2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct cfq_ttime ttime
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending priority requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors
;
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
174 /* This is per cgroup per device grouping structure */
176 /* group service_tree member */
177 struct rb_node rb_node
;
179 /* group service_tree key */
182 unsigned int new_weight
;
185 /* number of cfqq currently on this group */
189 * Per group busy queues average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
194 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
203 struct cfq_rb_root service_trees
[2][3];
204 struct cfq_rb_root service_tree_idle
;
206 unsigned long saved_workload_slice
;
207 enum wl_type_t saved_workload
;
208 enum wl_prio_t saved_serving_prio
;
209 struct blkio_group blkg
;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node
;
214 /* number of requests that are on the dispatch list or inside driver */
216 struct cfq_ttime ttime
;
220 * Per block device queue structure
223 struct request_queue
*queue
;
224 /* Root service tree for cfq_groups */
225 struct cfq_rb_root grp_service_tree
;
226 struct cfq_group root_group
;
229 * The priority currently being served
231 enum wl_prio_t serving_prio
;
232 enum wl_type_t serving_type
;
233 unsigned long workload_expires
;
234 struct cfq_group
*serving_group
;
237 * Each priority tree is sorted by next_request position. These
238 * trees are used when determining if two or more queues are
239 * interleaving requests (see cfq_close_cooperator).
241 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
243 unsigned int busy_queues
;
244 unsigned int busy_sync_queues
;
250 * queue-depth detection
256 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
257 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
260 int hw_tag_est_depth
;
261 unsigned int hw_tag_samples
;
264 * idle window management
266 struct timer_list idle_slice_timer
;
267 struct work_struct unplug_work
;
269 struct cfq_queue
*active_queue
;
270 struct cfq_io_context
*active_cic
;
273 * async queue for each priority case
275 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
276 struct cfq_queue
*async_idle_cfqq
;
278 sector_t last_position
;
281 * tunables, see top of file
283 unsigned int cfq_quantum
;
284 unsigned int cfq_fifo_expire
[2];
285 unsigned int cfq_back_penalty
;
286 unsigned int cfq_back_max
;
287 unsigned int cfq_slice
[2];
288 unsigned int cfq_slice_async_rq
;
289 unsigned int cfq_slice_idle
;
290 unsigned int cfq_group_idle
;
291 unsigned int cfq_latency
;
293 unsigned int cic_index
;
294 struct list_head cic_list
;
297 * Fallback dummy cfqq for extreme OOM conditions
299 struct cfq_queue oom_cfqq
;
301 unsigned long last_delayed_sync
;
303 /* List of cfq groups being managed on this device*/
304 struct hlist_head cfqg_list
;
306 /* Number of groups which are on blkcg->blkg_list */
307 unsigned int nr_blkcg_linked_grps
;
310 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
312 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
319 if (prio
== IDLE_WORKLOAD
)
320 return &cfqg
->service_tree_idle
;
322 return &cfqg
->service_trees
[prio
][type
];
325 enum cfqq_state_flags
{
326 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
327 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
328 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
329 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
330 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
331 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
332 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
333 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
334 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
335 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
336 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
337 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
338 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
341 #define CFQ_CFQQ_FNS(name) \
342 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
344 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
346 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
348 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
350 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
352 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
356 CFQ_CFQQ_FNS(wait_request
);
357 CFQ_CFQQ_FNS(must_dispatch
);
358 CFQ_CFQQ_FNS(must_alloc_slice
);
359 CFQ_CFQQ_FNS(fifo_expire
);
360 CFQ_CFQQ_FNS(idle_window
);
361 CFQ_CFQQ_FNS(prio_changed
);
362 CFQ_CFQQ_FNS(slice_new
);
365 CFQ_CFQQ_FNS(split_coop
);
367 CFQ_CFQQ_FNS(wait_busy
);
370 #ifdef CONFIG_CFQ_GROUP_IOSCHED
371 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
373 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
374 blkg_path(&(cfqq)->cfqg->blkg), ##args)
376 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
378 blkg_path(&(cfqg)->blkg), ##args) \
381 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
383 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
385 #define cfq_log(cfqd, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
388 /* Traverses through cfq group service trees */
389 #define for_each_cfqg_st(cfqg, i, j, st) \
390 for (i = 0; i <= IDLE_WORKLOAD; i++) \
391 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
392 : &cfqg->service_tree_idle; \
393 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
394 (i == IDLE_WORKLOAD && j == 0); \
395 j++, st = i < IDLE_WORKLOAD ? \
396 &cfqg->service_trees[i][j]: NULL) \
398 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
399 struct cfq_ttime
*ttime
, bool group_idle
)
402 if (!sample_valid(ttime
->ttime_samples
))
405 slice
= cfqd
->cfq_group_idle
;
407 slice
= cfqd
->cfq_slice_idle
;
408 return ttime
->ttime_mean
> slice
;
411 static inline bool iops_mode(struct cfq_data
*cfqd
)
414 * If we are not idling on queues and it is a NCQ drive, parallel
415 * execution of requests is on and measuring time is not possible
416 * in most of the cases until and unless we drive shallower queue
417 * depths and that becomes a performance bottleneck. In such cases
418 * switch to start providing fairness in terms of number of IOs.
420 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
426 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
428 if (cfq_class_idle(cfqq
))
429 return IDLE_WORKLOAD
;
430 if (cfq_class_rt(cfqq
))
436 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
438 if (!cfq_cfqq_sync(cfqq
))
439 return ASYNC_WORKLOAD
;
440 if (!cfq_cfqq_idle_window(cfqq
))
441 return SYNC_NOIDLE_WORKLOAD
;
442 return SYNC_WORKLOAD
;
445 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
446 struct cfq_data
*cfqd
,
447 struct cfq_group
*cfqg
)
449 if (wl
== IDLE_WORKLOAD
)
450 return cfqg
->service_tree_idle
.count
;
452 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
453 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
454 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
457 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
458 struct cfq_group
*cfqg
)
460 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
461 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
464 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
465 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
466 struct io_context
*, gfp_t
);
467 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
468 struct io_context
*);
470 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
473 return cic
->cfqq
[is_sync
];
476 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
477 struct cfq_queue
*cfqq
, bool is_sync
)
479 cic
->cfqq
[is_sync
] = cfqq
;
482 #define CIC_DEAD_KEY 1ul
483 #define CIC_DEAD_INDEX_SHIFT 1
485 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
487 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
490 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
492 struct cfq_data
*cfqd
= cic
->key
;
494 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
501 * We regard a request as SYNC, if it's either a read or has the SYNC bit
502 * set (in which case it could also be direct WRITE).
504 static inline bool cfq_bio_sync(struct bio
*bio
)
506 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
510 * scheduler run of queue, if there are requests pending and no one in the
511 * driver that will restart queueing
513 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
515 if (cfqd
->busy_queues
) {
516 cfq_log(cfqd
, "schedule dispatch");
517 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
522 * Scale schedule slice based on io priority. Use the sync time slice only
523 * if a queue is marked sync and has sync io queued. A sync queue with async
524 * io only, should not get full sync slice length.
526 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
529 const int base_slice
= cfqd
->cfq_slice
[sync
];
531 WARN_ON(prio
>= IOPRIO_BE_NR
);
533 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
537 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
539 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
542 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
544 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
546 d
= d
* BLKIO_WEIGHT_DEFAULT
;
547 do_div(d
, cfqg
->weight
);
551 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
553 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
555 min_vdisktime
= vdisktime
;
557 return min_vdisktime
;
560 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
562 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
564 min_vdisktime
= vdisktime
;
566 return min_vdisktime
;
569 static void update_min_vdisktime(struct cfq_rb_root
*st
)
571 struct cfq_group
*cfqg
;
574 cfqg
= rb_entry_cfqg(st
->left
);
575 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
581 * get averaged number of queues of RT/BE priority.
582 * average is updated, with a formula that gives more weight to higher numbers,
583 * to quickly follows sudden increases and decrease slowly
586 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
587 struct cfq_group
*cfqg
, bool rt
)
589 unsigned min_q
, max_q
;
590 unsigned mult
= cfq_hist_divisor
- 1;
591 unsigned round
= cfq_hist_divisor
/ 2;
592 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
594 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
595 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
596 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
598 return cfqg
->busy_queues_avg
[rt
];
601 static inline unsigned
602 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
604 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
606 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
609 static inline unsigned
610 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
612 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
613 if (cfqd
->cfq_latency
) {
615 * interested queues (we consider only the ones with the same
616 * priority class in the cfq group)
618 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
620 unsigned sync_slice
= cfqd
->cfq_slice
[1];
621 unsigned expect_latency
= sync_slice
* iq
;
622 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
624 if (expect_latency
> group_slice
) {
625 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
626 /* scale low_slice according to IO priority
627 * and sync vs async */
629 min(slice
, base_low_slice
* slice
/ sync_slice
);
630 /* the adapted slice value is scaled to fit all iqs
631 * into the target latency */
632 slice
= max(slice
* group_slice
/ expect_latency
,
640 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
642 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
644 cfqq
->slice_start
= jiffies
;
645 cfqq
->slice_end
= jiffies
+ slice
;
646 cfqq
->allocated_slice
= slice
;
647 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
651 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
652 * isn't valid until the first request from the dispatch is activated
653 * and the slice time set.
655 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
657 if (cfq_cfqq_slice_new(cfqq
))
659 if (time_before(jiffies
, cfqq
->slice_end
))
666 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
667 * We choose the request that is closest to the head right now. Distance
668 * behind the head is penalized and only allowed to a certain extent.
670 static struct request
*
671 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
673 sector_t s1
, s2
, d1
= 0, d2
= 0;
674 unsigned long back_max
;
675 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
676 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
677 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
679 if (rq1
== NULL
|| rq1
== rq2
)
684 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
685 return rq_is_sync(rq1
) ? rq1
: rq2
;
687 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
688 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
690 s1
= blk_rq_pos(rq1
);
691 s2
= blk_rq_pos(rq2
);
694 * by definition, 1KiB is 2 sectors
696 back_max
= cfqd
->cfq_back_max
* 2;
699 * Strict one way elevator _except_ in the case where we allow
700 * short backward seeks which are biased as twice the cost of a
701 * similar forward seek.
