2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 * Page fault error code bits:
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
28 enum x86_pf_error_code
{
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static inline int __kprobes
42 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs
, addr
) == 1)
50 static inline int __kprobes
notify_page_fault(struct pt_regs
*regs
)
54 /* kprobe_running() needs smp_processor_id() */
55 if (kprobes_built_in() && !user_mode_vm(regs
)) {
57 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
70 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71 * Check that here and ignore it.
75 * Sometimes the CPU reports invalid exceptions on prefetch.
76 * Check that here and ignore it.
78 * Opcode checker based on code by Richard Brunner.
81 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
82 unsigned char opcode
, int *prefetch
)
84 unsigned char instr_hi
= opcode
& 0xf0;
85 unsigned char instr_lo
= opcode
& 0x0f;
91 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92 * In X86_64 long mode, the CPU will signal invalid
93 * opcode if some of these prefixes are present so
94 * X86_64 will never get here anyway
96 return ((instr_lo
& 7) == 0x6);
100 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101 * Need to figure out under what instruction mode the
102 * instruction was issued. Could check the LDT for lm,
103 * but for now it's good enough to assume that long
104 * mode only uses well known segments or kernel.
106 return (!user_mode(regs
)) || (regs
->cs
== __USER_CS
);
109 /* 0x64 thru 0x67 are valid prefixes in all modes. */
110 return (instr_lo
& 0xC) == 0x4;
112 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113 return !instr_lo
|| (instr_lo
>>1) == 1;
115 /* Prefetch instruction is 0x0F0D or 0x0F18 */
116 if (probe_kernel_address(instr
, opcode
))
119 *prefetch
= (instr_lo
== 0xF) &&
120 (opcode
== 0x0D || opcode
== 0x18);
128 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
130 unsigned char *max_instr
;
131 unsigned char *instr
;
135 * If it was a exec (instruction fetch) fault on NX page, then
136 * do not ignore the fault:
138 if (error_code
& PF_INSTR
)
141 instr
= (void *)convert_ip_to_linear(current
, regs
);
142 max_instr
= instr
+ 15;
144 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
147 while (instr
< max_instr
) {
148 unsigned char opcode
;
150 if (probe_kernel_address(instr
, opcode
))
155 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
162 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
163 struct task_struct
*tsk
)
167 info
.si_signo
= si_signo
;
169 info
.si_code
= si_code
;
170 info
.si_addr
= (void __user
*)address
;
171 info
.si_addr_lsb
= si_code
== BUS_MCEERR_AR
? PAGE_SHIFT
: 0;
173 force_sig_info(si_signo
, &info
, tsk
);
176 DEFINE_SPINLOCK(pgd_lock
);
180 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
182 unsigned index
= pgd_index(address
);
188 pgd_k
= init_mm
.pgd
+ index
;
190 if (!pgd_present(*pgd_k
))
194 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195 * and redundant with the set_pmd() on non-PAE. As would
198 pud
= pud_offset(pgd
, address
);
199 pud_k
= pud_offset(pgd_k
, address
);
200 if (!pud_present(*pud_k
))
203 pmd
= pmd_offset(pud
, address
);
204 pmd_k
= pmd_offset(pud_k
, address
);
205 if (!pmd_present(*pmd_k
))
208 if (!pmd_present(*pmd
))
209 set_pmd(pmd
, *pmd_k
);
211 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
216 void vmalloc_sync_all(void)
218 unsigned long address
;
220 if (SHARED_KERNEL_PMD
)
223 for (address
= VMALLOC_START
& PMD_MASK
;
224 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
225 address
+= PMD_SIZE
) {
230 spin_lock_irqsave(&pgd_lock
, flags
);
231 list_for_each_entry(page
, &pgd_list
, lru
) {
232 if (!vmalloc_sync_one(page_address(page
), address
))
235 spin_unlock_irqrestore(&pgd_lock
, flags
);
242 * Handle a fault on the vmalloc or module mapping area
244 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
246 unsigned long pgd_paddr
;
250 /* Make sure we are in vmalloc area: */
251 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
255 * Synchronize this task's top level page-table
256 * with the 'reference' page table.
258 * Do _not_ use "current" here. We might be inside
259 * an interrupt in the middle of a task switch..
261 pgd_paddr
= read_cr3();
262 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
266 pte_k
= pte_offset_kernel(pmd_k
, address
);
267 if (!pte_present(*pte_k
))
274 * Did it hit the DOS screen memory VA from vm86 mode?
