2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
20 #include <asm/uaccess.h>
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t
, irq_stat
);
23 EXPORT_PER_CPU_SYMBOL(irq_stat
);
25 DEFINE_PER_CPU(struct pt_regs
*, irq_regs
);
26 EXPORT_PER_CPU_SYMBOL(irq_regs
);
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
32 void ack_bad_irq(unsigned int irq
)
34 printk(KERN_ERR
"unexpected IRQ trap at vector %02x\n", irq
);
36 #ifdef CONFIG_X86_LOCAL_APIC
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
44 * But only ack when the APIC is enabled -AK
51 #ifdef CONFIG_4KSTACKS
53 * per-CPU IRQ handling contexts (thread information and stack)
56 struct thread_info tinfo
;
57 u32 stack
[THREAD_SIZE
/sizeof(u32
)];
60 static union irq_ctx
*hardirq_ctx
[NR_CPUS
] __read_mostly
;
61 static union irq_ctx
*softirq_ctx
[NR_CPUS
] __read_mostly
;
65 * do_IRQ handles all normal device IRQ's (the special
66 * SMP cross-CPU interrupts have their own specific
69 fastcall
unsigned int do_IRQ(struct pt_regs
*regs
)
71 struct pt_regs
*old_regs
;
72 /* high bit used in ret_from_ code */
73 int irq
= ~regs
->orig_ax
;
74 struct irq_desc
*desc
= irq_desc
+ irq
;
75 #ifdef CONFIG_4KSTACKS
76 union irq_ctx
*curctx
, *irqctx
;
80 if (unlikely((unsigned)irq
>= NR_IRQS
)) {
81 printk(KERN_EMERG
"%s: cannot handle IRQ %d\n",
86 old_regs
= set_irq_regs(regs
);
88 #ifdef CONFIG_DEBUG_STACKOVERFLOW
89 /* Debugging check for stack overflow: is there less than 1KB free? */
93 __asm__
__volatile__("andl %%esp,%0" :
94 "=r" (sp
) : "0" (THREAD_SIZE
- 1));
95 if (unlikely(sp
< (sizeof(struct thread_info
) + STACK_WARN
))) {
96 printk("do_IRQ: stack overflow: %ld\n",
97 sp
- sizeof(struct thread_info
));
103 #ifdef CONFIG_4KSTACKS
105 curctx
= (union irq_ctx
*) current_thread_info();
106 irqctx
= hardirq_ctx
[smp_processor_id()];
109 * this is where we switch to the IRQ stack. However, if we are
110 * already using the IRQ stack (because we interrupted a hardirq
111 * handler) we can't do that and just have to keep using the
112 * current stack (which is the irq stack already after all)
114 if (curctx
!= irqctx
) {
117 /* build the stack frame on the IRQ stack */
118 isp
= (u32
*) ((char*)irqctx
+ sizeof(*irqctx
));
119 irqctx
->tinfo
.task
= curctx
->tinfo
.task
;
120 irqctx
->tinfo
.previous_esp
= current_stack_pointer
;
123 * Copy the softirq bits in preempt_count so that the
124 * softirq checks work in the hardirq context.
126 irqctx
->tinfo
.preempt_count
=
127 (irqctx
->tinfo
.preempt_count
& ~SOFTIRQ_MASK
) |
128 (curctx
->tinfo
.preempt_count
& SOFTIRQ_MASK
);
131 " xchgl %%ebx,%%esp \n"
133 " movl %%ebx,%%esp \n"
134 : "=a" (arg1
), "=d" (arg2
), "=b" (bx
)
135 : "0" (irq
), "1" (desc
), "2" (isp
),
136 "D" (desc
->handle_irq
)
141 desc
->handle_irq(irq
, desc
);
144 set_irq_regs(old_regs
);
148 #ifdef CONFIG_4KSTACKS
150 static char softirq_stack
[NR_CPUS
* THREAD_SIZE
]
151 __attribute__((__section__(".bss.page_aligned")));
153 static char hardirq_stack
[NR_CPUS
* THREAD_SIZE
]
154 __attribute__((__section__(".bss.page_aligned")));
157 * allocate per-cpu stacks for hardirq and for softirq processing
159 void irq_ctx_init(int cpu
)
161 union irq_ctx
*irqctx
;
163 if (hardirq_ctx
[cpu
])
166 irqctx
= (union irq_ctx
*) &hardirq_stack
[cpu
*THREAD_SIZE
];
167 irqctx
->tinfo
.task
= NULL
;
168 irqctx
->tinfo
.exec_domain
= NULL
;
169 irqctx
->tinfo
.cpu
= cpu
;
170 irqctx
->tinfo
.preempt_count
= HARDIRQ_OFFSET
;
171 irqctx
->tinfo
.addr_limit
= MAKE_MM_SEG(0);
173 hardirq_ctx
[cpu
] = irqctx
;
175 irqctx
= (union irq_ctx
*) &softirq_stack
[cpu
*THREAD_SIZE
];
176 irqctx
->tinfo
.task
= NULL
;
177 irqctx
->tinfo
.exec_domain
= NULL
;
178 irqctx
->tinfo
.cpu
= cpu
;
179 irqctx
->tinfo
.preempt_count
= 0;
180 irqctx
->tinfo
.addr_limit
= MAKE_MM_SEG(0);
182 softirq_ctx
[cpu
] = irqctx
;
184 printk("CPU %u irqstacks, hard=%p soft=%p\n",
185 cpu
,hardirq_ctx
[cpu
],softirq_ctx
[cpu
]);
188 void irq_ctx_exit(int cpu
)
190 hardirq_ctx
[cpu
] = NULL
;
193 extern asmlinkage