705 else if (s1
+ back_max
>= last
)
706 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
708 wrap
|= CFQ_RQ1_WRAP
;
712 else if (s2
+ back_max
>= last
)
713 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
715 wrap
|= CFQ_RQ2_WRAP
;
717 /* Found required data */
720 * By doing switch() on the bit mask "wrap" we avoid having to
721 * check two variables for all permutations: --> faster!
724 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
740 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
743 * Since both rqs are wrapped,
744 * start with the one that's further behind head
745 * (--> only *one* back seek required),
746 * since back seek takes more time than forward.
756 * The below is leftmost cache rbtree addon
758 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
760 /* Service tree is empty */
765 root
->left
= rb_first(&root
->rb
);
768 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
773 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
776 root
->left
= rb_first(&root
->rb
);
779 return rb_entry_cfqg(root
->left
);
784 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
790 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
794 rb_erase_init(n
, &root
->rb
);
799 * would be nice to take fifo expire time into account as well
801 static struct request
*
802 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
803 struct request
*last
)
805 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
806 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
807 struct request
*next
= NULL
, *prev
= NULL
;
809 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
812 prev
= rb_entry_rq(rbprev
);
815 next
= rb_entry_rq(rbnext
);
817 rbnext
= rb_first(&cfqq
->sort_list
);
818 if (rbnext
&& rbnext
!= &last
->rb_node
)
819 next
= rb_entry_rq(rbnext
);
822 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
825 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
826 struct cfq_queue
*cfqq
)
829 * just an approximation, should be ok.
831 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
832 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
836 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
838 return cfqg
->vdisktime
- st
->min_vdisktime
;
842 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
844 struct rb_node
**node
= &st
->rb
.rb_node
;
845 struct rb_node
*parent
= NULL
;
846 struct cfq_group
*__cfqg
;
847 s64 key
= cfqg_key(st
, cfqg
);
850 while (*node
!= NULL
) {
852 __cfqg
= rb_entry_cfqg(parent
);
854 if (key
< cfqg_key(st
, __cfqg
))
855 node
= &parent
->rb_left
;
857 node
= &parent
->rb_right
;
863 st
->left
= &cfqg
->rb_node
;
865 rb_link_node(&cfqg
->rb_node
, parent
, node
);
866 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
870 cfq_update_group_weight(struct cfq_group
*cfqg
)
872 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
873 if (cfqg
->needs_update
) {
874 cfqg
->weight
= cfqg
->new_weight
;
875 cfqg
->needs_update
= false;
880 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
882 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
884 cfq_update_group_weight(cfqg
);
885 __cfq_group_service_tree_add(st
, cfqg
);
886 st
->total_weight
+= cfqg
->weight
;
890 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
892 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
893 struct cfq_group
*__cfqg
;
897 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
901 * Currently put the group at the end. Later implement something
902 * so that groups get lesser vtime based on their weights, so that
903 * if group does not loose all if it was not continuously backlogged.
905 n
= rb_last(&st
->rb
);
907 __cfqg
= rb_entry_cfqg(n
);
908 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
910 cfqg
->vdisktime
= st
->min_vdisktime
;
911 cfq_group_service_tree_add(st
, cfqg
);
915 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
917 st
->total_weight
-= cfqg
->weight
;
918 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
919 cfq_rb_erase(&cfqg
->rb_node
, st
);
923 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
925 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
927 BUG_ON(cfqg
->nr_cfqq
< 1);
930 /* If there are other cfq queues under this group, don't delete it */
934 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
935 cfq_group_service_tree_del(st
, cfqg
);
936 cfqg
->saved_workload_slice
= 0;
937 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
940 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
941 unsigned int *unaccounted_time
)
943 unsigned int slice_used
;
946 * Queue got expired before even a single request completed or
947 * got expired immediately after first request completion.
949 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
951 * Also charge the seek time incurred to the group, otherwise
952 * if there are mutiple queues in the group, each can dispatch
953 * a single request on seeky media and cause lots of seek time
954 * and group will never know it.
956 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
959 slice_used
= jiffies
- cfqq
->slice_start
;
960 if (slice_used
> cfqq
->allocated_slice
) {
961 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
962 slice_used
= cfqq
->allocated_slice
;
964 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
965 *unaccounted_time
+= cfqq
->slice_start
-
966 cfqq
->dispatch_start
;
972 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
973 struct cfq_queue
*cfqq
)
975 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
976 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
977 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
978 - cfqg
->service_tree_idle
.count
;
981 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
984 charge
= cfqq
->slice_dispatch
;
985 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
986 charge
= cfqq
->allocated_slice
;
988 /* Can't update vdisktime while group is on service tree */
989 cfq_group_service_tree_del(st
, cfqg
);
990 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
991 /* If a new weight was requested, update now, off tree */
992 cfq_group_service_tree_add(st
, cfqg
);
994 /* This group is being expired. Save the context */
995 if (time_after(cfqd
->workload_expires
, jiffies
)) {
996 cfqg
->saved_workload_slice
= cfqd
->workload_expires
998 cfqg
->saved_workload
= cfqd
->serving_type
;
999 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
1001 cfqg
->saved_workload_slice
= 0;
1003 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1005 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1006 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1007 used_sl
, cfqq
->slice_dispatch
, charge
,
1008 iops_mode(cfqd
), cfqq
->nr_sectors
);
1009 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
,
1011 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
1014 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1015 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
1018 return container_of(blkg
, struct cfq_group
, blkg
);
1022 static void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
1023 unsigned int weight
)
1025 struct cfq_group
*cfqg
= cfqg_of_blkg(blkg
);
1026 cfqg
->new_weight
= weight
;
1027 cfqg
->needs_update
= true;
1030 static void cfq_init_add_cfqg_lists(struct cfq_data
*cfqd
,
1031 struct cfq_group
*cfqg
, struct blkio_cgroup
*blkcg
)
1033 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1034 unsigned int major
, minor
;
1037 * Add group onto cgroup list. It might happen that bdi->dev is
1038 * not initialized yet. Initialize this new group without major
1039 * and minor info and this info will be filled in once a new thread
1043 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1044 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1045 (void *)cfqd
, MKDEV(major
, minor
));
1047 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1050 cfqd
->nr_blkcg_linked_grps
++;
1051 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1053 /* Add group on cfqd list */
1054 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1058 * Should be called from sleepable context. No request queue lock as per
1059 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1060 * from sleepable context.
1062 static struct cfq_group
* cfq_alloc_cfqg(struct cfq_data
*cfqd
)
1064 struct cfq_group
*cfqg
= NULL
;
1066 struct cfq_rb_root
*st
;
1068 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1072 for_each_cfqg_st(cfqg
, i
, j
, st
)
1074 RB_CLEAR_NODE(&cfqg
->rb_node
);
1076 cfqg
->ttime
.last_end_request
= jiffies
;
1079 * Take the initial reference that will be released on destroy
1080 * This can be thought of a joint reference by cgroup and
1081 * elevator which will be dropped by either elevator exit
1082 * or cgroup deletion path depending on who is exiting first.
1086 ret
= blkio_alloc_blkg_stats(&cfqg
->blkg
);
1095 static struct cfq_group
*
1096 cfq_find_cfqg(struct cfq_data
*cfqd
, struct blkio_cgroup
*blkcg
)
1098 struct cfq_group
*cfqg
= NULL
;
1100 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1101 unsigned int major
, minor
;
1104 * This is the common case when there are no blkio cgroups.
1105 * Avoid lookup in this case
1107 if (blkcg
== &blkio_root_cgroup
)
1108 cfqg
= &cfqd
->root_group
;
1110 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1112 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1113 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1114 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1121 * Search for the cfq group current task belongs to. request_queue lock must
1124 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1126 struct blkio_cgroup
*blkcg
;
1127 struct cfq_group
*cfqg
= NULL
, *__cfqg
= NULL
;
1128 struct request_queue
*q
= cfqd
->queue
;
1131 blkcg
= task_blkio_cgroup(current
);
1132 cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1139 * Need to allocate a group. Allocation of group also needs allocation
1140 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1141 * we need to drop rcu lock and queue_lock before we call alloc.
1143 * Not taking any queue reference here and assuming that queue is
1144 * around by the time we return. CFQ queue allocation code does
1145 * the same. It might be racy though.
1149 spin_unlock_irq(q
->queue_lock
);
1151 cfqg
= cfq_alloc_cfqg(cfqd
);
1153 spin_lock_irq(q
->queue_lock
);
1156 blkcg
= task_blkio_cgroup(current
);
1159 * If some other thread already allocated the group while we were
1160 * not holding queue lock, free up the group
1162 __cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1171 cfqg
= &cfqd
->root_group
;
1173 cfq_init_add_cfqg_lists(cfqd
, cfqg
, blkcg
);
1178 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1184 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1186 /* Currently, all async queues are mapped to root group */
1187 if (!cfq_cfqq_sync(cfqq
))
1188 cfqg
= &cfqq
->cfqd
->root_group
;
1191 /* cfqq reference on cfqg */
1195 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1197 struct cfq_rb_root
*st
;
1200 BUG_ON(cfqg
->ref
<= 0);
1204 for_each_cfqg_st(cfqg
, i
, j
, st
)
1205 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1206 free_percpu(cfqg
->blkg
.stats_cpu
);
1210 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1212 /* Something wrong if we are trying to remove same group twice */
1213 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1215 hlist_del_init(&cfqg
->cfqd_node
);
1217 BUG_ON(cfqd
->nr_blkcg_linked_grps
<= 0);
1218 cfqd
->nr_blkcg_linked_grps
--;
1221 * Put the reference taken at the time of creation so that when all
1222 * queues are gone, group can be destroyed.
1227 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1229 struct hlist_node
*pos
, *n
;
1230 struct cfq_group
*cfqg
;
1232 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1234 * If cgroup removal path got to blk_group first and removed
1235 * it from cgroup list, then it will take care of destroying
1238 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1239 cfq_destroy_cfqg(cfqd
, cfqg
);
1244 * Blk cgroup controller notification saying that blkio_group object is being
1245 * delinked as associated cgroup object is going away. That also means that
1246 * no new IO will come in this group. So get rid of this group as soon as
1247 * any pending IO in the group is finished.
