2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
24 * balloc.c contains the blocks allocation and deallocation routines
28 * Calculate the block group number and offset, given a block number
30 void ext4_get_group_no_and_offset(struct super_block
*sb
, ext4_fsblk_t blocknr
,
31 unsigned long *blockgrpp
, ext4_grpblk_t
*offsetp
)
33 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
36 blocknr
= blocknr
- le32_to_cpu(es
->s_first_data_block
);
37 offset
= do_div(blocknr
, EXT4_BLOCKS_PER_GROUP(sb
));
46 * The free blocks are managed by bitmaps. A file system contains several
47 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
48 * block for inodes, N blocks for the inode table and data blocks.
50 * The file system contains group descriptors which are located after the
51 * super block. Each descriptor contains the number of the bitmap block and
52 * the free blocks count in the block. The descriptors are loaded in memory
53 * when a file system is mounted (see ext4_read_super).
57 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
60 * ext4_get_group_desc() -- load group descriptor from disk
62 * @block_group: given block group
63 * @bh: pointer to the buffer head to store the block
66 struct ext4_group_desc
* ext4_get_group_desc(struct super_block
* sb
,
67 unsigned int block_group
,
68 struct buffer_head
** bh
)
70 unsigned long group_desc
;
72 struct ext4_group_desc
* desc
;
73 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
75 if (block_group
>= sbi
->s_groups_count
) {
76 ext4_error (sb
, "ext4_get_group_desc",
77 "block_group >= groups_count - "
78 "block_group = %d, groups_count = %lu",
79 block_group
, sbi
->s_groups_count
);
85 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
86 offset
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
87 if (!sbi
->s_group_desc
[group_desc
]) {
88 ext4_error (sb
, "ext4_get_group_desc",
89 "Group descriptor not loaded - "
90 "block_group = %d, group_desc = %lu, desc = %lu",
91 block_group
, group_desc
, offset
);
95 desc
= (struct ext4_group_desc
*)(
96 (__u8
*)sbi
->s_group_desc
[group_desc
]->b_data
+
97 offset
* EXT4_DESC_SIZE(sb
));
99 *bh
= sbi
->s_group_desc
[group_desc
];
104 * read_block_bitmap()
106 * @block_group: given block group
108 * Read the bitmap for a given block_group, reading into the specified
109 * slot in the superblock's bitmap cache.
111 * Return buffer_head on success or NULL in case of failure.
113 static struct buffer_head
*
114 read_block_bitmap(struct super_block
*sb
, unsigned int block_group
)
116 struct ext4_group_desc
* desc
;
117 struct buffer_head
* bh
= NULL
;
119 desc
= ext4_get_group_desc (sb
, block_group
, NULL
);
122 bh
= sb_bread(sb
, ext4_block_bitmap(sb
, desc
));
124 ext4_error (sb
, "read_block_bitmap",
125 "Cannot read block bitmap - "
126 "block_group = %d, block_bitmap = %llu",
128 ext4_block_bitmap(sb
, desc
));
133 * The reservation window structure operations
134 * --------------------------------------------
135 * Operations include:
136 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
138 * We use a red-black tree to represent per-filesystem reservation
144 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
145 * @rb_root: root of per-filesystem reservation rb tree
146 * @verbose: verbose mode
147 * @fn: function which wishes to dump the reservation map
149 * If verbose is turned on, it will print the whole block reservation
150 * windows(start, end). Otherwise, it will only print out the "bad" windows,
151 * those windows that overlap with their immediate neighbors.
154 static void __rsv_window_dump(struct rb_root
*root
, int verbose
,
158 struct ext4_reserve_window_node
*rsv
, *prev
;
166 printk("Block Allocation Reservation Windows Map (%s):\n", fn
);
168 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
170 printk("reservation window 0x%p "
171 "start: %llu, end: %llu\n",
172 rsv
, rsv
->rsv_start
, rsv
->rsv_end
);
173 if (rsv
->rsv_start
&& rsv
->rsv_start
>= rsv
->rsv_end
) {
174 printk("Bad reservation %p (start >= end)\n",
178 if (prev
&& prev
->rsv_end
>= rsv
->rsv_start
) {
179 printk("Bad reservation %p (prev->end >= start)\n",
185 printk("Restarting reservation walk in verbose mode\n");
193 printk("Window map complete.\n");
197 #define rsv_window_dump(root, verbose) \
198 __rsv_window_dump((root), (verbose), __FUNCTION__)
200 #define rsv_window_dump(root, verbose) do {} while (0)
204 * goal_in_my_reservation()
205 * @rsv: inode's reservation window
206 * @grp_goal: given goal block relative to the allocation block group
207 * @group: the current allocation block group
208 * @sb: filesystem super block
210 * Test if the given goal block (group relative) is within the file's
211 * own block reservation window range.
213 * If the reservation window is outside the goal allocation group, return 0;
214 * grp_goal (given goal block) could be -1, which means no specific
215 * goal block. In this case, always return 1.
216 * If the goal block is within the reservation window, return 1;
217 * otherwise, return 0;
220 goal_in_my_reservation(struct ext4_reserve_window
*rsv
, ext4_grpblk_t grp_goal
,
221 unsigned int group
, struct super_block
* sb
)
223 ext4_fsblk_t group_first_block
, group_last_block
;
225 group_first_block
= ext4_group_first_block_no(sb
, group
);
226 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
228 if ((rsv
->_rsv_start
> group_last_block
) ||
229 (rsv
->_rsv_end
< group_first_block
))
231 if ((grp_goal
>= 0) && ((grp_goal
+ group_first_block
< rsv
->_rsv_start
)
232 || (grp_goal
+ group_first_block
> rsv
->_rsv_end
)))
238 * search_reserve_window()
239 * @rb_root: root of reservation tree
240 * @goal: target allocation block
242 * Find the reserved window which includes the goal, or the previous one
243 * if the goal is not in any window.
244 * Returns NULL if there are no windows or if all windows start after the goal.
246 static struct ext4_reserve_window_node
*
247 search_reserve_window(struct rb_root
*root
, ext4_fsblk_t goal
)
249 struct rb_node
*n
= root
->rb_node
;
250 struct ext4_reserve_window_node
*rsv
;
256 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
258 if (goal
< rsv
->rsv_start
)
260 else if (goal
> rsv
->rsv_end
)
266 * We've fallen off the end of the tree: the goal wasn't inside
267 * any particular node. OK, the previous node must be to one
268 * side of the interval containing the goal. If it's the RHS,
269 * we need to back up one.