277 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
278 struct task_struct
*tsk
)
282 if (!v8086_mode(regs
))
285 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
287 tsk
->thread
.screen_bitmap
|= 1 << bit
;
290 static bool low_pfn(unsigned long pfn
)
292 return pfn
< max_low_pfn
;
295 static void dump_pagetable(unsigned long address
)
297 pgd_t
*base
= __va(read_cr3());
298 pgd_t
*pgd
= &base
[pgd_index(address
)];
302 #ifdef CONFIG_X86_PAE
303 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
304 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
307 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
308 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
311 * We must not directly access the pte in the highpte
312 * case if the page table is located in highmem.
313 * And let's rather not kmap-atomic the pte, just in case
314 * it's allocated already:
316 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
319 pte
= pte_offset_kernel(pmd
, address
);
320 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
325 #else /* CONFIG_X86_64: */
327 void vmalloc_sync_all(void)
329 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
335 * Handle a fault on the vmalloc area
337 * This assumes no large pages in there.
339 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
341 pgd_t
*pgd
, *pgd_ref
;
342 pud_t
*pud
, *pud_ref
;
343 pmd_t
*pmd
, *pmd_ref
;
344 pte_t
*pte
, *pte_ref
;
346 /* Make sure we are in vmalloc area: */
347 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
351 * Copy kernel mappings over when needed. This can also
352 * happen within a race in page table update. In the later
355 pgd
= pgd_offset(current
->active_mm
, address
);
356 pgd_ref
= pgd_offset_k(address
);
357 if (pgd_none(*pgd_ref
))
361 set_pgd(pgd
, *pgd_ref
);
363 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
366 * Below here mismatches are bugs because these lower tables
370 pud
= pud_offset(pgd
, address
);
371 pud_ref
= pud_offset(pgd_ref
, address
);
372 if (pud_none(*pud_ref
))
375 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
378 pmd
= pmd_offset(pud
, address
);
379 pmd_ref
= pmd_offset(pud_ref
, address
);
380 if (pmd_none(*pmd_ref
))
383 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
386 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
387 if (!pte_present(*pte_ref
))
390 pte
= pte_offset_kernel(pmd
, address
);
393 * Don't use pte_page here, because the mappings can point
394 * outside mem_map, and the NUMA hash lookup cannot handle
397 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
403 static const char errata93_warning
[] =
405 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
406 "******* Working around it, but it may cause SEGVs or burn power.\n"
407 "******* Please consider a BIOS update.\n"
408 "******* Disabling USB legacy in the BIOS may also help.\n";
411 * No vm86 mode in 64-bit mode:
414 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
415 struct task_struct
*tsk
)
419 static int bad_address(void *p
)
423 return probe_kernel_address((unsigned long *)p
, dummy
);
426 static void dump_pagetable(unsigned long address
)
428 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
429 pgd_t
*pgd
= base
+ pgd_index(address
);
434 if (bad_address(pgd
))
437 printk("PGD %lx ", pgd_val(*pgd
));
439 if (!pgd_present(*pgd
))
442 pud
= pud_offset(pgd
, address
);
443 if (bad_address(pud
))
446 printk("PUD %lx ", pud_val(*pud
));
447 if (!pud_present(*pud
) || pud_large(*pud
))
450 pmd
= pmd_offset(pud
, address
);
451 if (bad_address(pmd
))
454 printk("PMD %lx ", pmd_val(*pmd
));
455 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
458 pte
= pte_offset_kernel(pmd
, address
);
459 if (bad_address(pte
))
462 printk("PTE %lx", pte_val(*pte
));
470 #endif /* CONFIG_X86_64 */
473 * Workaround for K8 erratum #93 & buggy BIOS.
475 * BIOS SMM functions are required to use a specific workaround
476 * to avoid corruption of the 64bit RIP register on C stepping K8.
478 * A lot of BIOS that didn't get tested properly miss this.
480 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
481 * Try to work around it here.
483 * Note we only handle faults in kernel here.
484 * Does nothing on 32-bit.
486 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
489 if (address
!= regs
->ip
)
492 if ((address
>> 32) != 0)
495 address
|= 0xffffffffUL
<< 32;
496 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
497 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
498 printk_once(errata93_warning
);
507 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
508 * to illegal addresses >4GB.
510 * We catch this in the page fault handler because these addresses
511 * are not reachable. Just detect this case and return. Any code
512 * segment in LDT is compatibility mode.
