1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly
;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata
= 1;
72 static int really_do_swap_account __initdata
= 0;
76 #define do_swap_account (0)
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index
{
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS
,
96 enum mem_cgroup_events_index
{
97 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS
,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target
{
111 MEM_CGROUP_TARGET_THRESH
,
112 MEM_CGROUP_TARGET_SOFTLIMIT
,
113 MEM_CGROUP_TARGET_NUMAINFO
,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu
{
121 long count
[MEM_CGROUP_STAT_NSTATS
];
122 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
123 unsigned long targets
[MEM_CGROUP_NTARGETS
];
127 * per-zone information in memory controller.
129 struct mem_cgroup_per_zone
{
131 * spin_lock to protect the per cgroup LRU
133 struct list_head lists
[NR_LRU_LISTS
];
134 unsigned long count
[NR_LRU_LISTS
];
136 struct zone_reclaim_stat reclaim_stat
;
137 struct rb_node tree_node
; /* RB tree node */
138 unsigned long long usage_in_excess
;/* Set to the value by which */
139 /* the soft limit is exceeded*/
141 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
142 /* use container_of */
144 /* Macro for accessing counter */
145 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
147 struct mem_cgroup_per_node
{
148 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
151 struct mem_cgroup_lru_info
{
152 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
156 * Cgroups above their limits are maintained in a RB-Tree, independent of
157 * their hierarchy representation
160 struct mem_cgroup_tree_per_zone
{
161 struct rb_root rb_root
;
165 struct mem_cgroup_tree_per_node
{
166 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
169 struct mem_cgroup_tree
{
170 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
173 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
175 struct mem_cgroup_threshold
{
176 struct eventfd_ctx
*eventfd
;
181 struct mem_cgroup_threshold_ary
{
182 /* An array index points to threshold just below usage. */
183 int current_threshold
;
184 /* Size of entries[] */
186 /* Array of thresholds */
187 struct mem_cgroup_threshold entries
[0];
190 struct mem_cgroup_thresholds
{
191 /* Primary thresholds array */
192 struct mem_cgroup_threshold_ary
*primary
;
194 * Spare threshold array.
195 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 * It must be able to store at least primary->size - 1 entries.
198 struct mem_cgroup_threshold_ary
*spare
;
202 struct mem_cgroup_eventfd_list
{
203 struct list_head list
;
204 struct eventfd_ctx
*eventfd
;
207 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
208 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
216 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 * we hit the water mark. May be even add a low water mark, such that
218 * no reclaim occurs from a cgroup at it's low water mark, this is
219 * a feature that will be implemented much later in the future.
222 struct cgroup_subsys_state css
;
224 * the counter to account for memory usage
226 struct res_counter res
;
228 * the counter to account for mem+swap usage.
230 struct res_counter memsw
;
232 * Per cgroup active and inactive list, similar to the
233 * per zone LRU lists.
235 struct mem_cgroup_lru_info info
;
237 * While reclaiming in a hierarchy, we cache the last child we
240 int last_scanned_child
;
241 int last_scanned_node
;
243 nodemask_t scan_nodes
;
244 atomic_t numainfo_events
;
245 atomic_t numainfo_updating
;
248 * Should the accounting and control be hierarchical, per subtree?
258 /* OOM-Killer disable */
259 int oom_kill_disable
;
261 /* set when res.limit == memsw.limit */
262 bool memsw_is_minimum
;
264 /* protect arrays of thresholds */
265 struct mutex thresholds_lock
;
267 /* thresholds for memory usage. RCU-protected */
268 struct mem_cgroup_thresholds thresholds
;
270 /* thresholds for mem+swap usage. RCU-protected */
271 struct mem_cgroup_thresholds memsw_thresholds
;
273 /* For oom notifier event fd */
274 struct list_head oom_notify
;
277 * Should we move charges of a task when a task is moved into this
278 * mem_cgroup ? And what type of charges should we move ?
280 unsigned long move_charge_at_immigrate
;
284 struct mem_cgroup_stat_cpu
*stat
;
286 * used when a cpu is offlined or other synchronizations
287 * See mem_cgroup_read_stat().
289 struct mem_cgroup_stat_cpu nocpu_base
;
290 spinlock_t pcp_counter_lock
;
293 struct tcp_memcontrol tcp_mem
;
297 /* Stuffs for move charges at task migration. */
299 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300 * left-shifted bitmap of these types.
303 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
304 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
308 /* "mc" and its members are protected by cgroup_mutex */
309 static struct move_charge_struct
{
310 spinlock_t lock
; /* for from, to */
311 struct mem_cgroup
*from
;
312 struct mem_cgroup
*to
;
313 unsigned long precharge
;
314 unsigned long moved_charge
;
315 unsigned long moved_swap
;
316 struct task_struct
*moving_task
; /* a task moving charges */
317 wait_queue_head_t waitq
; /* a waitq for other context */
319 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
320 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
323 static bool move_anon(void)
325 return test_bit(MOVE_CHARGE_TYPE_ANON
,
326 &mc
.to
->move_charge_at_immigrate
);
329 static bool move_file(void)
331 return test_bit(MOVE_CHARGE_TYPE_FILE
,
332 &mc
.to
->move_charge_at_immigrate
);
336 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337 * limit reclaim to prevent infinite loops, if they ever occur.
339 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
340 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
343 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
344 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
345 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
346 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
347 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
348 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
352 /* for encoding cft->private value on file */
355 #define _OOM_TYPE (2)
356 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
357 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
358 #define MEMFILE_ATTR(val) ((val) & 0xffff)
359 /* Used for OOM nofiier */
360 #define OOM_CONTROL (0)
363 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
366 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
368 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
370 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
372 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
373 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
375 /* Writing them here to avoid exposing memcg's inner layout */
376 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
378 #include <net/sock.h>
381 static bool mem_cgroup_is_root(struct mem_cgroup
*memcg
);
382 void sock_update_memcg(struct sock
*sk
)
384 /* A socket spends its whole life in the same cgroup */
389 if (static_branch(&memcg_socket_limit_enabled
)) {
390 struct mem_cgroup
*memcg
;
392 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
395 memcg
= mem_cgroup_from_task(current
);
396 if (!mem_cgroup_is_root(memcg
)) {
397 mem_cgroup_get(memcg
);
398 sk
->sk_cgrp
= sk
->sk_prot
->proto_cgroup(memcg
);
403 EXPORT_SYMBOL(sock_update_memcg
);
405 void sock_release_memcg(struct sock
*sk
)
407 if (static_branch(&memcg_socket_limit_enabled
) && sk
->sk_cgrp
) {
408 struct mem_cgroup
*memcg
;
409 WARN_ON(!sk
->sk_cgrp
->memcg
);
410 memcg
= sk
->sk_cgrp
->memcg
;
411 mem_cgroup_put(memcg
);
415 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
417 if (!memcg
|| mem_cgroup_is_root(memcg
))
420 return &memcg
->tcp_mem
.cg_proto
;
422 EXPORT_SYMBOL(tcp_proto_cgroup
);
423 #endif /* CONFIG_INET */
424 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
426 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
428 static struct mem_cgroup_per_zone
*
429 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
431 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
434 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
439 static struct mem_cgroup_per_zone
*
440 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
442 int nid
= page_to_nid(page
);
443 int zid
= page_zonenum(page
);
445 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
448 static struct mem_cgroup_tree_per_zone
*
449 soft_limit_tree_node_zone(int nid
, int zid
)
451 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
454 static struct mem_cgroup_tree_per_zone
*
455 soft_limit_tree_from_page(struct page
*page
)
457 int nid
= page_to_nid(page
);
458 int zid
= page_zonenum(page
);
460 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
464 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
465 struct mem_cgroup_per_zone
*mz
,
466 struct mem_cgroup_tree_per_zone
*mctz
,
467 unsigned long long new_usage_in_excess
)
469 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
470 struct rb_node
*parent
= NULL
;
471 struct mem_cgroup_per_zone
*mz_node
;
476 mz
->usage_in_excess
= new_usage_in_excess
;
477 if (!mz
->usage_in_excess
)
481 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
483 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
486 * We can't avoid mem cgroups that are over their soft
487 * limit by the same amount
489 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
492 rb_link_node(&mz
->tree_node
, parent
, p
);
493 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
498 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
499 struct mem_cgroup_per_zone
*mz
,
500 struct mem_cgroup_tree_per_zone
*mctz
)
504 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
509 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
510 struct mem_cgroup_per_zone
*mz
,
511 struct mem_cgroup_tree_per_zone
*mctz
)
513 spin_lock(&mctz
->lock
);
514 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
515 spin_unlock(&mctz
->lock
);
519 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
521 unsigned long long excess
;
522 struct mem_cgroup_per_zone
*mz
;
523 struct mem_cgroup_tree_per_zone
*mctz
;
524 int nid
= page_to_nid(page
);
525 int zid
= page_zonenum(page
);
526 mctz
= soft_limit_tree_from_page(page
);
529 * Necessary to update all ancestors when hierarchy is used.
530 * because their event counter is not touched.
532 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
533 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
534 excess
= res_counter_soft_limit_excess(&memcg
->res
);
536 * We have to update the tree if mz is on RB-tree or
537 * mem is over its softlimit.
539 if (excess
|| mz
->on_tree
) {
540 spin_lock(&mctz
->lock
);
541 /* if on-tree, remove it */
543 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
545 * Insert again. mz->usage_in_excess will be updated.
546 * If excess is 0, no tree ops.
548 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
549 spin_unlock(&mctz
->lock
);
554 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
557 struct mem_cgroup_per_zone
*mz
;
558 struct mem_cgroup_tree_per_zone
*mctz
;
560 for_each_node_state(node
, N_POSSIBLE
) {
561 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
562 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
563 mctz
= soft_limit_tree_node_zone(node
, zone
);
564 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
569 static struct mem_cgroup_per_zone
*
570 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
572 struct rb_node
*rightmost
= NULL
;
573 struct mem_cgroup_per_zone
*mz
;
577 rightmost
= rb_last(&mctz
->rb_root
);
579 goto done
; /* Nothing to reclaim from */
581 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
583 * Remove the node now but someone else can add it back,
584 * we will to add it back at the end of reclaim to its correct
585 * position in the tree.
587 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
588 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
589 !css_tryget(&mz
->mem
->css
))
595 static struct mem_cgroup_per_zone
*
596 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
598 struct mem_cgroup_per_zone
*mz
;
600 spin_lock(&mctz
->lock
);
601 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
602 spin_unlock(&mctz
->lock
);
607 * Implementation Note: reading percpu statistics for memcg.
609 * Both of vmstat[] and percpu_counter has threshold and do periodic
610 * synchronization to implement "quick" read. There are trade-off between
611 * reading cost and precision of value. Then, we may have a chance to implement
612 * a periodic synchronizion of counter in memcg's counter.
614 * But this _read() function is used for user interface now. The user accounts
615 * memory usage by memory cgroup and he _always_ requires exact value because
616 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
617 * have to visit all online cpus and make sum. So, for now, unnecessary
618 * synchronization is not implemented. (just implemented for cpu hotplug)
620 * If there are kernel internal actions which can make use of some not-exact
621 * value, and reading all cpu value can be performance bottleneck in some
622 * common workload, threashold and synchonization as vmstat[] should be
625 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
626 enum mem_cgroup_stat_index idx
)
632 for_each_online_cpu(cpu
)
633 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
634 #ifdef CONFIG_HOTPLUG_CPU
635 spin_lock(&memcg
->pcp_counter_lock
);
636 val
+= memcg
->nocpu_base
.count
[idx
];
637 spin_unlock(&memcg
->pcp_counter_lock
);
643 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
646 int val
= (charge
) ? 1 : -1;
647 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
650 void mem_cgroup_pgfault(struct mem_cgroup
*memcg
, int val
)
652 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
655 void mem_cgroup_pgmajfault(struct mem_cgroup
*memcg
, int val
)
657 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
660 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
661 enum mem_cgroup_events_index idx
)
663 unsigned long val
= 0;
666 for_each_online_cpu(cpu
)
667 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
668 #ifdef CONFIG_HOTPLUG_CPU
669 spin_lock(&memcg
->pcp_counter_lock
);
670 val
+= memcg
->nocpu_base
.events
[idx
];
671 spin_unlock(&memcg
->pcp_counter_lock
);
676 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
677 bool file
, int nr_pages
)
682 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
685 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
688 /* pagein of a big page is an event. So, ignore page size */
690 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
692 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
693 nr_pages
= -nr_pages
; /* for event */
696 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
702 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
703 unsigned int lru_mask
)
705 struct mem_cgroup_per_zone
*mz
;
707 unsigned long ret
= 0;
709 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
712 if (BIT(l
) & lru_mask
)
713 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
719 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
720 int nid
, unsigned int lru_mask
)
725 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
726 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
732 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
733 unsigned int lru_mask
)
738 for_each_node_state(nid
, N_HIGH_MEMORY
)
739 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
743 static bool __memcg_event_check(struct mem_cgroup
*memcg
, int target
)
745 unsigned long val
, next
;
747 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
748 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
749 /* from time_after() in jiffies.h */
750 return ((long)next
- (long)val
< 0);
753 static void __mem_cgroup_target_update(struct mem_cgroup
*memcg
, int target
)
755 unsigned long val
, next
;
757 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
760 case MEM_CGROUP_TARGET_THRESH
:
761 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
763 case MEM_CGROUP_TARGET_SOFTLIMIT
:
764 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
766 case MEM_CGROUP_TARGET_NUMAINFO
:
767 next
= val
+ NUMAINFO_EVENTS_TARGET
;
773 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
777 * Check events in order.
780 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(__memcg_event_check(memcg
, MEM_CGROUP_TARGET_THRESH
))) {
785 mem_cgroup_threshold(memcg
);
786 __mem_cgroup_target_update(memcg
, MEM_CGROUP_TARGET_THRESH
);
787 if (unlikely(__memcg_event_check(memcg
,
788 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
789 mem_cgroup_update_tree(memcg
, page
);
790 __mem_cgroup_target_update(memcg
,
791 MEM_CGROUP_TARGET_SOFTLIMIT
);
794 if (unlikely(__memcg_event_check(memcg
,
795 MEM_CGROUP_TARGET_NUMAINFO
))) {
796 atomic_inc(&memcg
->numainfo_events
);
797 __mem_cgroup_target_update(memcg
,
798 MEM_CGROUP_TARGET_NUMAINFO
);
805 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
807 return container_of(cgroup_subsys_state(cont
,
808 mem_cgroup_subsys_id
), struct mem_cgroup
,
812 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
815 * mm_update_next_owner() may clear mm->owner to NULL
816 * if it races with swapoff, page migration, etc.