271 if (rsv
->rsv_start
> goal
) {
272 n
= rb_prev(&rsv
->rsv_node
);
273 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
279 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
281 * @rsv: reservation window to add
283 * Must be called with rsv_lock hold.
285 void ext4_rsv_window_add(struct super_block
*sb
,
286 struct ext4_reserve_window_node
*rsv
)
288 struct rb_root
*root
= &EXT4_SB(sb
)->s_rsv_window_root
;
289 struct rb_node
*node
= &rsv
->rsv_node
;
290 ext4_fsblk_t start
= rsv
->rsv_start
;
292 struct rb_node
** p
= &root
->rb_node
;
293 struct rb_node
* parent
= NULL
;
294 struct ext4_reserve_window_node
*this;
299 this = rb_entry(parent
, struct ext4_reserve_window_node
, rsv_node
);
301 if (start
< this->rsv_start
)
303 else if (start
> this->rsv_end
)
306 rsv_window_dump(root
, 1);
311 rb_link_node(node
, parent
, p
);
312 rb_insert_color(node
, root
);
316 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
318 * @rsv: reservation window to remove
320 * Mark the block reservation window as not allocated, and unlink it
321 * from the filesystem reservation window rb tree. Must be called with
324 static void rsv_window_remove(struct super_block
*sb
,
325 struct ext4_reserve_window_node
*rsv
)
327 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
328 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
329 rsv
->rsv_alloc_hit
= 0;
330 rb_erase(&rsv
->rsv_node
, &EXT4_SB(sb
)->s_rsv_window_root
);
334 * rsv_is_empty() -- Check if the reservation window is allocated.
335 * @rsv: given reservation window to check
337 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
339 static inline int rsv_is_empty(struct ext4_reserve_window
*rsv
)
341 /* a valid reservation end block could not be 0 */
342 return rsv
->_rsv_end
== EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
346 * ext4_init_block_alloc_info()
347 * @inode: file inode structure
349 * Allocate and initialize the reservation window structure, and
350 * link the window to the ext4 inode structure at last
352 * The reservation window structure is only dynamically allocated
353 * and linked to ext4 inode the first time the open file
354 * needs a new block. So, before every ext4_new_block(s) call, for
355 * regular files, we should check whether the reservation window
356 * structure exists or not. In the latter case, this function is called.
357 * Fail to do so will result in block reservation being turned off for that
360 * This function is called from ext4_get_blocks_handle(), also called
361 * when setting the reservation window size through ioctl before the file
362 * is open for write (needs block allocation).
364 * Needs truncate_mutex protection prior to call this function.
366 void ext4_init_block_alloc_info(struct inode
*inode
)
368 struct ext4_inode_info
*ei
= EXT4_I(inode
);
369 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
370 struct super_block
*sb
= inode
->i_sb
;
372 block_i
= kmalloc(sizeof(*block_i
), GFP_NOFS
);
374 struct ext4_reserve_window_node
*rsv
= &block_i
->rsv_window_node
;
376 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
377 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
380 * if filesystem is mounted with NORESERVATION, the goal
381 * reservation window size is set to zero to indicate
382 * block reservation is off
384 if (!test_opt(sb
, RESERVATION
))
385 rsv
->rsv_goal_size
= 0;
387 rsv
->rsv_goal_size
= EXT4_DEFAULT_RESERVE_BLOCKS
;
388 rsv
->rsv_alloc_hit
= 0;
389 block_i
->last_alloc_logical_block
= 0;
390 block_i
->last_alloc_physical_block
= 0;
392 ei
->i_block_alloc_info
= block_i
;
396 * ext4_discard_reservation()
399 * Discard(free) block reservation window on last file close, or truncate
402 * It is being called in three cases:
403 * ext4_release_file(): last writer close the file
404 * ext4_clear_inode(): last iput(), when nobody link to this file.
405 * ext4_truncate(): when the block indirect map is about to change.
408 void ext4_discard_reservation(struct inode
*inode
)
410 struct ext4_inode_info
*ei
= EXT4_I(inode
);
411 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
412 struct ext4_reserve_window_node
*rsv
;
413 spinlock_t
*rsv_lock
= &EXT4_SB(inode
->i_sb
)->s_rsv_window_lock
;
418 rsv
= &block_i
->rsv_window_node
;
419 if (!rsv_is_empty(&rsv
->rsv_window
)) {
421 if (!rsv_is_empty(&rsv
->rsv_window
))
422 rsv_window_remove(inode
->i_sb
, rsv
);
423 spin_unlock(rsv_lock
);
428 * ext4_free_blocks_sb() -- Free given blocks and update quota
429 * @handle: handle to this transaction
431 * @block: start physcial block to free
432 * @count: number of blocks to free
433 * @pdquot_freed_blocks: pointer to quota
435 void ext4_free_blocks_sb(handle_t
*handle
, struct super_block
*sb
,
436 ext4_fsblk_t block
, unsigned long count
,
437 unsigned long *pdquot_freed_blocks
)
439 struct buffer_head
*bitmap_bh
= NULL
;
440 struct buffer_head
*gd_bh
;
441 unsigned long block_group
;
444 unsigned long overflow
;
445 struct ext4_group_desc
* desc
;
446 struct ext4_super_block
* es
;
447 struct ext4_sb_info
*sbi
;
449 ext4_grpblk_t group_freed
;
451 *pdquot_freed_blocks
= 0;
454 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
455 block
+ count
< block
||
456 block
+ count
> ext4_blocks_count(es
)) {
457 ext4_error (sb
, "ext4_free_blocks",
458 "Freeing blocks not in datazone - "
459 "block = %llu, count = %lu", block
, count
);
463 ext4_debug ("freeing block(s) %llu-%llu\n", block
, block
+ count
- 1);
467 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
469 * Check to see if we are freeing blocks across a group
472 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
473 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
477 bitmap_bh
= read_block_bitmap(sb
, block_group
);
480 desc
= ext4_get_group_desc (sb
, block_group
, &gd_bh
);
484 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
485 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
486 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
487 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
488 sbi
->s_itb_per_group
))
489 ext4_error (sb
, "ext4_free_blocks",
490 "Freeing blocks in system zones - "
491 "Block = %llu, count = %lu",
495 * We are about to start releasing blocks in the bitmap,
496 * so we need undo access.
498 /* @@@ check errors */
499 BUFFER_TRACE(bitmap_bh
, "getting undo access");
500 err
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
505 * We are about to modify some metadata. Call the journal APIs
506 * to unshare ->b_data if a currently-committing transaction is
509 BUFFER_TRACE(gd_bh
, "get_write_access");
510 err
= ext4_journal_get_write_access(handle
, gd_bh
);
514 jbd_lock_bh_state(bitmap_bh
);
516 for (i
= 0, group_freed
= 0; i
< count
; i
++) {
518 * An HJ special. This is expensive...