1249 * This function is called under rcu_read_lock(). key is the rcu protected
1250 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1253 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1254 * it should not be NULL as even if elevator was exiting, cgroup deltion
1255 * path got to it first.
1257 static void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1259 unsigned long flags
;
1260 struct cfq_data
*cfqd
= key
;
1262 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1263 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1264 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1267 #else /* GROUP_IOSCHED */
1268 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1270 return &cfqd
->root_group
;
1273 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1279 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1283 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1284 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1286 #endif /* GROUP_IOSCHED */
1289 * The cfqd->service_trees holds all pending cfq_queue's that have
1290 * requests waiting to be processed. It is sorted in the order that
1291 * we will service the queues.
1293 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1296 struct rb_node
**p
, *parent
;
1297 struct cfq_queue
*__cfqq
;
1298 unsigned long rb_key
;
1299 struct cfq_rb_root
*service_tree
;
1303 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1305 if (cfq_class_idle(cfqq
)) {
1306 rb_key
= CFQ_IDLE_DELAY
;
1307 parent
= rb_last(&service_tree
->rb
);
1308 if (parent
&& parent
!= &cfqq
->rb_node
) {
1309 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1310 rb_key
+= __cfqq
->rb_key
;
1313 } else if (!add_front
) {
1315 * Get our rb key offset. Subtract any residual slice
1316 * value carried from last service. A negative resid
1317 * count indicates slice overrun, and this should position
1318 * the next service time further away in the tree.
1320 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1321 rb_key
-= cfqq
->slice_resid
;
1322 cfqq
->slice_resid
= 0;
1325 __cfqq
= cfq_rb_first(service_tree
);
1326 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1329 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1332 * same position, nothing more to do
1334 if (rb_key
== cfqq
->rb_key
&&
1335 cfqq
->service_tree
== service_tree
)
1338 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1339 cfqq
->service_tree
= NULL
;
1344 cfqq
->service_tree
= service_tree
;
1345 p
= &service_tree
->rb
.rb_node
;
1350 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1353 * sort by key, that represents service time.
1355 if (time_before(rb_key
, __cfqq
->rb_key
))
1358 n
= &(*p
)->rb_right
;
1366 service_tree
->left
= &cfqq
->rb_node
;
1368 cfqq
->rb_key
= rb_key
;
1369 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1370 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1371 service_tree
->count
++;
1372 if (add_front
|| !new_cfqq
)
1374 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1377 static struct cfq_queue
*
1378 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1379 sector_t sector
, struct rb_node
**ret_parent
,
1380 struct rb_node
***rb_link
)
1382 struct rb_node
**p
, *parent
;
1383 struct cfq_queue
*cfqq
= NULL
;
1391 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1394 * Sort strictly based on sector. Smallest to the left,
1395 * largest to the right.
1397 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1398 n
= &(*p
)->rb_right
;
1399 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1407 *ret_parent
= parent
;
1413 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1415 struct rb_node
**p
, *parent
;
1416 struct cfq_queue
*__cfqq
;
1419 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1420 cfqq
->p_root
= NULL
;
1423 if (cfq_class_idle(cfqq
))
1428 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1429 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1430 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1432 rb_link_node(&cfqq
->p_node
, parent
, p
);
1433 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1435 cfqq
->p_root
= NULL
;
1439 * Update cfqq's position in the service tree.
1441 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1444 * Resorting requires the cfqq to be on the RR list already.
1446 if (cfq_cfqq_on_rr(cfqq
)) {
1447 cfq_service_tree_add(cfqd
, cfqq
, 0);
1448 cfq_prio_tree_add(cfqd
, cfqq
);
1453 * add to busy list of queues for service, trying to be fair in ordering
1454 * the pending list according to last request service
1456 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1458 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1459 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1460 cfq_mark_cfqq_on_rr(cfqq
);
1461 cfqd
->busy_queues
++;
1462 if (cfq_cfqq_sync(cfqq
))
1463 cfqd
->busy_sync_queues
++;
1465 cfq_resort_rr_list(cfqd
, cfqq
);
1469 * Called when the cfqq no longer has requests pending, remove it from
1472 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1474 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1475 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1476 cfq_clear_cfqq_on_rr(cfqq
);
1478 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1479 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1480 cfqq
->service_tree
= NULL
;
1483 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1484 cfqq
->p_root
= NULL
;
1487 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1488 BUG_ON(!cfqd
->busy_queues
);
1489 cfqd
->busy_queues
--;
1490 if (cfq_cfqq_sync(cfqq
))
1491 cfqd
->busy_sync_queues
--;
1495 * rb tree support functions
1497 static void cfq_del_rq_rb(struct request
*rq
)
1499 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1500 const int sync
= rq_is_sync(rq
);
1502 BUG_ON(!cfqq
->queued
[sync
]);
1503 cfqq
->queued
[sync
]--;
1505 elv_rb_del(&cfqq
->sort_list
, rq
);
1507 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1509 * Queue will be deleted from service tree when we actually
1510 * expire it later. Right now just remove it from prio tree
1514 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1515 cfqq
->p_root
= NULL
;
1520 static void cfq_add_rq_rb(struct request
*rq
)
1522 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1523 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1524 struct request
*prev
;
1526 cfqq
->queued
[rq_is_sync(rq
)]++;
1528 elv_rb_add(&cfqq
->sort_list
, rq
);
1530 if (!cfq_cfqq_on_rr(cfqq
))
1531 cfq_add_cfqq_rr(cfqd
, cfqq
);
1534 * check if this request is a better next-serve candidate
1536 prev
= cfqq
->next_rq
;
1537 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1540 * adjust priority tree position, if ->next_rq changes
1542 if (prev
!= cfqq
->next_rq
)
1543 cfq_prio_tree_add(cfqd
, cfqq
);
1545 BUG_ON(!cfqq
->next_rq
);
1548 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1550 elv_rb_del(&cfqq
->sort_list
, rq
);
1551 cfqq
->queued
[rq_is_sync(rq
)]--;
1552 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1553 rq_data_dir(rq
), rq_is_sync(rq
));
1555 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1556 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1560 static struct request
*
1561 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1563 struct task_struct
*tsk
= current
;
1564 struct cfq_io_context
*cic
;
1565 struct cfq_queue
*cfqq
;
1567 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1571 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1573 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1575 return elv_rb_find(&cfqq
->sort_list
, sector
);
1581 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1583 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1585 cfqd
->rq_in_driver
++;
1586 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1587 cfqd
->rq_in_driver
);
1589 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1592 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1594 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1596 WARN_ON(!cfqd
->rq_in_driver
);
1597 cfqd
->rq_in_driver
--;
1598 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1599 cfqd
->rq_in_driver
);
1602 static void cfq_remove_request(struct request
*rq
)
1604 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1606 if (cfqq
->next_rq
== rq
)
1607 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1609 list_del_init(&rq
->queuelist
);
1612 cfqq
->cfqd
->rq_queued
--;
1613 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1614 rq_data_dir(rq
), rq_is_sync(rq
));
1615 if (rq
->cmd_flags
& REQ_PRIO
) {
1616 WARN_ON(!cfqq
->prio_pending
);
1617 cfqq
->prio_pending
--;
1621 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1624 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1625 struct request
*__rq
;
1627 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1628 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1630 return ELEVATOR_FRONT_MERGE
;
1633 return ELEVATOR_NO_MERGE
;
1636 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1639 if (type
== ELEVATOR_FRONT_MERGE
) {
1640 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1642 cfq_reposition_rq_rb(cfqq
, req
);
1646 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1649 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1650 bio_data_dir(bio
), cfq_bio_sync(bio
));
1654 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1655 struct request
*next
)
1657 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1659 * reposition in fifo if next is older than rq
1661 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1662 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1663 list_move(&rq
->queuelist
, &next
->queuelist
);
1664 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1667 if (cfqq
->next_rq
== next
)
1669 cfq_remove_request(next
);
1670 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1671 rq_data_dir(next
), rq_is_sync(next
));
1674 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1677 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1678 struct cfq_io_context
*cic
;
1679 struct cfq_queue
*cfqq
;
1682 * Disallow merge of a sync bio into an async request.
1684 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1688 * Lookup the cfqq that this bio will be queued with. Allow
1689 * merge only if rq is queued there.
1691 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1695 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1696 return cfqq
== RQ_CFQQ(rq
);
1699 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1701 del_timer(&cfqd
->idle_slice_timer
);
1702 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1705 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1706 struct cfq_queue
*cfqq
)
1709 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1710 cfqd
->serving_prio
, cfqd
->serving_type
);
1711 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1712 cfqq
->slice_start
= 0;
1713 cfqq
->dispatch_start
= jiffies
;
1714 cfqq
->allocated_slice
= 0;
1715 cfqq
->slice_end
= 0;
1716 cfqq
->slice_dispatch
= 0;
1717 cfqq
->nr_sectors
= 0;
1719 cfq_clear_cfqq_wait_request(cfqq
);
1720 cfq_clear_cfqq_must_dispatch(cfqq
);
1721 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1722 cfq_clear_cfqq_fifo_expire(cfqq
);
1723 cfq_mark_cfqq_slice_new(cfqq
);
1725 cfq_del_timer(cfqd
, cfqq
);
1728 cfqd
->active_queue
= cfqq
;
1732 * current cfqq expired its slice (or was too idle), select new one
1735 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1738 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1740 if (cfq_cfqq_wait_request(cfqq
))
1741 cfq_del_timer(cfqd
, cfqq
);
1743 cfq_clear_cfqq_wait_request(cfqq
);
1744 cfq_clear_cfqq_wait_busy(cfqq
);
1747 * If this cfqq is shared between multiple processes, check to
1748 * make sure that those processes are still issuing I/Os within
1749 * the mean seek distance. If not, it may be time to break the
1750 * queues apart again.
