2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
19 static const int cfq_quantum
= 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
21 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync
= HZ
/ 10;
25 static int cfq_slice_async
= HZ
/ 25;
26 static const int cfq_slice_async_rq
= 2;
27 static int cfq_slice_idle
= HZ
/ 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static struct kmem_cache
*cfq_pool
;
47 static struct kmem_cache
*cfq_ioc_pool
;
49 static DEFINE_PER_CPU(unsigned long, ioc_count
);
50 static struct completion
*ioc_gone
;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
73 request_queue_t
*queue
;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list
[CFQ_PRIO_LISTS
];
79 struct list_head busy_rr
;
80 struct list_head cur_rr
;
81 struct list_head idle_rr
;
82 unsigned int busy_queues
;
87 struct hlist_head
*cfq_hash
;
93 * idle window management
95 struct timer_list idle_slice_timer
;
96 struct work_struct unplug_work
;
98 struct cfq_queue
*active_queue
;
99 struct cfq_io_context
*active_cic
;
100 int cur_prio
, cur_end_prio
;
101 unsigned int dispatch_slice
;
103 struct timer_list idle_class_timer
;
105 sector_t last_sector
;
106 unsigned long last_end_request
;
109 * tunables, see top of file
111 unsigned int cfq_quantum
;
112 unsigned int cfq_fifo_expire
[2];
113 unsigned int cfq_back_penalty
;
114 unsigned int cfq_back_max
;
115 unsigned int cfq_slice
[2];
116 unsigned int cfq_slice_async_rq
;
117 unsigned int cfq_slice_idle
;
119 struct list_head cic_list
;
123 * Per process-grouping structure
126 /* reference count */
128 /* parent cfq_data */
129 struct cfq_data
*cfqd
;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash
;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list
;
136 /* sorted list of pending requests */
137 struct rb_root sort_list
;
138 /* if fifo isn't expired, next request to serve */
139 struct request
*next_rq
;
140 /* requests queued in sort_list */
142 /* currently allocated requests */
144 /* pending metadata requests */
146 /* fifo list of requests in sort_list */
147 struct list_head fifo
;
149 unsigned long slice_start
;
150 unsigned long slice_end
;
151 unsigned long slice_left
;
153 /* number of requests that are on the dispatch list */
156 /* io prio of this group */
157 unsigned short ioprio
, org_ioprio
;
158 unsigned short ioprio_class
, org_ioprio_class
;
160 /* various state flags, see below */
164 enum cfqq_state_flags
{
165 CFQ_CFQQ_FLAG_on_rr
= 0,
166 CFQ_CFQQ_FLAG_wait_request
,
167 CFQ_CFQQ_FLAG_must_alloc
,
168 CFQ_CFQQ_FLAG_must_alloc_slice
,
169 CFQ_CFQQ_FLAG_must_dispatch
,
170 CFQ_CFQQ_FLAG_fifo_expire
,
171 CFQ_CFQQ_FLAG_idle_window
,
172 CFQ_CFQQ_FLAG_prio_changed
,
173 CFQ_CFQQ_FLAG_queue_new
,
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
191 CFQ_CFQQ_FNS(wait_request
);
192 CFQ_CFQQ_FNS(must_alloc
);
193 CFQ_CFQQ_FNS(must_alloc_slice
);
194 CFQ_CFQQ_FNS(must_dispatch
);
195 CFQ_CFQQ_FNS(fifo_expire
);
196 CFQ_CFQQ_FNS(idle_window
);
197 CFQ_CFQQ_FNS(prio_changed
);
198 CFQ_CFQQ_FNS(queue_new
);
201 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t
*, struct request
*);
203 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
, gfp_t gfp_mask
);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
211 if (cfqd
->busy_queues
)
212 kblockd_schedule_work(&cfqd
->unplug_work
);
215 static int cfq_queue_empty(request_queue_t
*q
)
217 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
219 return !cfqd
->busy_queues
;
222 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
, int is_sync
)
225 * Use the per-process queue, for read requests and syncronous writes
227 if (!(rw
& REQ_RW
) || is_sync
)
230 return CFQ_KEY_ASYNC
;
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
238 static struct request
*
239 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
241 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
242 unsigned long back_max
;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
247 if (rq1
== NULL
|| rq1
== rq2
)
252 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
254 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
256 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
258 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
264 last
= cfqd
->last_sector
;
267 * by definition, 1KiB is 2 sectors
269 back_max
= cfqd
->cfq_back_max
* 2;
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
278 else if (s1
+ back_max
>= last
)
279 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
281 wrap
|= CFQ_RQ1_WRAP
;
285 else if (s2
+ back_max
>= last
)
286 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
288 wrap
|= CFQ_RQ2_WRAP
;
290 /* Found required data */
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
313 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
329 * would be nice to take fifo expire time into account as well
331 static struct request
*
332 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
333 struct request
*last
)
335 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
336 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
337 struct request
*next
= NULL
, *prev
= NULL
;
339 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
342 prev
= rb_entry_rq(rbprev
);
345 next
= rb_entry_rq(rbnext
);
347 rbnext
= rb_first(&cfqq
->sort_list
);
348 if (rbnext
&& rbnext
!= &last
->rb_node
)
349 next
= rb_entry_rq(rbnext
);
352 return cfq_choose_req(cfqd
, next
, prev
);
355 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
357 struct cfq_data
*cfqd
= cfqq
->cfqd
;
358 struct list_head
*list
;
360 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
362 list_del(&cfqq
->cfq_list
);
364 if (cfq_class_rt(cfqq
))
365 list
= &cfqd
->cur_rr
;
366 else if (cfq_class_idle(cfqq
))
367 list
= &cfqd
->idle_rr
;
370 * if cfqq has requests in flight, don't allow it to be
371 * found in cfq_set_active_queue before it has finished them.