817 * So this can be called with p == NULL.
822 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
823 struct mem_cgroup
, css
);
826 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
828 struct mem_cgroup
*memcg
= NULL
;
833 * Because we have no locks, mm->owner's may be being moved to other
834 * cgroup. We use css_tryget() here even if this looks
835 * pessimistic (rather than adding locks here).
839 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
840 if (unlikely(!memcg
))
842 } while (!css_tryget(&memcg
->css
));
847 /* The caller has to guarantee "mem" exists before calling this */
848 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*memcg
)
850 struct cgroup_subsys_state
*css
;
853 if (!memcg
) /* ROOT cgroup has the smallest ID */
854 return root_mem_cgroup
; /*css_put/get against root is ignored*/
855 if (!memcg
->use_hierarchy
) {
856 if (css_tryget(&memcg
->css
))
862 * searching a memory cgroup which has the smallest ID under given
863 * ROOT cgroup. (ID >= 1)
865 css
= css_get_next(&mem_cgroup_subsys
, 1, &memcg
->css
, &found
);
866 if (css
&& css_tryget(css
))
867 memcg
= container_of(css
, struct mem_cgroup
, css
);
874 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
875 struct mem_cgroup
*root
,
878 int nextid
= css_id(&iter
->css
) + 1;
881 struct cgroup_subsys_state
*css
;
883 hierarchy_used
= iter
->use_hierarchy
;
886 /* If no ROOT, walk all, ignore hierarchy */
887 if (!cond
|| (root
&& !hierarchy_used
))
891 root
= root_mem_cgroup
;
897 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
899 if (css
&& css_tryget(css
))
900 iter
= container_of(css
, struct mem_cgroup
, css
);
902 /* If css is NULL, no more cgroups will be found */
904 } while (css
&& !iter
);
909 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
910 * be careful that "break" loop is not allowed. We have reference count.
911 * Instead of that modify "cond" to be false and "continue" to exit the loop.
913 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
914 for (iter = mem_cgroup_start_loop(root);\
916 iter = mem_cgroup_get_next(iter, root, cond))
918 #define for_each_mem_cgroup_tree(iter, root) \
919 for_each_mem_cgroup_tree_cond(iter, root, true)
921 #define for_each_mem_cgroup_all(iter) \
922 for_each_mem_cgroup_tree_cond(iter, NULL, true)
925 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
927 return (memcg
== root_mem_cgroup
);
930 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
932 struct mem_cgroup
*memcg
;
938 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
939 if (unlikely(!memcg
))
944 mem_cgroup_pgmajfault(memcg
, 1);
947 mem_cgroup_pgfault(memcg
, 1);
955 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
958 * Following LRU functions are allowed to be used without PCG_LOCK.
959 * Operations are called by routine of global LRU independently from memcg.
960 * What we have to take care of here is validness of pc->mem_cgroup.
962 * Changes to pc->mem_cgroup happens when
965 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
966 * It is added to LRU before charge.
967 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
968 * When moving account, the page is not on LRU. It's isolated.
971 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
973 struct page_cgroup
*pc
;
974 struct mem_cgroup_per_zone
*mz
;
976 if (mem_cgroup_disabled())
978 pc
= lookup_page_cgroup(page
);
979 /* can happen while we handle swapcache. */
980 if (!TestClearPageCgroupAcctLRU(pc
))
982 VM_BUG_ON(!pc
->mem_cgroup
);
984 * We don't check PCG_USED bit. It's cleared when the "page" is finally
985 * removed from global LRU.
987 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
988 /* huge page split is done under lru_lock. so, we have no races. */
989 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
990 if (mem_cgroup_is_root(pc
->mem_cgroup
))
992 VM_BUG_ON(list_empty(&pc
->lru
));
993 list_del_init(&pc
->lru
);
996 void mem_cgroup_del_lru(struct page
*page
)
998 mem_cgroup_del_lru_list(page
, page_lru(page
));
1002 * Writeback is about to end against a page which has been marked for immediate
1003 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1006 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
1008 struct mem_cgroup_per_zone
*mz
;
1009 struct page_cgroup
*pc
;
1010 enum lru_list lru
= page_lru(page
);
1012 if (mem_cgroup_disabled())
1015 pc
= lookup_page_cgroup(page
);
1016 /* unused or root page is not rotated. */
1017 if (!PageCgroupUsed(pc
))
1019 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1021 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1023 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1024 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
1027 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
1029 struct mem_cgroup_per_zone
*mz
;
1030 struct page_cgroup
*pc
;
1032 if (mem_cgroup_disabled())
1035 pc
= lookup_page_cgroup(page
);
1036 /* unused or root page is not rotated. */
1037 if (!PageCgroupUsed(pc
))
1039 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1043 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1044 list_move(&pc
->lru
, &mz
->lists
[lru
]);
1047 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
1049 struct page_cgroup
*pc
;
1050 struct mem_cgroup_per_zone
*mz
;
1052 if (mem_cgroup_disabled())
1054 pc
= lookup_page_cgroup(page
);
1055 VM_BUG_ON(PageCgroupAcctLRU(pc
));
1058 * SetPageLRU SetPageCgroupUsed
1060 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1062 * Ensure that one of the two sides adds the page to the memcg
1063 * LRU during a race.
1066 if (!PageCgroupUsed(pc
))
1068 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1070 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1071 /* huge page split is done under lru_lock. so, we have no races. */
1072 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1073 SetPageCgroupAcctLRU(pc
);
1074 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1076 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1080 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1081 * while it's linked to lru because the page may be reused after it's fully
1082 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1083 * It's done under lock_page and expected that zone->lru_lock isnever held.
1085 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1087 unsigned long flags
;
1088 struct zone
*zone
= page_zone(page
);
1089 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1092 * Doing this check without taking ->lru_lock seems wrong but this
1093 * is safe. Because if page_cgroup's USED bit is unset, the page
1094 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1095 * set, the commit after this will fail, anyway.
1096 * This all charge/uncharge is done under some mutual execustion.
1097 * So, we don't need to taking care of changes in USED bit.
1099 if (likely(!PageLRU(page
)))
1102 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1104 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1105 * is guarded by lock_page() because the page is SwapCache.
1107 if (!PageCgroupUsed(pc
))
1108 mem_cgroup_del_lru_list(page
, page_lru(page
));
1109 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1112 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1114 unsigned long flags
;
1115 struct zone
*zone
= page_zone(page
);
1116 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1119 * SetPageLRU SetPageCgroupUsed
1121 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1123 * Ensure that one of the two sides adds the page to the memcg
1124 * LRU during a race.
1127 /* taking care of that the page is added to LRU while we commit it */
1128 if (likely(!PageLRU(page
)))
1130 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1131 /* link when the page is linked to LRU but page_cgroup isn't */
1132 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1133 mem_cgroup_add_lru_list(page
, page_lru(page
));
1134 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1138 void mem_cgroup_move_lists(struct page
*page
,
1139 enum lru_list from
, enum lru_list to
)
1141 if (mem_cgroup_disabled())
1143 mem_cgroup_del_lru_list(page
, from
);
1144 mem_cgroup_add_lru_list(page
, to
);
1148 * Checks whether given mem is same or in the root_mem_cgroup's
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1152 struct mem_cgroup
*memcg
)
1154 if (root_memcg
!= memcg
) {
1155 return (root_memcg
->use_hierarchy
&&
1156 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1162 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1165 struct mem_cgroup
*curr
= NULL
;
1166 struct task_struct
*p
;
1168 p
= find_lock_task_mm(task
);
1171 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1176 * We should check use_hierarchy of "memcg" not "curr". Because checking
1177 * use_hierarchy of "curr" here make this function true if hierarchy is
1178 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1179 * hierarchy(even if use_hierarchy is disabled in "memcg").
1181 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1182 css_put(&curr
->css
);
1186 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1188 unsigned long inactive_ratio
;
1189 int nid
= zone_to_nid(zone
);
1190 int zid
= zone_idx(zone
);
1191 unsigned long inactive
;
1192 unsigned long active
;
1195 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1196 BIT(LRU_INACTIVE_ANON
));
1197 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1198 BIT(LRU_ACTIVE_ANON
));
1200 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1202 inactive_ratio
= int_sqrt(10 * gb
);
1206 return inactive
* inactive_ratio
< active
;
1209 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1211 unsigned long active
;
1212 unsigned long inactive
;
1213 int zid
= zone_idx(zone
);
1214 int nid
= zone_to_nid(zone
);
1216 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1217 BIT(LRU_INACTIVE_FILE
));
1218 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1219 BIT(LRU_ACTIVE_FILE
));
1221 return (active
> inactive
);
1224 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1227 int nid
= zone_to_nid(zone
);
1228 int zid
= zone_idx(zone
);
1229 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1231 return &mz
->reclaim_stat
;
1234 struct zone_reclaim_stat
*
1235 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1237 struct page_cgroup
*pc
;
1238 struct mem_cgroup_per_zone
*mz
;
1240 if (mem_cgroup_disabled())
1243 pc
= lookup_page_cgroup(page
);
1244 if (!PageCgroupUsed(pc
))
1246 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1248 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1249 return &mz
->reclaim_stat
;
1252 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1253 struct list_head
*dst
,
1254 unsigned long *scanned
, int order
,
1255 isolate_mode_t mode
,
1257 struct mem_cgroup
*mem_cont
,
1258 int active
, int file
)
1260 unsigned long nr_taken
= 0;
1264 struct list_head
*src
;
1265 struct page_cgroup
*pc
, *tmp
;
1266 int nid
= zone_to_nid(z
);
1267 int zid
= zone_idx(z
);
1268 struct mem_cgroup_per_zone
*mz
;
1269 int lru
= LRU_FILE
* file
+ active
;
1273 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1274 src
= &mz
->lists
[lru
];
1277 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1278 if (scan
>= nr_to_scan
)
1281 if (unlikely(!PageCgroupUsed(pc
)))
1284 page
= lookup_cgroup_page(pc
);
1286 if (unlikely(!PageLRU(page
)))
1290 ret
= __isolate_lru_page(page
, mode
, file
);
1293 list_move(&page
->lru
, dst
);
1294 mem_cgroup_del_lru(page
);
1295 nr_taken
+= hpage_nr_pages(page
);
1298 /* we don't affect global LRU but rotate in our LRU */
1299 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1308 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1314 #define mem_cgroup_from_res_counter(counter, member) \
1315 container_of(counter, struct mem_cgroup, member)
1318 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1319 * @mem: the memory cgroup
1321 * Returns the maximum amount of memory @mem can be charged with, in
1324 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1326 unsigned long long margin
;
1328 margin
= res_counter_margin(&memcg
->res
);
1329 if (do_swap_account
)
1330 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1331 return margin
>> PAGE_SHIFT
;
1334 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1336 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1339 if (cgrp
->parent
== NULL
)
1340 return vm_swappiness
;
1342 return memcg
->swappiness
;
1345 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1350 spin_lock(&memcg
->pcp_counter_lock
);
1351 for_each_online_cpu(cpu
)
1352 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1353 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1354 spin_unlock(&memcg
->pcp_counter_lock
);
1360 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1367 spin_lock(&memcg
->pcp_counter_lock
);
1368 for_each_online_cpu(cpu
)
1369 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1370 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1371 spin_unlock(&memcg
->pcp_counter_lock
);
1375 * 2 routines for checking "mem" is under move_account() or not.
1377 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1378 * for avoiding race in accounting. If true,
1379 * pc->mem_cgroup may be overwritten.
1381 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1382 * under hierarchy of moving cgroups. This is for
1383 * waiting at hith-memory prressure caused by "move".
1386 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1388 VM_BUG_ON(!rcu_read_lock_held());
1389 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1392 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1394 struct mem_cgroup
*from
;
1395 struct mem_cgroup
*to
;
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1401 spin_lock(&mc
.lock
);
1407 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1408 || mem_cgroup_same_or_subtree(memcg
, to
);
1410 spin_unlock(&mc
.lock
);
1414 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1416 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1417 if (mem_cgroup_under_move(memcg
)) {
1419 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1420 /* moving charge context might have finished. */
1423 finish_wait(&mc
.waitq
, &wait
);
1431 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1438 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1440 struct cgroup
*task_cgrp
;
1441 struct cgroup
*mem_cgrp
;
1443 * Need a buffer in BSS, can't rely on allocations. The code relies
1444 * on the assumption that OOM is serialized for memory controller.
1445 * If this assumption is broken, revisit this code.
1447 static char memcg_name
[PATH_MAX
];
1456 mem_cgrp
= memcg
->css
.cgroup
;
1457 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1459 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1462 * Unfortunately, we are unable to convert to a useful name
1463 * But we'll still print out the usage information
1470 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1473 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1481 * Continues from above, so we don't need an KERN_ level
1483 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1486 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1487 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1488 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1489 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1490 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1492 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1493 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1494 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1498 * This function returns the number of memcg under hierarchy tree. Returns
1499 * 1(self count) if no children.
1501 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1504 struct mem_cgroup
*iter
;
1506 for_each_mem_cgroup_tree(iter
, memcg
)
1512 * Return the memory (and swap, if configured) limit for a memcg.
1514 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1519 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1520 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1522 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1524 * If memsw is finite and limits the amount of swap space available
1525 * to this memcg, return that limit.
1527 return min(limit
, memsw
);
1531 * Visit the first child (need not be the first child as per the ordering
1532 * of the cgroup list, since we track last_scanned_child) of @mem and use
1533 * that to reclaim free pages from.