1752 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1753 cfq_mark_cfqq_split_coop(cfqq
);
1756 * store what was left of this slice, if the queue idled/timed out
1759 if (cfq_cfqq_slice_new(cfqq
))
1760 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1762 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1763 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1766 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1768 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1769 cfq_del_cfqq_rr(cfqd
, cfqq
);
1771 cfq_resort_rr_list(cfqd
, cfqq
);
1773 if (cfqq
== cfqd
->active_queue
)
1774 cfqd
->active_queue
= NULL
;
1776 if (cfqd
->active_cic
) {
1777 put_io_context(cfqd
->active_cic
->ioc
);
1778 cfqd
->active_cic
= NULL
;
1782 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1784 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1787 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1791 * Get next queue for service. Unless we have a queue preemption,
1792 * we'll simply select the first cfqq in the service tree.
1794 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1796 struct cfq_rb_root
*service_tree
=
1797 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1798 cfqd
->serving_type
);
1800 if (!cfqd
->rq_queued
)
1803 /* There is nothing to dispatch */
1806 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1808 return cfq_rb_first(service_tree
);
1811 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1813 struct cfq_group
*cfqg
;
1814 struct cfq_queue
*cfqq
;
1816 struct cfq_rb_root
*st
;
1818 if (!cfqd
->rq_queued
)
1821 cfqg
= cfq_get_next_cfqg(cfqd
);
1825 for_each_cfqg_st(cfqg
, i
, j
, st
)
1826 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1832 * Get and set a new active queue for service.
1834 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1835 struct cfq_queue
*cfqq
)
1838 cfqq
= cfq_get_next_queue(cfqd
);
1840 __cfq_set_active_queue(cfqd
, cfqq
);
1844 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1847 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1848 return blk_rq_pos(rq
) - cfqd
->last_position
;
1850 return cfqd
->last_position
- blk_rq_pos(rq
);
1853 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1856 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1859 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1860 struct cfq_queue
*cur_cfqq
)
1862 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1863 struct rb_node
*parent
, *node
;
1864 struct cfq_queue
*__cfqq
;
1865 sector_t sector
= cfqd
->last_position
;
1867 if (RB_EMPTY_ROOT(root
))
1871 * First, if we find a request starting at the end of the last
1872 * request, choose it.
1874 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1879 * If the exact sector wasn't found, the parent of the NULL leaf
1880 * will contain the closest sector.
1882 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1883 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1886 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1887 node
= rb_next(&__cfqq
->p_node
);
1889 node
= rb_prev(&__cfqq
->p_node
);
1893 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1894 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1902 * cur_cfqq - passed in so that we don't decide that the current queue is
1903 * closely cooperating with itself.
1905 * So, basically we're assuming that that cur_cfqq has dispatched at least
1906 * one request, and that cfqd->last_position reflects a position on the disk
1907 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1910 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1911 struct cfq_queue
*cur_cfqq
)
1913 struct cfq_queue
*cfqq
;
1915 if (cfq_class_idle(cur_cfqq
))
1917 if (!cfq_cfqq_sync(cur_cfqq
))
1919 if (CFQQ_SEEKY(cur_cfqq
))
1923 * Don't search priority tree if it's the only queue in the group.
1925 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1929 * We should notice if some of the queues are cooperating, eg
1930 * working closely on the same area of the disk. In that case,
1931 * we can group them together and don't waste time idling.
1933 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1937 /* If new queue belongs to different cfq_group, don't choose it */
1938 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1942 * It only makes sense to merge sync queues.
1944 if (!cfq_cfqq_sync(cfqq
))
1946 if (CFQQ_SEEKY(cfqq
))
1950 * Do not merge queues of different priority classes
1952 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1959 * Determine whether we should enforce idle window for this queue.
1962 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1964 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1965 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1967 BUG_ON(!service_tree
);
1968 BUG_ON(!service_tree
->count
);
1970 if (!cfqd
->cfq_slice_idle
)
1973 /* We never do for idle class queues. */
1974 if (prio
== IDLE_WORKLOAD
)
1977 /* We do for queues that were marked with idle window flag. */
1978 if (cfq_cfqq_idle_window(cfqq
) &&
1979 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1983 * Otherwise, we do only if they are the last ones
1984 * in their service tree.
1986 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
1987 !cfq_io_thinktime_big(cfqd
, &service_tree
->ttime
, false))
1989 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1990 service_tree
->count
);
1994 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1996 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1997 struct cfq_io_context
*cic
;
1998 unsigned long sl
, group_idle
= 0;
2001 * SSD device without seek penalty, disable idling. But only do so
2002 * for devices that support queuing, otherwise we still have a problem
2003 * with sync vs async workloads.
2005 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2008 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2009 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2012 * idle is disabled, either manually or by past process history
2014 if (!cfq_should_idle(cfqd
, cfqq
)) {
2015 /* no queue idling. Check for group idling */
2016 if (cfqd
->cfq_group_idle
)
2017 group_idle
= cfqd
->cfq_group_idle
;
2023 * still active requests from this queue, don't idle
2025 if (cfqq
->dispatched
)
2029 * task has exited, don't wait
2031 cic
= cfqd
->active_cic
;
2032 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
2036 * If our average think time is larger than the remaining time
2037 * slice, then don't idle. This avoids overrunning the allotted
2040 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2041 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2042 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2043 cic
->ttime
.ttime_mean
);
2047 /* There are other queues in the group, don't do group idle */
2048 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2051 cfq_mark_cfqq_wait_request(cfqq
);
2054 sl
= cfqd
->cfq_group_idle
;
2056 sl
= cfqd
->cfq_slice_idle
;
2058 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2059 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
2060 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2061 group_idle
? 1 : 0);
2065 * Move request from internal lists to the request queue dispatch list.
2067 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2069 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2070 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2072 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2074 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2075 cfq_remove_request(rq
);
2077 (RQ_CFQG(rq
))->dispatched
++;
2078 elv_dispatch_sort(q
, rq
);
2080 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2081 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2082 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
2083 rq_data_dir(rq
), rq_is_sync(rq
));
2087 * return expired entry, or NULL to just start from scratch in rbtree
2089 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2091 struct request
*rq
= NULL
;
2093 if (cfq_cfqq_fifo_expire(cfqq
))
2096 cfq_mark_cfqq_fifo_expire(cfqq
);
2098 if (list_empty(&cfqq
->fifo
))
2101 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2102 if (time_before(jiffies
, rq_fifo_time(rq
)))
2105 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2110 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2112 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2114 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2116 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2120 * Must be called with the queue_lock held.
2122 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2124 int process_refs
, io_refs
;
2126 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2127 process_refs
= cfqq
->ref
- io_refs
;
2128 BUG_ON(process_refs
< 0);
2129 return process_refs
;
2132 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2134 int process_refs
, new_process_refs
;
2135 struct cfq_queue
*__cfqq
;
2138 * If there are no process references on the new_cfqq, then it is
2139 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2140 * chain may have dropped their last reference (not just their
2141 * last process reference).
2143 if (!cfqq_process_refs(new_cfqq
))
2146 /* Avoid a circular list and skip interim queue merges */
2147 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2153 process_refs
= cfqq_process_refs(cfqq
);
2154 new_process_refs
= cfqq_process_refs(new_cfqq
);
2156 * If the process for the cfqq has gone away, there is no
2157 * sense in merging the queues.
2159 if (process_refs
== 0 || new_process_refs
== 0)
2163 * Merge in the direction of the lesser amount of work.
2165 if (new_process_refs
>= process_refs
) {
2166 cfqq
->new_cfqq
= new_cfqq
;
2167 new_cfqq
->ref
+= process_refs
;
2169 new_cfqq
->new_cfqq
= cfqq
;
2170 cfqq
->ref
+= new_process_refs
;
2174 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2175 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2177 struct cfq_queue
*queue
;
2179 bool key_valid
= false;
2180 unsigned long lowest_key
= 0;
2181 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2183 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2184 /* select the one with lowest rb_key */
2185 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2187 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2188 lowest_key
= queue
->rb_key
;
2197 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2201 struct cfq_rb_root
*st
;
2202 unsigned group_slice
;
2203 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2205 /* Choose next priority. RT > BE > IDLE */
2206 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2207 cfqd
->serving_prio
= RT_WORKLOAD
;
2208 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2209 cfqd
->serving_prio
= BE_WORKLOAD
;
2211 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2212 cfqd
->workload_expires
= jiffies
+ 1;
2216 if (original_prio
!= cfqd
->serving_prio
)
2220 * For RT and BE, we have to choose also the type
2221 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2224 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2228 * check workload expiration, and that we still have other queues ready
2230 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2234 /* otherwise select new workload type */
2235 cfqd
->serving_type
=
2236 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2237 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2241 * the workload slice is computed as a fraction of target latency
2242 * proportional to the number of queues in that workload, over
2243 * all the queues in the same priority class
2245 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2247 slice
= group_slice
* count
/
2248 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2249 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2251 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2255 * Async queues are currently system wide. Just taking
2256 * proportion of queues with-in same group will lead to higher
2257 * async ratio system wide as generally root group is going
2258 * to have higher weight. A more accurate thing would be to
2259 * calculate system wide asnc/sync ratio.
2261 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2262 tmp
= tmp
/cfqd
->busy_queues
;
2263 slice
= min_t(unsigned, slice
, tmp
);
2265 /* async workload slice is scaled down according to
2266 * the sync/async slice ratio. */
2267 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2269 /* sync workload slice is at least 2 * cfq_slice_idle */
2270 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2272 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2273 cfq_log(cfqd
, "workload slice:%d", slice
);
2274 cfqd
->workload_expires
= jiffies
+ slice
;
2277 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2279 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2280 struct cfq_group
*cfqg
;
2282 if (RB_EMPTY_ROOT(&st
->rb
))
2284 cfqg
= cfq_rb_first_group(st
);
2285 update_min_vdisktime(st
);
2289 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2291 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2293 cfqd
->serving_group
= cfqg
;
2295 /* Restore the workload type data */
2296 if (cfqg
->saved_workload_slice
) {
2297 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2298 cfqd
->serving_type
= cfqg
->saved_workload
;
2299 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2301 cfqd
->workload_expires
= jiffies
- 1;
2303 choose_service_tree(cfqd
, cfqg
);
2307 * Select a queue for service. If we have a current active queue,
2308 * check whether to continue servicing it, or retrieve and set a new one.