514 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
517 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
523 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
525 #ifdef CONFIG_X86_F00F_BUG
529 * Pentium F0 0F C7 C8 bug workaround:
531 if (boot_cpu_data
.f00f_bug
) {
532 nr
= (address
- idt_descr
.address
) >> 3;
535 do_invalid_op(regs
, 0);
543 static const char nx_warning
[] = KERN_CRIT
544 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
547 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
548 unsigned long address
)
550 if (!oops_may_print())
553 if (error_code
& PF_INSTR
) {
556 pte_t
*pte
= lookup_address(address
, &level
);
558 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
559 printk(nx_warning
, current_uid());
562 printk(KERN_ALERT
"BUG: unable to handle kernel ");
563 if (address
< PAGE_SIZE
)
564 printk(KERN_CONT
"NULL pointer dereference");
566 printk(KERN_CONT
"paging request");
568 printk(KERN_CONT
" at %p\n", (void *) address
);
569 printk(KERN_ALERT
"IP:");
570 printk_address(regs
->ip
, 1);
572 dump_pagetable(address
);
576 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
577 unsigned long address
)
579 struct task_struct
*tsk
;
583 flags
= oops_begin();
587 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
589 dump_pagetable(address
);
591 tsk
->thread
.cr2
= address
;
592 tsk
->thread
.trap_no
= 14;
593 tsk
->thread
.error_code
= error_code
;
595 if (__die("Bad pagetable", regs
, error_code
))
598 oops_end(flags
, regs
, sig
);
602 no_context(struct pt_regs
*regs
, unsigned long error_code
,
603 unsigned long address
)
605 struct task_struct
*tsk
= current
;
606 unsigned long *stackend
;
610 /* Are we prepared to handle this kernel fault? */
611 if (fixup_exception(regs
))
617 * Valid to do another page fault here, because if this fault
618 * had been triggered by is_prefetch fixup_exception would have
623 * Hall of shame of CPU/BIOS bugs.
625 if (is_prefetch(regs
, error_code
, address
))
628 if (is_errata93(regs
, address
))
632 * Oops. The kernel tried to access some bad page. We'll have to
633 * terminate things with extreme prejudice:
635 flags
= oops_begin();
637 show_fault_oops(regs
, error_code
, address
);
639 stackend
= end_of_stack(tsk
);
640 if (tsk
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
641 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
643 tsk
->thread
.cr2
= address
;
644 tsk
->thread
.trap_no
= 14;
645 tsk
->thread
.error_code
= error_code
;
648 if (__die("Oops", regs
, error_code
))
651 /* Executive summary in case the body of the oops scrolled away */
652 printk(KERN_EMERG
"CR2: %016lx\n", address
);
654 oops_end(flags
, regs
, sig
);
658 * Print out info about fatal segfaults, if the show_unhandled_signals
662 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
663 unsigned long address
, struct task_struct
*tsk
)
665 if (!unhandled_signal(tsk
, SIGSEGV
))
668 if (!printk_ratelimit())
671 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
672 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
673 tsk
->comm
, task_pid_nr(tsk
), address
,
674 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
676 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
678 printk(KERN_CONT
"\n");
682 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
683 unsigned long address
, int si_code
)
685 struct task_struct
*tsk
= current
;
687 /* User mode accesses just cause a SIGSEGV */
688 if (error_code
& PF_USER
) {
690 * It's possible to have interrupts off here:
695 * Valid to do another page fault here because this one came
698 if (is_prefetch(regs
, error_code
, address
))
701 if (is_errata100(regs
, address
))
704 if (unlikely(show_unhandled_signals
))
705 show_signal_msg(regs
, error_code
, address
, tsk
);
707 /* Kernel addresses are always protection faults: */
708 tsk
->thread
.cr2
= address
;
709 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
710 tsk
->thread
.trap_no
= 14;
712 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
717 if (is_f00f_bug(regs
, address
))
720 no_context(regs
, error_code
, address
);
724 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
725 unsigned long address
)
727 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
731 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
732 unsigned long address
, int si_code
)
734 struct mm_struct
*mm
= current
->mm
;
737 * Something tried to access memory that isn't in our memory map..
738 * Fix it, but check if it's kernel or user first..
