to settle, then read it again.
616 * A few rare drives vastly violate the 400ns spec here,
617 * so we'll wait up to 10usec for a "good" status
618 * rather than expensively fail things immediately.
619 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
621 for (i = 0; i < 10; i++) {
622 udelay(1);
623 stat = tp_ops->read_status(hwif);
625 if (OK_STAT(stat, good, bad)) {
626 *rstat = stat;
627 return 0;
630 *rstat = stat;
631 return -EFAULT;
635 * In case of error returns error value after doing "*startstop = ide_error()".
636 * The caller should return the updated value of "startstop" in this case,
637 * "startstop" is unchanged when the function returns 0.
639 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
641 int err;
642 u8 stat;
644 /* bail early if we've exceeded max_failures */
645 if (drive->max_failures && (drive->failures > drive->max_failures)) {
646 *startstop = ide_stopped;
647 return 1;
650 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
652 if (err) {
653 char *s = (err == -EBUSY) ? "status timeout" : "status error";
654 *startstop = ide_error(drive, s, stat);
657 return err;
660 EXPORT_SYMBOL(ide_wait_stat);
663 * ide_in_drive_list - look for drive in black/white list
664 * @id: drive identifier
665 * @drive_table: list to inspect
667 * Look for a drive in the blacklist and the whitelist tables
668 * Returns 1 if the drive is found in the table.
671 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
673 for ( ; drive_table->id_model; drive_table++)
674 if ((!strcmp(drive_table->id_model, id->model)) &&
675 (!drive_table->id_firmware ||
676 strstr(id->fw_rev, drive_table->id_firmware)))
677 return 1;
678 return 0;
681 EXPORT_SYMBOL_GPL(ide_in_drive_list);
684 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
685 * We list them here and depend on the device side cable detection for them.
687 * Some optical devices with the buggy firmwares have the same problem.
689 static const struct drive_list_entry ivb_list[] = {
690 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
691 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
692 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
693 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
694 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
695 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
696 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
697 { NULL , NULL }
701 * All hosts that use the 80c ribbon must use!
702 * The name is derived from upper byte of word 93 and the 80c ribbon.
704 u8 eighty_ninty_three (ide_drive_t *drive)
706 ide_hwif_t *hwif = drive->hwif;
707 struct hd_driveid *id = drive->id;
708 int ivb = ide_in_drive_list(id, ivb_list);
710 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
711 return 1;
713 if (ivb)
714 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
715 drive->name);
717 if (ide_dev_is_sata(id) && !ivb)
718 return 1;
720 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
721 goto no_80w;
724 * FIXME:
725 * - change master/slave IDENTIFY order
726 * - force bit13 (80c cable present) check also for !ivb devices
727 * (unless the slave device is pre-ATA3)
729 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
730 return 1;
732 no_80w:
733 if (drive->udma33_warned == 1)
734 return 0;
736 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
737 "limiting max speed to UDMA33\n",
738 drive->name,
739 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
741 drive->udma33_warned = 1;
743 return 0;
746 int ide_driveid_update(ide_drive_t *drive)
748 ide_hwif_t *hwif = drive->hwif;
749 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
750 struct hd_driveid *id;
751 unsigned long timeout, flags;
752 u8 stat;
755 * Re-read drive->id for possible DMA mode
756 * change (copied from ide-probe.c)
759 SELECT_MASK(drive, 1);
760 tp_ops->set_irq(hwif, 0);
761 msleep(50);
762 tp_ops->exec_command(hwif, WIN_IDENTIFY);
763 timeout = jiffies + WAIT_WORSTCASE;
764 do {
765 if (time_after(jiffies, timeout)) {
766 SELECT_MASK(drive, 0);
767 return 0; /* drive timed-out */
770 msleep(50); /* give drive a breather */
771 stat = tp_ops->read_altstatus(hwif);
772 } while (stat & BUSY_STAT);
774 msleep(50); /* wait for IRQ and DRQ_STAT */
775 stat = tp_ops->read_status(hwif);
777 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
778 SELECT_MASK(drive, 0);
779 printk("%s: CHECK for good STATUS\n", drive->name);
780 return 0;
782 local_irq_save(flags);
783 SELECT_MASK(drive, 0);
784 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
785 if (!id) {
786 local_irq_restore(flags);
787 return 0;
789 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
790 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
791 local_irq_enable();
792 local_irq_restore(flags);
793 ide_fix_driveid(id);
794 if (id) {
795 drive->id->dma_ultra = id->dma_ultra;
796 drive->id->dma_mword = id->dma_mword;
797 drive->id->dma_1word = id->dma_1word;
798 /* anything more ? */
799 kfree(id);
801 if (drive->using_dma && ide_id_dma_bug(drive))
802 ide_dma_off(drive);
805 return 1;
808 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
810 ide_hwif_t *hwif = drive->hwif;
811 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
812 int error = 0;
813 u8 stat;
814 ide_task_t task;
816 #ifdef CONFIG_BLK_DEV_IDEDMA
817 if (hwif->dma_ops) /* check if host supports DMA */
818 hwif->dma_ops->dma_host_set(drive, 0);
819 #endif
821 /* Skip setting PIO flow-control modes on pre-EIDE drives */
822 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
823 goto skip;
826 * Don't use ide_wait_cmd here - it will
827 * attempt to set_geometry and recalibrate,
828 * but for some reason these don't work at
829 * this point (lost interrupt).
