USB: Parse and store the SuperSpeed endpoint companion descriptors.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob17d5f539a9aa58a18accc8f97904faf02d93d04e
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
190 return ret;
193 static int page_is_consistent(struct zone *zone, struct page *page)
195 if (!pfn_valid_within(page_to_pfn(page)))
196 return 0;
197 if (zone != page_zone(page))
198 return 0;
200 return 1;
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone *zone, struct page *page)
207 if (page_outside_zone_boundaries(zone, page))
208 return 1;
209 if (!page_is_consistent(zone, page))
210 return 1;
212 return 0;
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
217 return 0;
219 #endif
221 static void bad_page(struct page *page)
223 static unsigned long resume;
224 static unsigned long nr_shown;
225 static unsigned long nr_unshown;
228 * Allow a burst of 60 reports, then keep quiet for that minute;
229 * or allow a steady drip of one report per second.
231 if (nr_shown == 60) {
232 if (time_before(jiffies, resume)) {
233 nr_unshown++;
234 goto out;
236 if (nr_unshown) {
237 printk(KERN_ALERT
238 "BUG: Bad page state: %lu messages suppressed\n",
239 nr_unshown);
240 nr_unshown = 0;
242 nr_shown = 0;
244 if (nr_shown++ == 0)
245 resume = jiffies + 60 * HZ;
247 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
248 current->comm, page_to_pfn(page));
249 printk(KERN_ALERT
250 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
251 page, (void *)page->flags, page_count(page),
252 page_mapcount(page), page->mapping, page->index);
254 dump_stack();
255 out:
256 /* Leave bad fields for debug, except PageBuddy could make trouble */
257 __ClearPageBuddy(page);
258 add_taint(TAINT_BAD_PAGE);
262 * Higher-order pages are called "compound pages". They are structured thusly:
264 * The first PAGE_SIZE page is called the "head page".
266 * The remaining PAGE_SIZE pages are called "tail pages".
268 * All pages have PG_compound set. All pages have their ->private pointing at
269 * the head page (even the head page has this).
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function. Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
276 static void free_compound_page(struct page *page)
278 __free_pages_ok(page, compound_order(page));
281 void prep_compound_page(struct page *page, unsigned long order)
283 int i;
284 int nr_pages = 1 << order;
286 set_compound_page_dtor(page, free_compound_page);
287 set_compound_order(page, order);
288 __SetPageHead(page);
289 for (i = 1; i < nr_pages; i++) {
290 struct page *p = page + i;
292 __SetPageTail(p);
293 p->first_page = page;
297 #ifdef CONFIG_HUGETLBFS
298 void prep_compound_gigantic_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
302 struct page *p = page + 1;
304 set_compound_page_dtor(page, free_compound_page);
305 set_compound_order(page, order);
306 __SetPageHead(page);
307 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
308 __SetPageTail(p);
309 p->first_page = page;
312 #endif
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order)
453 unsigned long page_idx;
454 int order_size = 1 << order;
455 int migratetype = get_pageblock_migratetype(page);
457 if (unlikely(PageCompound(page)))
458 if (unlikely(destroy_compound_page(page, order)))
459 return;
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & (order_size - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
490 static inline int free_pages_check(struct page *page)
492 free_page_mlock(page);
493 if (unlikely(page_mapcount(page) |
494 (page->mapping != NULL) |
495 (page_count(page) != 0) |
496 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
497 bad_page(page);
498 return 1;
500 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
501 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
502 return 0;
506 * Frees a list of pages.
507 * Assumes all pages on list are in same zone, and of same order.
508 * count is the number of pages to free.
510 * If the zone was previously in an "all pages pinned" state then look to
511 * see if this freeing clears that state.
513 * And clear the zone's pages_scanned counter, to hold off the "all pages are
514 * pinned" detection logic.
516 static void free_pages_bulk(struct zone *zone, int count,
517 struct list_head *list, int order)
519 spin_lock(&zone->lock);
520 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
521 zone->pages_scanned = 0;
522 while (count--) {
523 struct page *page;
525 VM_BUG_ON(list_empty(list));
526 page = list_entry(list->prev, struct page, lru);
527 /* have to delete it as __free_one_page list manipulates */
528 list_del(&page->lru);
529 __free_one_page(page, zone, order);
531 spin_unlock(&zone->lock);
534 static void free_one_page(struct zone *zone, struct page *page, int order)
536 spin_lock(&zone->lock);
537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
538 zone->pages_scanned = 0;
539 __free_one_page(page, zone, order);
540 spin_unlock(&zone->lock);
543 static void __free_pages_ok(struct page *page, unsigned int order)
545 unsigned long flags;
546 int i;
547 int bad = 0;
549 for (i = 0 ; i < (1 << order) ; ++i)
550 bad += free_pages_check(page + i);
551 if (bad)
552 return;
554 if (!PageHighMem(page)) {
555 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
556 debug_check_no_obj_freed(page_address(page),
557 PAGE_SIZE << order);
559 arch_free_page(page, order);
560 kernel_map_pages(page, 1 << order, 0);
562 local_irq_save(flags);
563 __count_vm_events(PGFREE, 1 << order);
564 free_one_page(page_zone(page), page, order);
565 local_irq_restore(flags);
569 * permit the bootmem allocator to evade page validation on high-order frees
571 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
573 if (order == 0) {
574 __ClearPageReserved(page);
575 set_page_count(page, 0);
576 set_page_refcounted(page);
577 __free_page(page);
578 } else {
579 int loop;
581 prefetchw(page);
582 for (loop = 0; loop < BITS_PER_LONG; loop++) {
583 struct page *p = &page[loop];
585 if (loop + 1 < BITS_PER_LONG)
586 prefetchw(p + 1);
587 __ClearPageReserved(p);
588 set_page_count(p, 0);
591 set_page_refcounted(page);
592 __free_pages(page, order);
598 * The order of subdivision here is critical for the IO subsystem.
599 * Please do not alter this order without good reasons and regression
600 * testing. Specifically, as large blocks of memory are subdivided,
601 * the order in which smaller blocks are delivered depends on the order
602 * they're subdivided in this function. This is the primary factor
603 * influencing the order in which pages are delivered to the IO
604 * subsystem according to empirical testing, and this is also justified
605 * by considering the behavior of a buddy system containing a single
606 * large block of memory acted on by a series of small allocations.
607 * This behavior is a critical factor in sglist merging's success.
609 * -- wli
611 static inline void expand(struct zone *zone, struct page *page,
612 int low, int high, struct free_area *area,
613 int migratetype)
615 unsigned long size = 1 << high;
617 while (high > low) {
618 area--;
619 high--;
620 size >>= 1;
621 VM_BUG_ON(bad_range(zone, &page[size]));
622 list_add(&page[size].lru, &area->free_list[migratetype]);
623 area->nr_free++;
624 set_page_order(&page[size], high);
629 * This page is about to be returned from the page allocator
631 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
633 if (unlikely(page_mapcount(page) |
634 (page->mapping != NULL) |
635 (page_count(page) != 0) |
636 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
637 bad_page(page);
638 return 1;
641 set_page_private(page, 0);
642 set_page_refcounted(page);
644 arch_alloc_page(page, order);
645 kernel_map_pages(page, 1 << order, 1);
647 if (gfp_flags & __GFP_ZERO)
648 prep_zero_page(page, order, gfp_flags);
650 if (order && (gfp_flags & __GFP_COMP))
651 prep_compound_page(page, order);
653 return 0;
657 * Go through the free lists for the given migratetype and remove
658 * the smallest available page from the freelists
660 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
661 int migratetype)
663 unsigned int current_order;
664 struct free_area * area;
665 struct page *page;
667 /* Find a page of the appropriate size in the preferred list */
668 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
669 area = &(zone->free_area[current_order]);
670 if (list_empty(&area->free_list[migratetype]))
671 continue;
673 page = list_entry(area->free_list[migratetype].next,
674 struct page, lru);
675 list_del(&page->lru);
676 rmv_page_order(page);
677 area->nr_free--;
678 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
679 expand(zone, page, order, current_order, area, migratetype);
680 return page;
683 return NULL;
688 * This array describes the order lists are fallen back to when
689 * the free lists for the desirable migrate type are depleted
691 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
692 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
693 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
694 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
695 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 * Move the free pages in a range to the free lists of the requested type.
700 * Note that start_page and end_pages are not aligned on a pageblock
701 * boundary. If alignment is required, use move_freepages_block()
703 static int move_freepages(struct zone *zone,
704 struct page *start_page, struct page *end_page,
705 int migratetype)
707 struct page *page;
708 unsigned long order;
709 int pages_moved = 0;
711 #ifndef CONFIG_HOLES_IN_ZONE
713 * page_zone is not safe to call in this context when
714 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
715 * anyway as we check zone boundaries in move_freepages_block().
716 * Remove at a later date when no bug reports exist related to
717 * grouping pages by mobility
719 BUG_ON(page_zone(start_page) != page_zone(end_page));
720 #endif
722 for (page = start_page; page <= end_page;) {
723 /* Make sure we are not inadvertently changing nodes */
724 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
726 if (!pfn_valid_within(page_to_pfn(page))) {
727 page++;
728 continue;
731 if (!PageBuddy(page)) {
732 page++;
733 continue;
736 order = page_order(page);
737 list_del(&page->lru);
738 list_add(&page->lru,
739 &zone->free_area[order].free_list[migratetype]);
740 page += 1 << order;
741 pages_moved += 1 << order;
744 return pages_moved;
747 static int move_freepages_block(struct zone *zone, struct page *page,
748 int migratetype)
750 unsigned long start_pfn, end_pfn;
751 struct page *start_page, *end_page;
753 start_pfn = page_to_pfn(page);
754 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
755 start_page = pfn_to_page(start_pfn);
756 end_page = start_page + pageblock_nr_pages - 1;
757 end_pfn = start_pfn + pageblock_nr_pages - 1;
759 /* Do not cross zone boundaries */
760 if (start_pfn < zone->zone_start_pfn)
761 start_page = page;
762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763 return 0;
765 return move_freepages(zone, start_page, end_page, migratetype);
768 /* Remove an element from the buddy allocator from the fallback list */
769 static struct page *__rmqueue_fallback(struct zone *zone, int order,
770 int start_migratetype)
772 struct free_area * area;
773 int current_order;
774 struct page *page;
775 int migratetype, i;
777 /* Find the largest possible block of pages in the other list */
778 for (current_order = MAX_ORDER-1; current_order >= order;
779 --current_order) {
780 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781 migratetype = fallbacks[start_migratetype][i];
783 /* MIGRATE_RESERVE handled later if necessary */
784 if (migratetype == MIGRATE_RESERVE)
785 continue;
787 area = &(zone->free_area[current_order]);
788 if (list_empty(&area->free_list[migratetype]))
789 continue;
791 page = list_entry(area->free_list[migratetype].next,
792 struct page, lru);
793 area->nr_free--;
796 * If breaking a large block of pages, move all free
797 * pages to the preferred allocation list. If falling
798 * back for a reclaimable kernel allocation, be more
799 * agressive about taking ownership of free pages
801 if (unlikely(current_order >= (pageblock_order >> 1)) ||
802 start_migratetype == MIGRATE_RECLAIMABLE) {
803 unsigned long pages;
804 pages = move_freepages_block(zone, page,
805 start_migratetype);
807 /* Claim the whole block if over half of it is free */
808 if (pages >= (1 << (pageblock_order-1)))
809 set_pageblock_migratetype(page,
810 start_migratetype);
812 migratetype = start_migratetype;
815 /* Remove the page from the freelists */
816 list_del(&page->lru);
817 rmv_page_order(page);
818 __mod_zone_page_state(zone, NR_FREE_PAGES,
819 -(1UL << order));
821 if (current_order == pageblock_order)
822 set_pageblock_migratetype(page,
823 start_migratetype);
825 expand(zone, page, order, current_order, area, migratetype);
826 return page;
830 /* Use MIGRATE_RESERVE rather than fail an allocation */
831 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 * Do the hard work of removing an element from the buddy allocator.
836 * Call me with the zone->lock already held.
838 static struct page *__rmqueue(struct zone *zone, unsigned int order,
839 int migratetype)
841 struct page *page;
843 page = __rmqueue_smallest(zone, order, migratetype);
845 if (unlikely(!page))
846 page = __rmqueue_fallback(zone, order, migratetype);
848 return page;
852 * Obtain a specified number of elements from the buddy allocator, all under
853 * a single hold of the lock, for efficiency. Add them to the supplied list.
854 * Returns the number of new pages which were placed at *list.
856 static int rmqueue_bulk(struct zone *zone, unsigned int order,
857 unsigned long count, struct list_head *list,
858 int migratetype)
860 int i;
862 spin_lock(&zone->lock);
863 for (i = 0; i < count; ++i) {
864 struct page *page = __rmqueue(zone, order, migratetype);
865 if (unlikely(page == NULL))
866 break;
869 * Split buddy pages returned by expand() are received here
870 * in physical page order. The page is added to the callers and
871 * list and the list head then moves forward. From the callers
872 * perspective, the linked list is ordered by page number in
873 * some conditions. This is useful for IO devices that can
874 * merge IO requests if the physical pages are ordered
875 * properly.
877 list_add(&page->lru, list);
878 set_page_private(page, migratetype);
879 list = &page->lru;
881 spin_unlock(&zone->lock);
882 return i;
885 #ifdef CONFIG_NUMA
887 * Called from the vmstat counter updater to drain pagesets of this
888 * currently executing processor on remote nodes after they have
889 * expired.
891 * Note that this function must be called with the thread pinned to
892 * a single processor.
894 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
896 unsigned long flags;
897 int to_drain;
899 local_irq_save(flags);
900 if (pcp->count >= pcp->batch)
901 to_drain = pcp->batch;
902 else
903 to_drain = pcp->count;
904 free_pages_bulk(zone, to_drain, &pcp->list, 0);
905 pcp->count -= to_drain;
906 local_irq_restore(flags);
908 #endif
911 * Drain pages of the indicated processor.
913 * The processor must either be the current processor and the
914 * thread pinned to the current processor or a processor that
915 * is not online.