372 * this is done to increase fairness between a process that
373 * has lots of io pending vs one that only generates one
374 * sporadically or synchronously
376 if (cfq_cfqq_dispatched(cfqq
))
377 list
= &cfqd
->busy_rr
;
379 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
383 * If this queue was preempted or is new (never been serviced), let
384 * it be added first for fairness but beind other new queues.
385 * Otherwise, just add to the back of the list.
387 if (preempted
|| cfq_cfqq_queue_new(cfqq
)) {
388 struct list_head
*n
= list
;
389 struct cfq_queue
*__cfqq
;
391 while (n
->next
!= list
) {
392 __cfqq
= list_entry_cfqq(n
->next
);
393 if (!cfq_cfqq_queue_new(__cfqq
))
402 list_add_tail(&cfqq
->cfq_list
, list
);
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
410 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
412 BUG_ON(cfq_cfqq_on_rr(cfqq
));
413 cfq_mark_cfqq_on_rr(cfqq
);
416 cfq_resort_rr_list(cfqq
, 0);
420 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
422 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
423 cfq_clear_cfqq_on_rr(cfqq
);
424 list_del_init(&cfqq
->cfq_list
);
426 BUG_ON(!cfqd
->busy_queues
);
431 * rb tree support functions
433 static inline void cfq_del_rq_rb(struct request
*rq
)
435 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
436 struct cfq_data
*cfqd
= cfqq
->cfqd
;
437 const int sync
= rq_is_sync(rq
);
439 BUG_ON(!cfqq
->queued
[sync
]);
440 cfqq
->queued
[sync
]--;
442 elv_rb_del(&cfqq
->sort_list
, rq
);
444 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
445 cfq_del_cfqq_rr(cfqd
, cfqq
);
448 static void cfq_add_rq_rb(struct request
*rq
)
450 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
451 struct cfq_data
*cfqd
= cfqq
->cfqd
;
452 struct request
*__alias
;
454 cfqq
->queued
[rq_is_sync(rq
)]++;
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
460 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
461 cfq_dispatch_insert(cfqd
->queue
, __alias
);
463 if (!cfq_cfqq_on_rr(cfqq
))
464 cfq_add_cfqq_rr(cfqd
, cfqq
);
468 cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
470 elv_rb_del(&cfqq
->sort_list
, rq
);
471 cfqq
->queued
[rq_is_sync(rq
)]--;
475 static struct request
*
476 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
478 struct task_struct
*tsk
= current
;
479 pid_t key
= cfq_queue_pid(tsk
, bio_data_dir(bio
), bio_sync(bio
));
480 struct cfq_queue
*cfqq
;
482 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
484 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
486 return elv_rb_find(&cfqq
->sort_list
, sector
);
492 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
494 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
496 cfqd
->rq_in_driver
++;
499 * If the depth is larger 1, it really could be queueing. But lets
500 * make the mark a little higher - idling could still be good for
501 * low queueing, and a low queueing number could also just indicate
502 * a SCSI mid layer like behaviour where limit+1 is often seen.
504 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
508 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
510 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
512 WARN_ON(!cfqd
->rq_in_driver
);
513 cfqd
->rq_in_driver
--;
516 static void cfq_remove_request(struct request
*rq
)
518 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
520 if (cfqq
->next_rq
== rq
)
521 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
523 list_del_init(&rq
->queuelist
);
526 if (rq_is_meta(rq
)) {
527 WARN_ON(!cfqq
->meta_pending
);
528 cfqq
->meta_pending
--;
533 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
535 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
536 struct request
*__rq
;
538 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
539 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
541 return ELEVATOR_FRONT_MERGE
;
544 return ELEVATOR_NO_MERGE
;
547 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
,
550 if (type
== ELEVATOR_FRONT_MERGE
) {
551 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
553 cfq_reposition_rq_rb(cfqq
, req
);
558 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
559 struct request
*next
)
562 * reposition in fifo if next is older than rq
564 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
565 time_before(next
->start_time
, rq
->start_time
))
566 list_move(&rq
->queuelist
, &next
->queuelist
);
568 cfq_remove_request(next
);
572 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
576 * stop potential idle class queues waiting service
578 del_timer(&cfqd
->idle_class_timer
);
580 cfqq
->slice_start
= jiffies
;
582 cfqq
->slice_left
= 0;
583 cfq_clear_cfqq_must_alloc_slice(cfqq
);
584 cfq_clear_cfqq_fifo_expire(cfqq
);
587 cfqd
->active_queue
= cfqq
;
591 * current cfqq expired its slice (or was too idle), select new one
594 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
597 unsigned long now
= jiffies
;
599 if (cfq_cfqq_wait_request(cfqq
))
600 del_timer(&cfqd
->idle_slice_timer
);
602 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
))
603 cfq_schedule_dispatch(cfqd
);
605 cfq_clear_cfqq_must_dispatch(cfqq
);
606 cfq_clear_cfqq_wait_request(cfqq
);
607 cfq_clear_cfqq_queue_new(cfqq
);
610 * store what was left of this slice, if the queue idled out
613 if (time_after(cfqq
->slice_end
, now
))
614 cfqq
->slice_left
= cfqq
->slice_end
- now
;
616 cfqq
->slice_left
= 0;
618 if (cfq_cfqq_on_rr(cfqq
))
619 cfq_resort_rr_list(cfqq
, preempted
);
621 if (cfqq
== cfqd
->active_queue
)
622 cfqd
->active_queue
= NULL
;
624 if (cfqd
->active_cic
) {
625 put_io_context(cfqd
->active_cic
->ioc
);
626 cfqd
->active_cic
= NULL
;
629 cfqd
->dispatch_slice
= 0;