520 #ifdef CONFIG_JBD_DEBUG
521 jbd_unlock_bh_state(bitmap_bh
);
523 struct buffer_head
*debug_bh
;
524 debug_bh
= sb_find_get_block(sb
, block
+ i
);
526 BUFFER_TRACE(debug_bh
, "Deleted!");
527 if (!bh2jh(bitmap_bh
)->b_committed_data
)
528 BUFFER_TRACE(debug_bh
,
529 "No commited data in bitmap");
530 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap");
534 jbd_lock_bh_state(bitmap_bh
);
536 if (need_resched()) {
537 jbd_unlock_bh_state(bitmap_bh
);
539 jbd_lock_bh_state(bitmap_bh
);
541 /* @@@ This prevents newly-allocated data from being
542 * freed and then reallocated within the same
545 * Ideally we would want to allow that to happen, but to
546 * do so requires making jbd2_journal_forget() capable of
547 * revoking the queued write of a data block, which
548 * implies blocking on the journal lock. *forget()
549 * cannot block due to truncate races.
551 * Eventually we can fix this by making jbd2_journal_forget()
552 * return a status indicating whether or not it was able
553 * to revoke the buffer. On successful revoke, it is
554 * safe not to set the allocation bit in the committed
555 * bitmap, because we know that there is no outstanding
556 * activity on the buffer any more and so it is safe to
559 BUFFER_TRACE(bitmap_bh
, "set in b_committed_data");
560 J_ASSERT_BH(bitmap_bh
,
561 bh2jh(bitmap_bh
)->b_committed_data
!= NULL
);
562 ext4_set_bit_atomic(sb_bgl_lock(sbi
, block_group
), bit
+ i
,
563 bh2jh(bitmap_bh
)->b_committed_data
);
566 * We clear the bit in the bitmap after setting the committed
567 * data bit, because this is the reverse order to that which
568 * the allocator uses.
570 BUFFER_TRACE(bitmap_bh
, "clear bit");
571 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi
, block_group
),
572 bit
+ i
, bitmap_bh
->b_data
)) {
573 jbd_unlock_bh_state(bitmap_bh
);
574 ext4_error(sb
, __FUNCTION__
,
575 "bit already cleared for block %llu",
576 (ext4_fsblk_t
)(block
+ i
));
577 jbd_lock_bh_state(bitmap_bh
);
578 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
583 jbd_unlock_bh_state(bitmap_bh
);
585 spin_lock(sb_bgl_lock(sbi
, block_group
));
586 desc
->bg_free_blocks_count
=
587 cpu_to_le16(le16_to_cpu(desc
->bg_free_blocks_count
) +
589 spin_unlock(sb_bgl_lock(sbi
, block_group
));
590 percpu_counter_mod(&sbi
->s_freeblocks_counter
, count
);
592 /* We dirtied the bitmap block */
593 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
594 err
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
596 /* And the group descriptor block */
597 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
598 ret
= ext4_journal_dirty_metadata(handle
, gd_bh
);
600 *pdquot_freed_blocks
+= group_freed
;
602 if (overflow
&& !err
) {
610 ext4_std_error(sb
, err
);
615 * ext4_free_blocks() -- Free given blocks and update quota
616 * @handle: handle for this transaction
618 * @block: start physical block to free
619 * @count: number of blocks to count
621 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
622 ext4_fsblk_t block
, unsigned long count
)
624 struct super_block
* sb
;
625 unsigned long dquot_freed_blocks
;
629 printk ("ext4_free_blocks: nonexistent device");
632 ext4_free_blocks_sb(handle
, sb
, block
, count
, &dquot_freed_blocks
);
633 if (dquot_freed_blocks
)
634 DQUOT_FREE_BLOCK(inode
, dquot_freed_blocks
);
639 * ext4_test_allocatable()
640 * @nr: given allocation block group
641 * @bh: bufferhead contains the bitmap of the given block group
643 * For ext4 allocations, we must not reuse any blocks which are
644 * allocated in the bitmap buffer's "last committed data" copy. This
645 * prevents deletes from freeing up the page for reuse until we have
646 * committed the delete transaction.
648 * If we didn't do this, then deleting something and reallocating it as
649 * data would allow the old block to be overwritten before the
650 * transaction committed (because we force data to disk before commit).
651 * This would lead to corruption if we crashed between overwriting the
652 * data and committing the delete.
654 * @@@ We may want to make this allocation behaviour conditional on
655 * data-writes at some point, and disable it for metadata allocations or
658 static int ext4_test_allocatable(ext4_grpblk_t nr
, struct buffer_head
*bh
)
661 struct journal_head
*jh
= bh2jh(bh
);
663 if (ext4_test_bit(nr
, bh
->b_data
))
666 jbd_lock_bh_state(bh
);
667 if (!jh
->b_committed_data
)
670 ret
= !ext4_test_bit(nr
, jh
->b_committed_data
);
671 jbd_unlock_bh_state(bh
);
676 * bitmap_search_next_usable_block()
677 * @start: the starting block (group relative) of the search
678 * @bh: bufferhead contains the block group bitmap
679 * @maxblocks: the ending block (group relative) of the reservation
681 * The bitmap search --- search forward alternately through the actual
682 * bitmap on disk and the last-committed copy in journal, until we find a
683 * bit free in both bitmaps.
686 bitmap_search_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
687 ext4_grpblk_t maxblocks
)
690 struct journal_head
*jh
= bh2jh(bh
);
692 while (start
< maxblocks
) {
693 next
= ext4_find_next_zero_bit(bh
->b_data
, maxblocks
, start
);
694 if (next
>= maxblocks
)
696 if (ext4_test_allocatable(next
, bh
))
698 jbd_lock_bh_state(bh
);
699 if (jh
->b_committed_data
)
700 start
= ext4_find_next_zero_bit(jh
->b_committed_data
,
702 jbd_unlock_bh_state(bh
);
708 * find_next_usable_block()
709 * @start: the starting block (group relative) to find next
710 * allocatable block in bitmap.
711 * @bh: bufferhead contains the block group bitmap
712 * @maxblocks: the ending block (group relative) for the search
714 * Find an allocatable block in a bitmap. We honor both the bitmap and
715 * its last-committed copy (if that exists), and perform the "most
716 * appropriate allocation" algorithm of looking for a free block near
717 * the initial goal; then for a free byte somewhere in the bitmap; then
718 * for any free bit in the bitmap.