832 * Select the drive, and issue the SETFEATURES command
834 disable_irq_nosync(hwif->irq);
837 * FIXME: we race against the running IRQ here if
838 * this is called from non IRQ context. If we use
839 * disable_irq() we hang on the error path. Work
840 * is needed.
843 udelay(1);
844 SELECT_DRIVE(drive);
845 SELECT_MASK(drive, 0);
846 udelay(1);
847 tp_ops->set_irq(hwif, 0);
849 memset(&task, 0, sizeof(task));
850 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
851 task.tf.feature = SETFEATURES_XFER;
852 task.tf.nsect = speed;
854 tp_ops->tf_load(drive, &task);
856 tp_ops->exec_command(hwif, WIN_SETFEATURES);
858 if (drive->quirk_list == 2)
859 tp_ops->set_irq(hwif, 1);
861 error = __ide_wait_stat(drive, drive->ready_stat,
862 BUSY_STAT|DRQ_STAT|ERR_STAT,
863 WAIT_CMD, &stat);
865 SELECT_MASK(drive, 0);
867 enable_irq(hwif->irq);
869 if (error) {
870 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
871 return error;
874 drive->id->dma_ultra &= ~0xFF00;
875 drive->id->dma_mword &= ~0x0F00;
876 drive->id->dma_1word &= ~0x0F00;
878 skip:
879 #ifdef CONFIG_BLK_DEV_IDEDMA
880 if (speed >= XFER_SW_DMA_0 && drive->using_dma)
881 hwif->dma_ops->dma_host_set(drive, 1);
882 else if (hwif->dma_ops) /* check if host supports DMA */
883 ide_dma_off_quietly(drive);
884 #endif
886 switch(speed) {
887 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
888 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
889 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
890 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
891 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
892 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
893 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
894 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
895 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
896 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
897 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
898 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
899 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
900 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
901 default: break;
903 if (!drive->init_speed)
904 drive->init_speed = speed;
905 drive->current_speed = speed;
906 return error;
910 * This should get invoked any time we exit the driver to
911 * wait for an interrupt response from a drive. handler() points
912 * at the appropriate code to handle the next interrupt, and a
913 * timer is started to prevent us from waiting forever in case
914 * something goes wrong (see the ide_timer_expiry() handler later on).
916 * See also ide_execute_command
918 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
919 unsigned int timeout, ide_expiry_t *expiry)
921 ide_hwgroup_t *hwgroup = HWGROUP(drive);
923 BUG_ON(hwgroup->handler);
924 hwgroup->handler = handler;
925 hwgroup->expiry = expiry;
926 hwgroup->timer.expires = jiffies + timeout;
927 hwgroup->req_gen_timer = hwgroup->req_gen;
928 add_timer(&hwgroup->timer);
931 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
932 unsigned int timeout, ide_expiry_t *expiry)
934 unsigned long flags;
935 spin_lock_irqsave(&ide_lock, flags);
936 __ide_set_handler(drive, handler, timeout, expiry);
937 spin_unlock_irqrestore(&ide_lock, flags);
940 EXPORT_SYMBOL(ide_set_handler);
943 * ide_execute_command - execute an IDE command
944 * @drive: IDE drive to issue the command against
945 * @command: command byte to write
946 * @handler: handler for next phase
947 * @timeout: timeout for command
948 * @expiry: handler to run on timeout
950 * Helper function to issue an IDE command. This handles the
951 * atomicity requirements, command timing and ensures that the
952 * handler and IRQ setup do not race. All IDE command kick off
953 * should go via this function or do equivalent locking.
956 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
957 unsigned timeout, ide_expiry_t *expiry)
959 unsigned long flags;
960 ide_hwif_t *hwif = HWIF(drive);
962 spin_lock_irqsave(&ide_lock, flags);
963 __ide_set_handler(drive, handler, timeout, expiry);
964 hwif->tp_ops->exec_command(hwif, cmd);
966 * Drive takes 400nS to respond, we must avoid the IRQ being
967 * serviced before that.