917 static void drain_pages(unsigned int cpu)
919 unsigned long flags;
920 struct zone *zone;
922 for_each_populated_zone(zone) {
923 struct per_cpu_pageset *pset;
924 struct per_cpu_pages *pcp;
926 pset = zone_pcp(zone, cpu);
928 pcp = &pset->pcp;
929 local_irq_save(flags);
930 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931 pcp->count = 0;
932 local_irq_restore(flags);
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
939 void drain_local_pages(void *arg)
941 drain_pages(smp_processor_id());
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
947 void drain_all_pages(void)
949 on_each_cpu(drain_local_pages, NULL, 1);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone *zone)
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
958 int order, t;
959 struct list_head *curr;
961 if (!zone->spanned_pages)
962 return;
964 spin_lock_irqsave(&zone->lock, flags);
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
977 unsigned long i;
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
981 swsusp_set_page_free(pfn_to_page(pfn + i));
984 spin_unlock_irqrestore(&zone->lock, flags);
986 #endif /* CONFIG_PM */
989 * Free a 0-order page
991 static void free_hot_cold_page(struct page *page, int cold)
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
997 if (PageAnon(page))
998 page->mapping = NULL;
999 if (free_pages_check(page))
1000 return;
1002 if (!PageHighMem(page)) {
1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1006 arch_free_page(page, 0);
1007 kernel_map_pages(page, 1, 0);
1009 pcp = &zone_pcp(zone, get_cpu())->pcp;
1010 local_irq_save(flags);
1011 __count_vm_event(PGFREE);
1012 if (cold)
1013 list_add_tail(&page->lru, &pcp->list);
1014 else
1015 list_add(&page->lru, &pcp->list);
1016 set_page_private(page, get_pageblock_migratetype(page));
1017 pcp->count++;
1018 if (pcp->count >= pcp->high) {
1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020 pcp->count -= pcp->batch;
1022 local_irq_restore(flags);
1023 put_cpu();
1026 void free_hot_page(struct page *page)
1028 free_hot_cold_page(page, 0);
1031 void free_cold_page(struct page *page)
1033 free_hot_cold_page(page, 1);
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1044 void split_page(struct page *page, unsigned int order)
1046 int i;
1048 VM_BUG_ON(PageCompound(page));
1049 VM_BUG_ON(!page_count(page));
1050 for (i = 1; i < (1 << order); i++)
1051 set_page_refcounted(page + i);
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1057 * or two.
1059 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1060 struct zone *zone, int order, gfp_t gfp_flags)
1062 unsigned long flags;
1063 struct page *page;
1064 int cold = !!(gfp_flags & __GFP_COLD);
1065 int cpu;
1066 int migratetype = allocflags_to_migratetype(gfp_flags);
1068 again:
1069 cpu = get_cpu();
1070 if (likely(order == 0)) {
1071 struct per_cpu_pages *pcp;
1073 pcp = &zone_pcp(zone, cpu)->pcp;
1074 local_irq_save(flags);
1075 if (!pcp->count) {
1076 pcp->count = rmqueue_bulk(zone, 0,
1077 pcp->batch, &pcp->list, migratetype);
1078 if (unlikely(!pcp->count))
1079 goto failed;
1082 /* Find a page of the appropriate migrate type */
1083 if (cold) {
1084 list_for_each_entry_reverse(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1087 } else {
1088 list_for_each_entry(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page->lru == &pcp->list)) {
1095 pcp->count += rmqueue_bulk(zone, 0,
1096 pcp->batch, &pcp->list, migratetype);
1097 page = list_entry(pcp->list.next, struct page, lru);
1100 list_del(&page->lru);
1101 pcp->count--;
1102 } else {
1103 spin_lock_irqsave(&zone->lock, flags);
1104 page = __rmqueue(zone, order, migratetype);
1105 spin_unlock(&zone->lock);
1106 if (!page)
1107 goto failed;
1110 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1111 zone_statistics(preferred_zone, zone);
1112 local_irq_restore(flags);
1113 put_cpu();
1115 VM_BUG_ON(bad_range(zone, page));
1116 if (prep_new_page(page, order, gfp_flags))
1117 goto again;
1118 return page;
1120 failed:
1121 local_irq_restore(flags);
1122 put_cpu();
1123 return NULL;
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1136 static struct fail_page_alloc_attr {
1137 struct fault_attr attr;
1139 u32 ignore_gfp_highmem;
1140 u32 ignore_gfp_wait;
1141 u32 min_order;
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1145 struct dentry *ignore_gfp_highmem_file;
1146 struct dentry *ignore_gfp_wait_file;
1147 struct dentry *min_order_file;
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1151 } fail_page_alloc = {
1152 .attr = FAULT_ATTR_INITIALIZER,
1153 .ignore_gfp_wait = 1,
1154 .ignore_gfp_highmem = 1,
1155 .min_order = 1,
1158 static int __init setup_fail_page_alloc(char *str)
1160 return setup_fault_attr(&fail_page_alloc.attr, str);
1162 __setup("fail_page_alloc=", setup_fail_page_alloc);
1164 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1166 if (order < fail_page_alloc.min_order)
1167 return 0;
1168 if (gfp_mask & __GFP_NOFAIL)
1169 return 0;
1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171 return 0;
1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173 return 0;
1175 return should_fail(&fail_page_alloc.attr, 1 << order);
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1180 static int __init fail_page_alloc_debugfs(void)
1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183 struct dentry *dir;
1184 int err;
1186 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187 "fail_page_alloc");
1188 if (err)
1189 return err;
1190 dir = fail_page_alloc.attr.dentries.dir;
1192 fail_page_alloc.ignore_gfp_wait_file =
1193 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194 &fail_page_alloc.ignore_gfp_wait);
1196 fail_page_alloc.ignore_gfp_highmem_file =
1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198 &fail_page_alloc.ignore_gfp_highmem);
1199 fail_page_alloc.min_order_file =
1200 debugfs_create_u32("min-order", mode, dir,
1201 &fail_page_alloc.min_order);
1203 if (!fail_page_alloc.ignore_gfp_wait_file ||
1204 !fail_page_alloc.ignore_gfp_highmem_file ||
1205 !fail_page_alloc.min_order_file) {
1206 err = -ENOMEM;
1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1209 debugfs_remove(fail_page_alloc.min_order_file);
1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1213 return err;
1216 late_initcall(fail_page_alloc_debugfs);
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1224 return 0;
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1233 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1234 int classzone_idx, int alloc_flags)
1236 /* free_pages my go negative - that's OK */
1237 long min = mark;
1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1239 int o;
1241 if (alloc_flags & ALLOC_HIGH)
1242 min -= min / 2;
1243 if (alloc_flags & ALLOC_HARDER)
1244 min -= min / 4;
1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247 return 0;
1248 for (o = 0; o < order; o++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages -= z->free_area[o].nr_free << o;
1252 /* Require fewer higher order pages to be free */
1253 min >>= 1;
1255 if (free_pages <= min)
1256 return 0;
1258 return 1;
1261 #ifdef CONFIG_NUMA
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1284 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1287 nodemask_t *allowednodes; /* zonelist_cache approximation */
1289 zlc = zonelist->zlcache_ptr;
1290 if (!zlc)
1291 return NULL;
1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295 zlc->last_full_zap = jiffies;
1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299 &cpuset_current_mems_allowed :
1300 &node_states[N_HIGH_MEMORY];
1301 return allowednodes;
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1326 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1327 nodemask_t *allowednodes)
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331 int n; /* node that zone *z is on */
1333 zlc = zonelist->zlcache_ptr;
1334 if (!zlc)
1335 return 1;
1337 i = z - zonelist->_zonerefs;
1338 n = zlc->z_to_n[i];
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 int i; /* index of *z in zonelist zones */
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return;
1358 i = z - zonelist->_zonerefs;
1360 set_bit(i, zlc->fullzones);
1363 #else /* CONFIG_NUMA */
1365 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1367 return NULL;
1370 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1371 nodemask_t *allowednodes)
1373 return 1;
1376 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1379 #endif /* CONFIG_NUMA */
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1383 * a page.
1385 static struct page *
1386 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1389 struct zoneref *z;
1390 struct page *page = NULL;
1391 int classzone_idx;
1392 struct zone *zone, *preferred_zone;
1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394 int zlc_active = 0; /* set if using zonelist_cache */
1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398 &preferred_zone);
1399 if (!preferred_zone)
1400 return NULL;
1402 classzone_idx = zone_idx(preferred_zone);
1404 zonelist_scan:
1406 * Scan zonelist, looking for a zone with enough free.
1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1409 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1410 high_zoneidx, nodemask) {
1411 if (NUMA_BUILD && zlc_active &&
1412 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1413 continue;
1414 if ((alloc_flags & ALLOC_CPUSET) &&
1415 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1416 goto try_next_zone;
1418 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1419 unsigned long mark;
1420 if (alloc_flags & ALLOC_WMARK_MIN)
1421 mark = zone->pages_min;
1422 else if (alloc_flags & ALLOC_WMARK_LOW)
1423 mark = zone->pages_low;
1424 else
1425 mark = zone->pages_high;
1426 if (!zone_watermark_ok(zone, order, mark,
1427 classzone_idx, alloc_flags)) {
1428 if (!zone_reclaim_mode ||
1429 !zone_reclaim(zone, gfp_mask, order))
1430 goto this_zone_full;
1434 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1435 if (page)
1436 break;
1437 this_zone_full:
1438 if (NUMA_BUILD)
1439 zlc_mark_zone_full(zonelist, z);
1440 try_next_zone:
1441 if (NUMA_BUILD && !did_zlc_setup) {
1442 /* we do zlc_setup after the first zone is tried */
1443 allowednodes = zlc_setup(zonelist, alloc_flags);
1444 zlc_active = 1;
1445 did_zlc_setup = 1;
1449 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1450 /* Disable zlc cache for second zonelist scan */
1451 zlc_active = 0;
1452 goto zonelist_scan;
1454 return page;
1458 * This is the 'heart' of the zoned buddy allocator.
1460 struct page *
1461 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1462 struct zonelist *zonelist, nodemask_t *nodemask)
1464 const gfp_t wait = gfp_mask & __GFP_WAIT;
1465 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1466 struct zoneref *z;
1467 struct zone *zone;
1468 struct page *page;
1469 struct reclaim_state reclaim_state;
1470 struct task_struct *p = current;
1471 int do_retry;
1472 int alloc_flags;
1473 unsigned long did_some_progress;
1474 unsigned long pages_reclaimed = 0;
1476 lockdep_trace_alloc(gfp_mask);
1478 might_sleep_if(wait);
1480 if (should_fail_alloc_page(gfp_mask, order))
1481 return NULL;
1483 restart:
1484 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1486 if (unlikely(!z->zone)) {
1488 * Happens if we have an empty zonelist as a result of
1489 * GFP_THISNODE being used on a memoryless node
1491 return NULL;
1494 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1495 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1496 if (page)
1497 goto got_pg;
1500 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1501 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1502 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1503 * using a larger set of nodes after it has established that the
1504 * allowed per node queues are empty and that nodes are
1505 * over allocated.
1507 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1508 goto nopage;
1510 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1511 wakeup_kswapd(zone, order);
1514 * OK, we're below the kswapd watermark and have kicked background
1515 * reclaim. Now things get more complex, so set up alloc_flags according
1516 * to how we want to proceed.
1518 * The caller may dip into page reserves a bit more if the caller
1519 * cannot run direct reclaim, or if the caller has realtime scheduling
1520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1521 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1523 alloc_flags = ALLOC_WMARK_MIN;
1524 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1525 alloc_flags |= ALLOC_HARDER;
1526 if (gfp_mask & __GFP_HIGH)
1527 alloc_flags |= ALLOC_HIGH;
1528 if (wait)
1529 alloc_flags |= ALLOC_CPUSET;
1532 * Go through the zonelist again. Let __GFP_HIGH and allocations
1533 * coming from realtime tasks go deeper into reserves.
1535 * This is the last chance, in general, before the goto nopage.
1536 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1539 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1540 high_zoneidx, alloc_flags);
1541 if (page)
1542 goto got_pg;
1544 /* This allocation should allow future memory freeing. */
1546 rebalance:
1547 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1548 && !in_interrupt()) {
1549 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1550 nofail_alloc:
1551 /* go through the zonelist yet again, ignoring mins */
1552 page = get_page_from_freelist(gfp_mask, nodemask, order,
1553 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1554 if (page)
1555 goto got_pg;
1556 if (gfp_mask & __GFP_NOFAIL) {
1557 congestion_wait(WRITE, HZ/50);
1558 goto nofail_alloc;
1561 goto nopage;
1564 /* Atomic allocations - we can't balance anything */
1565 if (!wait)
1566 goto nopage;
1568 cond_resched();
1570 /* We now go into synchronous reclaim */
1571 cpuset_memory_pressure_bump();
1573 * The task's cpuset might have expanded its set of allowable nodes
1575 cpuset_update_task_memory_state();
1576 p->flags |= PF_MEMALLOC;
1578 lockdep_set_current_reclaim_state(gfp_mask);
1579 reclaim_state.reclaimed_slab = 0;
1580 p->reclaim_state = &reclaim_state;
1582 did_some_progress = try_to_free_pages(zonelist, order,
1583 gfp_mask, nodemask);
1585 p->reclaim_state = NULL;
1586 lockdep_clear_current_reclaim_state();
1587 p->flags &= ~PF_MEMALLOC;
1589 cond_resched();
1591 if (order != 0)
1592 drain_all_pages();
1594 if (likely(did_some_progress)) {
1595 page = get_page_from_freelist(gfp_mask, nodemask, order,
1596 zonelist, high_zoneidx, alloc_flags);
1597 if (page)
1598 goto got_pg;
1599 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1600 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1601 schedule_timeout_uninterruptible(1);
1602 goto restart;
1606 * Go through the zonelist yet one more time, keep
1607 * very high watermark here, this is only to catch
1608 * a parallel oom killing, we must fail if we're still
1609 * under heavy pressure.
1611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1612 order, zonelist, high_zoneidx,
1613 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1614 if (page) {
1615 clear_zonelist_oom(zonelist, gfp_mask);
1616 goto got_pg;
1619 /* The OOM killer will not help higher order allocs so fail */
1620 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1621 clear_zonelist_oom(zonelist, gfp_mask);
1622 goto nopage;
1625 out_of_memory(zonelist, gfp_mask, order);
1626 clear_zonelist_oom(zonelist, gfp_mask);
1627 goto restart;
1631 * Don't let big-order allocations loop unless the caller explicitly
1632 * requests that. Wait for some write requests to complete then retry.
1634 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1635 * means __GFP_NOFAIL, but that may not be true in other
1636 * implementations.
1638 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1639 * specified, then we retry until we no longer reclaim any pages
1640 * (above), or we've reclaimed an order of pages at least as
1641 * large as the allocation's order. In both cases, if the
1642 * allocation still fails, we stop retrying.