1535 static struct mem_cgroup
*
1536 mem_cgroup_select_victim(struct mem_cgroup
*root_memcg
)
1538 struct mem_cgroup
*ret
= NULL
;
1539 struct cgroup_subsys_state
*css
;
1542 if (!root_memcg
->use_hierarchy
) {
1543 css_get(&root_memcg
->css
);
1549 nextid
= root_memcg
->last_scanned_child
+ 1;
1550 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_memcg
->css
,
1552 if (css
&& css_tryget(css
))
1553 ret
= container_of(css
, struct mem_cgroup
, css
);
1556 /* Updates scanning parameter */
1558 /* this means start scan from ID:1 */
1559 root_memcg
->last_scanned_child
= 0;
1561 root_memcg
->last_scanned_child
= found
;
1568 * test_mem_cgroup_node_reclaimable
1569 * @mem: the target memcg
1570 * @nid: the node ID to be checked.
1571 * @noswap : specify true here if the user wants flle only information.
1573 * This function returns whether the specified memcg contains any
1574 * reclaimable pages on a node. Returns true if there are any reclaimable
1575 * pages in the node.
1577 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1578 int nid
, bool noswap
)
1580 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1582 if (noswap
|| !total_swap_pages
)
1584 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1589 #if MAX_NUMNODES > 1
1592 * Always updating the nodemask is not very good - even if we have an empty
1593 * list or the wrong list here, we can start from some node and traverse all
1594 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1597 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1601 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1602 * pagein/pageout changes since the last update.
1604 if (!atomic_read(&memcg
->numainfo_events
))
1606 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1609 /* make a nodemask where this memcg uses memory from */
1610 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1612 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1614 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1615 node_clear(nid
, memcg
->scan_nodes
);
1618 atomic_set(&memcg
->numainfo_events
, 0);
1619 atomic_set(&memcg
->numainfo_updating
, 0);
1623 * Selecting a node where we start reclaim from. Because what we need is just
1624 * reducing usage counter, start from anywhere is O,K. Considering
1625 * memory reclaim from current node, there are pros. and cons.
1627 * Freeing memory from current node means freeing memory from a node which
1628 * we'll use or we've used. So, it may make LRU bad. And if several threads
1629 * hit limits, it will see a contention on a node. But freeing from remote
1630 * node means more costs for memory reclaim because of memory latency.
1632 * Now, we use round-robin. Better algorithm is welcomed.
1634 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1638 mem_cgroup_may_update_nodemask(memcg
);
1639 node
= memcg
->last_scanned_node
;
1641 node
= next_node(node
, memcg
->scan_nodes
);
1642 if (node
== MAX_NUMNODES
)
1643 node
= first_node(memcg
->scan_nodes
);
1645 * We call this when we hit limit, not when pages are added to LRU.
1646 * No LRU may hold pages because all pages are UNEVICTABLE or
1647 * memcg is too small and all pages are not on LRU. In that case,
1648 * we use curret node.
1650 if (unlikely(node
== MAX_NUMNODES
))
1651 node
= numa_node_id();
1653 memcg
->last_scanned_node
= node
;
1658 * Check all nodes whether it contains reclaimable pages or not.
1659 * For quick scan, we make use of scan_nodes. This will allow us to skip
1660 * unused nodes. But scan_nodes is lazily updated and may not cotain
1661 * enough new information. We need to do double check.
1663 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1668 * quick check...making use of scan_node.
1669 * We can skip unused nodes.
1671 if (!nodes_empty(memcg
->scan_nodes
)) {
1672 for (nid
= first_node(memcg
->scan_nodes
);
1674 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1676 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1681 * Check rest of nodes.
1683 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1684 if (node_isset(nid
, memcg
->scan_nodes
))
1686 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1693 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1698 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1700 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1705 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1706 * we reclaimed from, so that we don't end up penalizing one child extensively
1707 * based on its position in the children list.
1709 * root_memcg is the original ancestor that we've been reclaim from.
1711 * We give up and return to the caller when we visit root_memcg twice.
1712 * (other groups can be removed while we're walking....)
1714 * If shrink==true, for avoiding to free too much, this returns immedieately.
1716 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_memcg
,
1719 unsigned long reclaim_options
,
1720 unsigned long *total_scanned
)
1722 struct mem_cgroup
*victim
;
1725 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1726 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1727 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1728 unsigned long excess
;
1729 unsigned long nr_scanned
;
1731 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1733 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1734 if (!check_soft
&& !shrink
&& root_memcg
->memsw_is_minimum
)
1738 victim
= mem_cgroup_select_victim(root_memcg
);
1739 if (victim
== root_memcg
) {
1742 * We are not draining per cpu cached charges during
1743 * soft limit reclaim because global reclaim doesn't
1744 * care about charges. It tries to free some memory and
1745 * charges will not give any.
1747 if (!check_soft
&& loop
>= 1)
1748 drain_all_stock_async(root_memcg
);
1751 * If we have not been able to reclaim
1752 * anything, it might because there are
1753 * no reclaimable pages under this hierarchy
1755 if (!check_soft
|| !total
) {
1756 css_put(&victim
->css
);
1760 * We want to do more targeted reclaim.
1761 * excess >> 2 is not to excessive so as to
1762 * reclaim too much, nor too less that we keep
1763 * coming back to reclaim from this cgroup
1765 if (total
>= (excess
>> 2) ||
1766 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1767 css_put(&victim
->css
);
1772 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1773 /* this cgroup's local usage == 0 */
1774 css_put(&victim
->css
);
1777 /* we use swappiness of local cgroup */
1779 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1780 noswap
, zone
, &nr_scanned
);
1781 *total_scanned
+= nr_scanned
;
1783 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1785 css_put(&victim
->css
);
1787 * At shrinking usage, we can't check we should stop here or
1788 * reclaim more. It's depends on callers. last_scanned_child
1789 * will work enough for keeping fairness under tree.
1795 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1797 } else if (mem_cgroup_margin(root_memcg
))
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1806 * Has to be called with memcg_oom_lock
1808 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1810 struct mem_cgroup
*iter
, *failed
= NULL
;
1813 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1814 if (iter
->oom_lock
) {
1816 * this subtree of our hierarchy is already locked
1817 * so we cannot give a lock.
1822 iter
->oom_lock
= true;
1829 * OK, we failed to lock the whole subtree so we have to clean up
1830 * what we set up to the failing subtree
1833 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1834 if (iter
== failed
) {
1838 iter
->oom_lock
= false;
1844 * Has to be called with memcg_oom_lock
1846 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1848 struct mem_cgroup
*iter
;
1850 for_each_mem_cgroup_tree(iter
, memcg
)
1851 iter
->oom_lock
= false;
1855 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1857 struct mem_cgroup
*iter
;
1859 for_each_mem_cgroup_tree(iter
, memcg
)
1860 atomic_inc(&iter
->under_oom
);
1863 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1865 struct mem_cgroup
*iter
;
1868 * When a new child is created while the hierarchy is under oom,
1869 * mem_cgroup_oom_lock() may not be called. We have to use
1870 * atomic_add_unless() here.
1872 for_each_mem_cgroup_tree(iter
, memcg
)
1873 atomic_add_unless(&iter
->under_oom
, -1, 0);
1876 static DEFINE_SPINLOCK(memcg_oom_lock
);
1877 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1879 struct oom_wait_info
{
1880 struct mem_cgroup
*mem
;
1884 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1885 unsigned mode
, int sync
, void *arg
)
1887 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1889 struct oom_wait_info
*oom_wait_info
;
1891 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1892 oom_wait_memcg
= oom_wait_info
->mem
;
1895 * Both of oom_wait_info->mem and wake_mem are stable under us.
1896 * Then we can use css_is_ancestor without taking care of RCU.
1898 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1899 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1901 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1904 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1906 /* for filtering, pass "memcg" as argument. */
1907 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1910 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1912 if (memcg
&& atomic_read(&memcg
->under_oom
))
1913 memcg_wakeup_oom(memcg
);
1917 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1919 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1921 struct oom_wait_info owait
;
1922 bool locked
, need_to_kill
;
1925 owait
.wait
.flags
= 0;
1926 owait
.wait
.func
= memcg_oom_wake_function
;
1927 owait
.wait
.private = current
;
1928 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1929 need_to_kill
= true;
1930 mem_cgroup_mark_under_oom(memcg
);
1932 /* At first, try to OOM lock hierarchy under memcg.*/
1933 spin_lock(&memcg_oom_lock
);
1934 locked
= mem_cgroup_oom_lock(memcg
);
1936 * Even if signal_pending(), we can't quit charge() loop without
1937 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1938 * under OOM is always welcomed, use TASK_KILLABLE here.
1940 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1941 if (!locked
|| memcg
->oom_kill_disable
)
1942 need_to_kill
= false;
1944 mem_cgroup_oom_notify(memcg
);
1945 spin_unlock(&memcg_oom_lock
);
1948 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1949 mem_cgroup_out_of_memory(memcg
, mask
);
1952 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1954 spin_lock(&memcg_oom_lock
);
1956 mem_cgroup_oom_unlock(memcg
);
1957 memcg_wakeup_oom(memcg
);
1958 spin_unlock(&memcg_oom_lock
);
1960 mem_cgroup_unmark_under_oom(memcg
);
1962 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1964 /* Give chance to dying process */
1965 schedule_timeout_uninterruptible(1);
1970 * Currently used to update mapped file statistics, but the routine can be
1971 * generalized to update other statistics as well.
1973 * Notes: Race condition
1975 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1976 * it tends to be costly. But considering some conditions, we doesn't need
1977 * to do so _always_.
1979 * Considering "charge", lock_page_cgroup() is not required because all
1980 * file-stat operations happen after a page is attached to radix-tree. There
1981 * are no race with "charge".
1983 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1984 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1985 * if there are race with "uncharge". Statistics itself is properly handled
1988 * Considering "move", this is an only case we see a race. To make the race
1989 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1990 * possibility of race condition. If there is, we take a lock.
1993 void mem_cgroup_update_page_stat(struct page
*page
,
1994 enum mem_cgroup_page_stat_item idx
, int val
)
1996 struct mem_cgroup
*memcg
;
1997 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1998 bool need_unlock
= false;
1999 unsigned long uninitialized_var(flags
);
2005 memcg
= pc
->mem_cgroup
;
2006 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2008 /* pc->mem_cgroup is unstable ? */
2009 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
2010 /* take a lock against to access pc->mem_cgroup */
2011 move_lock_page_cgroup(pc
, &flags
);
2013 memcg
= pc
->mem_cgroup
;
2014 if (!memcg
|| !PageCgroupUsed(pc
))
2019 case MEMCG_NR_FILE_MAPPED
:
2021 SetPageCgroupFileMapped(pc
);
2022 else if (!page_mapped(page
))
2023 ClearPageCgroupFileMapped(pc
);
2024 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2030 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2033 if (unlikely(need_unlock
))
2034 move_unlock_page_cgroup(pc
, &flags
);
2038 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
2041 * size of first charge trial. "32" comes from vmscan.c's magic value.
2042 * TODO: maybe necessary to use big numbers in big irons.
2044 #define CHARGE_BATCH 32U
2045 struct memcg_stock_pcp
{
2046 struct mem_cgroup
*cached
; /* this never be root cgroup */
2047 unsigned int nr_pages
;
2048 struct work_struct work
;
2049 unsigned long flags
;
2050 #define FLUSHING_CACHED_CHARGE (0)
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2053 static DEFINE_MUTEX(percpu_charge_mutex
);
2056 * Try to consume stocked charge on this cpu. If success, one page is consumed
2057 * from local stock and true is returned. If the stock is 0 or charges from a
2058 * cgroup which is not current target, returns false. This stock will be
2061 static bool consume_stock(struct mem_cgroup
*memcg
)
2063 struct memcg_stock_pcp
*stock
;
2066 stock
= &get_cpu_var(memcg_stock
);
2067 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2069 else /* need to call res_counter_charge */
2071 put_cpu_var(memcg_stock
);
2076 * Returns stocks cached in percpu to res_counter and reset cached information.
2078 static void drain_stock(struct memcg_stock_pcp
*stock
)
2080 struct mem_cgroup
*old
= stock
->cached
;
2082 if (stock
->nr_pages
) {
2083 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2085 res_counter_uncharge(&old
->res
, bytes
);
2086 if (do_swap_account
)
2087 res_counter_uncharge(&old
->memsw
, bytes
);
2088 stock
->nr_pages
= 0;
2090 stock
->cached
= NULL
;
2094 * This must be called under preempt disabled or must be called by
2095 * a thread which is pinned to local cpu.
2097 static void drain_local_stock(struct work_struct
*dummy
)
2099 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2101 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2105 * Cache charges(val) which is from res_counter, to local per_cpu area.
2106 * This will be consumed by consume_stock() function, later.
2108 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2110 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2112 if (stock
->cached
!= memcg
) { /* reset if necessary */
2114 stock
->cached
= memcg
;
2116 stock
->nr_pages
+= nr_pages
;
2117 put_cpu_var(memcg_stock
);
2121 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2122 * of the hierarchy under it. sync flag says whether we should block
2123 * until the work is done.
2125 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2129 /* Notify other cpus that system-wide "drain" is running */
2132 for_each_online_cpu(cpu
) {
2133 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2134 struct mem_cgroup
*memcg
;
2136 memcg
= stock
->cached
;
2137 if (!memcg
|| !stock
->nr_pages
)
2139 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2141 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2143 drain_local_stock(&stock
->work
);
2145 schedule_work_on(cpu
, &stock
->work
);
2153 for_each_online_cpu(cpu
) {
2154 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2155 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2156 flush_work(&stock
->work
);
2163 * Tries to drain stocked charges in other cpus. This function is asynchronous
2164 * and just put a work per cpu for draining localy on each cpu. Caller can
2165 * expects some charges will be back to res_counter later but cannot wait for
2168 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2171 * If someone calls draining, avoid adding more kworker runs.
2173 if (!mutex_trylock(&percpu_charge_mutex
))
2175 drain_all_stock(root_memcg
, false);
2176 mutex_unlock(&percpu_charge_mutex
);
2179 /* This is a synchronous drain interface. */
2180 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2182 /* called when force_empty is called */
2183 mutex_lock(&percpu_charge_mutex
);
2184 drain_all_stock(root_memcg
, true);
2185 mutex_unlock(&percpu_charge_mutex
);
2189 * This function drains percpu counter value from DEAD cpu and
2190 * move it to local cpu. Note that this function can be preempted.
