x86: rename the struct pt_regs members for 32/64-bit consistency
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / smp_64.c
blob02a6533e8909e153e18b56609747733853883955
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
9 * later.
12 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/interrupt.h>
22 #include <asm/mtrr.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mach_apic.h>
26 #include <asm/mmu_context.h>
27 #include <asm/proto.h>
28 #include <asm/apicdef.h>
29 #include <asm/idle.h>
32 * Smarter SMP flushing macros.
33 * c/o Linus Torvalds.
35 * These mean you can really definitely utterly forget about
36 * writing to user space from interrupts. (Its not allowed anyway).
38 * Optimizations Manfred Spraul <manfred@colorfullife.com>
40 * More scalable flush, from Andi Kleen
42 * To avoid global state use 8 different call vectors.
43 * Each CPU uses a specific vector to trigger flushes on other
44 * CPUs. Depending on the received vector the target CPUs look into
45 * the right per cpu variable for the flush data.
47 * With more than 8 CPUs they are hashed to the 8 available
48 * vectors. The limited global vector space forces us to this right now.
49 * In future when interrupts are split into per CPU domains this could be
50 * fixed, at the cost of triggering multiple IPIs in some cases.
53 union smp_flush_state {
54 struct {
55 cpumask_t flush_cpumask;
56 struct mm_struct *flush_mm;
57 unsigned long flush_va;
58 spinlock_t tlbstate_lock;
60 char pad[SMP_CACHE_BYTES];
61 } ____cacheline_aligned;
63 /* State is put into the per CPU data section, but padded
64 to a full cache line because other CPUs can access it and we don't
65 want false sharing in the per cpu data segment. */
66 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
69 * We cannot call mmdrop() because we are in interrupt context,
70 * instead update mm->cpu_vm_mask.
72 static inline void leave_mm(int cpu)
74 if (read_pda(mmu_state) == TLBSTATE_OK)
75 BUG();
76 cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
77 load_cr3(swapper_pg_dir);
82 * The flush IPI assumes that a thread switch happens in this order:
83 * [cpu0: the cpu that switches]
84 * 1) switch_mm() either 1a) or 1b)
85 * 1a) thread switch to a different mm
86 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
87 * Stop ipi delivery for the old mm. This is not synchronized with
88 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
89 * for the wrong mm, and in the worst case we perform a superfluous
90 * tlb flush.
91 * 1a2) set cpu mmu_state to TLBSTATE_OK
92 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
93 * was in lazy tlb mode.
94 * 1a3) update cpu active_mm
95 * Now cpu0 accepts tlb flushes for the new mm.
96 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
97 * Now the other cpus will send tlb flush ipis.
98 * 1a4) change cr3.
99 * 1b) thread switch without mm change
100 * cpu active_mm is correct, cpu0 already handles
101 * flush ipis.
102 * 1b1) set cpu mmu_state to TLBSTATE_OK
103 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
104 * Atomically set the bit [other cpus will start sending flush ipis],
105 * and test the bit.
106 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
107 * 2) switch %%esp, ie current
109 * The interrupt must handle 2 special cases:
110 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
111 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
112 * runs in kernel space, the cpu could load tlb entries for user space
113 * pages.
115 * The good news is that cpu mmu_state is local to each cpu, no
116 * write/read ordering problems.
120 * TLB flush IPI:
122 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
123 * 2) Leave the mm if we are in the lazy tlb mode.
125 * Interrupts are disabled.
128 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
130 int cpu;
131 int sender;
132 union smp_flush_state *f;
134 cpu = smp_processor_id();
136 * orig_rax contains the negated interrupt vector.
137 * Use that to determine where the sender put the data.
139 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
140 f = &per_cpu(flush_state, sender);
142 if (!cpu_isset(cpu, f->flush_cpumask))
143 goto out;
145 * This was a BUG() but until someone can quote me the
146 * line from the intel manual that guarantees an IPI to
147 * multiple CPUs is retried _only_ on the erroring CPUs
148 * its staying as a return
150 * BUG();
153 if (f->flush_mm == read_pda(active_mm)) {
154 if (read_pda(mmu_state) == TLBSTATE_OK) {
155 if (f->flush_va == TLB_FLUSH_ALL)
156 local_flush_tlb();
157 else
158 __flush_tlb_one(f->flush_va);
159 } else
160 leave_mm(cpu);
162 out:
163 ack_APIC_irq();
164 cpu_clear(cpu, f->flush_cpumask);
165 add_pda(irq_tlb_count, 1);
168 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
169 unsigned long va)
171 int sender;
172 union smp_flush_state *f;
173 cpumask_t cpumask = *cpumaskp;
175 /* Caller has disabled preemption */
176 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
177 f = &per_cpu(flush_state, sender);
180 * Could avoid this lock when
181 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
182 * probably not worth checking this for a cache-hot lock.