2310 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2312 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2314 cfqq
= cfqd
->active_queue
;
2318 if (!cfqd
->rq_queued
)
2322 * We were waiting for group to get backlogged. Expire the queue
2324 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2328 * The active queue has run out of time, expire it and select new.
2330 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2332 * If slice had not expired at the completion of last request
2333 * we might not have turned on wait_busy flag. Don't expire
2334 * the queue yet. Allow the group to get backlogged.
2336 * The very fact that we have used the slice, that means we
2337 * have been idling all along on this queue and it should be
2338 * ok to wait for this request to complete.
2340 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2341 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2345 goto check_group_idle
;
2349 * The active queue has requests and isn't expired, allow it to
2352 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2356 * If another queue has a request waiting within our mean seek
2357 * distance, let it run. The expire code will check for close
2358 * cooperators and put the close queue at the front of the service
2359 * tree. If possible, merge the expiring queue with the new cfqq.
2361 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2363 if (!cfqq
->new_cfqq
)
2364 cfq_setup_merge(cfqq
, new_cfqq
);
2369 * No requests pending. If the active queue still has requests in
2370 * flight or is idling for a new request, allow either of these
2371 * conditions to happen (or time out) before selecting a new queue.
2373 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2379 * This is a deep seek queue, but the device is much faster than
2380 * the queue can deliver, don't idle
2382 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2383 (cfq_cfqq_slice_new(cfqq
) ||
2384 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2385 cfq_clear_cfqq_deep(cfqq
);
2386 cfq_clear_cfqq_idle_window(cfqq
);
2389 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2395 * If group idle is enabled and there are requests dispatched from
2396 * this group, wait for requests to complete.
2399 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
2400 cfqq
->cfqg
->dispatched
&&
2401 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
2407 cfq_slice_expired(cfqd
, 0);
2410 * Current queue expired. Check if we have to switch to a new
2414 cfq_choose_cfqg(cfqd
);
2416 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2421 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2425 while (cfqq
->next_rq
) {
2426 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2430 BUG_ON(!list_empty(&cfqq
->fifo
));
2432 /* By default cfqq is not expired if it is empty. Do it explicitly */
2433 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2438 * Drain our current requests. Used for barriers and when switching
2439 * io schedulers on-the-fly.
2441 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2443 struct cfq_queue
*cfqq
;
2446 /* Expire the timeslice of the current active queue first */
2447 cfq_slice_expired(cfqd
, 0);
2448 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2449 __cfq_set_active_queue(cfqd
, cfqq
);
2450 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2453 BUG_ON(cfqd
->busy_queues
);
2455 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2459 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2460 struct cfq_queue
*cfqq
)
2462 /* the queue hasn't finished any request, can't estimate */
2463 if (cfq_cfqq_slice_new(cfqq
))
2465 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2472 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2474 unsigned int max_dispatch
;
2477 * Drain async requests before we start sync IO
2479 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2483 * If this is an async queue and we have sync IO in flight, let it wait
2485 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2488 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2489 if (cfq_class_idle(cfqq
))
2493 * Does this cfqq already have too much IO in flight?
2495 if (cfqq
->dispatched
>= max_dispatch
) {
2496 bool promote_sync
= false;
2498 * idle queue must always only have a single IO in flight
2500 if (cfq_class_idle(cfqq
))
2504 * If there is only one sync queue
2505 * we can ignore async queue here and give the sync
2506 * queue no dispatch limit. The reason is a sync queue can
2507 * preempt async queue, limiting the sync queue doesn't make
2508 * sense. This is useful for aiostress test.
2510 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2511 promote_sync
= true;
2514 * We have other queues, don't allow more IO from this one
2516 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2521 * Sole queue user, no limit
2523 if (cfqd
->busy_queues
== 1 || promote_sync
)
2527 * Normally we start throttling cfqq when cfq_quantum/2
2528 * requests have been dispatched. But we can drive
2529 * deeper queue depths at the beginning of slice
2530 * subjected to upper limit of cfq_quantum.
2532 max_dispatch
= cfqd
->cfq_quantum
;
2536 * Async queues must wait a bit before being allowed dispatch.
2537 * We also ramp up the dispatch depth gradually for async IO,
2538 * based on the last sync IO we serviced
2540 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2541 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2544 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2545 if (!depth
&& !cfqq
->dispatched
)
2547 if (depth
< max_dispatch
)
2548 max_dispatch
= depth
;
2552 * If we're below the current max, allow a dispatch
2554 return cfqq
->dispatched
< max_dispatch
;
2558 * Dispatch a request from cfqq, moving them to the request queue
2561 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2565 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2567 if (!cfq_may_dispatch(cfqd
, cfqq
))
2571 * follow expired path, else get first next available
2573 rq
= cfq_check_fifo(cfqq
);
2578 * insert request into driver dispatch list
2580 cfq_dispatch_insert(cfqd
->queue
, rq
);
2582 if (!cfqd
->active_cic
) {
2583 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2585 atomic_long_inc(&cic
->ioc
->refcount
);
2586 cfqd
->active_cic
= cic
;
2593 * Find the cfqq that we need to service and move a request from that to the
2596 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2598 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2599 struct cfq_queue
*cfqq
;
2601 if (!cfqd
->busy_queues
)
2604 if (unlikely(force
))
2605 return cfq_forced_dispatch(cfqd
);
2607 cfqq
= cfq_select_queue(cfqd
);
2612 * Dispatch a request from this cfqq, if it is allowed
2614 if (!cfq_dispatch_request(cfqd
, cfqq
))
2617 cfqq
->slice_dispatch
++;
2618 cfq_clear_cfqq_must_dispatch(cfqq
);
2621 * expire an async queue immediately if it has used up its slice. idle
2622 * queue always expire after 1 dispatch round.
2624 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2625 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2626 cfq_class_idle(cfqq
))) {
2627 cfqq
->slice_end
= jiffies
+ 1;
2628 cfq_slice_expired(cfqd
, 0);
2631 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2636 * task holds one reference to the queue, dropped when task exits. each rq
2637 * in-flight on this queue also holds a reference, dropped when rq is freed.
2639 * Each cfq queue took a reference on the parent group. Drop it now.
2640 * queue lock must be held here.
2642 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2644 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2645 struct cfq_group
*cfqg
;
2647 BUG_ON(cfqq
->ref
<= 0);
2653 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2654 BUG_ON(rb_first(&cfqq
->sort_list
));
2655 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2658 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2659 __cfq_slice_expired(cfqd
, cfqq
, 0);
2660 cfq_schedule_dispatch(cfqd
);
2663 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2664 kmem_cache_free(cfq_pool
, cfqq
);
2669 * Call func for each cic attached to this ioc.
2672 call_for_each_cic(struct io_context
*ioc
,
2673 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2675 struct cfq_io_context
*cic
;
2676 struct hlist_node
*n
;
2680 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2686 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2688 struct cfq_io_context
*cic
;
2690 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2692 kmem_cache_free(cfq_ioc_pool
, cic
);
2693 elv_ioc_count_dec(cfq_ioc_count
);
2697 * CFQ scheduler is exiting, grab exit lock and check
2698 * the pending io context count. If it hits zero,
2699 * complete ioc_gone and set it back to NULL
2701 spin_lock(&ioc_gone_lock
);
2702 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2706 spin_unlock(&ioc_gone_lock
);
2710 static void cfq_cic_free(struct cfq_io_context
*cic
)
2712 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2715 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2717 unsigned long flags
;
2718 unsigned long dead_key
= (unsigned long) cic
->key
;
2720 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2722 spin_lock_irqsave(&ioc
->lock
, flags
);
2723 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2724 hlist_del_rcu(&cic
->cic_list
);
2725 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2731 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2732 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2733 * and ->trim() which is called with the task lock held
2735 static void cfq_free_io_context(struct io_context
*ioc
)
2738 * ioc->refcount is zero here, or we are called from elv_unregister(),
2739 * so no more cic's are allowed to be linked into this ioc. So it
2740 * should be ok to iterate over the known list, we will see all cic's
2741 * since no new ones are added.
2743 call_for_each_cic(ioc
, cic_free_func
);
2746 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2748 struct cfq_queue
*__cfqq
, *next
;
2751 * If this queue was scheduled to merge with another queue, be
2752 * sure to drop the reference taken on that queue (and others in
2753 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2755 __cfqq
= cfqq
->new_cfqq
;
2757 if (__cfqq
== cfqq
) {
2758 WARN(1, "cfqq->new_cfqq loop detected\n");
2761 next
= __cfqq
->new_cfqq
;
2762 cfq_put_queue(__cfqq
);
2767 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2769 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2770 __cfq_slice_expired(cfqd
, cfqq
, 0);
2771 cfq_schedule_dispatch(cfqd
);
2774 cfq_put_cooperator(cfqq
);
2776 cfq_put_queue(cfqq
);
2779 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2780 struct cfq_io_context
*cic
)
2782 struct io_context
*ioc
= cic
->ioc
;
2784 list_del_init(&cic
->queue_list
);
2787 * Make sure dead mark is seen for dead queues
2790 cic
->key
= cfqd_dead_key(cfqd
);
2793 if (rcu_dereference(ioc
->ioc_data
) == cic
) {
2795 spin_lock(&ioc
->lock
);
2796 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2797 spin_unlock(&ioc
->lock
);
2801 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2802 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2803 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2806 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2807 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2808 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2812 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2813 struct cfq_io_context
*cic
)
2815 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2818 struct request_queue
*q
= cfqd
->queue
;
2819 unsigned long flags
;
2821 spin_lock_irqsave(q
->queue_lock
, flags
);
2824 * Ensure we get a fresh copy of the ->key to prevent
2825 * race between exiting task and queue
2827 smp_read_barrier_depends();
2828 if (cic
->key
== cfqd
)
2829 __cfq_exit_single_io_context(cfqd
, cic
);
2831 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2836 * The process that ioc belongs to has exited, we need to clean up
2837 * and put the internal structures we have that belongs to that process.