2192 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2196 spin_lock(&memcg
->pcp_counter_lock
);
2197 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2198 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2200 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2201 memcg
->nocpu_base
.count
[i
] += x
;
2203 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2204 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2206 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2207 memcg
->nocpu_base
.events
[i
] += x
;
2209 /* need to clear ON_MOVE value, works as a kind of lock. */
2210 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2211 spin_unlock(&memcg
->pcp_counter_lock
);
2214 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2216 int idx
= MEM_CGROUP_ON_MOVE
;
2218 spin_lock(&memcg
->pcp_counter_lock
);
2219 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2220 spin_unlock(&memcg
->pcp_counter_lock
);
2223 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2224 unsigned long action
,
2227 int cpu
= (unsigned long)hcpu
;
2228 struct memcg_stock_pcp
*stock
;
2229 struct mem_cgroup
*iter
;
2231 if ((action
== CPU_ONLINE
)) {
2232 for_each_mem_cgroup_all(iter
)
2233 synchronize_mem_cgroup_on_move(iter
, cpu
);
2237 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2240 for_each_mem_cgroup_all(iter
)
2241 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2243 stock
= &per_cpu(memcg_stock
, cpu
);
2249 /* See __mem_cgroup_try_charge() for details */
2251 CHARGE_OK
, /* success */
2252 CHARGE_RETRY
, /* need to retry but retry is not bad */
2253 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2254 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2255 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2258 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2259 unsigned int nr_pages
, bool oom_check
)
2261 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2262 struct mem_cgroup
*mem_over_limit
;
2263 struct res_counter
*fail_res
;
2264 unsigned long flags
= 0;
2267 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2270 if (!do_swap_account
)
2272 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2276 res_counter_uncharge(&memcg
->res
, csize
);
2277 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2278 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2280 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2282 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2283 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2285 * Never reclaim on behalf of optional batching, retry with a
2286 * single page instead.
2288 if (nr_pages
== CHARGE_BATCH
)
2289 return CHARGE_RETRY
;
2291 if (!(gfp_mask
& __GFP_WAIT
))
2292 return CHARGE_WOULDBLOCK
;
2294 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2295 gfp_mask
, flags
, NULL
);
2296 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2297 return CHARGE_RETRY
;
2299 * Even though the limit is exceeded at this point, reclaim
2300 * may have been able to free some pages. Retry the charge
2301 * before killing the task.
2303 * Only for regular pages, though: huge pages are rather
2304 * unlikely to succeed so close to the limit, and we fall back
2305 * to regular pages anyway in case of failure.
2307 if (nr_pages
== 1 && ret
)
2308 return CHARGE_RETRY
;
2311 * At task move, charge accounts can be doubly counted. So, it's
2312 * better to wait until the end of task_move if something is going on.
2314 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2315 return CHARGE_RETRY
;
2317 /* If we don't need to call oom-killer at el, return immediately */
2319 return CHARGE_NOMEM
;
2321 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2322 return CHARGE_OOM_DIE
;
2324 return CHARGE_RETRY
;
2328 * Unlike exported interface, "oom" parameter is added. if oom==true,
2329 * oom-killer can be invoked.
2331 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2333 unsigned int nr_pages
,
2334 struct mem_cgroup
**ptr
,
2337 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2338 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2339 struct mem_cgroup
*memcg
= NULL
;
2343 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2344 * in system level. So, allow to go ahead dying process in addition to
2347 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2348 || fatal_signal_pending(current
)))
2352 * We always charge the cgroup the mm_struct belongs to.
2353 * The mm_struct's mem_cgroup changes on task migration if the
2354 * thread group leader migrates. It's possible that mm is not
2355 * set, if so charge the init_mm (happens for pagecache usage).
2360 if (*ptr
) { /* css should be a valid one */
2362 VM_BUG_ON(css_is_removed(&memcg
->css
));
2363 if (mem_cgroup_is_root(memcg
))
2365 if (nr_pages
== 1 && consume_stock(memcg
))
2367 css_get(&memcg
->css
);
2369 struct task_struct
*p
;
2372 p
= rcu_dereference(mm
->owner
);
2374 * Because we don't have task_lock(), "p" can exit.
2375 * In that case, "memcg" can point to root or p can be NULL with
2376 * race with swapoff. Then, we have small risk of mis-accouning.
2377 * But such kind of mis-account by race always happens because
2378 * we don't have cgroup_mutex(). It's overkill and we allo that
2380 * (*) swapoff at el will charge against mm-struct not against
2381 * task-struct. So, mm->owner can be NULL.
2383 memcg
= mem_cgroup_from_task(p
);
2384 if (!memcg
|| mem_cgroup_is_root(memcg
)) {
2388 if (nr_pages
== 1 && consume_stock(memcg
)) {
2390 * It seems dagerous to access memcg without css_get().
2391 * But considering how consume_stok works, it's not
2392 * necessary. If consume_stock success, some charges
2393 * from this memcg are cached on this cpu. So, we
2394 * don't need to call css_get()/css_tryget() before
2395 * calling consume_stock().
2400 /* after here, we may be blocked. we need to get refcnt */
2401 if (!css_tryget(&memcg
->css
)) {
2411 /* If killed, bypass charge */
2412 if (fatal_signal_pending(current
)) {
2413 css_put(&memcg
->css
);
2418 if (oom
&& !nr_oom_retries
) {
2420 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2423 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2427 case CHARGE_RETRY
: /* not in OOM situation but retry */
2429 css_put(&memcg
->css
);
2432 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2433 css_put(&memcg
->css
);
2435 case CHARGE_NOMEM
: /* OOM routine works */
2437 css_put(&memcg
->css
);
2440 /* If oom, we never return -ENOMEM */
2443 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2444 css_put(&memcg
->css
);
2447 } while (ret
!= CHARGE_OK
);
2449 if (batch
> nr_pages
)
2450 refill_stock(memcg
, batch
- nr_pages
);
2451 css_put(&memcg
->css
);
2464 * Somemtimes we have to undo a charge we got by try_charge().
2465 * This function is for that and do uncharge, put css's refcnt.
2466 * gotten by try_charge().
2468 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2469 unsigned int nr_pages
)
2471 if (!mem_cgroup_is_root(memcg
)) {
2472 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2474 res_counter_uncharge(&memcg
->res
, bytes
);
2475 if (do_swap_account
)
2476 res_counter_uncharge(&memcg
->memsw
, bytes
);
2481 * A helper function to get mem_cgroup from ID. must be called under
2482 * rcu_read_lock(). The caller must check css_is_removed() or some if
2483 * it's concern. (dropping refcnt from swap can be called against removed
2486 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2488 struct cgroup_subsys_state
*css
;
2490 /* ID 0 is unused ID */
2493 css
= css_lookup(&mem_cgroup_subsys
, id
);
2496 return container_of(css
, struct mem_cgroup
, css
);
2499 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2501 struct mem_cgroup
*memcg
= NULL
;
2502 struct page_cgroup
*pc
;
2506 VM_BUG_ON(!PageLocked(page
));
2508 pc
= lookup_page_cgroup(page
);
2509 lock_page_cgroup(pc
);
2510 if (PageCgroupUsed(pc
)) {
2511 memcg
= pc
->mem_cgroup
;
2512 if (memcg
&& !css_tryget(&memcg
->css
))
2514 } else if (PageSwapCache(page
)) {
2515 ent
.val
= page_private(page
);
2516 id
= lookup_swap_cgroup(ent
);
2518 memcg
= mem_cgroup_lookup(id
);
2519 if (memcg
&& !css_tryget(&memcg
->css
))
2523 unlock_page_cgroup(pc
);
2527 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2529 unsigned int nr_pages
,
2530 struct page_cgroup
*pc
,
2531 enum charge_type ctype
)
2533 lock_page_cgroup(pc
);
2534 if (unlikely(PageCgroupUsed(pc
))) {
2535 unlock_page_cgroup(pc
);
2536 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2540 * we don't need page_cgroup_lock about tail pages, becase they are not
2541 * accessed by any other context at this point.
2543 pc
->mem_cgroup
= memcg
;
2545 * We access a page_cgroup asynchronously without lock_page_cgroup().
2546 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2547 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2548 * before USED bit, we need memory barrier here.
2549 * See mem_cgroup_add_lru_list(), etc.
2553 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2554 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2555 SetPageCgroupCache(pc
);
2556 SetPageCgroupUsed(pc
);
2558 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2559 ClearPageCgroupCache(pc
);
2560 SetPageCgroupUsed(pc
);
2566 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2567 unlock_page_cgroup(pc
);
2569 * "charge_statistics" updated event counter. Then, check it.
2570 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2571 * if they exceeds softlimit.
2573 memcg_check_events(memcg
, page
);
2576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2578 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2579 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2581 * Because tail pages are not marked as "used", set it. We're under
2582 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2584 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2586 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2587 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2588 unsigned long flags
;
2590 if (mem_cgroup_disabled())
2593 * We have no races with charge/uncharge but will have races with
2594 * page state accounting.
2596 move_lock_page_cgroup(head_pc
, &flags
);
2598 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2599 smp_wmb(); /* see __commit_charge() */
2600 if (PageCgroupAcctLRU(head_pc
)) {
2602 struct mem_cgroup_per_zone
*mz
;
2605 * LRU flags cannot be copied because we need to add tail
2606 *.page to LRU by generic call and our hook will be called.
2607 * We hold lru_lock, then, reduce counter directly.
2609 lru
= page_lru(head
);
2610 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2611 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2613 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2614 move_unlock_page_cgroup(head_pc
, &flags
);
2619 * mem_cgroup_move_account - move account of the page
2621 * @nr_pages: number of regular pages (>1 for huge pages)
2622 * @pc: page_cgroup of the page.
2623 * @from: mem_cgroup which the page is moved from.
2624 * @to: mem_cgroup which the page is moved to. @from != @to.
2625 * @uncharge: whether we should call uncharge and css_put against @from.
2627 * The caller must confirm following.
2628 * - page is not on LRU (isolate_page() is useful.)
2629 * - compound_lock is held when nr_pages > 1
2631 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2632 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2633 * true, this function does "uncharge" from old cgroup, but it doesn't if
2634 * @uncharge is false, so a caller should do "uncharge".
2636 static int mem_cgroup_move_account(struct page
*page
,
2637 unsigned int nr_pages
,
2638 struct page_cgroup
*pc
,
2639 struct mem_cgroup
*from
,
2640 struct mem_cgroup
*to
,
2643 unsigned long flags
;
2646 VM_BUG_ON(from
== to
);
2647 VM_BUG_ON(PageLRU(page
));
2649 * The page is isolated from LRU. So, collapse function
2650 * will not handle this page. But page splitting can happen.
2651 * Do this check under compound_page_lock(). The caller should
2655 if (nr_pages
> 1 && !PageTransHuge(page
))
2658 lock_page_cgroup(pc
);
2661 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2664 move_lock_page_cgroup(pc
, &flags
);
2666 if (PageCgroupFileMapped(pc
)) {
2667 /* Update mapped_file data for mem_cgroup */
2669 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2670 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2673 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2675 /* This is not "cancel", but cancel_charge does all we need. */
2676 __mem_cgroup_cancel_charge(from
, nr_pages
);
2678 /* caller should have done css_get */
2679 pc
->mem_cgroup
= to
;
2680 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2682 * We charges against "to" which may not have any tasks. Then, "to"
2683 * can be under rmdir(). But in current implementation, caller of
2684 * this function is just force_empty() and move charge, so it's
2685 * guaranteed that "to" is never removed. So, we don't check rmdir
2688 move_unlock_page_cgroup(pc
, &flags
);
2691 unlock_page_cgroup(pc
);
2695 memcg_check_events(to
, page
);
2696 memcg_check_events(from
, page
);
2702 * move charges to its parent.
2705 static int mem_cgroup_move_parent(struct page
*page
,
2706 struct page_cgroup
*pc
,
2707 struct mem_cgroup
*child
,
2710 struct cgroup
*cg
= child
->css
.cgroup
;
2711 struct cgroup
*pcg
= cg
->parent
;
2712 struct mem_cgroup
*parent
;
2713 unsigned int nr_pages
;
2714 unsigned long uninitialized_var(flags
);
2722 if (!get_page_unless_zero(page
))
2724 if (isolate_lru_page(page
))
2727 nr_pages
= hpage_nr_pages(page
);
2729 parent
= mem_cgroup_from_cont(pcg
);
2730 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2735 flags
= compound_lock_irqsave(page
);
2737 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2739 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2742 compound_unlock_irqrestore(page
, flags
);
2744 putback_lru_page(page
);
2752 * Charge the memory controller for page usage.
2754 * 0 if the charge was successful
2755 * < 0 if the cgroup is over its limit
2757 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2758 gfp_t gfp_mask
, enum charge_type ctype
)
2760 struct mem_cgroup
*memcg
= NULL
;
2761 unsigned int nr_pages
= 1;
2762 struct page_cgroup
*pc
;
2766 if (PageTransHuge(page
)) {
2767 nr_pages
<<= compound_order(page
);
2768 VM_BUG_ON(!PageTransHuge(page
));
2770 * Never OOM-kill a process for a huge page. The
2771 * fault handler will fall back to regular pages.
2776 pc
= lookup_page_cgroup(page
);
2777 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2779 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2783 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2787 int mem_cgroup_newpage_charge(struct page
*page
,
2788 struct mm_struct
*mm
, gfp_t gfp_mask
)
2790 if (mem_cgroup_disabled())
2793 * If already mapped, we don't have to account.
2794 * If page cache, page->mapping has address_space.
2795 * But page->mapping may have out-of-use anon_vma pointer,
2796 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2799 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2803 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2804 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2808 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2809 enum charge_type ctype
);
2812 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2813 enum charge_type ctype
)
2815 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2817 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2818 * is already on LRU. It means the page may on some other page_cgroup's
2819 * LRU. Take care of it.