void __do_softirq(void);
195 asmlinkage
void do_softirq(void)
198 struct thread_info
*curctx
;
199 union irq_ctx
*irqctx
;
205 local_irq_save(flags
);
207 if (local_softirq_pending()) {
208 curctx
= current_thread_info();
209 irqctx
= softirq_ctx
[smp_processor_id()];
210 irqctx
->tinfo
.task
= curctx
->task
;
211 irqctx
->tinfo
.previous_esp
= current_stack_pointer
;
213 /* build the stack frame on the softirq stack */
214 isp
= (u32
*) ((char*)irqctx
+ sizeof(*irqctx
));
217 " xchgl %%ebx,%%esp \n"
218 " call __do_softirq \n"
219 " movl %%ebx,%%esp \n"
222 : "memory", "cc", "edx", "ecx", "eax"
225 * Shouldnt happen, we returned above if in_interrupt():
227 WARN_ON_ONCE(softirq_count());
230 local_irq_restore(flags
);
235 * Interrupt statistics:
238 atomic_t irq_err_count
;
241 * /proc/interrupts printing:
244 int show_interrupts(struct seq_file
*p
, void *v
)
246 int i
= *(loff_t
*) v
, j
;
247 struct irqaction
* action
;
252 for_each_online_cpu(j
)
253 seq_printf(p
, "CPU%-8d",j
);
258 unsigned any_count
= 0;
260 spin_lock_irqsave(&irq_desc
[i
].lock
, flags
);
262 any_count
= kstat_irqs(i
);
264 for_each_online_cpu(j
)
265 any_count
|= kstat_cpu(j
).irqs
[i
];
267 action
= irq_desc
[i
].action
;
268 if (!action
&& !any_count
)
270 seq_printf(p
, "%3d: ",i
);
272 seq_printf(p
, "%10u ", kstat_irqs(i
));
274 for_each_online_cpu(j
)
275 seq_printf(p
, "%10u ", kstat_cpu(j
).irqs
[i
]);
277 seq_printf(p
, " %8s", irq_desc
[i
].chip
->name
);
278 seq_printf(p
, "-%-8s", irq_desc
[i
].name
);
281 seq_printf(p
, " %s", action
->name
);
282 while ((action
= action
->next
) != NULL
)
283 seq_printf(p
, ", %s", action
->name
);
288 spin_unlock_irqrestore(&irq_desc
[i
].lock
, flags
);
289 } else if (i
== NR_IRQS
) {
290 seq_printf(p
, "NMI: ");
291 for_each_online_cpu(j
)
292 seq_printf(p
, "%10u ", nmi_count(j
));
293 seq_printf(p
, " Non-maskable interrupts\n");
294 #ifdef CONFIG_X86_LOCAL_APIC
295 seq_printf(p
, "LOC: ");
296 for_each_online_cpu(j
)
297 seq_printf(p
, "%10u ",
298 per_cpu(irq_stat
,j
).apic_timer_irqs
);
299 seq_printf(p
, " Local timer interrupts\n");
302 seq_printf(p
, "RES: ");
303 for_each_online_cpu(j
)
304 seq_printf(p
, "%10u ",
305 per_cpu(irq_stat
,j
).irq_resched_count
);
306 seq_printf(p
, " Rescheduling interrupts\n");
307 seq_printf(p
, "CAL: ");
308 for_each_online_cpu(j
)
309 seq_printf(p
, "%10u ",
310 per_cpu(irq_stat
,j
).irq_call_count
);
311 seq_printf(p
, " function call interrupts\n");
312 seq_printf(p
, "TLB: ");
313 for_each_online_cpu(j
)
314 seq_printf(p
, "%10u ",
315 per_cpu(irq_stat
,j
).irq_tlb_count
);
316 seq_printf(p
, " TLB shootdowns\n");
318 seq_printf(p
, "TRM: ");
319 for_each_online_cpu(j
)
320 seq_printf(p
, "%10u ",
321 per_cpu(irq_stat
,j
).irq_thermal_count
);
322 seq_printf(p
, " Thermal event interrupts\n");
323 seq_printf(p
, "SPU: ");
324 for_each_online_cpu(j
)
325 seq_printf(p
, "%10u ",
326 per_cpu(irq_stat
,j
).irq_spurious_count
);
327 seq_printf(p
, " Spurious interrupts\n");
328 seq_printf(p
, "ERR: %10u\n", atomic_read(&irq_err_count
));
329 #if defined(CONFIG_X86_IO_APIC)
330 seq_printf(p
, "MIS: %10u\n", atomic_read(&irq_mis_count
));
336 #ifdef CONFIG_HOTPLUG_CPU
337 #include <mach_apic.h>
339 void fixup_irqs(cpumask_t map
)
344 for (irq
= 0; irq
< NR_IRQS
; irq
++) {
349 cpus_and(mask
, irq_desc
[irq
].affinity
, map
);
350 if (any_online_cpu(mask
) == NR_CPUS
) {
351 printk("Breaking affinity for irq %i\n", irq
);
354 if (irq_desc
[irq
].chip
->set_affinity
)
355 irq_desc
[irq
].chip
->set_affinity(irq
, mask
);
356 else if (irq_desc
[irq
].action
&& !(warned
++))
357 printk("Cannot set affinity for irq %i\n", irq
);
362 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
363 [note the nop - the interrupt-enable boundary on x86 is two
364 instructions from sti] - to flush out pending hardirqs and
365 IPIs. After this point nothing is supposed to reach this CPU." */
366 __asm__
__volatile__("sti; nop; cli");
369 /* That doesn't seem sufficient. Give it 1ms. */