2839 static void cfq_exit_io_context(struct io_context
*ioc
)
2841 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2844 static struct cfq_io_context
*
2845 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2847 struct cfq_io_context
*cic
;
2849 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2852 cic
->ttime
.last_end_request
= jiffies
;
2853 INIT_LIST_HEAD(&cic
->queue_list
);
2854 INIT_HLIST_NODE(&cic
->cic_list
);
2855 cic
->dtor
= cfq_free_io_context
;
2856 cic
->exit
= cfq_exit_io_context
;
2857 elv_ioc_count_inc(cfq_ioc_count
);
2863 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2865 struct task_struct
*tsk
= current
;
2868 if (!cfq_cfqq_prio_changed(cfqq
))
2871 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2872 switch (ioprio_class
) {
2874 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2875 case IOPRIO_CLASS_NONE
:
2877 * no prio set, inherit CPU scheduling settings
2879 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2880 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2882 case IOPRIO_CLASS_RT
:
2883 cfqq
->ioprio
= task_ioprio(ioc
);
2884 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2886 case IOPRIO_CLASS_BE
:
2887 cfqq
->ioprio
= task_ioprio(ioc
);
2888 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2890 case IOPRIO_CLASS_IDLE
:
2891 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2893 cfq_clear_cfqq_idle_window(cfqq
);
2898 * keep track of original prio settings in case we have to temporarily
2899 * elevate the priority of this queue
2901 cfqq
->org_ioprio
= cfqq
->ioprio
;
2902 cfq_clear_cfqq_prio_changed(cfqq
);
2905 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2907 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2908 struct cfq_queue
*cfqq
;
2909 unsigned long flags
;
2911 if (unlikely(!cfqd
))
2914 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2916 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2918 struct cfq_queue
*new_cfqq
;
2919 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2922 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2923 cfq_put_queue(cfqq
);
2927 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2929 cfq_mark_cfqq_prio_changed(cfqq
);
2931 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2934 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2936 call_for_each_cic(ioc
, changed_ioprio
);
2937 ioc
->ioprio_changed
= 0;
2940 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2941 pid_t pid
, bool is_sync
)
2943 RB_CLEAR_NODE(&cfqq
->rb_node
);
2944 RB_CLEAR_NODE(&cfqq
->p_node
);
2945 INIT_LIST_HEAD(&cfqq
->fifo
);
2950 cfq_mark_cfqq_prio_changed(cfqq
);
2953 if (!cfq_class_idle(cfqq
))
2954 cfq_mark_cfqq_idle_window(cfqq
);
2955 cfq_mark_cfqq_sync(cfqq
);
2960 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2961 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2963 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2964 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2965 unsigned long flags
;
2966 struct request_queue
*q
;
2968 if (unlikely(!cfqd
))
2973 spin_lock_irqsave(q
->queue_lock
, flags
);
2977 * Drop reference to sync queue. A new sync queue will be
2978 * assigned in new group upon arrival of a fresh request.
2980 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2981 cic_set_cfqq(cic
, NULL
, 1);
2982 cfq_put_queue(sync_cfqq
);
2985 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2988 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2990 call_for_each_cic(ioc
, changed_cgroup
);
2991 ioc
->cgroup_changed
= 0;
2993 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2995 static struct cfq_queue
*
2996 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2997 struct io_context
*ioc
, gfp_t gfp_mask
)
2999 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3000 struct cfq_io_context
*cic
;
3001 struct cfq_group
*cfqg
;
3004 cfqg
= cfq_get_cfqg(cfqd
);
3005 cic
= cfq_cic_lookup(cfqd
, ioc
);
3006 /* cic always exists here */
3007 cfqq
= cic_to_cfqq(cic
, is_sync
);
3010 * Always try a new alloc if we fell back to the OOM cfqq
3011 * originally, since it should just be a temporary situation.
3013 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3018 } else if (gfp_mask
& __GFP_WAIT
) {
3019 spin_unlock_irq(cfqd
->queue
->queue_lock
);
3020 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
3021 gfp_mask
| __GFP_ZERO
,
3023 spin_lock_irq(cfqd
->queue
->queue_lock
);
3027 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3028 gfp_mask
| __GFP_ZERO
,
3033 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3034 cfq_init_prio_data(cfqq
, ioc
);
3035 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3036 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3038 cfqq
= &cfqd
->oom_cfqq
;
3042 kmem_cache_free(cfq_pool
, new_cfqq
);
3047 static struct cfq_queue
**
3048 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3050 switch (ioprio_class
) {
3051 case IOPRIO_CLASS_RT
:
3052 return &cfqd
->async_cfqq
[0][ioprio
];
3053 case IOPRIO_CLASS_BE
:
3054 return &cfqd
->async_cfqq
[1][ioprio
];
3055 case IOPRIO_CLASS_IDLE
:
3056 return &cfqd
->async_idle_cfqq
;
3062 static struct cfq_queue
*
3063 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
3066 const int ioprio
= task_ioprio(ioc
);
3067 const int ioprio_class
= task_ioprio_class(ioc
);
3068 struct cfq_queue
**async_cfqq
= NULL
;
3069 struct cfq_queue
*cfqq
= NULL
;
3072 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3077 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
3080 * pin the queue now that it's allocated, scheduler exit will prune it
3082 if (!is_sync
&& !(*async_cfqq
)) {
3092 * We drop cfq io contexts lazily, so we may find a dead one.
3095 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3096 struct cfq_io_context
*cic
)
3098 unsigned long flags
;
3100 WARN_ON(!list_empty(&cic
->queue_list
));
3101 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3103 spin_lock_irqsave(&ioc
->lock
, flags
);
3105 BUG_ON(rcu_dereference_check(ioc
->ioc_data
,
3106 lockdep_is_held(&ioc
->lock
)) == cic
);
3108 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3109 hlist_del_rcu(&cic
->cic_list
);
3110 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3115 static struct cfq_io_context
*
3116 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3118 struct cfq_io_context
*cic
;
3119 unsigned long flags
;
3127 * we maintain a last-hit cache, to avoid browsing over the tree
3129 cic
= rcu_dereference(ioc
->ioc_data
);
3130 if (cic
&& cic
->key
== cfqd
) {
3136 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3140 if (unlikely(cic
->key
!= cfqd
)) {
3141 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3146 spin_lock_irqsave(&ioc
->lock
, flags
);
3147 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3148 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3156 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3157 * the process specific cfq io context when entered from the block layer.
3158 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3160 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3161 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3163 unsigned long flags
;
3166 ret
= radix_tree_preload(gfp_mask
);
3171 spin_lock_irqsave(&ioc
->lock
, flags
);
3172 ret
= radix_tree_insert(&ioc
->radix_root
,
3173 cfqd
->cic_index
, cic
);
3175 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3176 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3178 radix_tree_preload_end();
3181 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3182 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3183 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3188 printk(KERN_ERR
"cfq: cic link failed!\n");
3194 * Setup general io context and cfq io context. There can be several cfq
3195 * io contexts per general io context, if this process is doing io to more
3196 * than one device managed by cfq.
3198 static struct cfq_io_context
*
3199 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3201 struct io_context
*ioc
= NULL
;
3202 struct cfq_io_context
*cic
;
3204 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3206 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3210 cic
= cfq_cic_lookup(cfqd
, ioc
);
3214 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3218 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3222 smp_read_barrier_depends();
3223 if (unlikely(ioc
->ioprio_changed
))
3224 cfq_ioc_set_ioprio(ioc
);
3226 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3227 if (unlikely(ioc
->cgroup_changed
))
3228 cfq_ioc_set_cgroup(ioc
);
3234 put_io_context(ioc
);
3239 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3241 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3242 elapsed
= min(elapsed
, 2UL * slice_idle
);
3244 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3245 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3246 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3250 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3251 struct cfq_io_context
*cic
)
3253 if (cfq_cfqq_sync(cfqq
)) {
3254 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3255 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3256 cfqd
->cfq_slice_idle
);
3258 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3259 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3264 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3268 sector_t n_sec
= blk_rq_sectors(rq
);
3269 if (cfqq
->last_request_pos
) {
3270 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3271 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3273 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3276 cfqq
->seek_history
<<= 1;
3277 if (blk_queue_nonrot(cfqd
->queue
))
3278 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3280 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3284 * Disable idle window if the process thinks too long or seeks so much that
3288 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3289 struct cfq_io_context
*cic
)
3291 int old_idle
, enable_idle
;
3294 * Don't idle for async or idle io prio class
3296 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3299 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3301 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3302 cfq_mark_cfqq_deep(cfqq
);
3304 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3306 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3307 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3309 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3310 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3316 if (old_idle
!= enable_idle
) {
3317 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3319 cfq_mark_cfqq_idle_window(cfqq
);
3321 cfq_clear_cfqq_idle_window(cfqq
);
3326 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3327 * no or if we aren't sure, a 1 will cause a preempt.
3330 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3333 struct cfq_queue
*cfqq
;
3335 cfqq
= cfqd
->active_queue
;
3339 if (cfq_class_idle(new_cfqq
))
3342 if (cfq_class_idle(cfqq
))
3346 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3348 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3352 * if the new request is sync, but the currently running queue is
3353 * not, let the sync request have priority.
3355 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3358 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3361 if (cfq_slice_used(cfqq
))
3364 /* Allow preemption only if we are idling on sync-noidle tree */
3365 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3366 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3367 new_cfqq
->service_tree
->count
== 2 &&
3368 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3372 * So both queues are sync. Let the new request get disk time if
3373 * it's a metadata request and the current queue is doing regular IO.
3375 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3379 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3381 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3384 /* An idle queue should not be idle now for some reason */
3385 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3388 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3392 * if this request is as-good as one we would expect from the
3393 * current cfqq, let it preempt
3395 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3402 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3403 * let it have half of its nominal slice.