2821 mem_cgroup_lru_del_before_commit(page
);
2822 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2823 mem_cgroup_lru_add_after_commit(page
);
2827 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2830 struct mem_cgroup
*memcg
= NULL
;
2833 if (mem_cgroup_disabled())
2835 if (PageCompound(page
))
2841 if (page_is_file_cache(page
)) {
2842 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &memcg
, true);
2847 * FUSE reuses pages without going through the final
2848 * put that would remove them from the LRU list, make
2849 * sure that they get relinked properly.
2851 __mem_cgroup_commit_charge_lrucare(page
, memcg
,
2852 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2856 if (PageSwapCache(page
)) {
2857 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2859 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2860 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2862 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2863 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2869 * While swap-in, try_charge -> commit or cancel, the page is locked.
2870 * And when try_charge() successfully returns, one refcnt to memcg without
2871 * struct page_cgroup is acquired. This refcnt will be consumed by
2872 * "commit()" or removed by "cancel()"
2874 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2876 gfp_t mask
, struct mem_cgroup
**ptr
)
2878 struct mem_cgroup
*memcg
;
2883 if (mem_cgroup_disabled())
2886 if (!do_swap_account
)
2889 * A racing thread's fault, or swapoff, may have already updated
2890 * the pte, and even removed page from swap cache: in those cases
2891 * do_swap_page()'s pte_same() test will fail; but there's also a
2892 * KSM case which does need to charge the page.
2894 if (!PageSwapCache(page
))
2896 memcg
= try_get_mem_cgroup_from_page(page
);
2900 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2901 css_put(&memcg
->css
);
2906 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2910 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2911 enum charge_type ctype
)
2913 if (mem_cgroup_disabled())
2917 cgroup_exclude_rmdir(&ptr
->css
);
2919 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2921 * Now swap is on-memory. This means this page may be
2922 * counted both as mem and swap....double count.
2923 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2924 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2925 * may call delete_from_swap_cache() before reach here.
2927 if (do_swap_account
&& PageSwapCache(page
)) {
2928 swp_entry_t ent
= {.val
= page_private(page
)};
2930 struct mem_cgroup
*memcg
;
2932 id
= swap_cgroup_record(ent
, 0);
2934 memcg
= mem_cgroup_lookup(id
);
2937 * This recorded memcg can be obsolete one. So, avoid
2938 * calling css_tryget
2940 if (!mem_cgroup_is_root(memcg
))
2941 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2942 mem_cgroup_swap_statistics(memcg
, false);
2943 mem_cgroup_put(memcg
);
2948 * At swapin, we may charge account against cgroup which has no tasks.
2949 * So, rmdir()->pre_destroy() can be called while we do this charge.
2950 * In that case, we need to call pre_destroy() again. check it here.
2952 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2955 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2957 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2958 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2961 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2963 if (mem_cgroup_disabled())
2967 __mem_cgroup_cancel_charge(memcg
, 1);
2970 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2971 unsigned int nr_pages
,
2972 const enum charge_type ctype
)
2974 struct memcg_batch_info
*batch
= NULL
;
2975 bool uncharge_memsw
= true;
2977 /* If swapout, usage of swap doesn't decrease */
2978 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2979 uncharge_memsw
= false;
2981 batch
= ¤t
->memcg_batch
;
2983 * In usual, we do css_get() when we remember memcg pointer.
2984 * But in this case, we keep res->usage until end of a series of
2985 * uncharges. Then, it's ok to ignore memcg's refcnt.
2988 batch
->memcg
= memcg
;
2990 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2991 * In those cases, all pages freed continuously can be expected to be in
2992 * the same cgroup and we have chance to coalesce uncharges.
2993 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2994 * because we want to do uncharge as soon as possible.
2997 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2998 goto direct_uncharge
;
3001 goto direct_uncharge
;
3004 * In typical case, batch->memcg == mem. This means we can
3005 * merge a series of uncharges to an uncharge of res_counter.
3006 * If not, we uncharge res_counter ony by one.
3008 if (batch
->memcg
!= memcg
)
3009 goto direct_uncharge
;
3010 /* remember freed charge and uncharge it later */
3013 batch
->memsw_nr_pages
++;
3016 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
3018 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
3019 if (unlikely(batch
->memcg
!= memcg
))
3020 memcg_oom_recover(memcg
);
3025 * uncharge if !page_mapped(page)
3027 static struct mem_cgroup
*
3028 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
3030 struct mem_cgroup
*memcg
= NULL
;
3031 unsigned int nr_pages
= 1;
3032 struct page_cgroup
*pc
;
3034 if (mem_cgroup_disabled())
3037 if (PageSwapCache(page
))
3040 if (PageTransHuge(page
)) {
3041 nr_pages
<<= compound_order(page
);
3042 VM_BUG_ON(!PageTransHuge(page
));
3045 * Check if our page_cgroup is valid
3047 pc
= lookup_page_cgroup(page
);
3048 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
3051 lock_page_cgroup(pc
);
3053 memcg
= pc
->mem_cgroup
;
3055 if (!PageCgroupUsed(pc
))
3059 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3060 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3061 /* See mem_cgroup_prepare_migration() */
3062 if (page_mapped(page
) || PageCgroupMigration(pc
))
3065 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3066 if (!PageAnon(page
)) { /* Shared memory */
3067 if (page
->mapping
&& !page_is_file_cache(page
))
3069 } else if (page_mapped(page
)) /* Anon */
3076 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
3078 ClearPageCgroupUsed(pc
);
3080 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3081 * freed from LRU. This is safe because uncharged page is expected not
3082 * to be reused (freed soon). Exception is SwapCache, it's handled by
3083 * special functions.
3086 unlock_page_cgroup(pc
);
3088 * even after unlock, we have memcg->res.usage here and this memcg
3089 * will never be freed.
3091 memcg_check_events(memcg
, page
);
3092 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3093 mem_cgroup_swap_statistics(memcg
, true);
3094 mem_cgroup_get(memcg
);
3096 if (!mem_cgroup_is_root(memcg
))
3097 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3102 unlock_page_cgroup(pc
);
3106 void mem_cgroup_uncharge_page(struct page
*page
)
3109 if (page_mapped(page
))
3111 if (page
->mapping
&& !PageAnon(page
))
3113 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3116 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3118 VM_BUG_ON(page_mapped(page
));
3119 VM_BUG_ON(page
->mapping
);
3120 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3124 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3125 * In that cases, pages are freed continuously and we can expect pages
3126 * are in the same memcg. All these calls itself limits the number of
3127 * pages freed at once, then uncharge_start/end() is called properly.
3128 * This may be called prural(2) times in a context,
3131 void mem_cgroup_uncharge_start(void)
3133 current
->memcg_batch
.do_batch
++;
3134 /* We can do nest. */
3135 if (current
->memcg_batch
.do_batch
== 1) {
3136 current
->memcg_batch
.memcg
= NULL
;
3137 current
->memcg_batch
.nr_pages
= 0;
3138 current
->memcg_batch
.memsw_nr_pages
= 0;
3142 void mem_cgroup_uncharge_end(void)
3144 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3146 if (!batch
->do_batch
)
3150 if (batch
->do_batch
) /* If stacked, do nothing. */
3156 * This "batch->memcg" is valid without any css_get/put etc...
3157 * bacause we hide charges behind us.
3159 if (batch
->nr_pages
)
3160 res_counter_uncharge(&batch
->memcg
->res
,
3161 batch
->nr_pages
* PAGE_SIZE
);
3162 if (batch
->memsw_nr_pages
)
3163 res_counter_uncharge(&batch
->memcg
->memsw
,
3164 batch
->memsw_nr_pages
* PAGE_SIZE
);
3165 memcg_oom_recover(batch
->memcg
);
3166 /* forget this pointer (for sanity check) */
3167 batch
->memcg
= NULL
;
3172 * called after __delete_from_swap_cache() and drop "page" account.
3173 * memcg information is recorded to swap_cgroup of "ent"
3176 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3178 struct mem_cgroup
*memcg
;
3179 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3181 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3182 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3184 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3187 * record memcg information, if swapout && memcg != NULL,
3188 * mem_cgroup_get() was called in uncharge().
3190 if (do_swap_account
&& swapout
&& memcg
)
3191 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3195 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3197 * called from swap_entry_free(). remove record in swap_cgroup and
3198 * uncharge "memsw" account.
3200 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3202 struct mem_cgroup
*memcg
;
3205 if (!do_swap_account
)
3208 id
= swap_cgroup_record(ent
, 0);
3210 memcg
= mem_cgroup_lookup(id
);
3213 * We uncharge this because swap is freed.
3214 * This memcg can be obsolete one. We avoid calling css_tryget
3216 if (!mem_cgroup_is_root(memcg
))
3217 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3218 mem_cgroup_swap_statistics(memcg
, false);
3219 mem_cgroup_put(memcg
);
3225 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3226 * @entry: swap entry to be moved
3227 * @from: mem_cgroup which the entry is moved from
3228 * @to: mem_cgroup which the entry is moved to
3229 * @need_fixup: whether we should fixup res_counters and refcounts.
3231 * It succeeds only when the swap_cgroup's record for this entry is the same
3232 * as the mem_cgroup's id of @from.
3234 * Returns 0 on success, -EINVAL on failure.
3236 * The caller must have charged to @to, IOW, called res_counter_charge() about
3237 * both res and memsw, and called css_get().
3239 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3240 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3242 unsigned short old_id
, new_id
;
3244 old_id
= css_id(&from
->css
);
3245 new_id
= css_id(&to
->css
);
3247 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3248 mem_cgroup_swap_statistics(from
, false);
3249 mem_cgroup_swap_statistics(to
, true);
3251 * This function is only called from task migration context now.
3252 * It postpones res_counter and refcount handling till the end
3253 * of task migration(mem_cgroup_clear_mc()) for performance
3254 * improvement. But we cannot postpone mem_cgroup_get(to)
3255 * because if the process that has been moved to @to does
3256 * swap-in, the refcount of @to might be decreased to 0.
3260 if (!mem_cgroup_is_root(from
))
3261 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3262 mem_cgroup_put(from
);
3264 * we charged both to->res and to->memsw, so we should
3267 if (!mem_cgroup_is_root(to
))
3268 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3275 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3276 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3283 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3286 int mem_cgroup_prepare_migration(struct page
*page
,
3287 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3289 struct mem_cgroup
*memcg
= NULL
;
3290 struct page_cgroup
*pc
;
3291 enum charge_type ctype
;
3296 VM_BUG_ON(PageTransHuge(page
));
3297 if (mem_cgroup_disabled())
3300 pc
= lookup_page_cgroup(page
);
3301 lock_page_cgroup(pc
);
3302 if (PageCgroupUsed(pc
)) {
3303 memcg
= pc
->mem_cgroup
;
3304 css_get(&memcg
->css
);
3306 * At migrating an anonymous page, its mapcount goes down
3307 * to 0 and uncharge() will be called. But, even if it's fully
3308 * unmapped, migration may fail and this page has to be
3309 * charged again. We set MIGRATION flag here and delay uncharge
3310 * until end_migration() is called
3312 * Corner Case Thinking
3314 * When the old page was mapped as Anon and it's unmap-and-freed
3315 * while migration was ongoing.
3316 * If unmap finds the old page, uncharge() of it will be delayed
3317 * until end_migration(). If unmap finds a new page, it's
3318 * uncharged when it make mapcount to be 1->0. If unmap code
3319 * finds swap_migration_entry, the new page will not be mapped
3320 * and end_migration() will find it(mapcount==0).
3323 * When the old page was mapped but migraion fails, the kernel
3324 * remaps it. A charge for it is kept by MIGRATION flag even
3325 * if mapcount goes down to 0. We can do remap successfully
3326 * without charging it again.
3329 * The "old" page is under lock_page() until the end of
3330 * migration, so, the old page itself will not be swapped-out.
3331 * If the new page is swapped out before end_migraton, our
3332 * hook to usual swap-out path will catch the event.
3335 SetPageCgroupMigration(pc
);
3337 unlock_page_cgroup(pc
);
3339 * If the page is not charged at this point,
3346 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3347 css_put(&memcg
->css
);/* drop extra refcnt */
3348 if (ret
|| *ptr
== NULL
) {
3349 if (PageAnon(page
)) {
3350 lock_page_cgroup(pc
);
3351 ClearPageCgroupMigration(pc
);
3352 unlock_page_cgroup(pc
);
3354 * The old page may be fully unmapped while we kept it.
3356 mem_cgroup_uncharge_page(page
);
3361 * We charge new page before it's used/mapped. So, even if unlock_page()
3362 * is called before end_migration, we can catch all events on this new
3363 * page. In the case new page is migrated but not remapped, new page's
3364 * mapcount will be finally 0 and we call uncharge in end_migration().
3366 pc
= lookup_page_cgroup(newpage
);
3368 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3369 else if (page_is_file_cache(page
))
3370 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3372 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3373 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3377 /* remove redundant charge if migration failed*/
3378 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3379 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3381 struct page
*used
, *unused
;
3382 struct page_cgroup
*pc
;
3386 /* blocks rmdir() */
3387 cgroup_exclude_rmdir(&memcg
->css
);
3388 if (!migration_ok
) {
3396 * We disallowed uncharge of pages under migration because mapcount
3397 * of the page goes down to zero, temporarly.
3398 * Clear the flag and check the page should be charged.
3400 pc
= lookup_page_cgroup(oldpage
);
3401 lock_page_cgroup(pc
);
3402 ClearPageCgroupMigration(pc
);
3403 unlock_page_cgroup(pc
);
3405 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3408 * If a page is a file cache, radix-tree replacement is very atomic
3409 * and we can skip this check. When it was an Anon page, its mapcount
3410 * goes down to 0. But because we added MIGRATION flage, it's not
3411 * uncharged yet. There are several case but page->mapcount check
3412 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3413 * check. (see prepare_charge() also)
3416 mem_cgroup_uncharge_page(used
);
3418 * At migration, we may charge account against cgroup which has no
3420 * So, rmdir()->pre_destroy() can be called while we do this charge.
3421 * In that case, we need to call pre_destroy() again. check it here.