1644 pages_reclaimed += did_some_progress;
1645 do_retry = 0;
1646 if (!(gfp_mask & __GFP_NORETRY)) {
1647 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1648 do_retry = 1;
1649 } else {
1650 if (gfp_mask & __GFP_REPEAT &&
1651 pages_reclaimed < (1 << order))
1652 do_retry = 1;
1654 if (gfp_mask & __GFP_NOFAIL)
1655 do_retry = 1;
1657 if (do_retry) {
1658 congestion_wait(WRITE, HZ/50);
1659 goto rebalance;
1662 nopage:
1663 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1664 printk(KERN_WARNING "%s: page allocation failure."
1665 " order:%d, mode:0x%x\n",
1666 p->comm, order, gfp_mask);
1667 dump_stack();
1668 show_mem();
1670 got_pg:
1671 return page;
1673 EXPORT_SYMBOL(__alloc_pages_internal);
1676 * Common helper functions.
1678 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1680 struct page * page;
1681 page = alloc_pages(gfp_mask, order);
1682 if (!page)
1683 return 0;
1684 return (unsigned long) page_address(page);
1687 EXPORT_SYMBOL(__get_free_pages);
1689 unsigned long get_zeroed_page(gfp_t gfp_mask)
1691 struct page * page;
1694 * get_zeroed_page() returns a 32-bit address, which cannot represent
1695 * a highmem page
1697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1699 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1700 if (page)
1701 return (unsigned long) page_address(page);
1702 return 0;
1705 EXPORT_SYMBOL(get_zeroed_page);
1707 void __pagevec_free(struct pagevec *pvec)
1709 int i = pagevec_count(pvec);
1711 while (--i >= 0)
1712 free_hot_cold_page(pvec->pages[i], pvec->cold);
1715 void __free_pages(struct page *page, unsigned int order)
1717 if (put_page_testzero(page)) {
1718 if (order == 0)
1719 free_hot_page(page);
1720 else
1721 __free_pages_ok(page, order);
1725 EXPORT_SYMBOL(__free_pages);
1727 void free_pages(unsigned long addr, unsigned int order)
1729 if (addr != 0) {
1730 VM_BUG_ON(!virt_addr_valid((void *)addr));
1731 __free_pages(virt_to_page((void *)addr), order);
1735 EXPORT_SYMBOL(free_pages);
1738 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1739 * @size: the number of bytes to allocate
1740 * @gfp_mask: GFP flags for the allocation
1742 * This function is similar to alloc_pages(), except that it allocates the
1743 * minimum number of pages to satisfy the request. alloc_pages() can only
1744 * allocate memory in power-of-two pages.
1746 * This function is also limited by MAX_ORDER.
1748 * Memory allocated by this function must be released by free_pages_exact().
1750 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1752 unsigned int order = get_order(size);
1753 unsigned long addr;
1755 addr = __get_free_pages(gfp_mask, order);
1756 if (addr) {
1757 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1758 unsigned long used = addr + PAGE_ALIGN(size);
1760 split_page(virt_to_page(addr), order);
1761 while (used < alloc_end) {
1762 free_page(used);
1763 used += PAGE_SIZE;
1767 return (void *)addr;
1769 EXPORT_SYMBOL(alloc_pages_exact);
1772 * free_pages_exact - release memory allocated via alloc_pages_exact()
1773 * @virt: the value returned by alloc_pages_exact.
1774 * @size: size of allocation, same value as passed to alloc_pages_exact().
1776 * Release the memory allocated by a previous call to alloc_pages_exact.
1778 void free_pages_exact(void *virt, size_t size)
1780 unsigned long addr = (unsigned long)virt;
1781 unsigned long end = addr + PAGE_ALIGN(size);
1783 while (addr < end) {
1784 free_page(addr);
1785 addr += PAGE_SIZE;
1788 EXPORT_SYMBOL(free_pages_exact);
1790 static unsigned int nr_free_zone_pages(int offset)
1792 struct zoneref *z;
1793 struct zone *zone;
1795 /* Just pick one node, since fallback list is circular */
1796 unsigned int sum = 0;
1798 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1800 for_each_zone_zonelist(zone, z, zonelist, offset) {
1801 unsigned long size = zone->present_pages;
1802 unsigned long high = zone->pages_high;
1803 if (size > high)
1804 sum += size - high;
1807 return sum;
1811 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1813 unsigned int nr_free_buffer_pages(void)
1815 return nr_free_zone_pages(gfp_zone(GFP_USER));
1817 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1820 * Amount of free RAM allocatable within all zones
1822 unsigned int nr_free_pagecache_pages(void)
1824 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1827 static inline void show_node(struct zone *zone)
1829 if (NUMA_BUILD)
1830 printk("Node %d ", zone_to_nid(zone));
1833 void si_meminfo(struct sysinfo *val)
1835 val->totalram = totalram_pages;
1836 val->sharedram = 0;
1837 val->freeram = global_page_state(NR_FREE_PAGES);
1838 val->bufferram = nr_blockdev_pages();
1839 val->totalhigh = totalhigh_pages;
1840 val->freehigh = nr_free_highpages();
1841 val->mem_unit = PAGE_SIZE;
1844 EXPORT_SYMBOL(si_meminfo);
1846 #ifdef CONFIG_NUMA
1847 void si_meminfo_node(struct sysinfo *val, int nid)
1849 pg_data_t *pgdat = NODE_DATA(nid);
1851 val->totalram = pgdat->node_present_pages;
1852 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1853 #ifdef CONFIG_HIGHMEM
1854 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1855 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1856 NR_FREE_PAGES);
1857 #else
1858 val->totalhigh = 0;
1859 val->freehigh = 0;
1860 #endif
1861 val->mem_unit = PAGE_SIZE;
1863 #endif
1865 #define K(x) ((x) << (PAGE_SHIFT-10))
1868 * Show free area list (used inside shift_scroll-lock stuff)
1869 * We also calculate the percentage fragmentation. We do this by counting the
1870 * memory on each free list with the exception of the first item on the list.
1872 void show_free_areas(void)
1874 int cpu;
1875 struct zone *zone;
1877 for_each_populated_zone(zone) {
1878 show_node(zone);
1879 printk("%s per-cpu:\n", zone->name);
1881 for_each_online_cpu(cpu) {
1882 struct per_cpu_pageset *pageset;
1884 pageset = zone_pcp(zone, cpu);
1886 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1887 cpu, pageset->pcp.high,
1888 pageset->pcp.batch, pageset->pcp.count);
1892 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1893 " inactive_file:%lu"
1894 //TODO: check/adjust line lengths
1895 #ifdef CONFIG_UNEVICTABLE_LRU
1896 " unevictable:%lu"
1897 #endif
1898 " dirty:%lu writeback:%lu unstable:%lu\n"
1899 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1900 global_page_state(NR_ACTIVE_ANON),
1901 global_page_state(NR_ACTIVE_FILE),
1902 global_page_state(NR_INACTIVE_ANON),
1903 global_page_state(NR_INACTIVE_FILE),
1904 #ifdef CONFIG_UNEVICTABLE_LRU
1905 global_page_state(NR_UNEVICTABLE),
1906 #endif
1907 global_page_state(NR_FILE_DIRTY),
1908 global_page_state(NR_WRITEBACK),
1909 global_page_state(NR_UNSTABLE_NFS),
1910 global_page_state(NR_FREE_PAGES),
1911 global_page_state(NR_SLAB_RECLAIMABLE) +
1912 global_page_state(NR_SLAB_UNRECLAIMABLE),
1913 global_page_state(NR_FILE_MAPPED),
1914 global_page_state(NR_PAGETABLE),
1915 global_page_state(NR_BOUNCE));
1917 for_each_populated_zone(zone) {
1918 int i;
1920 show_node(zone);
1921 printk("%s"
1922 " free:%lukB"
1923 " min:%lukB"
1924 " low:%lukB"
1925 " high:%lukB"
1926 " active_anon:%lukB"
1927 " inactive_anon:%lukB"
1928 " active_file:%lukB"
1929 " inactive_file:%lukB"
1930 #ifdef CONFIG_UNEVICTABLE_LRU
1931 " unevictable:%lukB"
1932 #endif
1933 " present:%lukB"
1934 " pages_scanned:%lu"
1935 " all_unreclaimable? %s"
1936 "\n",
1937 zone->name,
1938 K(zone_page_state(zone, NR_FREE_PAGES)),
1939 K(zone->pages_min),
1940 K(zone->pages_low),
1941 K(zone->pages_high),
1942 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1943 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1944 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1945 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1946 #ifdef CONFIG_UNEVICTABLE_LRU
1947 K(zone_page_state(zone, NR_UNEVICTABLE)),
1948 #endif
1949 K(zone->present_pages),
1950 zone->pages_scanned,
1951 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1953 printk("lowmem_reserve[]:");
1954 for (i = 0; i < MAX_NR_ZONES; i++)
1955 printk(" %lu", zone->lowmem_reserve[i]);
1956 printk("\n");
1959 for_each_populated_zone(zone) {
1960 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1962 show_node(zone);
1963 printk("%s: ", zone->name);
1965 spin_lock_irqsave(&zone->lock, flags);
1966 for (order = 0; order < MAX_ORDER; order++) {
1967 nr[order] = zone->free_area[order].nr_free;
1968 total += nr[order] << order;
1970 spin_unlock_irqrestore(&zone->lock, flags);
1971 for (order = 0; order < MAX_ORDER; order++)
1972 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1973 printk("= %lukB\n", K(total));
1976 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1978 show_swap_cache_info();
1981 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1983 zoneref->zone = zone;
1984 zoneref->zone_idx = zone_idx(zone);
1988 * Builds allocation fallback zone lists.
1990 * Add all populated zones of a node to the zonelist.
1992 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1993 int nr_zones, enum zone_type zone_type)
1995 struct zone *zone;
1997 BUG_ON(zone_type >= MAX_NR_ZONES);
1998 zone_type++;
2000 do {
2001 zone_type--;
2002 zone = pgdat->node_zones + zone_type;
2003 if (populated_zone(zone)) {
2004 zoneref_set_zone(zone,
2005 &zonelist->_zonerefs[nr_zones++]);
2006 check_highest_zone(zone_type);
2009 } while (zone_type);
2010 return nr_zones;
2015 * zonelist_order:
2016 * 0 = automatic detection of better ordering.
2017 * 1 = order by ([node] distance, -zonetype)
2018 * 2 = order by (-zonetype, [node] distance)
2020 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2021 * the same zonelist. So only NUMA can configure this param.
2023 #define ZONELIST_ORDER_DEFAULT 0
2024 #define ZONELIST_ORDER_NODE 1
2025 #define ZONELIST_ORDER_ZONE 2
2027 /* zonelist order in the kernel.
2028 * set_zonelist_order() will set this to NODE or ZONE.
2030 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2031 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2034 #ifdef CONFIG_NUMA
2035 /* The value user specified ....changed by config */
2036 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2037 /* string for sysctl */
2038 #define NUMA_ZONELIST_ORDER_LEN 16
2039 char numa_zonelist_order[16] = "default";
2042 * interface for configure zonelist ordering.
2043 * command line option "numa_zonelist_order"
2044 * = "[dD]efault - default, automatic configuration.
2045 * = "[nN]ode - order by node locality, then by zone within node
2046 * = "[zZ]one - order by zone, then by locality within zone
2049 static int __parse_numa_zonelist_order(char *s)
2051 if (*s == 'd' || *s == 'D') {
2052 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2053 } else if (*s == 'n' || *s == 'N') {
2054 user_zonelist_order = ZONELIST_ORDER_NODE;
2055 } else if (*s == 'z' || *s == 'Z') {
2056 user_zonelist_order = ZONELIST_ORDER_ZONE;
2057 } else {
2058 printk(KERN_WARNING
2059 "Ignoring invalid numa_zonelist_order value: "
2060 "%s\n", s);
2061 return -EINVAL;
2063 return 0;
2066 static __init int setup_numa_zonelist_order(char *s)
2068 if (s)
2069 return __parse_numa_zonelist_order(s);
2070 return 0;
2072 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2075 * sysctl handler for numa_zonelist_order
2077 int numa_zonelist_order_handler(ctl_table *table, int write,
2078 struct file *file, void __user *buffer, size_t *length,
2079 loff_t *ppos)
2081 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2082 int ret;
2084 if (write)
2085 strncpy(saved_string, (char*)table->data,
2086 NUMA_ZONELIST_ORDER_LEN);
2087 ret = proc_dostring(table, write, file, buffer, length, ppos);
2088 if (ret)
2089 return ret;
2090 if (write) {
2091 int oldval = user_zonelist_order;
2092 if (__parse_numa_zonelist_order((char*)table->data)) {
2094 * bogus value. restore saved string
2096 strncpy((char*)table->data, saved_string,
2097 NUMA_ZONELIST_ORDER_LEN);
2098 user_zonelist_order = oldval;
2099 } else if (oldval != user_zonelist_order)
2100 build_all_zonelists();
2102 return 0;
2106 #define MAX_NODE_LOAD (num_online_nodes())
2107 static int node_load[MAX_NUMNODES];
2110 * find_next_best_node - find the next node that should appear in a given node's fallback list
2111 * @node: node whose fallback list we're appending
2112 * @used_node_mask: nodemask_t of already used nodes
2114 * We use a number of factors to determine which is the next node that should
2115 * appear on a given node's fallback list. The node should not have appeared
2116 * already in @node's fallback list, and it should be the next closest node
2117 * according to the distance array (which contains arbitrary distance values
2118 * from each node to each node in the system), and should also prefer nodes
2119 * with no CPUs, since presumably they'll have very little allocation pressure
2120 * on them otherwise.
2121 * It returns -1 if no node is found.
2123 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2125 int n, val;
2126 int min_val = INT_MAX;
2127 int best_node = -1;
2128 const struct cpumask *tmp = cpumask_of_node(0);
2130 /* Use the local node if we haven't already */
2131 if (!node_isset(node, *used_node_mask)) {
2132 node_set(node, *used_node_mask);
2133 return node;
2136 for_each_node_state(n, N_HIGH_MEMORY) {
2138 /* Don't want a node to appear more than once */
2139 if (node_isset(n, *used_node_mask))
2140 continue;
2142 /* Use the distance array to find the distance */
2143 val = node_distance(node, n);
2145 /* Penalize nodes under us ("prefer the next node") */
2146 val += (n < node);
2148 /* Give preference to headless and unused nodes */
2149 tmp = cpumask_of_node(n);
2150 if (!cpumask_empty(tmp))
2151 val += PENALTY_FOR_NODE_WITH_CPUS;
2153 /* Slight preference for less loaded node */
2154 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2155 val += node_load[n];
2157 if (val < min_val) {
2158 min_val = val;
2159 best_node = n;
2163 if (best_node >= 0)
2164 node_set(best_node, *used_node_mask);
2166 return best_node;
2171 * Build zonelists ordered by node and zones within node.