632 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
634 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
637 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
650 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
659 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
660 if (!list_empty(&cfqd
->rr_list
[p
])) {
669 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
670 cfqd
->cur_end_prio
= 0;
677 if (unlikely(prio
== -1))
680 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
682 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
684 cfqd
->cur_prio
= prio
+ 1;
685 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
686 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
689 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
691 cfqd
->cur_end_prio
= 0;
697 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
699 struct cfq_queue
*cfqq
= NULL
;
701 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1) {
703 * if current list is non-empty, grab first entry. if it is
704 * empty, get next prio level and grab first entry then if any
707 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
708 } else if (!list_empty(&cfqd
->busy_rr
)) {
710 * If no new queues are available, check if the busy list has
711 * some before falling back to idle io.
713 cfqq
= list_entry_cfqq(cfqd
->busy_rr
.next
);
714 } else if (!list_empty(&cfqd
->idle_rr
)) {
716 * if we have idle queues and no rt or be queues had pending
717 * requests, either allow immediate service if the grace period
718 * has passed or arm the idle grace timer
720 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
722 if (time_after_eq(jiffies
, end
))
723 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
725 mod_timer(&cfqd
->idle_class_timer
, end
);
728 __cfq_set_active_queue(cfqd
, cfqq
);
732 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
734 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
737 struct cfq_io_context
*cic
;
740 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
741 WARN_ON(cfqq
!= cfqd
->active_queue
);
744 * idle is disabled, either manually or by past process history
746 if (!cfqd
->cfq_slice_idle
)
748 if (!cfq_cfqq_idle_window(cfqq
))
751 * task has exited, don't wait
753 cic
= cfqd
->active_cic
;
754 if (!cic
|| !cic
->ioc
->task
)
757 cfq_mark_cfqq_must_dispatch(cfqq
);
758 cfq_mark_cfqq_wait_request(cfqq
);
760 sl
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
763 * we don't want to idle for seeks, but we do want to allow
764 * fair distribution of slice time for a process doing back-to-back
765 * seeks. so allow a little bit of time for him to submit a new rq
767 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
768 sl
= min(sl
, msecs_to_jiffies(2));
770 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
774 static void cfq_dispatch_insert(request_queue_t
*q
, struct request
*rq
)
776 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
777 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
779 cfq_remove_request(rq
);
780 cfqq
->on_dispatch
[rq_is_sync(rq
)]++;
781 elv_dispatch_sort(q
, rq
);
783 rq
= list_entry(q
->queue_head
.prev
, struct request
, queuelist
);
784 cfqd
->last_sector
= rq
->sector
+ rq
->nr_sectors
;
788 * return expired entry, or NULL to just start from scratch in rbtree
790 static inline struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
792 struct cfq_data
*cfqd
= cfqq
->cfqd
;
796 if (cfq_cfqq_fifo_expire(cfqq
))
798 if (list_empty(&cfqq
->fifo
))
801 fifo
= cfq_cfqq_class_sync(cfqq
);
802 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
804 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
805 cfq_mark_cfqq_fifo_expire(cfqq
);
813 * Scale schedule slice based on io priority. Use the sync time slice only
814 * if a queue is marked sync and has sync io queued. A sync queue with async
815 * io only, should not get full sync slice length.
818 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
820 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
822 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
824 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
828 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
830 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
834 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
836 const int base_rq
= cfqd
->cfq_slice_async_rq
;
838 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
840 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
844 * get next queue for service
846 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
848 unsigned long now
= jiffies
;
849 struct cfq_queue
*cfqq
;
851 cfqq
= cfqd
->active_queue
;
858 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
862 * if queue has requests, dispatch one. if not, check if
863 * enough slice is left to wait for one
865 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
867 else if (cfq_cfqq_dispatched(cfqq
)) {
870 } else if (cfq_cfqq_class_sync(cfqq
)) {
871 if (cfq_arm_slice_timer(cfqd
, cfqq
))
876 cfq_slice_expired(cfqd
, 0);
878 cfqq
= cfq_set_active_queue(cfqd
);
884 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
889 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
895 * follow expired path, else get first next available
897 if ((rq
= cfq_check_fifo(cfqq
)) == NULL
)
901 * finally, insert request into driver dispatch list
903 cfq_dispatch_insert(cfqd
->queue
, rq
);
905 cfqd
->dispatch_slice
++;
908 if (!cfqd
->active_cic
) {
909 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
910 cfqd
->active_cic
= RQ_CIC(rq
);
913 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
916 } while (dispatched
< max_dispatch
);
919 * if slice end isn't set yet, set it.