969 * FIXME: we could skip this delay with care on non shared devices
971 ndelay(400);
972 spin_unlock_irqrestore(&ide_lock, flags);
974 EXPORT_SYMBOL(ide_execute_command);
976 void ide_execute_pkt_cmd(ide_drive_t *drive)
978 ide_hwif_t *hwif = drive->hwif;
979 unsigned long flags;
981 spin_lock_irqsave(&ide_lock, flags);
982 hwif->tp_ops->exec_command(hwif, WIN_PACKETCMD);
983 ndelay(400);
984 spin_unlock_irqrestore(&ide_lock, flags);
986 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
988 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
990 struct request *rq = drive->hwif->hwgroup->rq;
992 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
993 ide_end_request(drive, err ? err : 1, 0);
996 /* needed below */
997 static ide_startstop_t do_reset1 (ide_drive_t *, int);
1000 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1001 * during an atapi drive reset operation. If the drive has not yet responded,
1002 * and we have not yet hit our maximum waiting time, then the timer is restarted
1003 * for another 50ms.
1005 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1007 ide_hwif_t *hwif = drive->hwif;
1008 ide_hwgroup_t *hwgroup = hwif->hwgroup;
1009 u8 stat;
1011 SELECT_DRIVE(drive);
1012 udelay (10);
1013 stat = hwif->tp_ops->read_status(hwif);
1015 if (OK_STAT(stat, 0, BUSY_STAT))
1016 printk("%s: ATAPI reset complete\n", drive->name);
1017 else {
1018 if (time_before(jiffies, hwgroup->poll_timeout)) {
1019 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1020 /* continue polling */
1021 return ide_started;
1023 /* end of polling */
1024 hwgroup->polling = 0;
1025 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1026 drive->name, stat);
1027 /* do it the old fashioned way */
1028 return do_reset1(drive, 1);
1030 /* done polling */
1031 hwgroup->polling = 0;
1032 ide_complete_drive_reset(drive, 0);
1033 return ide_stopped;
1037 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1038 * during an ide reset operation. If the drives have not yet responded,
1039 * and we have not yet hit our maximum waiting time, then the timer is restarted
1040 * for another 50ms.
1042 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1044 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1045 ide_hwif_t *hwif = HWIF(drive);
1046 const struct ide_port_ops *port_ops = hwif->port_ops;
1047 u8 tmp;
1048 int err = 0;
1050 if (port_ops && port_ops->reset_poll) {
1051 err = port_ops->reset_poll(drive);
1052 if (err) {
1053 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1054 hwif->name, drive->name);
1055 goto out;
1059 tmp = hwif->tp_ops->read_status(hwif);
1061 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1062 if (time_before(jiffies, hwgroup->poll_timeout)) {
1063 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1064 /* continue polling */
1065 return ide_started;
1067 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1068 drive->failures++;
1069 err = -EIO;
1070 } else {
1071 printk("%s: reset: ", hwif->name);
1072 tmp = ide_read_error(drive);
1074 if (tmp == 1) {
1075 printk("success\n");
1076 drive->failures = 0;
1077 } else {
1078 drive->failures++;
1079 printk("master: ");
1080 switch (tmp & 0x7f) {
1081 case 1: printk("passed");
1082 break;
1083 case 2: printk("formatter device error");
1084 break;
1085 case 3: printk("sector buffer error");
1086 break;
1087 case 4: printk("ECC circuitry error");
1088 break;
1089 case 5: printk("controlling MPU error");
1090 break;
1091 default:printk("error (0x%02x?)", tmp);
1093 if (tmp & 0x80)
1094 printk("; slave: failed");
1095 printk("\n");
1096 err = -EIO;
1099 out:
1100 hwgroup->polling = 0; /* done polling */
1101 ide_complete_drive_reset(drive, err);
1102 return ide_stopped;
1105 static void ide_disk_pre_reset(ide_drive_t *drive)
1107 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1109 drive->special.all = 0;
1110 drive->special.b.set_geometry = legacy;
1111 drive->special.b.recalibrate = legacy;
1112 drive->mult_count = 0;
1113 if (!drive->keep_settings && !drive->using_dma)
1114 drive->mult_req = 0;
1115 if (drive->mult_req != drive->mult_count)
1116 drive->special.b.set_multmode = 1;
1119 static void pre_reset(ide_drive_t *drive)
1121 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1123 if (drive->media == ide_disk)
1124 ide_disk_pre_reset(drive);
1125 else
1126 drive->post_reset = 1;
1128 if (drive->using_dma) {
1129 if (drive->crc_count)
1130 ide_check_dma_crc(drive);
1131 else
1132 ide_dma_off(drive);
1135 if (!drive->keep_settings) {
1136 if (!drive->using_dma) {
1137 drive->unmask = 0;
1138 drive->io_32bit = 0;
1140 return;
1143 if (port_ops && port_ops->pre_reset)
1144 port_ops->pre_reset(drive);
1146 if (drive->current_speed != 0xff)
1147 drive->desired_speed = drive->current_speed;
1148 drive->current_speed = 0xff;
1152 * do_reset1() attempts to recover a confused drive by resetting it.