721 find_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
722 ext4_grpblk_t maxblocks
)
724 ext4_grpblk_t here
, next
;
729 * The goal was occupied; search forward for a free
730 * block within the next XX blocks.
732 * end_goal is more or less random, but it has to be
733 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
734 * next 64-bit boundary is simple..
736 ext4_grpblk_t end_goal
= (start
+ 63) & ~63;
737 if (end_goal
> maxblocks
)
738 end_goal
= maxblocks
;
739 here
= ext4_find_next_zero_bit(bh
->b_data
, end_goal
, start
);
740 if (here
< end_goal
&& ext4_test_allocatable(here
, bh
))
742 ext4_debug("Bit not found near goal\n");
749 p
= ((char *)bh
->b_data
) + (here
>> 3);
750 r
= memscan(p
, 0, ((maxblocks
+ 7) >> 3) - (here
>> 3));
751 next
= (r
- ((char *)bh
->b_data
)) << 3;
753 if (next
< maxblocks
&& next
>= start
&& ext4_test_allocatable(next
, bh
))
757 * The bitmap search --- search forward alternately through the actual
758 * bitmap and the last-committed copy until we find a bit free in
761 here
= bitmap_search_next_usable_block(here
, bh
, maxblocks
);
767 * @block: the free block (group relative) to allocate
768 * @bh: the bufferhead containts the block group bitmap
770 * We think we can allocate this block in this bitmap. Try to set the bit.
771 * If that succeeds then check that nobody has allocated and then freed the
772 * block since we saw that is was not marked in b_committed_data. If it _was_
773 * allocated and freed then clear the bit in the bitmap again and return
777 claim_block(spinlock_t
*lock
, ext4_grpblk_t block
, struct buffer_head
*bh
)
779 struct journal_head
*jh
= bh2jh(bh
);
782 if (ext4_set_bit_atomic(lock
, block
, bh
->b_data
))
784 jbd_lock_bh_state(bh
);
785 if (jh
->b_committed_data
&& ext4_test_bit(block
,jh
->b_committed_data
)) {
786 ext4_clear_bit_atomic(lock
, block
, bh
->b_data
);
791 jbd_unlock_bh_state(bh
);
796 * ext4_try_to_allocate()
798 * @handle: handle to this transaction
799 * @group: given allocation block group
800 * @bitmap_bh: bufferhead holds the block bitmap
801 * @grp_goal: given target block within the group
802 * @count: target number of blocks to allocate
803 * @my_rsv: reservation window
805 * Attempt to allocate blocks within a give range. Set the range of allocation
806 * first, then find the first free bit(s) from the bitmap (within the range),
807 * and at last, allocate the blocks by claiming the found free bit as allocated.
809 * To set the range of this allocation:
810 * if there is a reservation window, only try to allocate block(s) from the
811 * file's own reservation window;
812 * Otherwise, the allocation range starts from the give goal block, ends at
813 * the block group's last block.
815 * If we failed to allocate the desired block then we may end up crossing to a
816 * new bitmap. In that case we must release write access to the old one via
817 * ext4_journal_release_buffer(), else we'll run out of credits.
820 ext4_try_to_allocate(struct super_block
*sb
, handle_t
*handle
, int group
,
821 struct buffer_head
*bitmap_bh
, ext4_grpblk_t grp_goal
,
822 unsigned long *count
, struct ext4_reserve_window
*my_rsv
)
824 ext4_fsblk_t group_first_block
;
825 ext4_grpblk_t start
, end
;
826 unsigned long num
= 0;
828 /* we do allocation within the reservation window if we have a window */
830 group_first_block
= ext4_group_first_block_no(sb
, group
);
831 if (my_rsv
->_rsv_start
>= group_first_block
)
832 start
= my_rsv
->_rsv_start
- group_first_block
;
834 /* reservation window cross group boundary */
836 end
= my_rsv
->_rsv_end
- group_first_block
+ 1;
837 if (end
> EXT4_BLOCKS_PER_GROUP(sb
))
838 /* reservation window crosses group boundary */
839 end
= EXT4_BLOCKS_PER_GROUP(sb
);
840 if ((start
<= grp_goal
) && (grp_goal
< end
))
849 end
= EXT4_BLOCKS_PER_GROUP(sb
);
852 BUG_ON(start
> EXT4_BLOCKS_PER_GROUP(sb
));
855 if (grp_goal
< 0 || !ext4_test_allocatable(grp_goal
, bitmap_bh
)) {
856 grp_goal
= find_next_usable_block(start
, bitmap_bh
, end
);
862 for (i
= 0; i
< 7 && grp_goal
> start
&&
863 ext4_test_allocatable(grp_goal
- 1,
871 if (!claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
872 grp_goal
, bitmap_bh
)) {
874 * The block was allocated by another thread, or it was
875 * allocated and then freed by another thread
885 while (num
< *count
&& grp_goal
< end
886 && ext4_test_allocatable(grp_goal
, bitmap_bh
)
887 && claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
888 grp_goal
, bitmap_bh
)) {
893 return grp_goal
- num
;
900 * find_next_reservable_window():
901 * find a reservable space within the given range.
902 * It does not allocate the reservation window for now:
903 * alloc_new_reservation() will do the work later.
905 * @search_head: the head of the searching list;
906 * This is not necessarily the list head of the whole filesystem
908 * We have both head and start_block to assist the search
909 * for the reservable space. The list starts from head,
910 * but we will shift to the place where start_block is,
911 * then start from there, when looking for a reservable space.
913 * @size: the target new reservation window size
915 * @group_first_block: the first block we consider to start
916 * the real search from
919 * the maximum block number that our goal reservable space
920 * could start from. This is normally the last block in this
921 * group. The search will end when we found the start of next
922 * possible reservable space is out of this boundary.
923 * This could handle the cross boundary reservation window
926 * basically we search from the given range, rather than the whole
927 * reservation double linked list, (start_block, last_block)
928 * to find a free region that is of my size and has not
932 static int find_next_reservable_window(
933 struct ext4_reserve_window_node
*search_head
,
934 struct ext4_reserve_window_node
*my_rsv
,
935 struct super_block
* sb
,
936 ext4_fsblk_t start_block
,
937 ext4_fsblk_t last_block
)
939 struct rb_node
*next
;
940 struct ext4_reserve_window_node
*rsv
, *prev
;
942 int size
= my_rsv
->rsv_goal_size
;
944 /* TODO: make the start of the reservation window byte-aligned */
945 /* cur = *start_block & ~7;*/
952 if (cur
<= rsv
->rsv_end
)
953 cur
= rsv
->rsv_end
+ 1;
956 * in the case we could not find a reservable space
957 * that is what is expected, during the re-search, we could
958 * remember what's the largest reservable space we could have
959 * and return that one.