921 if (!cfqq
->slice_end
)
922 cfq_set_prio_slice(cfqd
, cfqq
);
925 * expire an async queue immediately if it has used up its slice. idle
926 * queue always expire after 1 dispatch round.
928 if ((!cfq_cfqq_sync(cfqq
) &&
929 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
930 cfq_class_idle(cfqq
) ||
931 !cfq_cfqq_idle_window(cfqq
))
932 cfq_slice_expired(cfqd
, 0);
938 cfq_forced_dispatch_cfqqs(struct list_head
*list
)
940 struct cfq_queue
*cfqq
, *next
;
944 list_for_each_entry_safe(cfqq
, next
, list
, cfq_list
) {
945 while (cfqq
->next_rq
) {
946 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
949 BUG_ON(!list_empty(&cfqq
->fifo
));
956 cfq_forced_dispatch(struct cfq_data
*cfqd
)
958 int i
, dispatched
= 0;
960 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
961 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->rr_list
[i
]);
963 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->busy_rr
);
964 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->cur_rr
);
965 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->idle_rr
);
967 cfq_slice_expired(cfqd
, 0);
969 BUG_ON(cfqd
->busy_queues
);
975 cfq_dispatch_requests(request_queue_t
*q
, int force
)
977 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
978 struct cfq_queue
*cfqq
, *prev_cfqq
;
981 if (!cfqd
->busy_queues
)
985 return cfq_forced_dispatch(cfqd
);
989 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
993 * Don't repeat dispatch from the previous queue.
995 if (prev_cfqq
== cfqq
)
998 cfq_clear_cfqq_must_dispatch(cfqq
);
999 cfq_clear_cfqq_wait_request(cfqq
);
1000 del_timer(&cfqd
->idle_slice_timer
);
1002 max_dispatch
= cfqd
->cfq_quantum
;
1003 if (cfq_class_idle(cfqq
))
1006 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1009 * If the dispatch cfqq has idling enabled and is still
1010 * the active queue, break out.
1012 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->active_queue
)
1022 * task holds one reference to the queue, dropped when task exits. each rq
1023 * in-flight on this queue also holds a reference, dropped when rq is freed.
1025 * queue lock must be held here.
1027 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1029 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1031 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1033 if (!atomic_dec_and_test(&cfqq
->ref
))
1036 BUG_ON(rb_first(&cfqq
->sort_list
));
1037 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1038 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1040 if (unlikely(cfqd
->active_queue
== cfqq
))
1041 __cfq_slice_expired(cfqd
, cfqq
, 0);
1044 * it's on the empty list and still hashed
1046 list_del(&cfqq
->cfq_list
);
1047 hlist_del(&cfqq
->cfq_hash
);
1048 kmem_cache_free(cfq_pool
, cfqq
);
1051 static struct cfq_queue
*
1052 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1055 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1056 struct hlist_node
*entry
;
1057 struct cfq_queue
*__cfqq
;
1059 hlist_for_each_entry(__cfqq
, entry
, hash_list
, cfq_hash
) {
1060 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->org_ioprio_class
, __cfqq
->org_ioprio
);
1062 if (__cfqq
->key
== key
&& (__p
== prio
|| !prio
))
1069 static struct cfq_queue
*
1070 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1072 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1075 static void cfq_free_io_context(struct io_context
*ioc
)
1077 struct cfq_io_context
*__cic
;
1081 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1082 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1083 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1084 kmem_cache_free(cfq_ioc_pool
, __cic
);
1088 elv_ioc_count_mod(ioc_count
, -freed
);
1090 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1094 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1096 if (unlikely(cfqq
== cfqd
->active_queue
))
1097 __cfq_slice_expired(cfqd
, cfqq
, 0);
1099 cfq_put_queue(cfqq
);
1102 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1103 struct cfq_io_context
*cic
)
1105 list_del_init(&cic
->queue_list
);
1109 if (cic
->cfqq
[ASYNC
]) {
1110 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1111 cic
->cfqq
[ASYNC
] = NULL
;
1114 if (cic
->cfqq
[SYNC
]) {
1115 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1116 cic
->cfqq
[SYNC
] = NULL
;
1122 * Called with interrupts disabled
1124 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1126 struct cfq_data
*cfqd
= cic
->key
;
1129 request_queue_t
*q
= cfqd
->queue
;
1131 spin_lock_irq(q
->queue_lock
);
1132 __cfq_exit_single_io_context(cfqd
, cic
);
1133 spin_unlock_irq(q
->queue_lock
);
1137 static void cfq_exit_io_context(struct io_context
*ioc
)
1139 struct cfq_io_context
*__cic
;
1143 * put the reference this task is holding to the various queues
1146 n
= rb_first(&ioc
->cic_root
);
1148 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1150 cfq_exit_single_io_context(__cic
);
1155 static struct cfq_io_context
*
1156 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1158 struct cfq_io_context
*cic
;
1160 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
, cfqd
->queue
->node
);
1162 memset(cic
, 0, sizeof(*cic
));
1163 cic
->last_end_request
= jiffies