2172 * This results in maximum locality--normal zone overflows into local
2173 * DMA zone, if any--but risks exhausting DMA zone.
2175 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2177 int j;
2178 struct zonelist *zonelist;
2180 zonelist = &pgdat->node_zonelists[0];
2181 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2183 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2184 MAX_NR_ZONES - 1);
2185 zonelist->_zonerefs[j].zone = NULL;
2186 zonelist->_zonerefs[j].zone_idx = 0;
2190 * Build gfp_thisnode zonelists
2192 static void build_thisnode_zonelists(pg_data_t *pgdat)
2194 int j;
2195 struct zonelist *zonelist;
2197 zonelist = &pgdat->node_zonelists[1];
2198 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2199 zonelist->_zonerefs[j].zone = NULL;
2200 zonelist->_zonerefs[j].zone_idx = 0;
2204 * Build zonelists ordered by zone and nodes within zones.
2205 * This results in conserving DMA zone[s] until all Normal memory is
2206 * exhausted, but results in overflowing to remote node while memory
2207 * may still exist in local DMA zone.
2209 static int node_order[MAX_NUMNODES];
2211 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2213 int pos, j, node;
2214 int zone_type; /* needs to be signed */
2215 struct zone *z;
2216 struct zonelist *zonelist;
2218 zonelist = &pgdat->node_zonelists[0];
2219 pos = 0;
2220 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2221 for (j = 0; j < nr_nodes; j++) {
2222 node = node_order[j];
2223 z = &NODE_DATA(node)->node_zones[zone_type];
2224 if (populated_zone(z)) {
2225 zoneref_set_zone(z,
2226 &zonelist->_zonerefs[pos++]);
2227 check_highest_zone(zone_type);
2231 zonelist->_zonerefs[pos].zone = NULL;
2232 zonelist->_zonerefs[pos].zone_idx = 0;
2235 static int default_zonelist_order(void)
2237 int nid, zone_type;
2238 unsigned long low_kmem_size,total_size;
2239 struct zone *z;
2240 int average_size;
2242 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2243 * If they are really small and used heavily, the system can fall
2244 * into OOM very easily.
2245 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2247 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2248 low_kmem_size = 0;
2249 total_size = 0;
2250 for_each_online_node(nid) {
2251 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2252 z = &NODE_DATA(nid)->node_zones[zone_type];
2253 if (populated_zone(z)) {
2254 if (zone_type < ZONE_NORMAL)
2255 low_kmem_size += z->present_pages;
2256 total_size += z->present_pages;
2260 if (!low_kmem_size || /* there are no DMA area. */
2261 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2262 return ZONELIST_ORDER_NODE;
2264 * look into each node's config.
2265 * If there is a node whose DMA/DMA32 memory is very big area on
2266 * local memory, NODE_ORDER may be suitable.
2268 average_size = total_size /
2269 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2270 for_each_online_node(nid) {
2271 low_kmem_size = 0;
2272 total_size = 0;
2273 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2274 z = &NODE_DATA(nid)->node_zones[zone_type];
2275 if (populated_zone(z)) {
2276 if (zone_type < ZONE_NORMAL)
2277 low_kmem_size += z->present_pages;
2278 total_size += z->present_pages;
2281 if (low_kmem_size &&
2282 total_size > average_size && /* ignore small node */
2283 low_kmem_size > total_size * 70/100)
2284 return ZONELIST_ORDER_NODE;
2286 return ZONELIST_ORDER_ZONE;
2289 static void set_zonelist_order(void)
2291 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2292 current_zonelist_order = default_zonelist_order();
2293 else
2294 current_zonelist_order = user_zonelist_order;
2297 static void build_zonelists(pg_data_t *pgdat)
2299 int j, node, load;
2300 enum zone_type i;
2301 nodemask_t used_mask;
2302 int local_node, prev_node;
2303 struct zonelist *zonelist;
2304 int order = current_zonelist_order;
2306 /* initialize zonelists */
2307 for (i = 0; i < MAX_ZONELISTS; i++) {
2308 zonelist = pgdat->node_zonelists + i;
2309 zonelist->_zonerefs[0].zone = NULL;
2310 zonelist->_zonerefs[0].zone_idx = 0;
2313 /* NUMA-aware ordering of nodes */
2314 local_node = pgdat->node_id;
2315 load = num_online_nodes();
2316 prev_node = local_node;
2317 nodes_clear(used_mask);
2319 memset(node_load, 0, sizeof(node_load));
2320 memset(node_order, 0, sizeof(node_order));
2321 j = 0;
2323 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2324 int distance = node_distance(local_node, node);
2327 * If another node is sufficiently far away then it is better
2328 * to reclaim pages in a zone before going off node.
2330 if (distance > RECLAIM_DISTANCE)
2331 zone_reclaim_mode = 1;
2334 * We don't want to pressure a particular node.
2335 * So adding penalty to the first node in same
2336 * distance group to make it round-robin.
2338 if (distance != node_distance(local_node, prev_node))
2339 node_load[node] = load;
2341 prev_node = node;
2342 load--;
2343 if (order == ZONELIST_ORDER_NODE)
2344 build_zonelists_in_node_order(pgdat, node);
2345 else
2346 node_order[j++] = node; /* remember order */
2349 if (order == ZONELIST_ORDER_ZONE) {
2350 /* calculate node order -- i.e., DMA last! */
2351 build_zonelists_in_zone_order(pgdat, j);
2354 build_thisnode_zonelists(pgdat);
2357 /* Construct the zonelist performance cache - see further mmzone.h */
2358 static void build_zonelist_cache(pg_data_t *pgdat)
2360 struct zonelist *zonelist;
2361 struct zonelist_cache *zlc;
2362 struct zoneref *z;
2364 zonelist = &pgdat->node_zonelists[0];
2365 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2366 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2367 for (z = zonelist->_zonerefs; z->zone; z++)
2368 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2372 #else /* CONFIG_NUMA */
2374 static void set_zonelist_order(void)
2376 current_zonelist_order = ZONELIST_ORDER_ZONE;
2379 static void build_zonelists(pg_data_t *pgdat)
2381 int node, local_node;
2382 enum zone_type j;
2383 struct zonelist *zonelist;
2385 local_node = pgdat->node_id;
2387 zonelist = &pgdat->node_zonelists[0];
2388 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2391 * Now we build the zonelist so that it contains the zones
2392 * of all the other nodes.
2393 * We don't want to pressure a particular node, so when
2394 * building the zones for node N, we make sure that the
2395 * zones coming right after the local ones are those from
2396 * node N+1 (modulo N)
2398 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2399 if (!node_online(node))
2400 continue;
2401 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2402 MAX_NR_ZONES - 1);
2404 for (node = 0; node < local_node; node++) {
2405 if (!node_online(node))
2406 continue;
2407 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2408 MAX_NR_ZONES - 1);
2411 zonelist->_zonerefs[j].zone = NULL;
2412 zonelist->_zonerefs[j].zone_idx = 0;
2415 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2416 static void build_zonelist_cache(pg_data_t *pgdat)
2418 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2421 #endif /* CONFIG_NUMA */
2423 /* return values int ....just for stop_machine() */
2424 static int __build_all_zonelists(void *dummy)
2426 int nid;
2428 for_each_online_node(nid) {
2429 pg_data_t *pgdat = NODE_DATA(nid);
2431 build_zonelists(pgdat);
2432 build_zonelist_cache(pgdat);
2434 return 0;
2437 void build_all_zonelists(void)
2439 set_zonelist_order();
2441 if (system_state == SYSTEM_BOOTING) {
2442 __build_all_zonelists(NULL);
2443 mminit_verify_zonelist();
2444 cpuset_init_current_mems_allowed();
2445 } else {
2446 /* we have to stop all cpus to guarantee there is no user
2447 of zonelist */
2448 stop_machine(__build_all_zonelists, NULL, NULL);
2449 /* cpuset refresh routine should be here */
2451 vm_total_pages = nr_free_pagecache_pages();
2453 * Disable grouping by mobility if the number of pages in the
2454 * system is too low to allow the mechanism to work. It would be
2455 * more accurate, but expensive to check per-zone. This check is
2456 * made on memory-hotadd so a system can start with mobility
2457 * disabled and enable it later
2459 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2460 page_group_by_mobility_disabled = 1;
2461 else
2462 page_group_by_mobility_disabled = 0;
2464 printk("Built %i zonelists in %s order, mobility grouping %s. "
2465 "Total pages: %ld\n",
2466 num_online_nodes(),
2467 zonelist_order_name[current_zonelist_order],
2468 page_group_by_mobility_disabled ? "off" : "on",
2469 vm_total_pages);
2470 #ifdef CONFIG_NUMA
2471 printk("Policy zone: %s\n", zone_names[policy_zone]);
2472 #endif
2476 * Helper functions to size the waitqueue hash table.
2477 * Essentially these want to choose hash table sizes sufficiently
2478 * large so that collisions trying to wait on pages are rare.
2479 * But in fact, the number of active page waitqueues on typical
2480 * systems is ridiculously low, less than 200. So this is even
2481 * conservative, even though it seems large.
2483 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2484 * waitqueues, i.e. the size of the waitq table given the number of pages.
2486 #define PAGES_PER_WAITQUEUE 256
2488 #ifndef CONFIG_MEMORY_HOTPLUG
2489 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2491 unsigned long size = 1;
2493 pages /= PAGES_PER_WAITQUEUE;
2495 while (size < pages)
2496 size <<= 1;
2499 * Once we have dozens or even hundreds of threads sleeping
2500 * on IO we've got bigger problems than wait queue collision.
2501 * Limit the size of the wait table to a reasonable size.
2503 size = min(size, 4096UL);
2505 return max(size, 4UL);
2507 #else
2509 * A zone's size might be changed by hot-add, so it is not possible to determine
2510 * a suitable size for its wait_table. So we use the maximum size now.
2512 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2514 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2515 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2516 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2518 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2519 * or more by the traditional way. (See above). It equals:
2521 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2522 * ia64(16K page size) : = ( 8G + 4M)byte.
2523 * powerpc (64K page size) : = (32G +16M)byte.
2525 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2527 return 4096UL;
2529 #endif
2532 * This is an integer logarithm so that shifts can be used later
2533 * to extract the more random high bits from the multiplicative
2534 * hash function before the remainder is taken.
2536 static inline unsigned long wait_table_bits(unsigned long size)
2538 return ffz(~size);
2541 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2544 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2545 * of blocks reserved is based on zone->pages_min. The memory within the
2546 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2547 * higher will lead to a bigger reserve which will get freed as contiguous
2548 * blocks as reclaim kicks in
2550 static void setup_zone_migrate_reserve(struct zone *zone)
2552 unsigned long start_pfn, pfn, end_pfn;
2553 struct page *page;
2554 unsigned long reserve, block_migratetype;
2556 /* Get the start pfn, end pfn and the number of blocks to reserve */
2557 start_pfn = zone->zone_start_pfn;
2558 end_pfn = start_pfn + zone->spanned_pages;
2559 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2560 pageblock_order;
2562 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2563 if (!pfn_valid(pfn))
2564 continue;
2565 page = pfn_to_page(pfn);
2567 /* Watch out for overlapping nodes */
2568 if (page_to_nid(page) != zone_to_nid(zone))
2569 continue;
2571 /* Blocks with reserved pages will never free, skip them. */
2572 if (PageReserved(page))
2573 continue;
2575 block_migratetype = get_pageblock_migratetype(page);
2577 /* If this block is reserved, account for it */
2578 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2579 reserve--;
2580 continue;
2583 /* Suitable for reserving if this block is movable */
2584 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2585 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2586 move_freepages_block(zone, page, MIGRATE_RESERVE);
2587 reserve--;
2588 continue;
2592 * If the reserve is met and this is a previous reserved block,
2593 * take it back
2595 if (block_migratetype == MIGRATE_RESERVE) {
2596 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2597 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2603 * Initially all pages are reserved - free ones are freed
2604 * up by free_all_bootmem() once the early boot process is
2605 * done. Non-atomic initialization, single-pass.
2607 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2608 unsigned long start_pfn, enum memmap_context context)
2610 struct page *page;
2611 unsigned long end_pfn = start_pfn + size;
2612 unsigned long pfn;
2613 struct zone *z;
2615 if (highest_memmap_pfn < end_pfn - 1)
2616 highest_memmap_pfn = end_pfn - 1;
2618 z = &NODE_DATA(nid)->node_zones[zone];
2619 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2621 * There can be holes in boot-time mem_map[]s
2622 * handed to this function. They do not
2623 * exist on hotplugged memory.
2625 if (context == MEMMAP_EARLY) {
2626 if (!early_pfn_valid(pfn))
2627 continue;
2628 if (!early_pfn_in_nid(pfn, nid))
2629 continue;
2631 page = pfn_to_page(pfn);
2632 set_page_links(page, zone, nid, pfn);
2633 mminit_verify_page_links(page, zone, nid, pfn);
2634 init_page_count(page);
2635 reset_page_mapcount(page);
2636 SetPageReserved(page);
2638 * Mark the block movable so that blocks are reserved for
2639 * movable at startup. This will force kernel allocations
2640 * to reserve their blocks rather than leaking throughout
2641 * the address space during boot when many long-lived
2642 * kernel allocations are made. Later some blocks near
2643 * the start are marked MIGRATE_RESERVE by
2644 * setup_zone_migrate_reserve()
2646 * bitmap is created for zone's valid pfn range. but memmap
2647 * can be created for invalid pages (for alignment)
2648 * check here not to call set_pageblock_migratetype() against
2649 * pfn out of zone.
2651 if ((z->zone_start_pfn <= pfn)
2652 && (pfn < z->zone_start_pfn + z->spanned_pages)
2653 && !(pfn & (pageblock_nr_pages - 1)))
2654 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2656 INIT_LIST_HEAD(&page->lru);
2657 #ifdef WANT_PAGE_VIRTUAL
2658 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2659 if (!is_highmem_idx(zone))
2660 set_page_address(page, __va(pfn << PAGE_SHIFT));
2661 #endif
2665 static void __meminit zone_init_free_lists(struct zone *zone)
2667 int order, t;
2668 for_each_migratetype_order(order, t) {
2669 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2670 zone->free_area[order].nr_free = 0;
2674 #ifndef __HAVE_ARCH_MEMMAP_INIT
2675 #define memmap_init(size, nid, zone, start_pfn) \
2676 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2677 #endif
2679 static int zone_batchsize(struct zone *zone)
2681 #ifdef CONFIG_MMU
2682 int batch;
2685 * The per-cpu-pages pools are set to around 1000th of the
2686 * size of the zone. But no more than 1/2 of a meg.