3423 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3426 #ifdef CONFIG_DEBUG_VM
3427 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3429 struct page_cgroup
*pc
;
3431 pc
= lookup_page_cgroup(page
);
3432 if (likely(pc
) && PageCgroupUsed(pc
))
3437 bool mem_cgroup_bad_page_check(struct page
*page
)
3439 if (mem_cgroup_disabled())
3442 return lookup_page_cgroup_used(page
) != NULL
;
3445 void mem_cgroup_print_bad_page(struct page
*page
)
3447 struct page_cgroup
*pc
;
3449 pc
= lookup_page_cgroup_used(page
);
3454 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3455 pc
, pc
->flags
, pc
->mem_cgroup
);
3457 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3460 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3465 printk(KERN_CONT
"(%s)\n",
3466 (ret
< 0) ? "cannot get the path" : path
);
3472 static DEFINE_MUTEX(set_limit_mutex
);
3474 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3475 unsigned long long val
)
3478 u64 memswlimit
, memlimit
;
3480 int children
= mem_cgroup_count_children(memcg
);
3481 u64 curusage
, oldusage
;
3485 * For keeping hierarchical_reclaim simple, how long we should retry
3486 * is depends on callers. We set our retry-count to be function
3487 * of # of children which we should visit in this loop.
3489 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3491 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3494 while (retry_count
) {
3495 if (signal_pending(current
)) {
3500 * Rather than hide all in some function, I do this in
3501 * open coded manner. You see what this really does.
3502 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3504 mutex_lock(&set_limit_mutex
);
3505 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3506 if (memswlimit
< val
) {
3508 mutex_unlock(&set_limit_mutex
);
3512 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3516 ret
= res_counter_set_limit(&memcg
->res
, val
);
3518 if (memswlimit
== val
)
3519 memcg
->memsw_is_minimum
= true;
3521 memcg
->memsw_is_minimum
= false;
3523 mutex_unlock(&set_limit_mutex
);
3528 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3529 MEM_CGROUP_RECLAIM_SHRINK
,
3531 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3532 /* Usage is reduced ? */
3533 if (curusage
>= oldusage
)
3536 oldusage
= curusage
;
3538 if (!ret
&& enlarge
)
3539 memcg_oom_recover(memcg
);
3544 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3545 unsigned long long val
)
3548 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3549 int children
= mem_cgroup_count_children(memcg
);
3553 /* see mem_cgroup_resize_res_limit */
3554 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3555 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3556 while (retry_count
) {
3557 if (signal_pending(current
)) {
3562 * Rather than hide all in some function, I do this in
3563 * open coded manner. You see what this really does.
3564 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3566 mutex_lock(&set_limit_mutex
);
3567 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3568 if (memlimit
> val
) {
3570 mutex_unlock(&set_limit_mutex
);
3573 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3574 if (memswlimit
< val
)
3576 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3578 if (memlimit
== val
)
3579 memcg
->memsw_is_minimum
= true;
3581 memcg
->memsw_is_minimum
= false;
3583 mutex_unlock(&set_limit_mutex
);
3588 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3589 MEM_CGROUP_RECLAIM_NOSWAP
|
3590 MEM_CGROUP_RECLAIM_SHRINK
,
3592 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3593 /* Usage is reduced ? */
3594 if (curusage
>= oldusage
)
3597 oldusage
= curusage
;
3599 if (!ret
&& enlarge
)
3600 memcg_oom_recover(memcg
);
3604 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3606 unsigned long *total_scanned
)
3608 unsigned long nr_reclaimed
= 0;
3609 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3610 unsigned long reclaimed
;
3612 struct mem_cgroup_tree_per_zone
*mctz
;
3613 unsigned long long excess
;
3614 unsigned long nr_scanned
;
3619 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3621 * This loop can run a while, specially if mem_cgroup's continuously
3622 * keep exceeding their soft limit and putting the system under
3629 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3634 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3636 MEM_CGROUP_RECLAIM_SOFT
,
3638 nr_reclaimed
+= reclaimed
;
3639 *total_scanned
+= nr_scanned
;
3640 spin_lock(&mctz
->lock
);
3643 * If we failed to reclaim anything from this memory cgroup
3644 * it is time to move on to the next cgroup
3650 * Loop until we find yet another one.
3652 * By the time we get the soft_limit lock
3653 * again, someone might have aded the
3654 * group back on the RB tree. Iterate to
3655 * make sure we get a different mem.
3656 * mem_cgroup_largest_soft_limit_node returns
3657 * NULL if no other cgroup is present on
3661 __mem_cgroup_largest_soft_limit_node(mctz
);
3663 css_put(&next_mz
->mem
->css
);
3664 else /* next_mz == NULL or other memcg */
3668 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3669 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3671 * One school of thought says that we should not add
3672 * back the node to the tree if reclaim returns 0.
3673 * But our reclaim could return 0, simply because due
3674 * to priority we are exposing a smaller subset of
3675 * memory to reclaim from. Consider this as a longer
3678 /* If excess == 0, no tree ops */
3679 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3680 spin_unlock(&mctz
->lock
);
3681 css_put(&mz
->mem
->css
);
3684 * Could not reclaim anything and there are no more
3685 * mem cgroups to try or we seem to be looping without
3686 * reclaiming anything.
3688 if (!nr_reclaimed
&&
3690 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3692 } while (!nr_reclaimed
);
3694 css_put(&next_mz
->mem
->css
);
3695 return nr_reclaimed
;
3699 * This routine traverse page_cgroup in given list and drop them all.
3700 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3702 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3703 int node
, int zid
, enum lru_list lru
)
3706 struct mem_cgroup_per_zone
*mz
;
3707 struct page_cgroup
*pc
, *busy
;
3708 unsigned long flags
, loop
;
3709 struct list_head
*list
;
3712 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3713 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3714 list
= &mz
->lists
[lru
];
3716 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3717 /* give some margin against EBUSY etc...*/
3724 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3725 if (list_empty(list
)) {
3726 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3729 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3731 list_move(&pc
->lru
, list
);
3733 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3736 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3738 page
= lookup_cgroup_page(pc
);
3740 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3744 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3745 /* found lock contention or "pc" is obsolete. */
3752 if (!ret
&& !list_empty(list
))
3758 * make mem_cgroup's charge to be 0 if there is no task.
3759 * This enables deleting this mem_cgroup.
3761 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3764 int node
, zid
, shrink
;
3765 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3766 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3768 css_get(&memcg
->css
);
3771 /* should free all ? */
3777 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3780 if (signal_pending(current
))
3782 /* This is for making all *used* pages to be on LRU. */
3783 lru_add_drain_all();
3784 drain_all_stock_sync(memcg
);
3786 mem_cgroup_start_move(memcg
);
3787 for_each_node_state(node
, N_HIGH_MEMORY
) {
3788 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3791 ret
= mem_cgroup_force_empty_list(memcg
,
3800 mem_cgroup_end_move(memcg
);
3801 memcg_oom_recover(memcg
);
3802 /* it seems parent cgroup doesn't have enough mem */
3806 /* "ret" should also be checked to ensure all lists are empty. */
3807 } while (memcg
->res
.usage
> 0 || ret
);
3809 css_put(&memcg
->css
);
3813 /* returns EBUSY if there is a task or if we come here twice. */
3814 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3818 /* we call try-to-free pages for make this cgroup empty */
3819 lru_add_drain_all();
3820 /* try to free all pages in this cgroup */
3822 while (nr_retries
&& memcg
->res
.usage
> 0) {
3825 if (signal_pending(current
)) {
3829 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3833 /* maybe some writeback is necessary */
3834 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3839 /* try move_account...there may be some *locked* pages. */
3843 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3845 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3849 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3851 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3854 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3858 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3859 struct cgroup
*parent
= cont
->parent
;
3860 struct mem_cgroup
*parent_memcg
= NULL
;
3863 parent_memcg
= mem_cgroup_from_cont(parent
);
3867 * If parent's use_hierarchy is set, we can't make any modifications
3868 * in the child subtrees. If it is unset, then the change can
3869 * occur, provided the current cgroup has no children.
3871 * For the root cgroup, parent_mem is NULL, we allow value to be
3872 * set if there are no children.
3874 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3875 (val
== 1 || val
== 0)) {
3876 if (list_empty(&cont
->children
))
3877 memcg
->use_hierarchy
= val
;
3888 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3889 enum mem_cgroup_stat_index idx
)
3891 struct mem_cgroup
*iter
;
3894 /* Per-cpu values can be negative, use a signed accumulator */
3895 for_each_mem_cgroup_tree(iter
, memcg
)
3896 val
+= mem_cgroup_read_stat(iter
, idx
);
3898 if (val
< 0) /* race ? */
3903 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3907 if (!mem_cgroup_is_root(memcg
)) {
3909 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3911 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3914 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3915 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3918 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3920 return val
<< PAGE_SHIFT
;
3923 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3925 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3929 type
= MEMFILE_TYPE(cft
->private);
3930 name
= MEMFILE_ATTR(cft
->private);
3933 if (name
== RES_USAGE
)
3934 val
= mem_cgroup_usage(memcg
, false);
3936 val
= res_counter_read_u64(&memcg
->res
, name
);
3939 if (name
== RES_USAGE
)
3940 val
= mem_cgroup_usage(memcg
, true);
3942 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3951 * The user of this function is...
3954 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3957 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3959 unsigned long long val
;
3962 type
= MEMFILE_TYPE(cft
->private);
3963 name
= MEMFILE_ATTR(cft
->private);
3966 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3970 /* This function does all necessary parse...reuse it */
3971 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3975 ret
= mem_cgroup_resize_limit(memcg
, val
);
3977 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3979 case RES_SOFT_LIMIT
:
3980 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3984 * For memsw, soft limits are hard to implement in terms
3985 * of semantics, for now, we support soft limits for
3986 * control without swap
3989 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3994 ret
= -EINVAL
; /* should be BUG() ? */
4000 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
4001 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
4003 struct cgroup
*cgroup
;
4004 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4006 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4007 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4008 cgroup
= memcg
->css
.cgroup
;
4009 if (!memcg
->use_hierarchy
)
4012 while (cgroup
->parent
) {
4013 cgroup
= cgroup
->parent
;
4014 memcg
= mem_cgroup_from_cont(cgroup
);
4015 if (!memcg
->use_hierarchy
)
4017 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4018 min_limit
= min(min_limit
, tmp
);
4019 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4020 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4023 *mem_limit
= min_limit
;
4024 *memsw_limit
= min_memsw_limit
;
4028 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
4030 struct mem_cgroup
*memcg
;
4033 memcg
= mem_cgroup_from_cont(cont
);
4034 type
= MEMFILE_TYPE(event
);
4035 name
= MEMFILE_ATTR(event
);
4039 res_counter_reset_max(&memcg
->res
);
4041 res_counter_reset_max(&memcg
->memsw
);
4045 res_counter_reset_failcnt(&memcg
->res
);
4047 res_counter_reset_failcnt(&memcg
->memsw
);
4054 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4057 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4061 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4062 struct cftype
*cft
, u64 val
)
4064 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4066 if (val
>= (1 << NR_MOVE_TYPE
))
4069 * We check this value several times in both in can_attach() and
4070 * attach(), so we need cgroup lock to prevent this value from being
4074 memcg
->move_charge_at_immigrate
= val
;
4080 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4081 struct cftype
*cft
, u64 val
)
4088 /* For read statistics */
4106 struct mcs_total_stat
{
4107 s64 stat
[NR_MCS_STAT
];
4113 } memcg_stat_strings
[NR_MCS_STAT
] = {
4114 {"cache", "total_cache"},
4115 {"rss", "total_rss"},
4116 {"mapped_file", "total_mapped_file"},
4117 {"pgpgin", "total_pgpgin"},
4118 {"pgpgout", "total_pgpgout"},
4119 {"swap", "total_swap"},
4120 {"pgfault", "total_pgfault"},
4121 {"pgmajfault", "total_pgmajfault"},
4122 {"inactive_anon", "total_inactive_anon"},
4123 {"active_anon", "total_active_anon"},
4124 {"inactive_file", "total_inactive_file"},
4125 {"active_file", "total_active_file"},
4126 {"unevictable", "total_unevictable"}
4131 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4136 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4137 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4138 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4139 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4140 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4141 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4142 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4143 s
->stat
[MCS_PGPGIN
] += val
;
4144 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4145 s
->stat
[MCS_PGPGOUT
] += val
;
4146 if (do_swap_account
) {
4147 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4148 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4150 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4151 s
->stat
[MCS_PGFAULT
] += val
;
4152 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4153 s
->stat
[MCS_PGMAJFAULT
] += val
;
4156 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4157 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4158 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4159 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4160 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4161 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4162 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4163 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4164 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4165 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4169 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4171 struct mem_cgroup
*iter
;
4173 for_each_mem_cgroup_tree(iter
, memcg
)
4174 mem_cgroup_get_local_stat(iter
, s
);
4178 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4181 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4182 unsigned long node_nr
;
4183 struct cgroup
*cont
= m
->private;
4184 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4186 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4187 seq_printf(m
, "total=%lu", total_nr
);
4188 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4189 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4190 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4194 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4195 seq_printf(m
, "file=%lu", file_nr
);
4196 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4197 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4199 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4203 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4204 seq_printf(m
, "anon=%lu", anon_nr
);
4205 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4206 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4208 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4212 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4213 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4214 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4215 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4216 BIT(LRU_UNEVICTABLE
));
4217 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4222 #endif /* CONFIG_NUMA */
4224 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4225 struct cgroup_map_cb
*cb
)
4227 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4228 struct mcs_total_stat mystat
;
4231 memset(&mystat
, 0, sizeof(mystat
));
4232 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4235 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4236 if (i
== MCS_SWAP
&& !do_swap_account
)
4238 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4241 /* Hierarchical information */
4243 unsigned long long limit
, memsw_limit
;
4244 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4245 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4246 if (do_swap_account
)
4247 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4250 memset(&mystat
, 0, sizeof(mystat
));
4251 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4252 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4253 if (i
== MCS_SWAP
&& !do_swap_account
)
4255 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4258 #ifdef CONFIG_DEBUG_VM
4261 struct mem_cgroup_per_zone
*mz
;
4262 unsigned long recent_rotated
[2] = {0, 0};
4263 unsigned long recent_scanned
[2] = {0, 0};
4265 for_each_online_node(nid
)
4266 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4267 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4269 recent_rotated
[0] +=
4270 mz
->reclaim_stat
.recent_rotated
[0];
4271 recent_rotated
[1] +=
4272 mz
->reclaim_stat
.recent_rotated
[1];
4273 recent_scanned
[0] +=
4274 mz
->reclaim_stat
.recent_scanned
[0];
4275 recent_scanned
[1] +=
4276 mz
->reclaim_stat
.recent_scanned
[1];
4278 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4279 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4280 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4281 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4288 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4290 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4292 return mem_cgroup_swappiness(memcg
);
4295 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4298 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4299 struct mem_cgroup
*parent
;
4304 if (cgrp
->parent
== NULL
)
4307 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4311 /* If under hierarchy, only empty-root can set this value */
4312 if ((parent
->use_hierarchy
) ||
4313 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4318 memcg
->swappiness
= val
;
4325 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4327 struct mem_cgroup_threshold_ary
*t
;
4333 t
= rcu_dereference(memcg
->thresholds
.primary
);
4335 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4340 usage
= mem_cgroup_usage(memcg
, swap
);
4343 * current_threshold points to threshold just below usage.