;
1164 INIT_LIST_HEAD(&cic
->queue_list
);
1165 cic
->dtor
= cfq_free_io_context
;
1166 cic
->exit
= cfq_exit_io_context
;
1167 elv_ioc_count_inc(ioc_count
);
1173 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1175 struct task_struct
*tsk
= current
;
1178 if (!cfq_cfqq_prio_changed(cfqq
))
1181 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1182 switch (ioprio_class
) {
1184 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1185 case IOPRIO_CLASS_NONE
:
1187 * no prio set, place us in the middle of the BE classes
1189 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1190 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1192 case IOPRIO_CLASS_RT
:
1193 cfqq
->ioprio
= task_ioprio(tsk
);
1194 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1196 case IOPRIO_CLASS_BE
:
1197 cfqq
->ioprio
= task_ioprio(tsk
);
1198 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1200 case IOPRIO_CLASS_IDLE
:
1201 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1203 cfq_clear_cfqq_idle_window(cfqq
);
1208 * keep track of original prio settings in case we have to temporarily
1209 * elevate the priority of this queue
1211 cfqq
->org_ioprio
= cfqq
->ioprio
;
1212 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1214 if (cfq_cfqq_on_rr(cfqq
))
1215 cfq_resort_rr_list(cfqq
, 0);
1217 cfq_clear_cfqq_prio_changed(cfqq
);
1220 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1222 struct cfq_data
*cfqd
= cic
->key
;
1223 struct cfq_queue
*cfqq
;
1224 unsigned long flags
;
1226 if (unlikely(!cfqd
))
1229 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1231 cfqq
= cic
->cfqq
[ASYNC
];
1233 struct cfq_queue
*new_cfqq
;
1234 new_cfqq
= cfq_get_queue(cfqd
, CFQ_KEY_ASYNC
, cic
->ioc
->task
,
1237 cic
->cfqq
[ASYNC
] = new_cfqq
;
1238 cfq_put_queue(cfqq
);
1242 cfqq
= cic
->cfqq
[SYNC
];
1244 cfq_mark_cfqq_prio_changed(cfqq
);
1246 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1249 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1251 struct cfq_io_context
*cic
;
1254 ioc
->ioprio_changed
= 0;
1256 n
= rb_first(&ioc
->cic_root
);
1258 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1260 changed_ioprio(cic
);
1265 static struct cfq_queue
*
1266 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
,
1269 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1270 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1271 unsigned short ioprio
;
1274 ioprio
= tsk
->ioprio
;
1275 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1281 } else if (gfp_mask
& __GFP_WAIT
) {
1283 * Inform the allocator of the fact that we will
1284 * just repeat this allocation if it fails, to allow
1285 * the allocator to do whatever it needs to attempt to
1288 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1289 new_cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
|__GFP_NOFAIL
, cfqd
->queue
->node
);
1290 spin_lock_irq(cfqd
->queue
->queue_lock
);
1293 cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
, cfqd
->queue
->node
);
1298 memset(cfqq
, 0, sizeof(*cfqq
));
1300 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1301 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1302 INIT_LIST_HEAD(&cfqq
->fifo
);
1305 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1306 atomic_set(&cfqq
->ref
, 0);
1309 * set ->slice_left to allow preemption for a new process
1311 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1312 cfq_mark_cfqq_idle_window(cfqq
);
1313 cfq_mark_cfqq_prio_changed(cfqq
);
1314 cfq_mark_cfqq_queue_new(cfqq
);
1315 cfq_init_prio_data(cfqq
);
1319 kmem_cache_free(cfq_pool
, new_cfqq
);
1321 atomic_inc(&cfqq
->ref
);
1323 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1328 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1330 WARN_ON(!list_empty(&cic
->queue_list
));
1331 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1332 kmem_cache_free(cfq_ioc_pool
, cic
);
1333 elv_ioc_count_dec(ioc_count
);
1336 static struct cfq_io_context
*
1337 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1340 struct cfq_io_context
*cic
;
1341 void *k
, *key
= cfqd
;
1344 n
= ioc
->cic_root
.rb_node
;
1346 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1347 /* ->key must be copied to avoid race with cfq_exit_queue() */
1350 cfq_drop_dead_cic(ioc
, cic
);
1366 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1367 struct cfq_io_context
*cic
)
1370 struct rb_node
*parent
;
1371 struct cfq_io_context
*__cic
;
1372 unsigned long flags
;
1380 p
= &ioc
->cic_root
.rb_node
;
1383 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1384 /* ->key must be copied to avoid race with cfq_exit_queue() */
1387 cfq_drop_dead_cic(ioc
, __cic
);
1393 else if (cic
->key
> k
)
1394 p
= &(*p
)->rb_right
;
1399 rb_link_node(&cic
->rb_node
, parent
, p
);
1400 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1402 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1403 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1404 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1408 * Setup general io context and cfq io context. There can be several cfq
1409 * io contexts per general io context, if this process is doing io to more
1410 * than one device managed by cfq.