740 up_read(&mm
->mmap_sem
);
742 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
746 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
748 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
752 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
753 unsigned long address
)
755 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
758 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
760 out_of_memory(struct pt_regs
*regs
, unsigned long error_code
,
761 unsigned long address
)
764 * We ran out of memory, call the OOM killer, and return the userspace
765 * (which will retry the fault, or kill us if we got oom-killed):
767 up_read(¤t
->mm
->mmap_sem
);
769 pagefault_out_of_memory();
773 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
776 struct task_struct
*tsk
= current
;
777 struct mm_struct
*mm
= tsk
->mm
;
778 int code
= BUS_ADRERR
;
780 up_read(&mm
->mmap_sem
);
782 /* Kernel mode? Handle exceptions or die: */
783 if (!(error_code
& PF_USER
)) {
784 no_context(regs
, error_code
, address
);
788 /* User-space => ok to do another page fault: */
789 if (is_prefetch(regs
, error_code
, address
))
792 tsk
->thread
.cr2
= address
;
793 tsk
->thread
.error_code
= error_code
;
794 tsk
->thread
.trap_no
= 14;
796 #ifdef CONFIG_MEMORY_FAILURE
797 if (fault
& VM_FAULT_HWPOISON
) {
799 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
800 tsk
->comm
, tsk
->pid
, address
);
801 code
= BUS_MCEERR_AR
;
804 force_sig_info_fault(SIGBUS
, code
, address
, tsk
);
808 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
809 unsigned long address
, unsigned int fault
)
811 if (fault
& VM_FAULT_OOM
) {
812 out_of_memory(regs
, error_code
, address
);
814 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
))
815 do_sigbus(regs
, error_code
, address
, fault
);
821 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
823 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
826 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
833 * Handle a spurious fault caused by a stale TLB entry.
835 * This allows us to lazily refresh the TLB when increasing the
836 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
837 * eagerly is very expensive since that implies doing a full
838 * cross-processor TLB flush, even if no stale TLB entries exist
839 * on other processors.
841 * There are no security implications to leaving a stale TLB when
842 * increasing the permissions on a page.
844 static noinline __kprobes
int
845 spurious_fault(unsigned long error_code
, unsigned long address
)
853 /* Reserved-bit violation or user access to kernel space? */
854 if (error_code
& (PF_USER
| PF_RSVD
))
857 pgd
= init_mm
.pgd
+ pgd_index(address
);
858 if (!pgd_present(*pgd
))
861 pud
= pud_offset(pgd
, address
);
862 if (!pud_present(*pud
))
866 return spurious_fault_check(error_code
, (pte_t
*) pud
);
868 pmd
= pmd_offset(pud
, address
);
869 if (!pmd_present(*pmd
))
873 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
876 * Note: don't use pte_present() here, since it returns true
877 * if the _PAGE_PROTNONE bit is set. However, this aliases the
878 * _PAGE_GLOBAL bit, which for kernel pages give false positives
879 * when CONFIG_DEBUG_PAGEALLOC is used.
881 pte
= pte_offset_kernel(pmd
, address
);
882 if (!(pte_flags(*pte
) & _PAGE_PRESENT
))
885 ret
= spurious_fault_check(error_code
, pte
);
890 * Make sure we have permissions in PMD.
891 * If not, then there's a bug in the page tables:
893 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
894 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
899 int show_unhandled_signals
= 1;
902 access_error(unsigned long error_code
, int write
, struct vm_area_struct
*vma
)
905 /* write, present and write, not present: */
906 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
912 if (unlikely(error_code
& PF_PROT
))
915 /* read, not present: */
916 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
922 static int fault_in_kernel_space(unsigned long address
)
924 return address
>= TASK_SIZE_MAX
;
928 * This routine handles page faults. It determines the address,
929 * and the problem, and then passes it off to one of the appropriate
932 dotraplinkage
void __kprobes
933 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
935 struct vm_area_struct
*vma
;
936 struct task_struct
*tsk
;
937 unsigned long address
;
938 struct mm_struct
*mm
;
945 /* Get the faulting address: */
946 address
= read_cr2();
949 * Detect and handle instructions that would cause a page fault for
950 * both a tracked kernel page and a userspace page.
952 if (kmemcheck_active(regs
))
953 kmemcheck_hide(regs
);
954 prefetchw(&mm
->mmap_sem
);
956 if (unlikely(kmmio_fault(regs
, address
)))
960 * We fault-in kernel-space virtual memory on-demand. The
961 * 'reference' page table is init_mm.pgd.