961 * For now it will fail if we could not find the reservable
962 * space with expected-size (or more)...
964 if (cur
> last_block
)
965 return -1; /* fail */
968 next
= rb_next(&rsv
->rsv_node
);
969 rsv
= rb_entry(next
,struct ext4_reserve_window_node
,rsv_node
);
972 * Reached the last reservation, we can just append to the
978 if (cur
+ size
<= rsv
->rsv_start
) {
980 * Found a reserveable space big enough. We could
981 * have a reservation across the group boundary here
987 * we come here either :
988 * when we reach the end of the whole list,
989 * and there is empty reservable space after last entry in the list.
990 * append it to the end of the list.
992 * or we found one reservable space in the middle of the list,
993 * return the reservation window that we could append to.
997 if ((prev
!= my_rsv
) && (!rsv_is_empty(&my_rsv
->rsv_window
)))
998 rsv_window_remove(sb
, my_rsv
);
1001 * Let's book the whole avaliable window for now. We will check the
1002 * disk bitmap later and then, if there are free blocks then we adjust
1003 * the window size if it's larger than requested.
1004 * Otherwise, we will remove this node from the tree next time
1005 * call find_next_reservable_window.
1007 my_rsv
->rsv_start
= cur
;
1008 my_rsv
->rsv_end
= cur
+ size
- 1;
1009 my_rsv
->rsv_alloc_hit
= 0;
1012 ext4_rsv_window_add(sb
, my_rsv
);
1018 * alloc_new_reservation()--allocate a new reservation window
1020 * To make a new reservation, we search part of the filesystem
1021 * reservation list (the list that inside the group). We try to
1022 * allocate a new reservation window near the allocation goal,
1023 * or the beginning of the group, if there is no goal.
1025 * We first find a reservable space after the goal, then from
1026 * there, we check the bitmap for the first free block after
1027 * it. If there is no free block until the end of group, then the
1028 * whole group is full, we failed. Otherwise, check if the free
1029 * block is inside the expected reservable space, if so, we
1031 * If the first free block is outside the reservable space, then
1032 * start from the first free block, we search for next available
1035 * on succeed, a new reservation will be found and inserted into the list
1036 * It contains at least one free block, and it does not overlap with other
1037 * reservation windows.
1039 * failed: we failed to find a reservation window in this group
1041 * @rsv: the reservation
1043 * @grp_goal: The goal (group-relative). It is where the search for a
1044 * free reservable space should start from.
1045 * if we have a grp_goal(grp_goal >0 ), then start from there,
1046 * no grp_goal(grp_goal = -1), we start from the first block
1049 * @sb: the super block
1050 * @group: the group we are trying to allocate in
1051 * @bitmap_bh: the block group block bitmap
1054 static int alloc_new_reservation(struct ext4_reserve_window_node
*my_rsv
,
1055 ext4_grpblk_t grp_goal
, struct super_block
*sb
,
1056 unsigned int group
, struct buffer_head
*bitmap_bh
)
1058 struct ext4_reserve_window_node
*search_head
;
1059 ext4_fsblk_t group_first_block
, group_end_block
, start_block
;
1060 ext4_grpblk_t first_free_block
;
1061 struct rb_root
*fs_rsv_root
= &EXT4_SB(sb
)->s_rsv_window_root
;
1064 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1066 group_first_block
= ext4_group_first_block_no(sb
, group
);
1067 group_end_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1070 start_block
= group_first_block
;
1072 start_block
= grp_goal
+ group_first_block
;
1074 size
= my_rsv
->rsv_goal_size
;
1076 if (!rsv_is_empty(&my_rsv
->rsv_window
)) {
1078 * if the old reservation is cross group boundary
1079 * and if the goal is inside the old reservation window,
1080 * we will come here when we just failed to allocate from
1081 * the first part of the window. We still have another part
1082 * that belongs to the next group. In this case, there is no
1083 * point to discard our window and try to allocate a new one
1084 * in this group(which will fail). we should
1085 * keep the reservation window, just simply move on.
1087 * Maybe we could shift the start block of the reservation
1088 * window to the first block of next group.
1091 if ((my_rsv
->rsv_start
<= group_end_block
) &&
1092 (my_rsv
->rsv_end
> group_end_block
) &&
1093 (start_block
>= my_rsv
->rsv_start
))
1096 if ((my_rsv
->rsv_alloc_hit
>
1097 (my_rsv
->rsv_end
- my_rsv
->rsv_start
+ 1) / 2)) {
1099 * if the previously allocation hit ratio is
1100 * greater than 1/2, then we double the size of
1101 * the reservation window the next time,
1102 * otherwise we keep the same size window
1105 if (size
> EXT4_MAX_RESERVE_BLOCKS
)
1106 size
= EXT4_MAX_RESERVE_BLOCKS
;
1107 my_rsv
->rsv_goal_size
= size
;
1111 spin_lock(rsv_lock
);
1113 * shift the search start to the window near the goal block
1115 search_head
= search_reserve_window(fs_rsv_root
, start_block
);
1118 * find_next_reservable_window() simply finds a reservable window
1119 * inside the given range(start_block, group_end_block).
1121 * To make sure the reservation window has a free bit inside it, we
1122 * need to check the bitmap after we found a reservable window.
1125 ret
= find_next_reservable_window(search_head
, my_rsv
, sb
,
1126 start_block
, group_end_block
);
1129 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1130 rsv_window_remove(sb
, my_rsv
);
1131 spin_unlock(rsv_lock
);
1136 * On success, find_next_reservable_window() returns the
1137 * reservation window where there is a reservable space after it.
1138 * Before we reserve this reservable space, we need
1139 * to make sure there is at least a free block inside this region.
1141 * searching the first free bit on the block bitmap and copy of
1142 * last committed bitmap alternatively, until we found a allocatable
1143 * block. Search start from the start block of the reservable space
1146 spin_unlock(rsv_lock
);
1147 first_free_block
= bitmap_search_next_usable_block(
1148 my_rsv
->rsv_start
- group_first_block
,
1149 bitmap_bh
, group_end_block
- group_first_block
+ 1);
1151 if (first_free_block
< 0) {
1153 * no free block left on the bitmap, no point
1154 * to reserve the space. return failed.