1412 static struct cfq_io_context
*
1413 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1415 struct io_context
*ioc
= NULL
;
1416 struct cfq_io_context
*cic
;
1418 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1420 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1424 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1428 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1432 cfq_cic_link(cfqd
, ioc
, cic
);
1434 smp_read_barrier_depends();
1435 if (unlikely(ioc
->ioprio_changed
))
1436 cfq_ioc_set_ioprio(ioc
);
1440 put_io_context(ioc
);
1445 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1447 unsigned long elapsed
, ttime
;
1450 * if this context already has stuff queued, thinktime is from
1451 * last queue not last end
1454 if (time_after(cic
->last_end_request
, cic
->last_queue
))
1455 elapsed
= jiffies
- cic
->last_end_request
;
1457 elapsed
= jiffies
- cic
->last_queue
;
1459 elapsed
= jiffies
- cic
->last_end_request
;
1462 ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1464 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1465 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1466 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1470 cfq_update_io_seektime(struct cfq_io_context
*cic
, struct request
*rq
)
1475 if (cic
->last_request_pos
< rq
->sector
)
1476 sdist
= rq
->sector
- cic
->last_request_pos
;
1478 sdist
= cic
->last_request_pos
- rq
->sector
;
1481 * Don't allow the seek distance to get too large from the
1482 * odd fragment, pagein, etc
1484 if (cic
->seek_samples
<= 60) /* second&third seek */
1485 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1487 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1489 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1490 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1491 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1492 do_div(total
, cic
->seek_samples
);
1493 cic
->seek_mean
= (sector_t
)total
;
1497 * Disable idle window if the process thinks too long or seeks so much that
1501 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1502 struct cfq_io_context
*cic
)
1504 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1506 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1507 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1509 else if (sample_valid(cic
->ttime_samples
)) {
1510 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1517 cfq_mark_cfqq_idle_window(cfqq
);
1519 cfq_clear_cfqq_idle_window(cfqq
);
1524 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1525 * no or if we aren't sure, a 1 will cause a preempt.
1528 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1531 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1533 if (cfq_class_idle(new_cfqq
))
1539 if (cfq_class_idle(cfqq
))
1541 if (!cfq_cfqq_wait_request(new_cfqq
))
1544 * if it doesn't have slice left, forget it
1546 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1549 * if the new request is sync, but the currently running queue is
1550 * not, let the sync request have priority.
1552 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1555 * So both queues are sync. Let the new request get disk time if
1556 * it's a metadata request and the current queue is doing regular IO.
1558 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1565 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1566 * let it have half of its nominal slice.
1568 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1570 cfq_slice_expired(cfqd
, 1);
1572 if (!cfqq
->slice_left
)
1573 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1576 * Put the new queue at the front of the of the current list,
1577 * so we know that it will be selected next.
1579 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1580 list_move(&cfqq
->cfq_list
, &cfqd
->cur_rr
);
1582 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1586 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1587 * something we should do about it
1590 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1593 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1596 cfqq
->meta_pending
++;
1599 * check if this request is a better next-serve candidate)) {
1601 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
1602 BUG_ON(!cfqq
->next_rq
);
1605 * we never wait for an async request and we don't allow preemption
1606 * of an async request. so just return early
1608 if (!rq_is_sync(rq
)) {
1610 * sync process issued an async request, if it's waiting
1611 * then expire it and kick rq handling.
1613 if (cic
== cfqd
->active_cic
&&
1614 del_timer(&cfqd
->idle_slice_timer
)) {
1615 cfq_slice_expired(cfqd
, 0);
1616 blk_start_queueing(cfqd
->queue
);
1621 cfq_update_io_thinktime(cfqd
, cic
);
1622 cfq_update_io_seektime(cic
, rq
);
1623 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1625 cic
->last_queue
= jiffies
;
1626 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1628 if (cfqq
== cfqd
->active_queue
) {
1630 * if we are waiting for a request for this queue, let it rip
1631 * immediately and flag that we must not expire this queue
1634 if (cfq_cfqq_wait_request(cfqq
)) {
1635 cfq_mark_cfqq_must_dispatch(cfqq
);
1636 del_timer(&cfqd
->idle_slice_timer
);
1637 blk_start_queueing(cfqd
->queue
);
1639 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1641 * not the active queue - expire current slice if it is
1642 * idle and has expired it's mean thinktime or this new queue
1643 * has some old slice time left and is of higher priority
1645 cfq_preempt_queue(cfqd
, cfqq
);
1646 cfq_mark_cfqq_must_dispatch(cfqq
);
1647 blk_start_queueing(cfqd
->queue
);
1651 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1653 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1654 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1656 cfq_init_prio_data(cfqq
);
1660 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1662 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1665 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1667 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1668 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1669 const int sync
= rq_is_sync(rq
);
1674 WARN_ON(!cfqd
->rq_in_driver
);
1675 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1676 cfqd
->rq_in_driver
--;
1677 cfqq
->on_dispatch
[sync
]--;
1679 if (!cfq_class_idle(cfqq
))
1680 cfqd
->last_end_request
= now
;
1682 if (!cfq_cfqq_dispatched(cfqq
) && cfq_cfqq_on_rr(cfqq
))
1683 cfq_resort_rr_list(cfqq
, 0);
1686 RQ_CIC(rq
)->last_end_request
= now
;
1689 * If this is the active queue, check if it needs to be expired,
1690 * or if we want to idle in case it has no pending requests.