2688 * OK, so we don't know how big the cache is. So guess.
2690 batch = zone->present_pages / 1024;
2691 if (batch * PAGE_SIZE > 512 * 1024)
2692 batch = (512 * 1024) / PAGE_SIZE;
2693 batch /= 4; /* We effectively *= 4 below */
2694 if (batch < 1)
2695 batch = 1;
2698 * Clamp the batch to a 2^n - 1 value. Having a power
2699 * of 2 value was found to be more likely to have
2700 * suboptimal cache aliasing properties in some cases.
2702 * For example if 2 tasks are alternately allocating
2703 * batches of pages, one task can end up with a lot
2704 * of pages of one half of the possible page colors
2705 * and the other with pages of the other colors.
2707 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2709 return batch;
2711 #else
2712 /* The deferral and batching of frees should be suppressed under NOMMU
2713 * conditions.
2715 * The problem is that NOMMU needs to be able to allocate large chunks
2716 * of contiguous memory as there's no hardware page translation to
2717 * assemble apparent contiguous memory from discontiguous pages.
2719 * Queueing large contiguous runs of pages for batching, however,
2720 * causes the pages to actually be freed in smaller chunks. As there
2721 * can be a significant delay between the individual batches being
2722 * recycled, this leads to the once large chunks of space being
2723 * fragmented and becoming unavailable for high-order allocations.
2725 return 0;
2726 #endif
2729 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2731 struct per_cpu_pages *pcp;
2733 memset(p, 0, sizeof(*p));
2735 pcp = &p->pcp;
2736 pcp->count = 0;
2737 pcp->high = 6 * batch;
2738 pcp->batch = max(1UL, 1 * batch);
2739 INIT_LIST_HEAD(&pcp->list);
2743 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2744 * to the value high for the pageset p.
2747 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2748 unsigned long high)
2750 struct per_cpu_pages *pcp;
2752 pcp = &p->pcp;
2753 pcp->high = high;
2754 pcp->batch = max(1UL, high/4);
2755 if ((high/4) > (PAGE_SHIFT * 8))
2756 pcp->batch = PAGE_SHIFT * 8;
2760 #ifdef CONFIG_NUMA
2762 * Boot pageset table. One per cpu which is going to be used for all
2763 * zones and all nodes. The parameters will be set in such a way
2764 * that an item put on a list will immediately be handed over to
2765 * the buddy list. This is safe since pageset manipulation is done
2766 * with interrupts disabled.
2768 * Some NUMA counter updates may also be caught by the boot pagesets.
2770 * The boot_pagesets must be kept even after bootup is complete for
2771 * unused processors and/or zones. They do play a role for bootstrapping
2772 * hotplugged processors.
2774 * zoneinfo_show() and maybe other functions do
2775 * not check if the processor is online before following the pageset pointer.
2776 * Other parts of the kernel may not check if the zone is available.
2778 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2781 * Dynamically allocate memory for the
2782 * per cpu pageset array in struct zone.
2784 static int __cpuinit process_zones(int cpu)
2786 struct zone *zone, *dzone;
2787 int node = cpu_to_node(cpu);
2789 node_set_state(node, N_CPU); /* this node has a cpu */
2791 for_each_populated_zone(zone) {
2792 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2793 GFP_KERNEL, node);
2794 if (!zone_pcp(zone, cpu))
2795 goto bad;
2797 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2799 if (percpu_pagelist_fraction)
2800 setup_pagelist_highmark(zone_pcp(zone, cpu),
2801 (zone->present_pages / percpu_pagelist_fraction));
2804 return 0;
2805 bad:
2806 for_each_zone(dzone) {
2807 if (!populated_zone(dzone))
2808 continue;
2809 if (dzone == zone)
2810 break;
2811 kfree(zone_pcp(dzone, cpu));
2812 zone_pcp(dzone, cpu) = NULL;
2814 return -ENOMEM;
2817 static inline void free_zone_pagesets(int cpu)
2819 struct zone *zone;
2821 for_each_zone(zone) {
2822 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2824 /* Free per_cpu_pageset if it is slab allocated */
2825 if (pset != &boot_pageset[cpu])
2826 kfree(pset);
2827 zone_pcp(zone, cpu) = NULL;
2831 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2832 unsigned long action,
2833 void *hcpu)
2835 int cpu = (long)hcpu;
2836 int ret = NOTIFY_OK;
2838 switch (action) {
2839 case CPU_UP_PREPARE:
2840 case CPU_UP_PREPARE_FROZEN:
2841 if (process_zones(cpu))
2842 ret = NOTIFY_BAD;
2843 break;
2844 case CPU_UP_CANCELED:
2845 case CPU_UP_CANCELED_FROZEN:
2846 case CPU_DEAD:
2847 case CPU_DEAD_FROZEN:
2848 free_zone_pagesets(cpu);
2849 break;
2850 default:
2851 break;
2853 return ret;
2856 static struct notifier_block __cpuinitdata pageset_notifier =
2857 { &pageset_cpuup_callback, NULL, 0 };
2859 void __init setup_per_cpu_pageset(void)
2861 int err;
2863 /* Initialize per_cpu_pageset for cpu 0.
2864 * A cpuup callback will do this for every cpu
2865 * as it comes online
2867 err = process_zones(smp_processor_id());
2868 BUG_ON(err);
2869 register_cpu_notifier(&pageset_notifier);
2872 #endif
2874 static noinline __init_refok
2875 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2877 int i;
2878 struct pglist_data *pgdat = zone->zone_pgdat;
2879 size_t alloc_size;
2882 * The per-page waitqueue mechanism uses hashed waitqueues
2883 * per zone.
2885 zone->wait_table_hash_nr_entries =
2886 wait_table_hash_nr_entries(zone_size_pages);
2887 zone->wait_table_bits =
2888 wait_table_bits(zone->wait_table_hash_nr_entries);
2889 alloc_size = zone->wait_table_hash_nr_entries
2890 * sizeof(wait_queue_head_t);
2892 if (!slab_is_available()) {
2893 zone->wait_table = (wait_queue_head_t *)
2894 alloc_bootmem_node(pgdat, alloc_size);
2895 } else {
2897 * This case means that a zone whose size was 0 gets new memory
2898 * via memory hot-add.
2899 * But it may be the case that a new node was hot-added. In
2900 * this case vmalloc() will not be able to use this new node's
2901 * memory - this wait_table must be initialized to use this new
2902 * node itself as well.
2903 * To use this new node's memory, further consideration will be
2904 * necessary.
2906 zone->wait_table = vmalloc(alloc_size);
2908 if (!zone->wait_table)
2909 return -ENOMEM;
2911 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2912 init_waitqueue_head(zone->wait_table + i);
2914 return 0;
2917 static __meminit void zone_pcp_init(struct zone *zone)
2919 int cpu;
2920 unsigned long batch = zone_batchsize(zone);
2922 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2923 #ifdef CONFIG_NUMA
2924 /* Early boot. Slab allocator not functional yet */
2925 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2926 setup_pageset(&boot_pageset[cpu],0);
2927 #else
2928 setup_pageset(zone_pcp(zone,cpu), batch);
2929 #endif
2931 if (zone->present_pages)
2932 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2933 zone->name, zone->present_pages, batch);
2936 __meminit int init_currently_empty_zone(struct zone *zone,
2937 unsigned long zone_start_pfn,
2938 unsigned long size,
2939 enum memmap_context context)
2941 struct pglist_data *pgdat = zone->zone_pgdat;
2942 int ret;
2943 ret = zone_wait_table_init(zone, size);
2944 if (ret)
2945 return ret;
2946 pgdat->nr_zones = zone_idx(zone) + 1;
2948 zone->zone_start_pfn = zone_start_pfn;
2950 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2951 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2952 pgdat->node_id,
2953 (unsigned long)zone_idx(zone),
2954 zone_start_pfn, (zone_start_pfn + size));
2956 zone_init_free_lists(zone);
2958 return 0;
2961 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2963 * Basic iterator support. Return the first range of PFNs for a node
2964 * Note: nid == MAX_NUMNODES returns first region regardless of node
2966 static int __meminit first_active_region_index_in_nid(int nid)
2968 int i;
2970 for (i = 0; i < nr_nodemap_entries; i++)
2971 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2972 return i;
2974 return -1;
2978 * Basic iterator support. Return the next active range of PFNs for a node
2979 * Note: nid == MAX_NUMNODES returns next region regardless of node
2981 static int __meminit next_active_region_index_in_nid(int index, int nid)
2983 for (index = index + 1; index < nr_nodemap_entries; index++)
2984 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2985 return index;
2987 return -1;
2990 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2992 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2993 * Architectures may implement their own version but if add_active_range()
2994 * was used and there are no special requirements, this is a convenient
2995 * alternative
2997 int __meminit __early_pfn_to_nid(unsigned long pfn)
2999 int i;
3001 for (i = 0; i < nr_nodemap_entries; i++) {
3002 unsigned long start_pfn = early_node_map[i].start_pfn;
3003 unsigned long end_pfn = early_node_map[i].end_pfn;
3005 if (start_pfn <= pfn && pfn < end_pfn)
3006 return early_node_map[i].nid;
3008 /* This is a memory hole */
3009 return -1;
3011 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3013 int __meminit early_pfn_to_nid(unsigned long pfn)
3015 int nid;
3017 nid = __early_pfn_to_nid(pfn);
3018 if (nid >= 0)
3019 return nid;
3020 /* just returns 0 */
3021 return 0;
3024 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3025 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3027 int nid;
3029 nid = __early_pfn_to_nid(pfn);
3030 if (nid >= 0 && nid != node)
3031 return false;
3032 return true;
3034 #endif
3036 /* Basic iterator support to walk early_node_map[] */
3037 #define for_each_active_range_index_in_nid(i, nid) \
3038 for (i = first_active_region_index_in_nid(nid); i != -1; \
3039 i = next_active_region_index_in_nid(i, nid))
3042 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3043 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3044 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3046 * If an architecture guarantees that all ranges registered with
3047 * add_active_ranges() contain no holes and may be freed, this
3048 * this function may be used instead of calling free_bootmem() manually.
3050 void __init free_bootmem_with_active_regions(int nid,
3051 unsigned long max_low_pfn)
3053 int i;
3055 for_each_active_range_index_in_nid(i, nid) {
3056 unsigned long size_pages = 0;
3057 unsigned long end_pfn = early_node_map[i].end_pfn;
3059 if (early_node_map[i].start_pfn >= max_low_pfn)
3060 continue;
3062 if (end_pfn > max_low_pfn)
3063 end_pfn = max_low_pfn;
3065 size_pages = end_pfn - early_node_map[i].start_pfn;
3066 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3067 PFN_PHYS(early_node_map[i].start_pfn),
3068 size_pages << PAGE_SHIFT);
3072 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3074 int i;
3075 int ret;
3077 for_each_active_range_index_in_nid(i, nid) {
3078 ret = work_fn(early_node_map[i].start_pfn,
3079 early_node_map[i].end_pfn, data);
3080 if (ret)
3081 break;
3085 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3086 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3088 * If an architecture guarantees that all ranges registered with
3089 * add_active_ranges() contain no holes and may be freed, this
3090 * function may be used instead of calling memory_present() manually.
3092 void __init sparse_memory_present_with_active_regions(int nid)
3094 int i;
3096 for_each_active_range_index_in_nid(i, nid)
3097 memory_present(early_node_map[i].nid,
3098 early_node_map[i].start_pfn,
3099 early_node_map[i].end_pfn);
3103 * get_pfn_range_for_nid - Return the start and end page frames for a node
3104 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3105 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3106 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3108 * It returns the start and end page frame of a node based on information
3109 * provided by an arch calling add_active_range(). If called for a node
3110 * with no available memory, a warning is printed and the start and end
3111 * PFNs will be 0.
3113 void __meminit get_pfn_range_for_nid(unsigned int nid,
3114 unsigned long *start_pfn, unsigned long *end_pfn)
3116 int i;
3117 *start_pfn = -1UL;
3118 *end_pfn = 0;
3120 for_each_active_range_index_in_nid(i, nid) {
3121 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3122 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3125 if (*start_pfn == -1UL)
3126 *start_pfn = 0;
3130 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3131 * assumption is made that zones within a node are ordered in monotonic
3132 * increasing memory addresses so that the "highest" populated zone is used
3134 static void __init find_usable_zone_for_movable(void)
3136 int zone_index;
3137 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3138 if (zone_index == ZONE_MOVABLE)
3139 continue;
3141 if (arch_zone_highest_possible_pfn[zone_index] >
3142 arch_zone_lowest_possible_pfn[zone_index])
3143 break;
3146 VM_BUG_ON(zone_index == -1);
3147 movable_zone = zone_index;
3151 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3152 * because it is sized independant of architecture. Unlike the other zones,
3153 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3154 * in each node depending on the size of each node and how evenly kernelcore
3155 * is distributed. This helper function adjusts the zone ranges
3156 * provided by the architecture for a given node by using the end of the
3157 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3158 * zones within a node are in order of monotonic increases memory addresses
3160 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3161 unsigned long zone_type,
3162 unsigned long node_start_pfn,
3163 unsigned long node_end_pfn,
3164 unsigned long *zone_start_pfn,
3165 unsigned long *zone_end_pfn)
3167 /* Only adjust if ZONE_MOVABLE is on this node */
3168 if (zone_movable_pfn[nid]) {
3169 /* Size ZONE_MOVABLE */
3170 if (zone_type == ZONE_MOVABLE) {
3171 *zone_start_pfn = zone_movable_pfn[nid];
3172 *zone_end_pfn = min(node_end_pfn,
3173 arch_zone_highest_possible_pfn[movable_zone]);
3175 /* Adjust for ZONE_MOVABLE starting within this range */
3176 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3177 *zone_end_pfn > zone_movable_pfn[nid]) {
3178 *zone_end_pfn = zone_movable_pfn[nid];
3180 /* Check if this whole range is within ZONE_MOVABLE */
3181 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3182 *zone_start_pfn = *zone_end_pfn;
3187 * Return the number of pages a zone spans in a node, including holes
3188 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3190 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3191 unsigned long zone_type,
3192 unsigned long *ignored)
3194 unsigned long node_start_pfn, node_end_pfn;
3195 unsigned long zone_start_pfn, zone_end_pfn;
3197 /* Get the start and end of the node and zone */
3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3199 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3200 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3201 adjust_zone_range_for_zone_movable(nid, zone_type,
3202 node_start_pfn, node_end_pfn,
3203 &zone_start_pfn, &zone_end_pfn);
3205 /* Check that this node has pages within the zone's required range */
3206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3207 return 0;
3209 /* Move the zone boundaries inside the node if necessary */
3210 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3211 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3213 /* Return the spanned pages */
3214 return zone_end_pfn - zone_start_pfn;
3218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3219 * then all holes in the requested range will be accounted for.