1156 spin_lock(rsv_lock
);
1157 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1158 rsv_window_remove(sb
, my_rsv
);
1159 spin_unlock(rsv_lock
);
1160 return -1; /* failed */
1163 start_block
= first_free_block
+ group_first_block
;
1165 * check if the first free block is within the
1166 * free space we just reserved
1168 if (start_block
>= my_rsv
->rsv_start
&& start_block
<= my_rsv
->rsv_end
)
1169 return 0; /* success */
1171 * if the first free bit we found is out of the reservable space
1172 * continue search for next reservable space,
1173 * start from where the free block is,
1174 * we also shift the list head to where we stopped last time
1176 search_head
= my_rsv
;
1177 spin_lock(rsv_lock
);
1182 * try_to_extend_reservation()
1183 * @my_rsv: given reservation window
1185 * @size: the delta to extend
1187 * Attempt to expand the reservation window large enough to have
1188 * required number of free blocks
1190 * Since ext4_try_to_allocate() will always allocate blocks within
1191 * the reservation window range, if the window size is too small,
1192 * multiple blocks allocation has to stop at the end of the reservation
1193 * window. To make this more efficient, given the total number of
1194 * blocks needed and the current size of the window, we try to
1195 * expand the reservation window size if necessary on a best-effort
1196 * basis before ext4_new_blocks() tries to allocate blocks,
1198 static void try_to_extend_reservation(struct ext4_reserve_window_node
*my_rsv
,
1199 struct super_block
*sb
, int size
)
1201 struct ext4_reserve_window_node
*next_rsv
;
1202 struct rb_node
*next
;
1203 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1205 if (!spin_trylock(rsv_lock
))
1208 next
= rb_next(&my_rsv
->rsv_node
);
1211 my_rsv
->rsv_end
+= size
;
1213 next_rsv
= rb_entry(next
, struct ext4_reserve_window_node
, rsv_node
);
1215 if ((next_rsv
->rsv_start
- my_rsv
->rsv_end
- 1) >= size
)
1216 my_rsv
->rsv_end
+= size
;
1218 my_rsv
->rsv_end
= next_rsv
->rsv_start
- 1;
1220 spin_unlock(rsv_lock
);
1224 * ext4_try_to_allocate_with_rsv()
1226 * @handle: handle to this transaction
1227 * @group: given allocation block group
1228 * @bitmap_bh: bufferhead holds the block bitmap
1229 * @grp_goal: given target block within the group
1230 * @count: target number of blocks to allocate
1231 * @my_rsv: reservation window
1232 * @errp: pointer to store the error code
1234 * This is the main function used to allocate a new block and its reservation
1237 * Each time when a new block allocation is need, first try to allocate from
1238 * its own reservation. If it does not have a reservation window, instead of
1239 * looking for a free bit on bitmap first, then look up the reservation list to
1240 * see if it is inside somebody else's reservation window, we try to allocate a
1241 * reservation window for it starting from the goal first. Then do the block
1242 * allocation within the reservation window.
1244 * This will avoid keeping on searching the reservation list again and
1245 * again when somebody is looking for a free block (without
1246 * reservation), and there are lots of free blocks, but they are all
1249 * We use a red-black tree for the per-filesystem reservation list.
1252 static ext4_grpblk_t
1253 ext4_try_to_allocate_with_rsv(struct super_block
*sb
, handle_t
*handle
,
1254 unsigned int group
, struct buffer_head
*bitmap_bh
,
1255 ext4_grpblk_t grp_goal
,
1256 struct ext4_reserve_window_node
* my_rsv
,
1257 unsigned long *count
, int *errp
)
1259 ext4_fsblk_t group_first_block
, group_last_block
;
1260 ext4_grpblk_t ret
= 0;
1262 unsigned long num
= *count
;
1267 * Make sure we use undo access for the bitmap, because it is critical
1268 * that we do the frozen_data COW on bitmap buffers in all cases even
1269 * if the buffer is in BJ_Forget state in the committing transaction.
1271 BUFFER_TRACE(bitmap_bh
, "get undo access for new block");
1272 fatal
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
1279 * we don't deal with reservation when
1280 * filesystem is mounted without reservation
1281 * or the file is not a regular file
1282 * or last attempt to allocate a block with reservation turned on failed
1284 if (my_rsv
== NULL
) {
1285 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1286 grp_goal
, count
, NULL
);
1290 * grp_goal is a group relative block number (if there is a goal)
1291 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1292 * first block is a filesystem wide block number
1293 * first block is the block number of the first block in this group
1295 group_first_block
= ext4_group_first_block_no(sb
, group
);
1296 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1299 * Basically we will allocate a new block from inode's reservation
1302 * We need to allocate a new reservation window, if:
1303 * a) inode does not have a reservation window; or
1304 * b) last attempt to allocate a block from existing reservation
1306 * c) we come here with a goal and with a reservation window
1308 * We do not need to allocate a new reservation window if we come here
1309 * at the beginning with a goal and the goal is inside the window, or
1310 * we don't have a goal but already have a reservation window.
1311 * then we could go to allocate from the reservation window directly.
1314 if (rsv_is_empty(&my_rsv
->rsv_window
) || (ret
< 0) ||
1315 !goal_in_my_reservation(&my_rsv
->rsv_window
,
1316 grp_goal
, group
, sb
)) {
1317 if (my_rsv
->rsv_goal_size
< *count
)
1318 my_rsv
->rsv_goal_size
= *count
;
1319 ret
= alloc_new_reservation(my_rsv
, grp_goal
, sb
,
1324 if (!goal_in_my_reservation(&my_rsv
->rsv_window
,
1325 grp_goal
, group
, sb
))
1327 } else if (grp_goal
>= 0) {
1328 int curr
= my_rsv
->rsv_end
-
1329 (grp_goal
+ group_first_block
) + 1;
1332 try_to_extend_reservation(my_rsv
, sb
,
1336 if ((my_rsv
->rsv_start
> group_last_block
) ||
1337 (my_rsv
->rsv_end
< group_first_block
)) {
1338 rsv_window_dump(&EXT4_SB(sb
)->s_rsv_window_root
, 1);
1341 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1342 grp_goal
, &num
, &my_rsv
->rsv_window
);
1344 my_rsv
->rsv_alloc_hit
+= num
;
1346 break; /* succeed */
1352 BUFFER_TRACE(bitmap_bh
, "journal_dirty_metadata for "
1354 fatal
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
1362 BUFFER_TRACE(bitmap_bh
, "journal_release_buffer");
1363 ext4_journal_release_buffer(handle
, bitmap_bh
);
1368 * ext4_has_free_blocks()
1369 * @sbi: in-core super block structure.