1692 if (cfqd
->active_queue
== cfqq
) {
1693 if (time_after(now
, cfqq
->slice_end
))
1694 cfq_slice_expired(cfqd
, 0);
1695 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1696 if (!cfq_arm_slice_timer(cfqd
, cfqq
))
1697 cfq_schedule_dispatch(cfqd
);
1703 * we temporarily boost lower priority queues if they are holding fs exclusive
1704 * resources. they are boosted to normal prio (CLASS_BE/4)
1706 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1708 const int ioprio_class
= cfqq
->ioprio_class
;
1709 const int ioprio
= cfqq
->ioprio
;
1711 if (has_fs_excl()) {
1713 * boost idle prio on transactions that would lock out other
1714 * users of the filesystem
1716 if (cfq_class_idle(cfqq
))
1717 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1718 if (cfqq
->ioprio
> IOPRIO_NORM
)
1719 cfqq
->ioprio
= IOPRIO_NORM
;
1722 * check if we need to unboost the queue
1724 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1725 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1726 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1727 cfqq
->ioprio
= cfqq
->org_ioprio
;
1731 * refile between round-robin lists if we moved the priority class
1733 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
) &&
1734 cfq_cfqq_on_rr(cfqq
))
1735 cfq_resort_rr_list(cfqq
, 0);
1738 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1740 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1741 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1742 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1743 return ELV_MQUEUE_MUST
;
1746 return ELV_MQUEUE_MAY
;
1749 static int cfq_may_queue(request_queue_t
*q
, int rw
)
1751 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1752 struct task_struct
*tsk
= current
;
1753 struct cfq_queue
*cfqq
;
1756 key
= cfq_queue_pid(tsk
, rw
, rw
& REQ_RW_SYNC
);
1759 * don't force setup of a queue from here, as a call to may_queue
1760 * does not necessarily imply that a request actually will be queued.
1761 * so just lookup a possibly existing queue, or return 'may queue'
1764 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
1766 cfq_init_prio_data(cfqq
);
1767 cfq_prio_boost(cfqq
);
1769 return __cfq_may_queue(cfqq
);
1772 return ELV_MQUEUE_MAY
;
1776 * queue lock held here
1778 static void cfq_put_request(struct request
*rq
)
1780 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1783 const int rw
= rq_data_dir(rq
);
1785 BUG_ON(!cfqq
->allocated
[rw
]);
1786 cfqq
->allocated
[rw
]--;
1788 put_io_context(RQ_CIC(rq
)->ioc
);
1790 rq
->elevator_private
= NULL
;
1791 rq
->elevator_private2
= NULL
;
1793 cfq_put_queue(cfqq
);
1798 * Allocate cfq data structures associated with this request.
1801 cfq_set_request(request_queue_t
*q
, struct request
*rq
, gfp_t gfp_mask
)
1803 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1804 struct task_struct
*tsk
= current
;
1805 struct cfq_io_context
*cic
;
1806 const int rw
= rq_data_dir(rq
);
1807 const int is_sync
= rq_is_sync(rq
);
1808 pid_t key
= cfq_queue_pid(tsk
, rw
, is_sync
);
1809 struct cfq_queue
*cfqq
;
1810 unsigned long flags
;
1812 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1814 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
1816 spin_lock_irqsave(q
->queue_lock
, flags
);
1821 if (!cic
->cfqq
[is_sync
]) {
1822 cfqq
= cfq_get_queue(cfqd
, key
, tsk
, gfp_mask
);
1826 cic
->cfqq
[is_sync
] = cfqq
;
1828 cfqq
= cic
->cfqq
[is_sync
];
1830 cfqq
->allocated
[rw
]++;
1831 cfq_clear_cfqq_must_alloc(cfqq
);
1832 atomic_inc(&cfqq
->ref
);
1834 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1836 rq
->elevator_private
= cic
;
1837 rq
->elevator_private2
= cfqq
;
1842 put_io_context(cic
->ioc
);
1844 cfq_schedule_dispatch(cfqd
);
1845 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1849 static void cfq_kick_queue(struct work_struct
*work
)
1851 struct cfq_data
*cfqd
=
1852 container_of(work
, struct cfq_data
, unplug_work
);
1853 request_queue_t
*q
= cfqd
->queue
;
1854 unsigned long flags
;
1856 spin_lock_irqsave(q
->queue_lock
, flags
);
1857 blk_start_queueing(q
);
1858 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1862 * Timer running if the active_queue is currently idling inside its time slice
1864 static void cfq_idle_slice_timer(unsigned long data
)
1866 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1867 struct cfq_queue
*cfqq
;
1868 unsigned long flags
;
1870 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1872 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
1873 unsigned long now
= jiffies
;
1878 if (time_after(now
, cfqq
->slice_end
))
1882 * only expire and reinvoke request handler, if there are
1883 * other queues with pending requests
1885 if (!cfqd
->busy_queues
)
1889 * not expired and it has a request pending, let it dispatch
1891 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1892 cfq_mark_cfqq_must_dispatch(cfqq
);
1897 cfq_slice_expired(cfqd
, 0);
1899 cfq_schedule_dispatch(cfqd
);
1901 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1905 * Timer running if an idle class queue is waiting for service
1907 static void cfq_idle_class_timer(unsigned long data
)
1909 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1910 unsigned long flags
, end
;
1912 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1915 * race with a non-idle queue, reset timer
1917 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
1918 if (!time_after_eq(jiffies
, end
))
1919 mod_timer(&cfqd
->idle_class_timer
, end
);
1921 cfq_schedule_dispatch(cfqd
);
1923 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1926 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
1928 del_timer_sync(&cfqd