3221 static unsigned long __meminit __absent_pages_in_range(int nid,
3222 unsigned long range_start_pfn,
3223 unsigned long range_end_pfn)
3225 int i = 0;
3226 unsigned long prev_end_pfn = 0, hole_pages = 0;
3227 unsigned long start_pfn;
3229 /* Find the end_pfn of the first active range of pfns in the node */
3230 i = first_active_region_index_in_nid(nid);
3231 if (i == -1)
3232 return 0;
3234 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3236 /* Account for ranges before physical memory on this node */
3237 if (early_node_map[i].start_pfn > range_start_pfn)
3238 hole_pages = prev_end_pfn - range_start_pfn;
3240 /* Find all holes for the zone within the node */
3241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3243 /* No need to continue if prev_end_pfn is outside the zone */
3244 if (prev_end_pfn >= range_end_pfn)
3245 break;
3247 /* Make sure the end of the zone is not within the hole */
3248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3249 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3251 /* Update the hole size cound and move on */
3252 if (start_pfn > range_start_pfn) {
3253 BUG_ON(prev_end_pfn > start_pfn);
3254 hole_pages += start_pfn - prev_end_pfn;
3256 prev_end_pfn = early_node_map[i].end_pfn;
3259 /* Account for ranges past physical memory on this node */
3260 if (range_end_pfn > prev_end_pfn)
3261 hole_pages += range_end_pfn -
3262 max(range_start_pfn, prev_end_pfn);
3264 return hole_pages;
3268 * absent_pages_in_range - Return number of page frames in holes within a range
3269 * @start_pfn: The start PFN to start searching for holes
3270 * @end_pfn: The end PFN to stop searching for holes
3272 * It returns the number of pages frames in memory holes within a range.
3274 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3275 unsigned long end_pfn)
3277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3280 /* Return the number of page frames in holes in a zone on a node */
3281 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3282 unsigned long zone_type,
3283 unsigned long *ignored)
3285 unsigned long node_start_pfn, node_end_pfn;
3286 unsigned long zone_start_pfn, zone_end_pfn;
3288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3290 node_start_pfn);
3291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3292 node_end_pfn);
3294 adjust_zone_range_for_zone_movable(nid, zone_type,
3295 node_start_pfn, node_end_pfn,
3296 &zone_start_pfn, &zone_end_pfn);
3297 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3300 #else
3301 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3302 unsigned long zone_type,
3303 unsigned long *zones_size)
3305 return zones_size[zone_type];
3308 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3309 unsigned long zone_type,
3310 unsigned long *zholes_size)
3312 if (!zholes_size)
3313 return 0;
3315 return zholes_size[zone_type];
3318 #endif
3320 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3321 unsigned long *zones_size, unsigned long *zholes_size)
3323 unsigned long realtotalpages, totalpages = 0;
3324 enum zone_type i;
3326 for (i = 0; i < MAX_NR_ZONES; i++)
3327 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3328 zones_size);
3329 pgdat->node_spanned_pages = totalpages;
3331 realtotalpages = totalpages;
3332 for (i = 0; i < MAX_NR_ZONES; i++)
3333 realtotalpages -=
3334 zone_absent_pages_in_node(pgdat->node_id, i,
3335 zholes_size);
3336 pgdat->node_present_pages = realtotalpages;
3337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3338 realtotalpages);
3341 #ifndef CONFIG_SPARSEMEM
3343 * Calculate the size of the zone->blockflags rounded to an unsigned long
3344 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3346 * round what is now in bits to nearest long in bits, then return it in
3347 * bytes.
3349 static unsigned long __init usemap_size(unsigned long zonesize)
3351 unsigned long usemapsize;
3353 usemapsize = roundup(zonesize, pageblock_nr_pages);
3354 usemapsize = usemapsize >> pageblock_order;
3355 usemapsize *= NR_PAGEBLOCK_BITS;
3356 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3358 return usemapsize / 8;
3361 static void __init setup_usemap(struct pglist_data *pgdat,
3362 struct zone *zone, unsigned long zonesize)
3364 unsigned long usemapsize = usemap_size(zonesize);
3365 zone->pageblock_flags = NULL;
3366 if (usemapsize)
3367 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3369 #else
3370 static void inline setup_usemap(struct pglist_data *pgdat,
3371 struct zone *zone, unsigned long zonesize) {}
3372 #endif /* CONFIG_SPARSEMEM */
3374 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3376 /* Return a sensible default order for the pageblock size. */
3377 static inline int pageblock_default_order(void)
3379 if (HPAGE_SHIFT > PAGE_SHIFT)
3380 return HUGETLB_PAGE_ORDER;
3382 return MAX_ORDER-1;
3385 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3386 static inline void __init set_pageblock_order(unsigned int order)
3388 /* Check that pageblock_nr_pages has not already been setup */
3389 if (pageblock_order)
3390 return;
3393 * Assume the largest contiguous order of interest is a huge page.
3394 * This value may be variable depending on boot parameters on IA64
3396 pageblock_order = order;
3398 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3401 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3402 * and pageblock_default_order() are unused as pageblock_order is set
3403 * at compile-time. See include/linux/pageblock-flags.h for the values of
3404 * pageblock_order based on the kernel config
3406 static inline int pageblock_default_order(unsigned int order)
3408 return MAX_ORDER-1;
3410 #define set_pageblock_order(x) do {} while (0)
3412 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3415 * Set up the zone data structures:
3416 * - mark all pages reserved
3417 * - mark all memory queues empty
3418 * - clear the memory bitmaps
3420 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3421 unsigned long *zones_size, unsigned long *zholes_size)
3423 enum zone_type j;
3424 int nid = pgdat->node_id;
3425 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3426 int ret;
3428 pgdat_resize_init(pgdat);
3429 pgdat->nr_zones = 0;
3430 init_waitqueue_head(&pgdat->kswapd_wait);
3431 pgdat->kswapd_max_order = 0;
3432 pgdat_page_cgroup_init(pgdat);
3434 for (j = 0; j < MAX_NR_ZONES; j++) {
3435 struct zone *zone = pgdat->node_zones + j;
3436 unsigned long size, realsize, memmap_pages;
3437 enum lru_list l;
3439 size = zone_spanned_pages_in_node(nid, j, zones_size);
3440 realsize = size - zone_absent_pages_in_node(nid, j,
3441 zholes_size);
3444 * Adjust realsize so that it accounts for how much memory
3445 * is used by this zone for memmap. This affects the watermark
3446 * and per-cpu initialisations
3448 memmap_pages =
3449 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3450 if (realsize >= memmap_pages) {
3451 realsize -= memmap_pages;
3452 if (memmap_pages)
3453 printk(KERN_DEBUG
3454 " %s zone: %lu pages used for memmap\n",
3455 zone_names[j], memmap_pages);
3456 } else
3457 printk(KERN_WARNING
3458 " %s zone: %lu pages exceeds realsize %lu\n",
3459 zone_names[j], memmap_pages, realsize);
3461 /* Account for reserved pages */
3462 if (j == 0 && realsize > dma_reserve) {
3463 realsize -= dma_reserve;
3464 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3465 zone_names[0], dma_reserve);
3468 if (!is_highmem_idx(j))
3469 nr_kernel_pages += realsize;
3470 nr_all_pages += realsize;
3472 zone->spanned_pages = size;
3473 zone->present_pages = realsize;
3474 #ifdef CONFIG_NUMA
3475 zone->node = nid;
3476 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3477 / 100;
3478 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3479 #endif
3480 zone->name = zone_names[j];
3481 spin_lock_init(&zone->lock);
3482 spin_lock_init(&zone->lru_lock);
3483 zone_seqlock_init(zone);
3484 zone->zone_pgdat = pgdat;
3486 zone->prev_priority = DEF_PRIORITY;
3488 zone_pcp_init(zone);
3489 for_each_lru(l) {
3490 INIT_LIST_HEAD(&zone->lru[l].list);
3491 zone->lru[l].nr_scan = 0;
3493 zone->reclaim_stat.recent_rotated[0] = 0;
3494 zone->reclaim_stat.recent_rotated[1] = 0;
3495 zone->reclaim_stat.recent_scanned[0] = 0;
3496 zone->reclaim_stat.recent_scanned[1] = 0;
3497 zap_zone_vm_stats(zone);
3498 zone->flags = 0;
3499 if (!size)
3500 continue;
3502 set_pageblock_order(pageblock_default_order());
3503 setup_usemap(pgdat, zone, size);
3504 ret = init_currently_empty_zone(zone, zone_start_pfn,
3505 size, MEMMAP_EARLY);
3506 BUG_ON(ret);
3507 memmap_init(size, nid, j, zone_start_pfn);
3508 zone_start_pfn += size;
3512 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3514 /* Skip empty nodes */
3515 if (!pgdat->node_spanned_pages)
3516 return;
3518 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3519 /* ia64 gets its own node_mem_map, before this, without bootmem */
3520 if (!pgdat->node_mem_map) {
3521 unsigned long size, start, end;
3522 struct page *map;
3525 * The zone's endpoints aren't required to be MAX_ORDER
3526 * aligned but the node_mem_map endpoints must be in order
3527 * for the buddy allocator to function correctly.
3529 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3530 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3531 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3532 size = (end - start) * sizeof(struct page);
3533 map = alloc_remap(pgdat->node_id, size);
3534 if (!map)
3535 map = alloc_bootmem_node(pgdat, size);
3536 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3538 #ifndef CONFIG_NEED_MULTIPLE_NODES
3540 * With no DISCONTIG, the global mem_map is just set as node 0's
3542 if (pgdat == NODE_DATA(0)) {
3543 mem_map = NODE_DATA(0)->node_mem_map;
3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3545 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3546 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3547 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3549 #endif
3550 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3553 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3554 unsigned long node_start_pfn, unsigned long *zholes_size)
3556 pg_data_t *pgdat = NODE_DATA(nid);
3558 pgdat->node_id = nid;
3559 pgdat->node_start_pfn = node_start_pfn;
3560 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3562 alloc_node_mem_map(pgdat);
3563 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3564 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3565 nid, (unsigned long)pgdat,
3566 (unsigned long)pgdat->node_mem_map);
3567 #endif
3569 free_area_init_core(pgdat, zones_size, zholes_size);
3572 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3574 #if MAX_NUMNODES > 1
3576 * Figure out the number of possible node ids.
3578 static void __init setup_nr_node_ids(void)
3580 unsigned int node;
3581 unsigned int highest = 0;
3583 for_each_node_mask(node, node_possible_map)
3584 highest = node;
3585 nr_node_ids = highest + 1;
3587 #else
3588 static inline void setup_nr_node_ids(void)
3591 #endif
3594 * add_active_range - Register a range of PFNs backed by physical memory
3595 * @nid: The node ID the range resides on
3596 * @start_pfn: The start PFN of the available physical memory
3597 * @end_pfn: The end PFN of the available physical memory
3599 * These ranges are stored in an early_node_map[] and later used by
3600 * free_area_init_nodes() to calculate zone sizes and holes. If the
3601 * range spans a memory hole, it is up to the architecture to ensure
3602 * the memory is not freed by the bootmem allocator. If possible
3603 * the range being registered will be merged with existing ranges.
3605 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3606 unsigned long end_pfn)
3608 int i;
3610 mminit_dprintk(MMINIT_TRACE, "memory_register",
3611 "Entering add_active_range(%d, %#lx, %#lx) "
3612 "%d entries of %d used\n",
3613 nid, start_pfn, end_pfn,
3614 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3616 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3618 /* Merge with existing active regions if possible */
3619 for (i = 0; i < nr_nodemap_entries; i++) {
3620 if (early_node_map[i].nid != nid)
3621 continue;
3623 /* Skip if an existing region covers this new one */
3624 if (start_pfn >= early_node_map[i].start_pfn &&
3625 end_pfn <= early_node_map[i].end_pfn)
3626 return;
3628 /* Merge forward if suitable */
3629 if (start_pfn <= early_node_map[i].end_pfn &&
3630 end_pfn > early_node_map[i].end_pfn) {
3631 early_node_map[i].end_pfn = end_pfn;
3632 return;
3635 /* Merge backward if suitable */
3636 if (start_pfn < early_node_map[i].end_pfn &&
3637 end_pfn >= early_node_map[i].start_pfn) {
3638 early_node_map[i].start_pfn = start_pfn;
3639 return;
3643 /* Check that early_node_map is large enough */
3644 if (i >= MAX_ACTIVE_REGIONS) {
3645 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3646 MAX_ACTIVE_REGIONS);
3647 return;
3650 early_node_map[i].nid = nid;
3651 early_node_map[i].start_pfn = start_pfn;
3652 early_node_map[i].end_pfn = end_pfn;
3653 nr_nodemap_entries = i + 1;
3657 * remove_active_range - Shrink an existing registered range of PFNs
3658 * @nid: The node id the range is on that should be shrunk
3659 * @start_pfn: The new PFN of the range
3660 * @end_pfn: The new PFN of the range
3662 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3663 * The map is kept near the end physical page range that has already been
3664 * registered. This function allows an arch to shrink an existing registered
3665 * range.