1371 * Check if filesystem has at least 1 free block available for allocation.
1373 static int ext4_has_free_blocks(struct ext4_sb_info
*sbi
)
1375 ext4_fsblk_t free_blocks
, root_blocks
;
1377 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
1378 root_blocks
= ext4_r_blocks_count(sbi
->s_es
);
1379 if (free_blocks
< root_blocks
+ 1 && !capable(CAP_SYS_RESOURCE
) &&
1380 sbi
->s_resuid
!= current
->fsuid
&&
1381 (sbi
->s_resgid
== 0 || !in_group_p (sbi
->s_resgid
))) {
1388 * ext4_should_retry_alloc()
1390 * @retries number of attemps has been made
1392 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1393 * it is profitable to retry the operation, this function will wait
1394 * for the current or commiting transaction to complete, and then
1397 * if the total number of retries exceed three times, return FALSE.
1399 int ext4_should_retry_alloc(struct super_block
*sb
, int *retries
)
1401 if (!ext4_has_free_blocks(EXT4_SB(sb
)) || (*retries
)++ > 3)
1404 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb
->s_id
);
1406 return jbd2_journal_force_commit_nested(EXT4_SB(sb
)->s_journal
);
1410 * ext4_new_blocks() -- core block(s) allocation function
1411 * @handle: handle to this transaction
1412 * @inode: file inode
1413 * @goal: given target block(filesystem wide)
1414 * @count: target number of blocks to allocate
1417 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1418 * allocate block(s) from the block group contains the goal block first. If that
1419 * fails, it will try to allocate block(s) from other block groups without
1420 * any specific goal block.
1423 ext4_fsblk_t
ext4_new_blocks(handle_t
*handle
, struct inode
*inode
,
1424 ext4_fsblk_t goal
, unsigned long *count
, int *errp
)
1426 struct buffer_head
*bitmap_bh
= NULL
;
1427 struct buffer_head
*gdp_bh
;
1428 unsigned long group_no
;
1430 ext4_grpblk_t grp_target_blk
; /* blockgroup relative goal block */
1431 ext4_grpblk_t grp_alloc_blk
; /* blockgroup-relative allocated block*/
1432 ext4_fsblk_t ret_block
; /* filesyetem-wide allocated block */
1433 int bgi
; /* blockgroup iteration index */
1435 int performed_allocation
= 0;
1436 ext4_grpblk_t free_blocks
; /* number of free blocks in a group */
1437 struct super_block
*sb
;
1438 struct ext4_group_desc
*gdp
;
1439 struct ext4_super_block
*es
;
1440 struct ext4_sb_info
*sbi
;
1441 struct ext4_reserve_window_node
*my_rsv
= NULL
;
1442 struct ext4_block_alloc_info
*block_i
;
1443 unsigned short windowsz
= 0;
1445 static int goal_hits
, goal_attempts
;
1447 unsigned long ngroups
;
1448 unsigned long num
= *count
;
1453 printk("ext4_new_block: nonexistent device");
1458 * Check quota for allocation of this block.
1460 if (DQUOT_ALLOC_BLOCK(inode
, num
)) {
1466 es
= EXT4_SB(sb
)->s_es
;
1467 ext4_debug("goal=%lu.\n", goal
);
1469 * Allocate a block from reservation only when
1470 * filesystem is mounted with reservation(default,-o reservation), and
1471 * it's a regular file, and
1472 * the desired window size is greater than 0 (One could use ioctl
1473 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1474 * reservation on that particular file)
1476 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
1477 if (block_i
&& ((windowsz
= block_i
->rsv_window_node
.rsv_goal_size
) > 0))
1478 my_rsv
= &block_i
->rsv_window_node
;
1480 if (!ext4_has_free_blocks(sbi
)) {
1486 * First, test whether the goal block is free.
1488 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
1489 goal
>= ext4_blocks_count(es
))
1490 goal
= le32_to_cpu(es
->s_first_data_block
);
1491 ext4_get_group_no_and_offset(sb
, goal
, &group_no
, &grp_target_blk
);
1492 goal_group
= group_no
;
1494 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1498 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1500 * if there is not enough free blocks to make a new resevation
1501 * turn off reservation for this allocation
1503 if (my_rsv
&& (free_blocks
< windowsz
)
1504 && (rsv_is_empty(&my_rsv
->rsv_window
)))
1507 if (free_blocks
> 0) {
1508 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1511 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1512 group_no
, bitmap_bh
, grp_target_blk
,
1513 my_rsv
, &num
, &fatal
);
1516 if (grp_alloc_blk
>= 0)
1520 ngroups
= EXT4_SB(sb
)->s_groups_count
;
1524 * Now search the rest of the groups. We assume that
1525 * i and gdp correctly point to the last group visited.
1527 for (bgi
= 0; bgi
< ngroups
; bgi
++) {
1529 if (group_no
>= ngroups
)
1531 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1534 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1536 * skip this group if the number of
1537 * free blocks is less than half of the reservation
1540 if (free_blocks
<= (windowsz
/2))
1544 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1548 * try to allocate block(s) from this group, without a goal(-1).
1550 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1551 group_no
, bitmap_bh
, -1, my_rsv
,
1555 if (grp_alloc_blk
>= 0)
1559 * We may end up a bogus ealier ENOSPC error due to
1560 * filesystem is "full" of reservations, but
1561 * there maybe indeed free blocks avaliable on disk
1562 * In this case, we just forget about the reservations
1563 * just do block allocation as without reservations.