184 spin_lock(&f->tlbstate_lock);
186 f->flush_mm = mm;
187 f->flush_va = va;
188 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
191 * We have to send the IPI only to
192 * CPUs affected.
194 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
196 while (!cpus_empty(f->flush_cpumask))
197 cpu_relax();
199 f->flush_mm = NULL;
200 f->flush_va = 0;
201 spin_unlock(&f->tlbstate_lock);
204 int __cpuinit init_smp_flush(void)
206 int i;
208 for_each_cpu_mask(i, cpu_possible_map) {
209 spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
211 return 0;
213 core_initcall(init_smp_flush);
215 void flush_tlb_current_task(void)
217 struct mm_struct *mm = current->mm;
218 cpumask_t cpu_mask;
220 preempt_disable();
221 cpu_mask = mm->cpu_vm_mask;
222 cpu_clear(smp_processor_id(), cpu_mask);
224 local_flush_tlb();
225 if (!cpus_empty(cpu_mask))
226 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
227 preempt_enable();
230 void flush_tlb_mm (struct mm_struct * mm)
232 cpumask_t cpu_mask;
234 preempt_disable();
235 cpu_mask = mm->cpu_vm_mask;
236 cpu_clear(smp_processor_id(), cpu_mask);
238 if (current->active_mm == mm) {
239 if (current->mm)
240 local_flush_tlb();
241 else
242 leave_mm(smp_processor_id());
244 if (!cpus_empty(cpu_mask))
245 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
247 preempt_enable();
250 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
252 struct mm_struct *mm = vma->vm_mm;
253 cpumask_t cpu_mask;
255 preempt_disable();
256 cpu_mask = mm->cpu_vm_mask;
257 cpu_clear(smp_processor_id(), cpu_mask);
259 if (current->active_mm == mm) {
260 if(current->mm)
261 __flush_tlb_one(va);
262 else
263 leave_mm(smp_processor_id());
266 if (!cpus_empty(cpu_mask))
267 flush_tlb_others(cpu_mask, mm, va);
269 preempt_enable();
272 static void do_flush_tlb_all(void* info)
274 unsigned long cpu = smp_processor_id();
276 __flush_tlb_all();
277 if (read_pda(mmu_state) == TLBSTATE_LAZY)
278 leave_mm(cpu);
281 void flush_tlb_all(void)
283 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
287 * this function sends a 'reschedule' IPI to another CPU.
288 * it goes straight through and wastes no time serializing
289 * anything. Worst case is that we lose a reschedule ...
292 void smp_send_reschedule(int cpu)
294 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
298 * Structure and data for smp_call_function(). This is designed to minimise
299 * static memory requirements. It also looks cleaner.
301 static DEFINE_SPINLOCK(call_lock);
303 struct call_data_struct {
304 void (*func) (void *info);
305 void *info;
306 atomic_t started;
307 atomic_t finished;
308 int wait;
311 static struct call_data_struct * call_data;
313 void lock_ipi_call_lock(void)
315 spin_lock_irq(&call_lock);
318 void unlock_ipi_call_lock(void)
320 spin_unlock_irq(&call_lock);
324 * this function sends a 'generic call function' IPI to all other CPU
325 * of the system defined in the mask.
327 static int __smp_call_function_mask(cpumask_t mask,
328 void (*func)(void *), void *info,
329 int wait)
331 struct call_data_struct data;
332 cpumask_t allbutself;
333 int cpus;
335 allbutself = cpu_online_map;
336 cpu_clear(smp_processor_id(), allbutself);
338 cpus_and(mask, mask, allbutself);
339 cpus = cpus_weight(mask);
341 if (!cpus)
342 return 0;
344 data.func = func;
345 data.info = info;
346 atomic_set(&data.started, 0);
347 data.wait = wait;
348 if (wait)
349 atomic_set(&data.finished, 0);
351 call_data = &data;
352 wmb();
354 /* Send a message to other CPUs */
355 if (cpus_equal(mask, allbutself))
356 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
357 else
358 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
360 /* Wait for response */
361 while (atomic_read(&data.started) != cpus)
362 cpu_relax();
364 if (!wait)
365 return 0;
367 while (atomic_read(&data.finished) != cpus)
368 cpu_relax();
370 return 0;
373 * smp_call_function_mask(): Run a function on a set of other CPUs.