3667 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3668 unsigned long end_pfn)
3670 int i, j;
3671 int removed = 0;
3673 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3674 nid, start_pfn, end_pfn);
3676 /* Find the old active region end and shrink */
3677 for_each_active_range_index_in_nid(i, nid) {
3678 if (early_node_map[i].start_pfn >= start_pfn &&
3679 early_node_map[i].end_pfn <= end_pfn) {
3680 /* clear it */
3681 early_node_map[i].start_pfn = 0;
3682 early_node_map[i].end_pfn = 0;
3683 removed = 1;
3684 continue;
3686 if (early_node_map[i].start_pfn < start_pfn &&
3687 early_node_map[i].end_pfn > start_pfn) {
3688 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3689 early_node_map[i].end_pfn = start_pfn;
3690 if (temp_end_pfn > end_pfn)
3691 add_active_range(nid, end_pfn, temp_end_pfn);
3692 continue;
3694 if (early_node_map[i].start_pfn >= start_pfn &&
3695 early_node_map[i].end_pfn > end_pfn &&
3696 early_node_map[i].start_pfn < end_pfn) {
3697 early_node_map[i].start_pfn = end_pfn;
3698 continue;
3702 if (!removed)
3703 return;
3705 /* remove the blank ones */
3706 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3707 if (early_node_map[i].nid != nid)
3708 continue;
3709 if (early_node_map[i].end_pfn)
3710 continue;
3711 /* we found it, get rid of it */
3712 for (j = i; j < nr_nodemap_entries - 1; j++)
3713 memcpy(&early_node_map[j], &early_node_map[j+1],
3714 sizeof(early_node_map[j]));
3715 j = nr_nodemap_entries - 1;
3716 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3717 nr_nodemap_entries--;
3722 * remove_all_active_ranges - Remove all currently registered regions
3724 * During discovery, it may be found that a table like SRAT is invalid
3725 * and an alternative discovery method must be used. This function removes
3726 * all currently registered regions.
3728 void __init remove_all_active_ranges(void)
3730 memset(early_node_map, 0, sizeof(early_node_map));
3731 nr_nodemap_entries = 0;
3734 /* Compare two active node_active_regions */
3735 static int __init cmp_node_active_region(const void *a, const void *b)
3737 struct node_active_region *arange = (struct node_active_region *)a;
3738 struct node_active_region *brange = (struct node_active_region *)b;
3740 /* Done this way to avoid overflows */
3741 if (arange->start_pfn > brange->start_pfn)
3742 return 1;
3743 if (arange->start_pfn < brange->start_pfn)
3744 return -1;
3746 return 0;
3749 /* sort the node_map by start_pfn */
3750 static void __init sort_node_map(void)
3752 sort(early_node_map, (size_t)nr_nodemap_entries,
3753 sizeof(struct node_active_region),
3754 cmp_node_active_region, NULL);
3757 /* Find the lowest pfn for a node */
3758 static unsigned long __init find_min_pfn_for_node(int nid)
3760 int i;
3761 unsigned long min_pfn = ULONG_MAX;
3763 /* Assuming a sorted map, the first range found has the starting pfn */
3764 for_each_active_range_index_in_nid(i, nid)
3765 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3767 if (min_pfn == ULONG_MAX) {
3768 printk(KERN_WARNING
3769 "Could not find start_pfn for node %d\n", nid);
3770 return 0;
3773 return min_pfn;
3777 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3779 * It returns the minimum PFN based on information provided via
3780 * add_active_range().
3782 unsigned long __init find_min_pfn_with_active_regions(void)
3784 return find_min_pfn_for_node(MAX_NUMNODES);
3788 * early_calculate_totalpages()
3789 * Sum pages in active regions for movable zone.
3790 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3792 static unsigned long __init early_calculate_totalpages(void)
3794 int i;
3795 unsigned long totalpages = 0;
3797 for (i = 0; i < nr_nodemap_entries; i++) {
3798 unsigned long pages = early_node_map[i].end_pfn -
3799 early_node_map[i].start_pfn;
3800 totalpages += pages;
3801 if (pages)
3802 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3804 return totalpages;
3808 * Find the PFN the Movable zone begins in each node. Kernel memory
3809 * is spread evenly between nodes as long as the nodes have enough
3810 * memory. When they don't, some nodes will have more kernelcore than
3811 * others
3813 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3815 int i, nid;
3816 unsigned long usable_startpfn;
3817 unsigned long kernelcore_node, kernelcore_remaining;
3818 unsigned long totalpages = early_calculate_totalpages();
3819 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3822 * If movablecore was specified, calculate what size of
3823 * kernelcore that corresponds so that memory usable for
3824 * any allocation type is evenly spread. If both kernelcore
3825 * and movablecore are specified, then the value of kernelcore
3826 * will be used for required_kernelcore if it's greater than
3827 * what movablecore would have allowed.
3829 if (required_movablecore) {
3830 unsigned long corepages;
3833 * Round-up so that ZONE_MOVABLE is at least as large as what
3834 * was requested by the user
3836 required_movablecore =
3837 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3838 corepages = totalpages - required_movablecore;
3840 required_kernelcore = max(required_kernelcore, corepages);
3843 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3844 if (!required_kernelcore)
3845 return;
3847 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3848 find_usable_zone_for_movable();
3849 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3851 restart:
3852 /* Spread kernelcore memory as evenly as possible throughout nodes */
3853 kernelcore_node = required_kernelcore / usable_nodes;
3854 for_each_node_state(nid, N_HIGH_MEMORY) {
3856 * Recalculate kernelcore_node if the division per node
3857 * now exceeds what is necessary to satisfy the requested
3858 * amount of memory for the kernel
3860 if (required_kernelcore < kernelcore_node)
3861 kernelcore_node = required_kernelcore / usable_nodes;
3864 * As the map is walked, we track how much memory is usable
3865 * by the kernel using kernelcore_remaining. When it is
3866 * 0, the rest of the node is usable by ZONE_MOVABLE
3868 kernelcore_remaining = kernelcore_node;
3870 /* Go through each range of PFNs within this node */
3871 for_each_active_range_index_in_nid(i, nid) {
3872 unsigned long start_pfn, end_pfn;
3873 unsigned long size_pages;
3875 start_pfn = max(early_node_map[i].start_pfn,
3876 zone_movable_pfn[nid]);
3877 end_pfn = early_node_map[i].end_pfn;
3878 if (start_pfn >= end_pfn)
3879 continue;
3881 /* Account for what is only usable for kernelcore */
3882 if (start_pfn < usable_startpfn) {
3883 unsigned long kernel_pages;
3884 kernel_pages = min(end_pfn, usable_startpfn)
3885 - start_pfn;
3887 kernelcore_remaining -= min(kernel_pages,
3888 kernelcore_remaining);
3889 required_kernelcore -= min(kernel_pages,
3890 required_kernelcore);
3892 /* Continue if range is now fully accounted */
3893 if (end_pfn <= usable_startpfn) {
3896 * Push zone_movable_pfn to the end so
3897 * that if we have to rebalance
3898 * kernelcore across nodes, we will
3899 * not double account here
3901 zone_movable_pfn[nid] = end_pfn;
3902 continue;
3904 start_pfn = usable_startpfn;
3908 * The usable PFN range for ZONE_MOVABLE is from
3909 * start_pfn->end_pfn. Calculate size_pages as the
3910 * number of pages used as kernelcore
3912 size_pages = end_pfn - start_pfn;
3913 if (size_pages > kernelcore_remaining)
3914 size_pages = kernelcore_remaining;
3915 zone_movable_pfn[nid] = start_pfn + size_pages;
3918 * Some kernelcore has been met, update counts and
3919 * break if the kernelcore for this node has been
3920 * satisified
3922 required_kernelcore -= min(required_kernelcore,
3923 size_pages);
3924 kernelcore_remaining -= size_pages;
3925 if (!kernelcore_remaining)
3926 break;
3931 * If there is still required_kernelcore, we do another pass with one
3932 * less node in the count. This will push zone_movable_pfn[nid] further
3933 * along on the nodes that still have memory until kernelcore is
3934 * satisified
3936 usable_nodes--;
3937 if (usable_nodes && required_kernelcore > usable_nodes)
3938 goto restart;
3940 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3941 for (nid = 0; nid < MAX_NUMNODES; nid++)
3942 zone_movable_pfn[nid] =
3943 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3946 /* Any regular memory on that node ? */
3947 static void check_for_regular_memory(pg_data_t *pgdat)
3949 #ifdef CONFIG_HIGHMEM
3950 enum zone_type zone_type;
3952 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3953 struct zone *zone = &pgdat->node_zones[zone_type];
3954 if (zone->present_pages)
3955 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3957 #endif
3961 * free_area_init_nodes - Initialise all pg_data_t and zone data
3962 * @max_zone_pfn: an array of max PFNs for each zone
3964 * This will call free_area_init_node() for each active node in the system.
3965 * Using the page ranges provided by add_active_range(), the size of each
3966 * zone in each node and their holes is calculated. If the maximum PFN
3967 * between two adjacent zones match, it is assumed that the zone is empty.
3968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3970 * starts where the previous one ended. For example, ZONE_DMA32 starts
3971 * at arch_max_dma_pfn.
3973 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3975 unsigned long nid;
3976 int i;
3978 /* Sort early_node_map as initialisation assumes it is sorted */
3979 sort_node_map();
3981 /* Record where the zone boundaries are */
3982 memset(arch_zone_lowest_possible_pfn, 0,
3983 sizeof(arch_zone_lowest_possible_pfn));
3984 memset(arch_zone_highest_possible_pfn, 0,
3985 sizeof(arch_zone_highest_possible_pfn));
3986 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3987 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3988 for (i = 1; i < MAX_NR_ZONES; i++) {
3989 if (i == ZONE_MOVABLE)
3990 continue;
3991 arch_zone_lowest_possible_pfn[i] =
3992 arch_zone_highest_possible_pfn[i-1];
3993 arch_zone_highest_possible_pfn[i] =
3994 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3996 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3997 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3999 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4000 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4001 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4003 /* Print out the zone ranges */
4004 printk("Zone PFN ranges:\n");
4005 for (i = 0; i < MAX_NR_ZONES; i++) {
4006 if (i == ZONE_MOVABLE)
4007 continue;
4008 printk(" %-8s %0#10lx -> %0#10lx\n",
4009 zone_names[i],
4010 arch_zone_lowest_possible_pfn[i],
4011 arch_zone_highest_possible_pfn[i]);
4014 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4015 printk("Movable zone start PFN for each node\n");
4016 for (i = 0; i < MAX_NUMNODES; i++) {
4017 if (zone_movable_pfn[i])
4018 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4021 /* Print out the early_node_map[] */
4022 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4023 for (i = 0; i < nr_nodemap_entries; i++)
4024 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4025 early_node_map[i].start_pfn,
4026 early_node_map[i].end_pfn);
4028 /* Initialise every node */
4029 mminit_verify_pageflags_layout();
4030 setup_nr_node_ids();
4031 for_each_online_node(nid) {
4032 pg_data_t *pgdat = NODE_DATA(nid);
4033 free_area_init_node(nid, NULL,
4034 find_min_pfn_for_node(nid), NULL);
4036 /* Any memory on that node */
4037 if (pgdat->node_present_pages)
4038 node_set_state(nid, N_HIGH_MEMORY);
4039 check_for_regular_memory(pgdat);
4043 static int __init cmdline_parse_core(char *p, unsigned long *core)
4045 unsigned long long coremem;
4046 if (!p)
4047 return -EINVAL;
4049 coremem = memparse(p, &p);
4050 *core = coremem >> PAGE_SHIFT;
4052 /* Paranoid check that UL is enough for the coremem value */
4053 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4055 return 0;
4059 * kernelcore=size sets the amount of memory for use for allocations that
4060 * cannot be reclaimed or migrated.
4062 static int __init cmdline_parse_kernelcore(char *p)
4064 return cmdline_parse_core(p, &required_kernelcore);
4068 * movablecore=size sets the amount of memory for use for allocations that
4069 * can be reclaimed or migrated.
4071 static int __init cmdline_parse_movablecore(char *p)
4073 return cmdline_parse_core(p, &required_movablecore);
4076 early_param("kernelcore", cmdline_parse_kernelcore);
4077 early_param("movablecore", cmdline_parse_movablecore);
4079 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4082 * set_dma_reserve - set the specified number of pages reserved in the first zone
4083 * @new_dma_reserve: The number of pages to mark reserved
4085 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4086 * In the DMA zone, a significant percentage may be consumed by kernel image
4087 * and other unfreeable allocations which can skew the watermarks badly. This
4088 * function may optionally be used to account for unfreeable pages in the
4089 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4090 * smaller per-cpu batchsize.
4092 void __init set_dma_reserve(unsigned long new_dma_reserve)
4094 dma_reserve = new_dma_reserve;
4097 #ifndef CONFIG_NEED_MULTIPLE_NODES
4098 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4099 EXPORT_SYMBOL(contig_page_data);
4100 #endif
4102 void __init free_area_init(unsigned long *zones_size)
4104 free_area_init_node(0, zones_size,
4105 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4108 static int page_alloc_cpu_notify(struct notifier_block *self,
4109 unsigned long action, void *hcpu)
4111 int cpu = (unsigned long)hcpu;
4113 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4114 drain_pages(cpu);
4117 * Spill the event counters of the dead processor
4118 * into the current processors event counters.
4119 * This artificially elevates the count of the current
4120 * processor.
4122 vm_events_fold_cpu(cpu);
4125 * Zero the differential counters of the dead processor
4126 * so that the vm statistics are consistent.
4128 * This is only okay since the processor is dead and cannot
4129 * race with what we are doing.
4131 refresh_cpu_vm_stats(cpu);
4133 return NOTIFY_OK;
4136 void __init page_alloc_init(void)
4138 hotcpu_notifier(page_alloc_cpu_notify, 0);
4142 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4143 * or min_free_kbytes changes.
4145 static void calculate_totalreserve_pages(void)
4147 struct pglist_data *pgdat;
4148 unsigned long reserve_pages = 0;
4149 enum zone_type i, j;
4151 for_each_online_pgdat(pgdat) {
4152 for (i = 0; i < MAX_NR_ZONES; i++) {
4153 struct zone *zone = pgdat->node_zones + i;
4154 unsigned long max = 0;
4156 /* Find valid and maximum lowmem_reserve in the zone */
4157 for (j = i; j < MAX_NR_ZONES; j++) {
4158 if (zone->lowmem_reserve[j] > max)
4159 max = zone->lowmem_reserve[j];
4162 /* we treat pages_high as reserved pages. */
4163 max += zone->pages_high;
4165 if (max > zone->present_pages)
4166 max = zone->present_pages;
4167 reserve_pages += max;
4170 totalreserve_pages = reserve_pages;
4174 * setup_per_zone_lowmem_reserve - called whenever
4175 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4176 * has a correct pages reserved value, so an adequate number of
4177 * pages are left in the zone after a successful __alloc_pages().