1568 group_no
= goal_group
;
1571 /* No space left on the device */
1577 ext4_debug("using block group %d(%d)\n",
1578 group_no
, gdp
->bg_free_blocks_count
);
1580 BUFFER_TRACE(gdp_bh
, "get_write_access");
1581 fatal
= ext4_journal_get_write_access(handle
, gdp_bh
);
1585 ret_block
= grp_alloc_blk
+ ext4_group_first_block_no(sb
, group_no
);
1587 if (in_range(ext4_block_bitmap(sb
, gdp
), ret_block
, num
) ||
1588 in_range(ext4_block_bitmap(sb
, gdp
), ret_block
, num
) ||
1589 in_range(ret_block
, ext4_inode_table(sb
, gdp
),
1590 EXT4_SB(sb
)->s_itb_per_group
) ||
1591 in_range(ret_block
+ num
- 1, ext4_inode_table(sb
, gdp
),
1592 EXT4_SB(sb
)->s_itb_per_group
))
1593 ext4_error(sb
, "ext4_new_block",
1594 "Allocating block in system zone - "
1595 "blocks from %llu, length %lu",
1598 performed_allocation
= 1;
1600 #ifdef CONFIG_JBD_DEBUG
1602 struct buffer_head
*debug_bh
;
1604 /* Record bitmap buffer state in the newly allocated block */
1605 debug_bh
= sb_find_get_block(sb
, ret_block
);
1607 BUFFER_TRACE(debug_bh
, "state when allocated");
1608 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap state");
1612 jbd_lock_bh_state(bitmap_bh
);
1613 spin_lock(sb_bgl_lock(sbi
, group_no
));
1614 if (buffer_jbd(bitmap_bh
) && bh2jh(bitmap_bh
)->b_committed_data
) {
1617 for (i
= 0; i
< num
; i
++) {
1618 if (ext4_test_bit(grp_alloc_blk
+i
,
1619 bh2jh(bitmap_bh
)->b_committed_data
)) {
1620 printk("%s: block was unexpectedly set in "
1621 "b_committed_data\n", __FUNCTION__
);
1625 ext4_debug("found bit %d\n", grp_alloc_blk
);
1626 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1627 jbd_unlock_bh_state(bitmap_bh
);
1630 if (ret_block
+ num
- 1 >= ext4_blocks_count(es
)) {
1631 ext4_error(sb
, "ext4_new_block",
1632 "block(%llu) >= blocks count(%llu) - "
1633 "block_group = %lu, es == %p ", ret_block
,
1634 ext4_blocks_count(es
), group_no
, es
);
1639 * It is up to the caller to add the new buffer to a journal
1640 * list of some description. We don't know in advance whether
1641 * the caller wants to use it as metadata or data.
1643 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1644 ret_block
, goal_hits
, goal_attempts
);
1646 spin_lock(sb_bgl_lock(sbi
, group_no
));
1647 gdp
->bg_free_blocks_count
=
1648 cpu_to_le16(le16_to_cpu(gdp
->bg_free_blocks_count
)-num
);
1649 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1650 percpu_counter_mod(&sbi
->s_freeblocks_counter
, -num
);
1652 BUFFER_TRACE(gdp_bh
, "journal_dirty_metadata for group descriptor");
1653 err
= ext4_journal_dirty_metadata(handle
, gdp_bh
);
1663 DQUOT_FREE_BLOCK(inode
, *count
-num
);
1672 ext4_std_error(sb
, fatal
);
1675 * Undo the block allocation
1677 if (!performed_allocation
)
1678 DQUOT_FREE_BLOCK(inode
, *count
);
1683 ext4_fsblk_t
ext4_new_block(handle_t
*handle
, struct inode
*inode
,
1684 ext4_fsblk_t goal
, int *errp
)
1686 unsigned long count
= 1;
1688 return ext4_new_blocks(handle
, inode
, goal
, &count
, errp
);
1692 * ext4_count_free_blocks() -- count filesystem free blocks
1695 * Adds up the number of free blocks from each block group.
1697 ext4_fsblk_t
ext4_count_free_blocks(struct super_block
*sb
)
1699 ext4_fsblk_t desc_count
;
1700 struct ext4_group_desc
*gdp
;
1702 unsigned long ngroups
= EXT4_SB(sb
)->s_groups_count
;
1704 struct ext4_super_block
*es
;
1705 ext4_fsblk_t bitmap_count
;
1707 struct buffer_head
*bitmap_bh
= NULL
;
1709 es
= EXT4_SB(sb
)->s_es
;
1715 for (i
= 0; i
< ngroups
; i
++) {
1716 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1719 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1721 bitmap_bh
= read_block_bitmap(sb
, i
);
1722 if (bitmap_bh
== NULL
)
1725 x
= ext4_count_free(bitmap_bh
, sb
->s_blocksize
);
1726 printk("group %d: stored = %d, counted = %lu\n",
1727 i
, le16_to_cpu(gdp
->bg_free_blocks_count
), x
);
1731 printk("ext4_count_free_blocks: stored = %llu"
1732 ", computed = %llu, %llu\n",
1733 EXT4_FREE_BLOCKS_COUNT(es
),
1734 desc_count
, bitmap_count
);
1735 return bitmap_count
;
1739 for (i
= 0; i
< ngroups
; i
++) {
1740 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1743 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1751 block_in_use(ext4_fsblk_t block
, struct super_block
*sb
, unsigned char *map
)
1753 ext4_grpblk_t offset
;
1755 ext4_get_group_no_and_offset(sb
, block
, NULL
, &offset
);
1756 return ext4_test_bit (offset
, map
);
1759 static inline int test_root(int a
, int b
)
1768 static int ext4_group_sparse(int group
)
1774 return (test_root(group
, 7) || test_root(group
, 5) ||
1775 test_root(group
, 3));
1779 * ext4_bg_has_super - number of blocks used by the superblock in group
1780 * @sb: superblock for filesystem
1781 * @group: group number to check
1783 * Return the number of blocks used by the superblock (primary or backup)
1784 * in this group. Currently this will be only 0 or 1.
1786 int ext4_bg_has_super(struct super_block
*sb
, int group
)
1788 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
1789 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER
) &&
1790 !ext4_group_sparse(group
))
1795 static unsigned long ext4_bg_num_gdb_meta(struct super_block
*sb
, int group
)
1797 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
1798 unsigned long first
= metagroup
* EXT4_DESC_PER_BLOCK(sb
);
1799 unsigned long last
= first
+ EXT4_DESC_PER_BLOCK(sb
) - 1;
1801 if (group
== first
|| group
== first
+ 1 || group
== last
)
1806 static unsigned long ext4_bg_num_gdb_nometa(struct super_block
*sb
, int group
)
1808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
1809 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER
) &&
1810 !ext4_group_sparse(group
))
1812 return EXT4_SB(sb
)->s_gdb_count
;
1816 * ext4_bg_num_gdb - number of blocks used by the group table in group
1817 * @sb: superblock for filesystem
1818 * @group: group number to check
1820 * Return the number of blocks used by the group descriptor table
1821 * (primary or backup) in this group. In the future there may be a
1822 * different number of descriptor blocks in each group.
1824 unsigned long ext4_bg_num_gdb(struct super_block
*sb
, int group
)
1826 unsigned long first_meta_bg
=
1827 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_meta_bg
);
1828 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
1830 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
,EXT4_FEATURE_INCOMPAT_META_BG
) ||
1831 metagroup
< first_meta_bg
)
1832 return ext4_bg_num_gdb_nometa(sb
,group
);
1834 return ext4_bg_num_gdb_meta(sb
,group
);