374 * @mask: The set of cpus to run on. Must not include the current cpu.
375 * @func: The function to run. This must be fast and non-blocking.
376 * @info: An arbitrary pointer to pass to the function.
377 * @wait: If true, wait (atomically) until function has completed on other CPUs.
379 * Returns 0 on success, else a negative status code.
381 * If @wait is true, then returns once @func has returned; otherwise
382 * it returns just before the target cpu calls @func.
384 * You must not call this function with disabled interrupts or from a
385 * hardware interrupt handler or from a bottom half handler.
387 int smp_call_function_mask(cpumask_t mask,
388 void (*func)(void *), void *info,
389 int wait)
391 int ret;
393 /* Can deadlock when called with interrupts disabled */
394 WARN_ON(irqs_disabled());
396 spin_lock(&call_lock);
397 ret = __smp_call_function_mask(mask, func, info, wait);
398 spin_unlock(&call_lock);
399 return ret;
401 EXPORT_SYMBOL(smp_call_function_mask);
404 * smp_call_function_single - Run a function on a specific CPU
405 * @func: The function to run. This must be fast and non-blocking.
406 * @info: An arbitrary pointer to pass to the function.
407 * @nonatomic: Currently unused.
408 * @wait: If true, wait until function has completed on other CPUs.
410 * Retrurns 0 on success, else a negative status code.
412 * Does not return until the remote CPU is nearly ready to execute <func>
413 * or is or has executed.
416 int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
417 int nonatomic, int wait)
419 /* prevent preemption and reschedule on another processor */
420 int ret, me = get_cpu();
422 /* Can deadlock when called with interrupts disabled */
423 WARN_ON(irqs_disabled());
425 if (cpu == me) {
426 local_irq_disable();
427 func(info);
428 local_irq_enable();
429 put_cpu();
430 return 0;
433 ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, wait);
435 put_cpu();
436 return ret;
438 EXPORT_SYMBOL(smp_call_function_single);
441 * smp_call_function - run a function on all other CPUs.
442 * @func: The function to run. This must be fast and non-blocking.
443 * @info: An arbitrary pointer to pass to the function.
444 * @nonatomic: currently unused.
445 * @wait: If true, wait (atomically) until function has completed on other
446 * CPUs.
448 * Returns 0 on success, else a negative status code. Does not return until
449 * remote CPUs are nearly ready to execute func or are or have executed.
451 * You must not call this function with disabled interrupts or from a
452 * hardware interrupt handler or from a bottom half handler.
453 * Actually there are a few legal cases, like panic.
455 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
456 int wait)
458 return smp_call_function_mask(cpu_online_map, func, info, wait);
460 EXPORT_SYMBOL(smp_call_function);
462 static void stop_this_cpu(void *dummy)
464 local_irq_disable();
466 * Remove this CPU:
468 cpu_clear(smp_processor_id(), cpu_online_map);
469 disable_local_APIC();
470 for (;;)
471 halt();
474 void smp_send_stop(void)
476 int nolock;
477 unsigned long flags;
479 if (reboot_force)
480 return;
482 /* Don't deadlock on the call lock in panic */
483 nolock = !spin_trylock(&call_lock);
484 local_irq_save(flags);
485 __smp_call_function_mask(cpu_online_map, stop_this_cpu, NULL, 0);
486 if (!nolock)
487 spin_unlock(&call_lock);
488 disable_local_APIC();
489 local_irq_restore(flags);
493 * Reschedule call back. Nothing to do,
494 * all the work is done automatically when
495 * we return from the interrupt.
497 asmlinkage void smp_reschedule_interrupt(void)
499 ack_APIC_irq();
500 add_pda(irq_resched_count, 1);
503 asmlinkage void smp_call_function_interrupt(void)
505 void (*func) (void *info) = call_data->func;
506 void *info = call_data->info;
507 int wait = call_data->wait;
509 ack_APIC_irq();
511 * Notify initiating CPU that I've grabbed the data and am
512 * about to execute the function
514 mb();
515 atomic_inc(&call_data->started);
517 * At this point the info structure may be out of scope unless wait==1
519 exit_idle();
520 irq_enter();
521 (*func)(info);
522 add_pda(irq_call_count, 1);
523 irq_exit();
524 if (wait) {
525 mb();
526 atomic_inc(&call_data->finished);