4179 static void setup_per_zone_lowmem_reserve(void)
4181 struct pglist_data *pgdat;
4182 enum zone_type j, idx;
4184 for_each_online_pgdat(pgdat) {
4185 for (j = 0; j < MAX_NR_ZONES; j++) {
4186 struct zone *zone = pgdat->node_zones + j;
4187 unsigned long present_pages = zone->present_pages;
4189 zone->lowmem_reserve[j] = 0;
4191 idx = j;
4192 while (idx) {
4193 struct zone *lower_zone;
4195 idx--;
4197 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4198 sysctl_lowmem_reserve_ratio[idx] = 1;
4200 lower_zone = pgdat->node_zones + idx;
4201 lower_zone->lowmem_reserve[j] = present_pages /
4202 sysctl_lowmem_reserve_ratio[idx];
4203 present_pages += lower_zone->present_pages;
4208 /* update totalreserve_pages */
4209 calculate_totalreserve_pages();
4213 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4215 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4216 * with respect to min_free_kbytes.
4218 void setup_per_zone_pages_min(void)
4220 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4221 unsigned long lowmem_pages = 0;
4222 struct zone *zone;
4223 unsigned long flags;
4225 /* Calculate total number of !ZONE_HIGHMEM pages */
4226 for_each_zone(zone) {
4227 if (!is_highmem(zone))
4228 lowmem_pages += zone->present_pages;
4231 for_each_zone(zone) {
4232 u64 tmp;
4234 spin_lock_irqsave(&zone->lock, flags);
4235 tmp = (u64)pages_min * zone->present_pages;
4236 do_div(tmp, lowmem_pages);
4237 if (is_highmem(zone)) {
4239 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4240 * need highmem pages, so cap pages_min to a small
4241 * value here.
4243 * The (pages_high-pages_low) and (pages_low-pages_min)
4244 * deltas controls asynch page reclaim, and so should
4245 * not be capped for highmem.
4247 int min_pages;
4249 min_pages = zone->present_pages / 1024;
4250 if (min_pages < SWAP_CLUSTER_MAX)
4251 min_pages = SWAP_CLUSTER_MAX;
4252 if (min_pages > 128)
4253 min_pages = 128;
4254 zone->pages_min = min_pages;
4255 } else {
4257 * If it's a lowmem zone, reserve a number of pages
4258 * proportionate to the zone's size.
4260 zone->pages_min = tmp;
4263 zone->pages_low = zone->pages_min + (tmp >> 2);
4264 zone->pages_high = zone->pages_min + (tmp >> 1);
4265 setup_zone_migrate_reserve(zone);
4266 spin_unlock_irqrestore(&zone->lock, flags);
4269 /* update totalreserve_pages */
4270 calculate_totalreserve_pages();
4274 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4276 * The inactive anon list should be small enough that the VM never has to
4277 * do too much work, but large enough that each inactive page has a chance
4278 * to be referenced again before it is swapped out.
4280 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4281 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4282 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4283 * the anonymous pages are kept on the inactive list.
4285 * total target max
4286 * memory ratio inactive anon
4287 * -------------------------------------
4288 * 10MB 1 5MB
4289 * 100MB 1 50MB
4290 * 1GB 3 250MB
4291 * 10GB 10 0.9GB
4292 * 100GB 31 3GB
4293 * 1TB 101 10GB
4294 * 10TB 320 32GB
4296 static void setup_per_zone_inactive_ratio(void)
4298 struct zone *zone;
4300 for_each_zone(zone) {
4301 unsigned int gb, ratio;
4303 /* Zone size in gigabytes */
4304 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4305 ratio = int_sqrt(10 * gb);
4306 if (!ratio)
4307 ratio = 1;
4309 zone->inactive_ratio = ratio;
4314 * Initialise min_free_kbytes.
4316 * For small machines we want it small (128k min). For large machines
4317 * we want it large (64MB max). But it is not linear, because network
4318 * bandwidth does not increase linearly with machine size. We use
4320 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4321 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4323 * which yields
4325 * 16MB: 512k
4326 * 32MB: 724k
4327 * 64MB: 1024k
4328 * 128MB: 1448k
4329 * 256MB: 2048k
4330 * 512MB: 2896k
4331 * 1024MB: 4096k
4332 * 2048MB: 5792k
4333 * 4096MB: 8192k
4334 * 8192MB: 11584k
4335 * 16384MB: 16384k
4337 static int __init init_per_zone_pages_min(void)
4339 unsigned long lowmem_kbytes;
4341 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4343 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4344 if (min_free_kbytes < 128)
4345 min_free_kbytes = 128;
4346 if (min_free_kbytes > 65536)
4347 min_free_kbytes = 65536;
4348 setup_per_zone_pages_min();
4349 setup_per_zone_lowmem_reserve();
4350 setup_per_zone_inactive_ratio();
4351 return 0;
4353 module_init(init_per_zone_pages_min)
4356 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4357 * that we can call two helper functions whenever min_free_kbytes
4358 * changes.
4360 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4361 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4363 proc_dointvec(table, write, file, buffer, length, ppos);
4364 if (write)
4365 setup_per_zone_pages_min();
4366 return 0;
4369 #ifdef CONFIG_NUMA
4370 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4371 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4373 struct zone *zone;
4374 int rc;
4376 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4377 if (rc)
4378 return rc;
4380 for_each_zone(zone)
4381 zone->min_unmapped_pages = (zone->present_pages *
4382 sysctl_min_unmapped_ratio) / 100;
4383 return 0;
4386 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4387 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4389 struct zone *zone;
4390 int rc;
4392 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4393 if (rc)
4394 return rc;
4396 for_each_zone(zone)
4397 zone->min_slab_pages = (zone->present_pages *
4398 sysctl_min_slab_ratio) / 100;
4399 return 0;
4401 #endif
4404 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4405 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4406 * whenever sysctl_lowmem_reserve_ratio changes.
4408 * The reserve ratio obviously has absolutely no relation with the
4409 * pages_min watermarks. The lowmem reserve ratio can only make sense
4410 * if in function of the boot time zone sizes.
4412 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4413 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4415 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4416 setup_per_zone_lowmem_reserve();
4417 return 0;
4421 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4422 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4423 * can have before it gets flushed back to buddy allocator.
4426 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4427 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4429 struct zone *zone;
4430 unsigned int cpu;
4431 int ret;
4433 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4434 if (!write || (ret == -EINVAL))
4435 return ret;
4436 for_each_zone(zone) {
4437 for_each_online_cpu(cpu) {
4438 unsigned long high;
4439 high = zone->present_pages / percpu_pagelist_fraction;
4440 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4443 return 0;
4446 int hashdist = HASHDIST_DEFAULT;
4448 #ifdef CONFIG_NUMA
4449 static int __init set_hashdist(char *str)
4451 if (!str)
4452 return 0;
4453 hashdist = simple_strtoul(str, &str, 0);
4454 return 1;
4456 __setup("hashdist=", set_hashdist);
4457 #endif
4460 * allocate a large system hash table from bootmem
4461 * - it is assumed that the hash table must contain an exact power-of-2
4462 * quantity of entries
4463 * - limit is the number of hash buckets, not the total allocation size
4465 void *__init alloc_large_system_hash(const char *tablename,
4466 unsigned long bucketsize,
4467 unsigned long numentries,
4468 int scale,
4469 int flags,
4470 unsigned int *_hash_shift,
4471 unsigned int *_hash_mask,
4472 unsigned long limit)
4474 unsigned long long max = limit;
4475 unsigned long log2qty, size;
4476 void *table = NULL;
4478 /* allow the kernel cmdline to have a say */
4479 if (!numentries) {
4480 /* round applicable memory size up to nearest megabyte */
4481 numentries = nr_kernel_pages;
4482 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4483 numentries >>= 20 - PAGE_SHIFT;
4484 numentries <<= 20 - PAGE_SHIFT;
4486 /* limit to 1 bucket per 2^scale bytes of low memory */
4487 if (scale > PAGE_SHIFT)
4488 numentries >>= (scale - PAGE_SHIFT);
4489 else
4490 numentries <<= (PAGE_SHIFT - scale);
4492 /* Make sure we've got at least a 0-order allocation.. */
4493 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4494 numentries = PAGE_SIZE / bucketsize;
4496 numentries = roundup_pow_of_two(numentries);
4498 /* limit allocation size to 1/16 total memory by default */
4499 if (max == 0) {
4500 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4501 do_div(max, bucketsize);
4504 if (numentries > max)
4505 numentries = max;
4507 log2qty = ilog2(numentries);
4509 do {
4510 size = bucketsize << log2qty;
4511 if (flags & HASH_EARLY)
4512 table = alloc_bootmem_nopanic(size);
4513 else if (hashdist)
4514 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4515 else {
4516 unsigned long order = get_order(size);
4517 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4519 * If bucketsize is not a power-of-two, we may free
4520 * some pages at the end of hash table.
4522 if (table) {
4523 unsigned long alloc_end = (unsigned long)table +
4524 (PAGE_SIZE << order);
4525 unsigned long used = (unsigned long)table +
4526 PAGE_ALIGN(size);
4527 split_page(virt_to_page(table), order);
4528 while (used < alloc_end) {
4529 free_page(used);
4530 used += PAGE_SIZE;
4534 } while (!table && size > PAGE_SIZE && --log2qty);
4536 if (!table)
4537 panic("Failed to allocate %s hash table\n", tablename);
4539 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4540 tablename,
4541 (1U << log2qty),
4542 ilog2(size) - PAGE_SHIFT,
4543 size);
4545 if (_hash_shift)
4546 *_hash_shift = log2qty;
4547 if (_hash_mask)
4548 *_hash_mask = (1 << log2qty) - 1;
4551 * If hashdist is set, the table allocation is done with __vmalloc()
4552 * which invokes the kmemleak_alloc() callback. This function may also
4553 * be called before the slab and kmemleak are initialised when
4554 * kmemleak simply buffers the request to be executed later
4555 * (GFP_ATOMIC flag ignored in this case).
4557 if (!hashdist)
4558 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4560 return table;
4563 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4564 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4565 unsigned long pfn)
4567 #ifdef CONFIG_SPARSEMEM
4568 return __pfn_to_section(pfn)->pageblock_flags;
4569 #else
4570 return zone->pageblock_flags;
4571 #endif /* CONFIG_SPARSEMEM */
4574 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4576 #ifdef CONFIG_SPARSEMEM
4577 pfn &= (PAGES_PER_SECTION-1);
4578 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4579 #else
4580 pfn = pfn - zone->zone_start_pfn;
4581 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4582 #endif /* CONFIG_SPARSEMEM */
4586 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4587 * @page: The page within the block of interest
4588 * @start_bitidx: The first bit of interest to retrieve
4589 * @end_bitidx: The last bit of interest
4590 * returns pageblock_bits flags
4592 unsigned long get_pageblock_flags_group(struct page *page,
4593 int start_bitidx, int end_bitidx)
4595 struct zone *zone;
4596 unsigned long *bitmap;
4597 unsigned long pfn, bitidx;
4598 unsigned long flags = 0;
4599 unsigned long value = 1;
4601 zone = page_zone(page);
4602 pfn = page_to_pfn(page);
4603 bitmap = get_pageblock_bitmap(zone, pfn);
4604 bitidx = pfn_to_bitidx(zone, pfn);
4606 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4607 if (test_bit(bitidx + start_bitidx, bitmap))
4608 flags |= value;
4610 return flags;
4614 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4615 * @page: The page within the block of interest
4616 * @start_bitidx: The first bit of interest
4617 * @end_bitidx: The last bit of interest
4618 * @flags: The flags to set
4620 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4621 int start_bitidx, int end_bitidx)
4623 struct zone *zone;
4624 unsigned long *bitmap;
4625 unsigned long pfn, bitidx;
4626 unsigned long value = 1;
4628 zone = page_zone(page);
4629 pfn = page_to_pfn(page);
4630 bitmap = get_pageblock_bitmap(zone, pfn);
4631 bitidx = pfn_to_bitidx(zone, pfn);
4632 VM_BUG_ON(pfn < zone->zone_start_pfn);
4633 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4635 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4636 if (flags & value)
4637 __set_bit(bitidx + start_bitidx, bitmap);
4638 else
4639 __clear_bit(bitidx + start_bitidx, bitmap);
4643 * This is designed as sub function...plz see page_isolation.c also.
4644 * set/clear page block's type to be ISOLATE.
4645 * page allocater never alloc memory from ISOLATE block.
4648 int set_migratetype_isolate(struct page *page)
4650 struct zone *zone;
4651 unsigned long flags;
4652 int ret = -EBUSY;
4654 zone = page_zone(page);
4655 spin_lock_irqsave(&zone->lock, flags);
4657 * In future, more migrate types will be able to be isolation target.
4659 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4660 goto out;
4661 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4662 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4663 ret = 0;
4664 out:
4665 spin_unlock_irqrestore(&zone->lock, flags);
4666 if (!ret)
4667 drain_all_pages();
4668 return ret;
4671 void unset_migratetype_isolate(struct page *page)
4673 struct zone *zone;
4674 unsigned long flags;
4675 zone = page_zone(page);
4676 spin_lock_irqsave(&zone->lock, flags);
4677 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4678 goto out;
4679 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4680 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4681 out:
4682 spin_unlock_irqrestore(&zone->lock, flags);
4685 #ifdef CONFIG_MEMORY_HOTREMOVE
4687 * All pages in the range must be isolated before calling this.
4689 void
4690 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4692 struct page *page;
4693 struct zone *zone;
4694 int order, i;
4695 unsigned long pfn;
4696 unsigned long flags;
4697 /* find the first valid pfn */
4698 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4699 if (pfn_valid(pfn))
4700 break;
4701 if (pfn == end_pfn)
4702 return;
4703 zone = page_zone(pfn_to_page(pfn));
4704 spin_lock_irqsave(&zone->lock, flags);
4705 pfn = start_pfn;
4706 while (pfn < end_pfn) {
4707 if (!pfn_valid(pfn)) {
4708 pfn++;
4709 continue;
4711 page = pfn_to_page(pfn);
4712 BUG_ON(page_count(page));
4713 BUG_ON(!PageBuddy(page));
4714 order = page_order(page);
4715 #ifdef CONFIG_DEBUG_VM
4716 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4717 pfn, 1 << order, end_pfn);
4718 #endif
4719 list_del(&page->lru);
4720 rmv_page_order(page);
4721 zone->free_area[order].nr_free--;
4722 __mod_zone_page_state(zone, NR_FREE_PAGES,
4723 - (1UL << order));
4724 for (i = 0; i < (1 << order); i++)
4725 SetPageReserved((page+i));
4726 pfn += (1 << order);
4728 spin_unlock_irqrestore(&zone->lock, flags);
4730 #endif