1153 * Unfortunately, resetting a disk drive actually resets all devices on
1154 * the same interface, so it can really be thought of as resetting the
1155 * interface rather than resetting the drive.
1157 * ATAPI devices have their own reset mechanism which allows them to be
1158 * individually reset without clobbering other devices on the same interface.
1160 * Unfortunately, the IDE interface does not generate an interrupt to let
1161 * us know when the reset operation has finished, so we must poll for this.
1162 * Equally poor, though, is the fact that this may a very long time to complete,
1163 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1164 * we set a timer to poll at 50ms intervals.
1166 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1168 unsigned int unit;
1169 unsigned long flags;
1170 ide_hwif_t *hwif;
1171 ide_hwgroup_t *hwgroup;
1172 struct ide_io_ports *io_ports;
1173 const struct ide_tp_ops *tp_ops;
1174 const struct ide_port_ops *port_ops;
1176 spin_lock_irqsave(&ide_lock, flags);
1177 hwif = HWIF(drive);
1178 hwgroup = HWGROUP(drive);
1180 io_ports = &hwif->io_ports;
1182 tp_ops = hwif->tp_ops;
1184 /* We must not reset with running handlers */
1185 BUG_ON(hwgroup->handler != NULL);
1187 /* For an ATAPI device, first try an ATAPI SRST. */
1188 if (drive->media != ide_disk && !do_not_try_atapi) {
1189 pre_reset(drive);
1190 SELECT_DRIVE(drive);
1191 udelay (20);
1192 tp_ops->exec_command(hwif, WIN_SRST);
1193 ndelay(400);
1194 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1195 hwgroup->polling = 1;
1196 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1197 spin_unlock_irqrestore(&ide_lock, flags);
1198 return ide_started;
1202 * First, reset any device state data we were maintaining
1203 * for any of the drives on this interface.
1205 for (unit = 0; unit < MAX_DRIVES; ++unit)
1206 pre_reset(&hwif->drives[unit]);
1208 if (io_ports->ctl_addr == 0) {
1209 spin_unlock_irqrestore(&ide_lock, flags);
1210 ide_complete_drive_reset(drive, -ENXIO);
1211 return ide_stopped;
1215 * Note that we also set nIEN while resetting the device,
1216 * to mask unwanted interrupts from the interface during the reset.
1217 * However, due to the design of PC hardware, this will cause an
1218 * immediate interrupt due to the edge transition it produces.
1219 * This single interrupt gives us a "fast poll" for drives that
1220 * recover from reset very quickly, saving us the first 50ms wait time.
1222 * TODO: add ->softreset method and stop abusing ->set_irq
1224 /* set SRST and nIEN */
1225 tp_ops->set_irq(hwif, 4);
1226 /* more than enough time */
1227 udelay(10);
1228 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1229 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1230 /* more than enough time */
1231 udelay(10);
1232 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1233 hwgroup->polling = 1;
1234 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1237 * Some weird controller like resetting themselves to a strange
1238 * state when the disks are reset this way. At least, the Winbond
1239 * 553 documentation says that
1241 port_ops = hwif->port_ops;
1242 if (port_ops && port_ops->resetproc)
1243 port_ops->resetproc(drive);
1245 spin_unlock_irqrestore(&ide_lock, flags);
1246 return ide_started;
1250 * ide_do_reset() is the entry point to the drive/interface reset code.
1253 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1255 return do_reset1(drive, 0);
1258 EXPORT_SYMBOL(ide_do_reset);
1261 * ide_wait_not_busy() waits for the currently selected device on the hwif
1262 * to report a non-busy status, see comments in ide_probe_port().
1264 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1266 u8 stat = 0;
1268 while(timeout--) {
1270 * Turn this into a schedule() sleep once I'm sure
1271 * about locking issues (2.5 work ?).
1273 mdelay(1);
1274 stat = hwif->tp_ops->read_status(hwif);
1275 if ((stat & BUSY_STAT) == 0)
1276 return 0;
1278 * Assume a value of 0xff means nothing is connected to
1279 * the interface and it doesn't implement the pull-down
1280 * resistor on D7.
1282 if (stat == 0xff)
1283 return -ENODEV;
1284 touch_softlockup_watchdog();
1285 touch_nmi_watchdog();
1287 return -EBUSY;
1290 EXPORT_SYMBOL_GPL(ide_wait_not_busy);