4344 * If it's not true, a threshold was crossed after last
4345 * call of __mem_cgroup_threshold().
4347 i
= t
->current_threshold
;
4350 * Iterate backward over array of thresholds starting from
4351 * current_threshold and check if a threshold is crossed.
4352 * If none of thresholds below usage is crossed, we read
4353 * only one element of the array here.
4355 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4356 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4358 /* i = current_threshold + 1 */
4362 * Iterate forward over array of thresholds starting from
4363 * current_threshold+1 and check if a threshold is crossed.
4364 * If none of thresholds above usage is crossed, we read
4365 * only one element of the array here.
4367 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4368 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4370 /* Update current_threshold */
4371 t
->current_threshold
= i
- 1;
4376 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4379 __mem_cgroup_threshold(memcg
, false);
4380 if (do_swap_account
)
4381 __mem_cgroup_threshold(memcg
, true);
4383 memcg
= parent_mem_cgroup(memcg
);
4387 static int compare_thresholds(const void *a
, const void *b
)
4389 const struct mem_cgroup_threshold
*_a
= a
;
4390 const struct mem_cgroup_threshold
*_b
= b
;
4392 return _a
->threshold
- _b
->threshold
;
4395 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4397 struct mem_cgroup_eventfd_list
*ev
;
4399 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4400 eventfd_signal(ev
->eventfd
, 1);
4404 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4406 struct mem_cgroup
*iter
;
4408 for_each_mem_cgroup_tree(iter
, memcg
)
4409 mem_cgroup_oom_notify_cb(iter
);
4412 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4413 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4415 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4416 struct mem_cgroup_thresholds
*thresholds
;
4417 struct mem_cgroup_threshold_ary
*new;
4418 int type
= MEMFILE_TYPE(cft
->private);
4419 u64 threshold
, usage
;
4422 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4426 mutex_lock(&memcg
->thresholds_lock
);
4429 thresholds
= &memcg
->thresholds
;
4430 else if (type
== _MEMSWAP
)
4431 thresholds
= &memcg
->memsw_thresholds
;
4435 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4437 /* Check if a threshold crossed before adding a new one */
4438 if (thresholds
->primary
)
4439 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4441 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4443 /* Allocate memory for new array of thresholds */
4444 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4452 /* Copy thresholds (if any) to new array */
4453 if (thresholds
->primary
) {
4454 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4455 sizeof(struct mem_cgroup_threshold
));
4458 /* Add new threshold */
4459 new->entries
[size
- 1].eventfd
= eventfd
;
4460 new->entries
[size
- 1].threshold
= threshold
;
4462 /* Sort thresholds. Registering of new threshold isn't time-critical */
4463 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4464 compare_thresholds
, NULL
);
4466 /* Find current threshold */
4467 new->current_threshold
= -1;
4468 for (i
= 0; i
< size
; i
++) {
4469 if (new->entries
[i
].threshold
< usage
) {
4471 * new->current_threshold will not be used until
4472 * rcu_assign_pointer(), so it's safe to increment
4475 ++new->current_threshold
;
4479 /* Free old spare buffer and save old primary buffer as spare */
4480 kfree(thresholds
->spare
);
4481 thresholds
->spare
= thresholds
->primary
;
4483 rcu_assign_pointer(thresholds
->primary
, new);
4485 /* To be sure that nobody uses thresholds */
4489 mutex_unlock(&memcg
->thresholds_lock
);
4494 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4495 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4497 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4498 struct mem_cgroup_thresholds
*thresholds
;
4499 struct mem_cgroup_threshold_ary
*new;
4500 int type
= MEMFILE_TYPE(cft
->private);
4504 mutex_lock(&memcg
->thresholds_lock
);
4506 thresholds
= &memcg
->thresholds
;
4507 else if (type
== _MEMSWAP
)
4508 thresholds
= &memcg
->memsw_thresholds
;
4513 * Something went wrong if we trying to unregister a threshold
4514 * if we don't have thresholds
4516 BUG_ON(!thresholds
);
4518 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4520 /* Check if a threshold crossed before removing */
4521 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4523 /* Calculate new number of threshold */
4525 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4526 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4530 new = thresholds
->spare
;
4532 /* Set thresholds array to NULL if we don't have thresholds */
4541 /* Copy thresholds and find current threshold */
4542 new->current_threshold
= -1;
4543 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4544 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4547 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4548 if (new->entries
[j
].threshold
< usage
) {
4550 * new->current_threshold will not be used
4551 * until rcu_assign_pointer(), so it's safe to increment
4554 ++new->current_threshold
;
4560 /* Swap primary and spare array */
4561 thresholds
->spare
= thresholds
->primary
;
4562 rcu_assign_pointer(thresholds
->primary
, new);
4564 /* To be sure that nobody uses thresholds */
4567 mutex_unlock(&memcg
->thresholds_lock
);
4570 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4571 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4573 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4574 struct mem_cgroup_eventfd_list
*event
;
4575 int type
= MEMFILE_TYPE(cft
->private);
4577 BUG_ON(type
!= _OOM_TYPE
);
4578 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4582 spin_lock(&memcg_oom_lock
);
4584 event
->eventfd
= eventfd
;
4585 list_add(&event
->list
, &memcg
->oom_notify
);
4587 /* already in OOM ? */
4588 if (atomic_read(&memcg
->under_oom
))
4589 eventfd_signal(eventfd
, 1);
4590 spin_unlock(&memcg_oom_lock
);
4595 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4596 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4598 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4599 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4600 int type
= MEMFILE_TYPE(cft
->private);
4602 BUG_ON(type
!= _OOM_TYPE
);
4604 spin_lock(&memcg_oom_lock
);
4606 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4607 if (ev
->eventfd
== eventfd
) {
4608 list_del(&ev
->list
);
4613 spin_unlock(&memcg_oom_lock
);
4616 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4617 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4619 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4621 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4623 if (atomic_read(&memcg
->under_oom
))
4624 cb
->fill(cb
, "under_oom", 1);
4626 cb
->fill(cb
, "under_oom", 0);
4630 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4631 struct cftype
*cft
, u64 val
)
4633 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4634 struct mem_cgroup
*parent
;
4636 /* cannot set to root cgroup and only 0 and 1 are allowed */
4637 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4640 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4643 /* oom-kill-disable is a flag for subhierarchy. */
4644 if ((parent
->use_hierarchy
) ||
4645 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4649 memcg
->oom_kill_disable
= val
;
4651 memcg_oom_recover(memcg
);
4657 static const struct file_operations mem_control_numa_stat_file_operations
= {
4659 .llseek
= seq_lseek
,
4660 .release
= single_release
,
4663 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4665 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4667 file
->f_op
= &mem_control_numa_stat_file_operations
;
4668 return single_open(file
, mem_control_numa_stat_show
, cont
);
4670 #endif /* CONFIG_NUMA */
4672 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4673 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4676 * Part of this would be better living in a separate allocation
4677 * function, leaving us with just the cgroup tree population work.
4678 * We, however, depend on state such as network's proto_list that
4679 * is only initialized after cgroup creation. I found the less
4680 * cumbersome way to deal with it to defer it all to populate time
4682 return mem_cgroup_sockets_init(cont
, ss
);
4685 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4686 struct cgroup
*cont
)
4688 mem_cgroup_sockets_destroy(cont
, ss
);
4691 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4696 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4697 struct cgroup
*cont
)
4702 static struct cftype mem_cgroup_files
[] = {
4704 .name
= "usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4706 .read_u64
= mem_cgroup_read
,
4707 .register_event
= mem_cgroup_usage_register_event
,
4708 .unregister_event
= mem_cgroup_usage_unregister_event
,
4711 .name
= "max_usage_in_bytes",
4712 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4713 .trigger
= mem_cgroup_reset
,
4714 .read_u64
= mem_cgroup_read
,
4717 .name
= "limit_in_bytes",
4718 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4719 .write_string
= mem_cgroup_write
,
4720 .read_u64
= mem_cgroup_read
,
4723 .name
= "soft_limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4725 .write_string
= mem_cgroup_write
,
4726 .read_u64
= mem_cgroup_read
,
4730 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4731 .trigger
= mem_cgroup_reset
,
4732 .read_u64
= mem_cgroup_read
,
4736 .read_map
= mem_control_stat_show
,
4739 .name
= "force_empty",
4740 .trigger
= mem_cgroup_force_empty_write
,
4743 .name
= "use_hierarchy",
4744 .write_u64
= mem_cgroup_hierarchy_write
,
4745 .read_u64
= mem_cgroup_hierarchy_read
,
4748 .name
= "swappiness",
4749 .read_u64
= mem_cgroup_swappiness_read
,
4750 .write_u64
= mem_cgroup_swappiness_write
,
4753 .name
= "move_charge_at_immigrate",
4754 .read_u64
= mem_cgroup_move_charge_read
,
4755 .write_u64
= mem_cgroup_move_charge_write
,
4758 .name
= "oom_control",
4759 .read_map
= mem_cgroup_oom_control_read
,
4760 .write_u64
= mem_cgroup_oom_control_write
,
4761 .register_event
= mem_cgroup_oom_register_event
,
4762 .unregister_event
= mem_cgroup_oom_unregister_event
,
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4767 .name
= "numa_stat",
4768 .open
= mem_control_numa_stat_open
,
4774 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4775 static struct cftype memsw_cgroup_files
[] = {
4777 .name
= "memsw.usage_in_bytes",
4778 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4779 .read_u64
= mem_cgroup_read
,
4780 .register_event
= mem_cgroup_usage_register_event
,
4781 .unregister_event
= mem_cgroup_usage_unregister_event
,
4784 .name
= "memsw.max_usage_in_bytes",
4785 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4786 .trigger
= mem_cgroup_reset
,
4787 .read_u64
= mem_cgroup_read
,
4790 .name
= "memsw.limit_in_bytes",
4791 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4792 .write_string
= mem_cgroup_write
,
4793 .read_u64
= mem_cgroup_read
,
4796 .name
= "memsw.failcnt",
4797 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4798 .trigger
= mem_cgroup_reset
,
4799 .read_u64
= mem_cgroup_read
,
4803 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4805 if (!do_swap_account
)
4807 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4808 ARRAY_SIZE(memsw_cgroup_files
));
4811 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4817 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4819 struct mem_cgroup_per_node
*pn
;
4820 struct mem_cgroup_per_zone
*mz
;
4822 int zone
, tmp
= node
;
4824 * This routine is called against possible nodes.
4825 * But it's BUG to call kmalloc() against offline node.
4827 * TODO: this routine can waste much memory for nodes which will
4828 * never be onlined. It's better to use memory hotplug callback
4831 if (!node_state(node
, N_NORMAL_MEMORY
))
4833 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4837 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4838 mz
= &pn
->zoneinfo
[zone
];
4840 INIT_LIST_HEAD(&mz
->lists
[l
]);
4841 mz
->usage_in_excess
= 0;
4842 mz
->on_tree
= false;
4845 memcg
->info
.nodeinfo
[node
] = pn
;
4849 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4851 kfree(memcg
->info
.nodeinfo
[node
]);
4854 static struct mem_cgroup
*mem_cgroup_alloc(void)
4856 struct mem_cgroup
*mem
;
4857 int size
= sizeof(struct mem_cgroup
);
4859 /* Can be very big if MAX_NUMNODES is very big */
4860 if (size
< PAGE_SIZE
)
4861 mem
= kzalloc(size
, GFP_KERNEL
);
4863 mem
= vzalloc(size
);
4868 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4871 spin_lock_init(&mem
->pcp_counter_lock
);
4875 if (size
< PAGE_SIZE
)
4883 * At destroying mem_cgroup, references from swap_cgroup can remain.
4884 * (scanning all at force_empty is too costly...)
4886 * Instead of clearing all references at force_empty, we remember
4887 * the number of reference from swap_cgroup and free mem_cgroup when
4888 * it goes down to 0.
4890 * Removal of cgroup itself succeeds regardless of refs from swap.