3405 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3407 struct cfq_queue
*old_cfqq
= cfqd
->active_queue
;
3409 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3410 cfq_slice_expired(cfqd
, 1);
3413 * workload type is changed, don't save slice, otherwise preempt
3416 if (cfqq_type(old_cfqq
) != cfqq_type(cfqq
))
3417 cfqq
->cfqg
->saved_workload_slice
= 0;
3420 * Put the new queue at the front of the of the current list,
3421 * so we know that it will be selected next.
3423 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3425 cfq_service_tree_add(cfqd
, cfqq
, 1);
3427 cfqq
->slice_end
= 0;
3428 cfq_mark_cfqq_slice_new(cfqq
);
3432 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3433 * something we should do about it
3436 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3439 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3442 if (rq
->cmd_flags
& REQ_PRIO
)
3443 cfqq
->prio_pending
++;
3445 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
3446 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3447 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3449 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3451 if (cfqq
== cfqd
->active_queue
) {
3453 * Remember that we saw a request from this process, but
3454 * don't start queuing just yet. Otherwise we risk seeing lots
3455 * of tiny requests, because we disrupt the normal plugging
3456 * and merging. If the request is already larger than a single
3457 * page, let it rip immediately. For that case we assume that
3458 * merging is already done. Ditto for a busy system that
3459 * has other work pending, don't risk delaying until the
3460 * idle timer unplug to continue working.
3462 if (cfq_cfqq_wait_request(cfqq
)) {
3463 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3464 cfqd
->busy_queues
> 1) {
3465 cfq_del_timer(cfqd
, cfqq
);
3466 cfq_clear_cfqq_wait_request(cfqq
);
3467 __blk_run_queue(cfqd
->queue
);
3469 cfq_blkiocg_update_idle_time_stats(
3471 cfq_mark_cfqq_must_dispatch(cfqq
);
3474 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3476 * not the active queue - expire current slice if it is
3477 * idle and has expired it's mean thinktime or this new queue
3478 * has some old slice time left and is of higher priority or
3479 * this new queue is RT and the current one is BE
3481 cfq_preempt_queue(cfqd
, cfqq
);
3482 __blk_run_queue(cfqd
->queue
);
3486 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3488 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3489 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3491 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3492 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3494 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3495 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3497 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3498 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3500 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3504 * Update hw_tag based on peak queue depth over 50 samples under
3507 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3509 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3511 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3512 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3514 if (cfqd
->hw_tag
== 1)
3517 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3518 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3522 * If active queue hasn't enough requests and can idle, cfq might not
3523 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3526 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3527 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3528 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3531 if (cfqd
->hw_tag_samples
++ < 50)
3534 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3540 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3542 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3544 /* If the queue already has requests, don't wait */
3545 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3548 /* If there are other queues in the group, don't wait */
3549 if (cfqq
->cfqg
->nr_cfqq
> 1)
3552 /* the only queue in the group, but think time is big */
3553 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
3556 if (cfq_slice_used(cfqq
))
3559 /* if slice left is less than think time, wait busy */
3560 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
3561 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
3565 * If think times is less than a jiffy than ttime_mean=0 and above
3566 * will not be true. It might happen that slice has not expired yet
3567 * but will expire soon (4-5 ns) during select_queue(). To cover the
3568 * case where think time is less than a jiffy, mark the queue wait
3569 * busy if only 1 jiffy is left in the slice.
3571 if (cfqq
->slice_end
- jiffies
== 1)
3577 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3579 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3580 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3581 const int sync
= rq_is_sync(rq
);
3585 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3586 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3588 cfq_update_hw_tag(cfqd
);
3590 WARN_ON(!cfqd
->rq_in_driver
);
3591 WARN_ON(!cfqq
->dispatched
);
3592 cfqd
->rq_in_driver
--;
3594 (RQ_CFQG(rq
))->dispatched
--;
3595 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3596 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3597 rq_data_dir(rq
), rq_is_sync(rq
));
3599 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3602 struct cfq_rb_root
*service_tree
;
3604 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
3606 if (cfq_cfqq_on_rr(cfqq
))
3607 service_tree
= cfqq
->service_tree
;
3609 service_tree
= service_tree_for(cfqq
->cfqg
,
3610 cfqq_prio(cfqq
), cfqq_type(cfqq
));
3611 service_tree
->ttime
.last_end_request
= now
;
3612 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3613 cfqd
->last_delayed_sync
= now
;
3616 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3617 cfqq
->cfqg
->ttime
.last_end_request
= now
;
3621 * If this is the active queue, check if it needs to be expired,
3622 * or if we want to idle in case it has no pending requests.
3624 if (cfqd
->active_queue
== cfqq
) {
3625 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3627 if (cfq_cfqq_slice_new(cfqq
)) {
3628 cfq_set_prio_slice(cfqd
, cfqq
);
3629 cfq_clear_cfqq_slice_new(cfqq
);
3633 * Should we wait for next request to come in before we expire
3636 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3637 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3638 if (!cfqd
->cfq_slice_idle
)
3639 extend_sl
= cfqd
->cfq_group_idle
;
3640 cfqq
->slice_end
= jiffies
+ extend_sl
;
3641 cfq_mark_cfqq_wait_busy(cfqq
);
3642 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3646 * Idling is not enabled on:
3648 * - idle-priority queues
3650 * - queues with still some requests queued
3651 * - when there is a close cooperator
3653 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3654 cfq_slice_expired(cfqd
, 1);
3655 else if (sync
&& cfqq_empty
&&
3656 !cfq_close_cooperator(cfqd
, cfqq
)) {
3657 cfq_arm_slice_timer(cfqd
);
3661 if (!cfqd
->rq_in_driver
)
3662 cfq_schedule_dispatch(cfqd
);
3665 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3667 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3668 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3669 return ELV_MQUEUE_MUST
;
3672 return ELV_MQUEUE_MAY
;
3675 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3677 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3678 struct task_struct
*tsk
= current
;
3679 struct cfq_io_context
*cic
;
3680 struct cfq_queue
*cfqq
;
3683 * don't force setup of a queue from here, as a call to may_queue
3684 * does not necessarily imply that a request actually will be queued.
3685 * so just lookup a possibly existing queue, or return 'may queue'
3688 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3690 return ELV_MQUEUE_MAY
;
3692 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3694 cfq_init_prio_data(cfqq
, cic
->ioc
);
3696 return __cfq_may_queue(cfqq
);
3699 return ELV_MQUEUE_MAY
;
3703 * queue lock held here
3705 static void cfq_put_request(struct request
*rq
)
3707 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3710 const int rw
= rq_data_dir(rq
);
3712 BUG_ON(!cfqq
->allocated
[rw
]);
3713 cfqq
->allocated
[rw
]--;
3715 put_io_context(RQ_CIC(rq
)->ioc
);
3717 rq
->elevator_private
[0] = NULL
;
3718 rq
->elevator_private
[1] = NULL
;
3720 /* Put down rq reference on cfqg */
3721 cfq_put_cfqg(RQ_CFQG(rq
));
3722 rq
->elevator_private
[2] = NULL
;
3724 cfq_put_queue(cfqq
);
3728 static struct cfq_queue
*
3729 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3730 struct cfq_queue
*cfqq
)
3732 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3733 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3734 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3735 cfq_put_queue(cfqq
);
3736 return cic_to_cfqq(cic
, 1);
3740 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3741 * was the last process referring to said cfqq.
3743 static struct cfq_queue
*
3744 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3746 if (cfqq_process_refs(cfqq
) == 1) {
3747 cfqq
->pid
= current
->pid
;
3748 cfq_clear_cfqq_coop(cfqq
);
3749 cfq_clear_cfqq_split_coop(cfqq
);
3753 cic_set_cfqq(cic
, NULL
, 1);
3755 cfq_put_cooperator(cfqq
);
3757 cfq_put_queue(cfqq
);
3761 * Allocate cfq data structures associated with this request.
3764 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3766 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3767 struct cfq_io_context
*cic
;
3768 const int rw
= rq_data_dir(rq
);
3769 const bool is_sync
= rq_is_sync(rq
);
3770 struct cfq_queue
*cfqq
;
3771 unsigned long flags
;
3773 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3775 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3777 spin_lock_irqsave(q
->queue_lock
, flags
);
3783 cfqq
= cic_to_cfqq(cic
, is_sync
);
3784 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3785 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3786 cic_set_cfqq(cic
, cfqq
, is_sync
);
3789 * If the queue was seeky for too long, break it apart.
3791 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3792 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3793 cfqq
= split_cfqq(cic
, cfqq
);
3799 * Check to see if this queue is scheduled to merge with
3800 * another, closely cooperating queue. The merging of
3801 * queues happens here as it must be done in process context.
3802 * The reference on new_cfqq was taken in merge_cfqqs.