963 * NOTE! We MUST NOT take any locks for this case. We may
964 * be in an interrupt or a critical region, and should
965 * only copy the information from the master page table,
968 * This verifies that the fault happens in kernel space
969 * (error_code & 4) == 0, and that the fault was not a
970 * protection error (error_code & 9) == 0.
972 if (unlikely(fault_in_kernel_space(address
))) {
973 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
974 if (vmalloc_fault(address
) >= 0)
977 if (kmemcheck_fault(regs
, address
, error_code
))
981 /* Can handle a stale RO->RW TLB: */
982 if (spurious_fault(error_code
, address
))
985 /* kprobes don't want to hook the spurious faults: */
986 if (notify_page_fault(regs
))
989 * Don't take the mm semaphore here. If we fixup a prefetch
990 * fault we could otherwise deadlock:
992 bad_area_nosemaphore(regs
, error_code
, address
);
997 /* kprobes don't want to hook the spurious faults: */
998 if (unlikely(notify_page_fault(regs
)))
1001 * It's safe to allow irq's after cr2 has been saved and the
1002 * vmalloc fault has been handled.
1004 * User-mode registers count as a user access even for any
1005 * potential system fault or CPU buglet:
1007 if (user_mode_vm(regs
)) {
1009 error_code
|= PF_USER
;
1011 if (regs
->flags
& X86_EFLAGS_IF
)
1015 if (unlikely(error_code
& PF_RSVD
))
1016 pgtable_bad(regs
, error_code
, address
);
1018 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, 0, regs
, address
);
1021 * If we're in an interrupt, have no user context or are running
1022 * in an atomic region then we must not take the fault:
1024 if (unlikely(in_atomic() || !mm
)) {
1025 bad_area_nosemaphore(regs
, error_code
, address
);
1030 * When running in the kernel we expect faults to occur only to
1031 * addresses in user space. All other faults represent errors in
1032 * the kernel and should generate an OOPS. Unfortunately, in the
1033 * case of an erroneous fault occurring in a code path which already
1034 * holds mmap_sem we will deadlock attempting to validate the fault
1035 * against the address space. Luckily the kernel only validly
1036 * references user space from well defined areas of code, which are
1037 * listed in the exceptions table.
1039 * As the vast majority of faults will be valid we will only perform
1040 * the source reference check when there is a possibility of a
1041 * deadlock. Attempt to lock the address space, if we cannot we then
1042 * validate the source. If this is invalid we can skip the address
1043 * space check, thus avoiding the deadlock:
1045 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1046 if ((error_code
& PF_USER
) == 0 &&
1047 !search_exception_tables(regs
->ip
)) {
1048 bad_area_nosemaphore(regs
, error_code
, address
);
1051 down_read(&mm
->mmap_sem
);
1054 * The above down_read_trylock() might have succeeded in
1055 * which case we'll have missed the might_sleep() from
1061 vma
= find_vma(mm
, address
);
1062 if (unlikely(!vma
)) {
1063 bad_area(regs
, error_code
, address
);
1066 if (likely(vma
->vm_start
<= address
))
1068 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1069 bad_area(regs
, error_code
, address
);
1072 if (error_code
& PF_USER
) {
1074 * Accessing the stack below %sp is always a bug.
1075 * The large cushion allows instructions like enter
1076 * and pusha to work. ("enter $65535, $31" pushes
1077 * 32 pointers and then decrements %sp by 65535.)
1079 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1080 bad_area(regs
, error_code
, address
);
1084 if (unlikely(expand_stack(vma
, address
))) {
1085 bad_area(regs
, error_code
, address
);
1090 * Ok, we have a good vm_area for this memory access, so
1091 * we can handle it..
1094 write
= error_code
& PF_WRITE
;
1096 if (unlikely(access_error(error_code
, write
, vma
))) {
1097 bad_area_access_error(regs
, error_code
, address
);
1102 * If for any reason at all we couldn't handle the fault,
1103 * make sure we exit gracefully rather than endlessly redo
1106 fault
= handle_mm_fault(mm
, vma
, address
, write
? FAULT_FLAG_WRITE
: 0);
1108 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1109 mm_fault_error(regs
, error_code
, address
, fault
);
1113 if (fault
& VM_FAULT_MAJOR
) {
1115 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, 0,
1119 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, 0,
1123 check_v8086_mode(regs
, address
, tsk
);
1125 up_read(&mm
->mmap_sem
);