4893 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4897 mem_cgroup_remove_from_trees(memcg
);
4898 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4900 for_each_node_state(node
, N_POSSIBLE
)
4901 free_mem_cgroup_per_zone_info(memcg
, node
);
4903 free_percpu(memcg
->stat
);
4904 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4910 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4912 atomic_inc(&memcg
->refcnt
);
4915 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4917 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4918 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4919 __mem_cgroup_free(memcg
);
4921 mem_cgroup_put(parent
);
4925 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4927 __mem_cgroup_put(memcg
, 1);
4931 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4933 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4935 if (!memcg
->res
.parent
)
4937 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4939 EXPORT_SYMBOL(parent_mem_cgroup
);
4941 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4942 static void __init
enable_swap_cgroup(void)
4944 if (!mem_cgroup_disabled() && really_do_swap_account
)
4945 do_swap_account
= 1;
4948 static void __init
enable_swap_cgroup(void)
4953 static int mem_cgroup_soft_limit_tree_init(void)
4955 struct mem_cgroup_tree_per_node
*rtpn
;
4956 struct mem_cgroup_tree_per_zone
*rtpz
;
4957 int tmp
, node
, zone
;
4959 for_each_node_state(node
, N_POSSIBLE
) {
4961 if (!node_state(node
, N_NORMAL_MEMORY
))
4963 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4967 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4969 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4970 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4971 rtpz
->rb_root
= RB_ROOT
;
4972 spin_lock_init(&rtpz
->lock
);
4978 static struct cgroup_subsys_state
* __ref
4979 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4981 struct mem_cgroup
*memcg
, *parent
;
4982 long error
= -ENOMEM
;
4985 memcg
= mem_cgroup_alloc();
4987 return ERR_PTR(error
);
4989 for_each_node_state(node
, N_POSSIBLE
)
4990 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4994 if (cont
->parent
== NULL
) {
4996 enable_swap_cgroup();
4998 root_mem_cgroup
= memcg
;
4999 if (mem_cgroup_soft_limit_tree_init())
5001 for_each_possible_cpu(cpu
) {
5002 struct memcg_stock_pcp
*stock
=
5003 &per_cpu(memcg_stock
, cpu
);
5004 INIT_WORK(&stock
->work
, drain_local_stock
);
5006 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5008 parent
= mem_cgroup_from_cont(cont
->parent
);
5009 memcg
->use_hierarchy
= parent
->use_hierarchy
;
5010 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
5013 if (parent
&& parent
->use_hierarchy
) {
5014 res_counter_init(&memcg
->res
, &parent
->res
);
5015 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
5017 * We increment refcnt of the parent to ensure that we can
5018 * safely access it on res_counter_charge/uncharge.
5019 * This refcnt will be decremented when freeing this
5020 * mem_cgroup(see mem_cgroup_put).
5022 mem_cgroup_get(parent
);
5024 res_counter_init(&memcg
->res
, NULL
);
5025 res_counter_init(&memcg
->memsw
, NULL
);
5027 memcg
->last_scanned_child
= 0;
5028 memcg
->last_scanned_node
= MAX_NUMNODES
;
5029 INIT_LIST_HEAD(&memcg
->oom_notify
);
5032 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5033 atomic_set(&memcg
->refcnt
, 1);
5034 memcg
->move_charge_at_immigrate
= 0;
5035 mutex_init(&memcg
->thresholds_lock
);
5038 __mem_cgroup_free(memcg
);
5039 root_mem_cgroup
= NULL
;
5040 return ERR_PTR(error
);
5043 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
5044 struct cgroup
*cont
)
5046 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5048 return mem_cgroup_force_empty(memcg
, false);
5051 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
5052 struct cgroup
*cont
)
5054 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5056 kmem_cgroup_destroy(ss
, cont
);
5058 mem_cgroup_put(memcg
);
5061 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
5062 struct cgroup
*cont
)
5066 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
5067 ARRAY_SIZE(mem_cgroup_files
));
5070 ret
= register_memsw_files(cont
, ss
);
5073 ret
= register_kmem_files(cont
, ss
);
5079 /* Handlers for move charge at task migration. */
5080 #define PRECHARGE_COUNT_AT_ONCE 256
5081 static int mem_cgroup_do_precharge(unsigned long count
)
5084 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5085 struct mem_cgroup
*memcg
= mc
.to
;
5087 if (mem_cgroup_is_root(memcg
)) {
5088 mc
.precharge
+= count
;
5089 /* we don't need css_get for root */
5092 /* try to charge at once */
5094 struct res_counter
*dummy
;
5096 * "memcg" cannot be under rmdir() because we've already checked
5097 * by cgroup_lock_live_cgroup() that it is not removed and we
5098 * are still under the same cgroup_mutex. So we can postpone
5101 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5103 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5104 PAGE_SIZE
* count
, &dummy
)) {
5105 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5108 mc
.precharge
+= count
;
5112 /* fall back to one by one charge */
5114 if (signal_pending(current
)) {
5118 if (!batch_count
--) {
5119 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5122 ret
= __mem_cgroup_try_charge(NULL
,
5123 GFP_KERNEL
, 1, &memcg
, false);
5125 /* mem_cgroup_clear_mc() will do uncharge later */
5133 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5134 * @vma: the vma the pte to be checked belongs
5135 * @addr: the address corresponding to the pte to be checked
5136 * @ptent: the pte to be checked
5137 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5140 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5141 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5142 * move charge. if @target is not NULL, the page is stored in target->page
5143 * with extra refcnt got(Callers should handle it).
5144 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5145 * target for charge migration. if @target is not NULL, the entry is stored
5148 * Called with pte lock held.
5155 enum mc_target_type
{
5156 MC_TARGET_NONE
, /* not used */
5161 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5162 unsigned long addr
, pte_t ptent
)
5164 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5166 if (!page
|| !page_mapped(page
))
5168 if (PageAnon(page
)) {
5169 /* we don't move shared anon */
5170 if (!move_anon() || page_mapcount(page
) > 2)
5172 } else if (!move_file())
5173 /* we ignore mapcount for file pages */
5175 if (!get_page_unless_zero(page
))
5181 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5182 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5185 struct page
*page
= NULL
;
5186 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5188 if (!move_anon() || non_swap_entry(ent
))
5190 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5191 if (usage_count
> 1) { /* we don't move shared anon */
5196 if (do_swap_account
)
5197 entry
->val
= ent
.val
;
5202 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5203 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5205 struct page
*page
= NULL
;
5206 struct inode
*inode
;
5207 struct address_space
*mapping
;
5210 if (!vma
->vm_file
) /* anonymous vma */
5215 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5216 mapping
= vma
->vm_file
->f_mapping
;
5217 if (pte_none(ptent
))
5218 pgoff
= linear_page_index(vma
, addr
);
5219 else /* pte_file(ptent) is true */
5220 pgoff
= pte_to_pgoff(ptent
);
5222 /* page is moved even if it's not RSS of this task(page-faulted). */
5223 page
= find_get_page(mapping
, pgoff
);
5226 /* shmem/tmpfs may report page out on swap: account for that too. */
5227 if (radix_tree_exceptional_entry(page
)) {
5228 swp_entry_t swap
= radix_to_swp_entry(page
);
5229 if (do_swap_account
)
5231 page
= find_get_page(&swapper_space
, swap
.val
);
5237 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5238 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5240 struct page
*page
= NULL
;
5241 struct page_cgroup
*pc
;
5243 swp_entry_t ent
= { .val
= 0 };
5245 if (pte_present(ptent
))
5246 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5247 else if (is_swap_pte(ptent
))
5248 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5249 else if (pte_none(ptent
) || pte_file(ptent
))
5250 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5252 if (!page
&& !ent
.val
)
5255 pc
= lookup_page_cgroup(page
);
5257 * Do only loose check w/o page_cgroup lock.
5258 * mem_cgroup_move_account() checks the pc is valid or not under
5261 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5262 ret
= MC_TARGET_PAGE
;
5264 target
->page
= page
;
5266 if (!ret
|| !target
)
5269 /* There is a swap entry and a page doesn't exist or isn't charged */
5270 if (ent
.val
&& !ret
&&
5271 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5272 ret
= MC_TARGET_SWAP
;
5279 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5280 unsigned long addr
, unsigned long end
,
5281 struct mm_walk
*walk
)
5283 struct vm_area_struct
*vma
= walk
->private;
5287 split_huge_page_pmd(walk
->mm
, pmd
);
5289 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5290 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5291 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5292 mc
.precharge
++; /* increment precharge temporarily */
5293 pte_unmap_unlock(pte
- 1, ptl
);
5299 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5301 unsigned long precharge
;
5302 struct vm_area_struct
*vma
;
5304 down_read(&mm
->mmap_sem
);
5305 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5306 struct mm_walk mem_cgroup_count_precharge_walk
= {
5307 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5311 if (is_vm_hugetlb_page(vma
))
5313 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5314 &mem_cgroup_count_precharge_walk
);
5316 up_read(&mm
->mmap_sem
);
5318 precharge
= mc
.precharge
;
5324 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5326 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5328 VM_BUG_ON(mc
.moving_task
);
5329 mc
.moving_task
= current
;
5330 return mem_cgroup_do_precharge(precharge
);
5333 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5334 static void __mem_cgroup_clear_mc(void)
5336 struct mem_cgroup
*from
= mc
.from
;
5337 struct mem_cgroup
*to
= mc
.to
;
5339 /* we must uncharge all the leftover precharges from mc.to */
5341 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5345 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5346 * we must uncharge here.
5348 if (mc
.moved_charge
) {
5349 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5350 mc
.moved_charge
= 0;
5352 /* we must fixup refcnts and charges */
5353 if (mc
.moved_swap
) {
5354 /* uncharge swap account from the old cgroup */
5355 if (!mem_cgroup_is_root(mc
.from
))
5356 res_counter_uncharge(&mc
.from
->memsw
,
5357 PAGE_SIZE
* mc
.moved_swap
);
5358 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5360 if (!mem_cgroup_is_root(mc
.to
)) {
5362 * we charged both to->res and to->memsw, so we should
5365 res_counter_uncharge(&mc
.to
->res
,
5366 PAGE_SIZE
* mc
.moved_swap
);
5368 /* we've already done mem_cgroup_get(mc.to) */
5371 memcg_oom_recover(from
);
5372 memcg_oom_recover(to
);
5373 wake_up_all(&mc
.waitq
);
5376 static void mem_cgroup_clear_mc(void)
5378 struct mem_cgroup
*from
= mc
.from
;
5381 * we must clear moving_task before waking up waiters at the end of
5384 mc
.moving_task
= NULL
;
5385 __mem_cgroup_clear_mc();
5386 spin_lock(&mc
.lock
);
5389 spin_unlock(&mc
.lock
);
5390 mem_cgroup_end_move(from
);
5393 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5394 struct cgroup
*cgroup
,
5395 struct task_struct
*p
)
5398 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5400 if (memcg
->move_charge_at_immigrate
) {
5401 struct mm_struct
*mm
;
5402 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5404 VM_BUG_ON(from
== memcg
);
5406 mm
= get_task_mm(p
);
5409 /* We move charges only when we move a owner of the mm */
5410 if (mm
->owner
== p
) {
5413 VM_BUG_ON(mc
.precharge
);
5414 VM_BUG_ON(mc
.moved_charge
);
5415 VM_BUG_ON(mc
.moved_swap
);
5416 mem_cgroup_start_move(from
);
5417 spin_lock(&mc
.lock
);
5420 spin_unlock(&mc
.lock
);
5421 /* We set mc.moving_task later */
5423 ret
= mem_cgroup_precharge_mc(mm
);
5425 mem_cgroup_clear_mc();
5432 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5433 struct cgroup
*cgroup
,
5434 struct task_struct
*p
)
5436 mem_cgroup_clear_mc();
5439 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5440 unsigned long addr
, unsigned long end
,
5441 struct mm_walk
*walk
)
5444 struct vm_area_struct
*vma
= walk
->private;
5448 split_huge_page_pmd(walk
->mm
, pmd
);
5450 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5451 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5452 pte_t ptent
= *(pte
++);
5453 union mc_target target
;
5456 struct page_cgroup
*pc
;
5462 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5464 case MC_TARGET_PAGE
:
5466 if (isolate_lru_page(page
))
5468 pc
= lookup_page_cgroup(page
);
5469 if (!mem_cgroup_move_account(page
, 1, pc
,
5470 mc
.from
, mc
.to
, false)) {
5472 /* we uncharge from mc.from later. */
5475 putback_lru_page(page
);
5476 put
: /* is_target_pte_for_mc() gets the page */
5479 case MC_TARGET_SWAP
:
5481 if (!mem_cgroup_move_swap_account(ent
,
5482 mc
.from
, mc
.to
, false)) {
5484 /* we fixup refcnts and charges later. */
5492 pte_unmap_unlock(pte
- 1, ptl
);
5497 * We have consumed all precharges we got in can_attach().
5498 * We try charge one by one, but don't do any additional
5499 * charges to mc.to if we have failed in charge once in attach()
5502 ret
= mem_cgroup_do_precharge(1);
5510 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5512 struct vm_area_struct
*vma
;
5514 lru_add_drain_all();
5516 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5518 * Someone who are holding the mmap_sem might be waiting in
5519 * waitq. So we cancel all extra charges, wake up all waiters,
5520 * and retry. Because we cancel precharges, we might not be able
5521 * to move enough charges, but moving charge is a best-effort
5522 * feature anyway, so it wouldn't be a big problem.
5524 __mem_cgroup_clear_mc();
5528 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5530 struct mm_walk mem_cgroup_move_charge_walk
= {
5531 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5535 if (is_vm_hugetlb_page(vma
))
5537 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5538 &mem_cgroup_move_charge_walk
);
5541 * means we have consumed all precharges and failed in
5542 * doing additional charge. Just abandon here.
5546 up_read(&mm
->mmap_sem
);
5549 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5550 struct cgroup
*cont
,
5551 struct cgroup
*old_cont
,
5552 struct task_struct
*p
)
5554 struct mm_struct
*mm
= get_task_mm(p
);
5558 mem_cgroup_move_charge(mm
);
5563 mem_cgroup_clear_mc();
5565 #else /* !CONFIG_MMU */
5566 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5567 struct cgroup
*cgroup
,
5568 struct task_struct
*p
)
5572 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5573 struct cgroup
*cgroup
,
5574 struct task_struct
*p
)
5577 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5578 struct cgroup
*cont
,
5579 struct cgroup
*old_cont
,
5580 struct task_struct
*p
)
5585 struct cgroup_subsys mem_cgroup_subsys
= {
5587 .subsys_id
= mem_cgroup_subsys_id
,
5588 .create
= mem_cgroup_create
,
5589 .pre_destroy
= mem_cgroup_pre_destroy
,
5590 .destroy
= mem_cgroup_destroy
,
5591 .populate
= mem_cgroup_populate
,
5592 .can_attach
= mem_cgroup_can_attach
,
5593 .cancel_attach
= mem_cgroup_cancel_attach
,
5594 .attach
= mem_cgroup_move_task
,
5599 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5600 static int __init
enable_swap_account(char *s
)
5602 /* consider enabled if no parameter or 1 is given */
5603 if (!strcmp(s
, "1"))
5604 really_do_swap_account
= 1;
5605 else if (!strcmp(s
, "0"))
5606 really_do_swap_account
= 0;
5609 __setup("swapaccount=", enable_swap_account
);