3805 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3808 cfqq
->allocated
[rw
]++;
3811 rq
->elevator_private
[0] = cic
;
3812 rq
->elevator_private
[1] = cfqq
;
3813 rq
->elevator_private
[2] = cfq_ref_get_cfqg(cfqq
->cfqg
);
3814 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3818 cfq_schedule_dispatch(cfqd
);
3819 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3820 cfq_log(cfqd
, "set_request fail");
3824 static void cfq_kick_queue(struct work_struct
*work
)
3826 struct cfq_data
*cfqd
=
3827 container_of(work
, struct cfq_data
, unplug_work
);
3828 struct request_queue
*q
= cfqd
->queue
;
3830 spin_lock_irq(q
->queue_lock
);
3831 __blk_run_queue(cfqd
->queue
);
3832 spin_unlock_irq(q
->queue_lock
);
3836 * Timer running if the active_queue is currently idling inside its time slice
3838 static void cfq_idle_slice_timer(unsigned long data
)
3840 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3841 struct cfq_queue
*cfqq
;
3842 unsigned long flags
;
3845 cfq_log(cfqd
, "idle timer fired");
3847 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3849 cfqq
= cfqd
->active_queue
;
3854 * We saw a request before the queue expired, let it through
3856 if (cfq_cfqq_must_dispatch(cfqq
))
3862 if (cfq_slice_used(cfqq
))
3866 * only expire and reinvoke request handler, if there are
3867 * other queues with pending requests
3869 if (!cfqd
->busy_queues
)
3873 * not expired and it has a request pending, let it dispatch
3875 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3879 * Queue depth flag is reset only when the idle didn't succeed
3881 cfq_clear_cfqq_deep(cfqq
);
3884 cfq_slice_expired(cfqd
, timed_out
);
3886 cfq_schedule_dispatch(cfqd
);
3888 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3891 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3893 del_timer_sync(&cfqd
->idle_slice_timer
);
3894 cancel_work_sync(&cfqd
->unplug_work
);
3897 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3901 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3902 if (cfqd
->async_cfqq
[0][i
])
3903 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3904 if (cfqd
->async_cfqq
[1][i
])
3905 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3908 if (cfqd
->async_idle_cfqq
)
3909 cfq_put_queue(cfqd
->async_idle_cfqq
);
3912 static void cfq_exit_queue(struct elevator_queue
*e
)
3914 struct cfq_data
*cfqd
= e
->elevator_data
;
3915 struct request_queue
*q
= cfqd
->queue
;
3918 cfq_shutdown_timer_wq(cfqd
);
3920 spin_lock_irq(q
->queue_lock
);
3922 if (cfqd
->active_queue
)
3923 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3925 while (!list_empty(&cfqd
->cic_list
)) {
3926 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3927 struct cfq_io_context
,
3930 __cfq_exit_single_io_context(cfqd
, cic
);
3933 cfq_put_async_queues(cfqd
);
3934 cfq_release_cfq_groups(cfqd
);
3937 * If there are groups which we could not unlink from blkcg list,
3938 * wait for a rcu period for them to be freed.
3940 if (cfqd
->nr_blkcg_linked_grps
)
3943 spin_unlock_irq(q
->queue_lock
);
3945 cfq_shutdown_timer_wq(cfqd
);
3947 spin_lock(&cic_index_lock
);
3948 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3949 spin_unlock(&cic_index_lock
);
3952 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3953 * Do this wait only if there are other unlinked groups out
3954 * there. This can happen if cgroup deletion path claimed the
3955 * responsibility of cleaning up a group before queue cleanup code
3958 * Do not call synchronize_rcu() unconditionally as there are drivers
3959 * which create/delete request queue hundreds of times during scan/boot
3960 * and synchronize_rcu() can take significant time and slow down boot.
3965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3966 /* Free up per cpu stats for root group */
3967 free_percpu(cfqd
->root_group
.blkg
.stats_cpu
);
3972 static int cfq_alloc_cic_index(void)
3977 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3980 spin_lock(&cic_index_lock
);
3981 error
= ida_get_new(&cic_index_ida
, &index
);
3982 spin_unlock(&cic_index_lock
);
3983 if (error
&& error
!= -EAGAIN
)
3990 static void *cfq_init_queue(struct request_queue
*q
)
3992 struct cfq_data
*cfqd
;
3994 struct cfq_group
*cfqg
;
3995 struct cfq_rb_root
*st
;
3997 i
= cfq_alloc_cic_index();
4001 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
4003 spin_lock(&cic_index_lock
);
4004 ida_remove(&cic_index_ida
, i
);
4005 spin_unlock(&cic_index_lock
);
4010 * Don't need take queue_lock in the routine, since we are
4011 * initializing the ioscheduler, and nobody is using cfqd
4013 cfqd
->cic_index
= i
;
4015 /* Init root service tree */
4016 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4018 /* Init root group */
4019 cfqg
= &cfqd
->root_group
;
4020 for_each_cfqg_st(cfqg
, i
, j
, st
)
4022 RB_CLEAR_NODE(&cfqg
->rb_node
);
4024 /* Give preference to root group over other groups */
4025 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
4027 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4029 * Set root group reference to 2. One reference will be dropped when
4030 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4031 * Other reference will remain there as we don't want to delete this
4032 * group as it is statically allocated and gets destroyed when
4033 * throtl_data goes away.
4037 if (blkio_alloc_blkg_stats(&cfqg
->blkg
)) {
4045 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
4048 cfqd
->nr_blkcg_linked_grps
++;
4050 /* Add group on cfqd->cfqg_list */
4051 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
4054 * Not strictly needed (since RB_ROOT just clears the node and we
4055 * zeroed cfqd on alloc), but better be safe in case someone decides
4056 * to add magic to the rb code
4058 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4059 cfqd
->prio_trees
[i
] = RB_ROOT
;
4062 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4063 * Grab a permanent reference to it, so that the normal code flow
4064 * will not attempt to free it.
4066 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4067 cfqd
->oom_cfqq
.ref
++;
4068 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
4070 INIT_LIST_HEAD(&cfqd
->cic_list
);
4074 init_timer(&cfqd
->idle_slice_timer
);
4075 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4076 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4078 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4080 cfqd
->cfq_quantum
= cfq_quantum
;
4081 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4082 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4083 cfqd
->cfq_back_max
= cfq_back_max
;
4084 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4085 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4086 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4087 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4088 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4089 cfqd
->cfq_group_idle
= cfq_group_idle
;
4090 cfqd
->cfq_latency
= 1;
4093 * we optimistically start assuming sync ops weren't delayed in last
4094 * second, in order to have larger depth for async operations.
4096 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4100 static void cfq_slab_kill(void)
4103 * Caller already ensured that pending RCU callbacks are completed,
4104 * so we should have no busy allocations at this point.
4107 kmem_cache_destroy(cfq_pool
);
4109 kmem_cache_destroy(cfq_ioc_pool
);
4112 static int __init
cfq_slab_setup(void)
4114 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4118 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
4129 * sysfs parts below -->
4132 cfq_var_show(unsigned int var
, char *page
)
4134 return sprintf(page
, "%d\n", var
);
4138 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4140 char *p
= (char *) page
;
4142 *var
= simple_strtoul(p
, &p
, 10);
4146 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4147 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4149 struct cfq_data *cfqd = e->elevator_data; \
4150 unsigned int __data = __VAR; \
4152 __data = jiffies_to_msecs(__data); \
4153 return cfq_var_show(__data, (page)); \
4155 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4156 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4157 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4158 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4159 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4160 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4161 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4162 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4163 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4164 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4165 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4166 #undef SHOW_FUNCTION
4168 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4169 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4171 struct cfq_data *cfqd = e->elevator_data; \
4172 unsigned int __data; \
4173 int ret = cfq_var_store(&__data, (page), count); \
4174 if (__data < (MIN)) \
4176 else if (__data > (MAX)) \
4179 *(__PTR) = msecs_to_jiffies(__data); \
4181 *(__PTR) = __data; \
4184 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4185 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4187 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4189 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4190 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4192 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4193 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4194 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4195 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4196 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4198 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4199 #undef STORE_FUNCTION
4201 #define CFQ_ATTR(name) \
4202 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4204 static struct elv_fs_entry cfq_attrs
[] = {
4206 CFQ_ATTR(fifo_expire_sync
),
4207 CFQ_ATTR(fifo_expire_async
),
4208 CFQ_ATTR(back_seek_max
),
4209 CFQ_ATTR(back_seek_penalty
),
4210 CFQ_ATTR(slice_sync
),
4211 CFQ_ATTR(slice_async
),
4212 CFQ_ATTR(slice_async_rq
),
4213 CFQ_ATTR(slice_idle
),
4214 CFQ_ATTR(group_idle
),
4215 CFQ_ATTR(low_latency
),
4219 static struct elevator_type iosched_cfq
= {
4221 .elevator_merge_fn
= cfq_merge
,
4222 .elevator_merged_fn
= cfq_merged_request
,
4223 .elevator_merge_req_fn
= cfq_merged_requests
,
4224 .elevator_allow_merge_fn
= cfq_allow_merge
,
4225 .elevator_bio_merged_fn
= cfq_bio_merged
,
4226 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4227 .elevator_add_req_fn
= cfq_insert_request
,
4228 .elevator_activate_req_fn
= cfq_activate_request
,
4229 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4230 .elevator_completed_req_fn
= cfq_completed_request
,
4231 .elevator_former_req_fn
= elv_rb_former_request
,
4232 .elevator_latter_req_fn
= elv_rb_latter_request
,
4233 .elevator_set_req_fn
= cfq_set_request
,
4234 .elevator_put_req_fn
= cfq_put_request
,
4235 .elevator_may_queue_fn
= cfq_may_queue
,
4236 .elevator_init_fn
= cfq_init_queue
,
4237 .elevator_exit_fn
= cfq_exit_queue
,
4238 .trim
= cfq_free_io_context
,
4240 .elevator_attrs
= cfq_attrs
,
4241 .elevator_name
= "cfq",
4242 .elevator_owner
= THIS_MODULE
,
4245 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4246 static struct blkio_policy_type blkio_policy_cfq
= {
4248 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4249 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4251 .plid
= BLKIO_POLICY_PROP
,
4254 static struct blkio_policy_type blkio_policy_cfq
;
4257 static int __init
cfq_init(void)
4260 * could be 0 on HZ < 1000 setups
4262 if (!cfq_slice_async
)
4263 cfq_slice_async
= 1;
4264 if (!cfq_slice_idle
)
4267 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4268 if (!cfq_group_idle
)
4273 if (cfq_slab_setup())
4276 elv_register(&iosched_cfq
);
4277 blkio_policy_register(&blkio_policy_cfq
);
4282 static void __exit
cfq_exit(void)
4284 DECLARE_COMPLETION_ONSTACK(all_gone
);
4285 blkio_policy_unregister(&blkio_policy_cfq
);
4286 elv_unregister(&iosched_cfq
);
4287 ioc_gone
= &all_gone
;
4288 /* ioc_gone's update must be visible before reading ioc_count */
4292 * this also protects us from entering cfq_slab_kill() with
4293 * pending RCU callbacks
4295 if (elv_ioc_count_read(cfq_ioc_count
))
4296 wait_for_completion(&all_gone
);
4297 ida_destroy(&cic_index_ida
);
4301 module_init(cfq_init
);
4302 module_exit(cfq_exit
);
4304 MODULE_AUTHOR("Jens Axboe");
4305 MODULE_LICENSE("GPL");
4306 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");