->idle_slice_timer
);
1929 del_timer_sync(&cfqd
->idle_class_timer
);
1930 blk_sync_queue(cfqd
->queue
);
1933 static void cfq_exit_queue(elevator_t
*e
)
1935 struct cfq_data
*cfqd
= e
->elevator_data
;
1936 request_queue_t
*q
= cfqd
->queue
;
1938 cfq_shutdown_timer_wq(cfqd
);
1940 spin_lock_irq(q
->queue_lock
);
1942 if (cfqd
->active_queue
)
1943 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
1945 while (!list_empty(&cfqd
->cic_list
)) {
1946 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
1947 struct cfq_io_context
,
1950 __cfq_exit_single_io_context(cfqd
, cic
);
1953 spin_unlock_irq(q
->queue_lock
);
1955 cfq_shutdown_timer_wq(cfqd
);
1957 kfree(cfqd
->cfq_hash
);
1961 static void *cfq_init_queue(request_queue_t
*q
)
1963 struct cfq_data
*cfqd
;
1966 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
1970 memset(cfqd
, 0, sizeof(*cfqd
));
1972 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
1973 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
1975 INIT_LIST_HEAD(&cfqd
->busy_rr
);
1976 INIT_LIST_HEAD(&cfqd
->cur_rr
);
1977 INIT_LIST_HEAD(&cfqd
->idle_rr
);
1978 INIT_LIST_HEAD(&cfqd
->cic_list
);
1980 cfqd
->cfq_hash
= kmalloc_node(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
, q
->node
);
1981 if (!cfqd
->cfq_hash
)
1984 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
1985 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
1989 init_timer(&cfqd
->idle_slice_timer
);
1990 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
1991 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
1993 init_timer(&cfqd
->idle_class_timer
);
1994 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
1995 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
1997 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
1999 cfqd
->cfq_quantum
= cfq_quantum
;
2000 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2001 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2002 cfqd
->cfq_back_max
= cfq_back_max
;
2003 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2004 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2005 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2006 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2007 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2015 static void cfq_slab_kill(void)
2018 kmem_cache_destroy(cfq_pool
);
2020 kmem_cache_destroy(cfq_ioc_pool
);
2023 static int __init
cfq_slab_setup(void)
2025 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2030 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2031 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2042 * sysfs parts below -->
2046 cfq_var_show(unsigned int var
, char *page
)
2048 return sprintf(page
, "%d\n", var
);
2052 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2054 char *p
= (char *) page
;
2056 *var
= simple_strtoul(p
, &p
, 10);
2060 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2061 static ssize_t __FUNC(elevator_t *e, char *page) \
2063 struct cfq_data *cfqd = e->elevator_data; \
2064 unsigned int __data = __VAR; \
2066 __data = jiffies_to_msecs(__data); \
2067 return cfq_var_show(__data, (page)); \
2069 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2070 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2071 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2072 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2073 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2074 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2075 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2076 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2077 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2078 #undef SHOW_FUNCTION
2080 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2081 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2083 struct cfq_data *cfqd = e->elevator_data; \
2084 unsigned int __data; \
2085 int ret = cfq_var_store(&__data, (page), count); \
2086 if (__data < (MIN)) \
2088 else if (__data > (MAX)) \
2091 *(__PTR) = msecs_to_jiffies(__data); \
2093 *(__PTR) = __data; \
2096 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2097 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2098 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2099 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2100 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2101 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2102 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2103 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2104 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2105 #undef STORE_FUNCTION
2107 #define CFQ_ATTR(name) \
2108 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2110 static struct elv_fs_entry cfq_attrs
[] = {
2112 CFQ_ATTR(fifo_expire_sync
),
2113 CFQ_ATTR(fifo_expire_async
),
2114 CFQ_ATTR(back_seek_max
),
2115 CFQ_ATTR(back_seek_penalty
),
2116 CFQ_ATTR(slice_sync
),
2117 CFQ_ATTR(slice_async
),
2118 CFQ_ATTR(slice_async_rq
),
2119 CFQ_ATTR(slice_idle
),
2123 static struct elevator_type iosched_cfq
= {
2125 .elevator_merge_fn
= cfq_merge
,
2126 .elevator_merged_fn
= cfq_merged_request
,
2127 .elevator_merge_req_fn
= cfq_merged_requests
,
2128 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2129 .elevator_add_req_fn
= cfq_insert_request
,
2130 .elevator_activate_req_fn
= cfq_activate_request
,
2131 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2132 .elevator_queue_empty_fn
= cfq_queue_empty
,
2133 .elevator_completed_req_fn
= cfq_completed_request
,
2134 .elevator_former_req_fn
= elv_rb_former_request
,
2135 .elevator_latter_req_fn
= elv_rb_latter_request
,
2136 .elevator_set_req_fn
= cfq_set_request
,
2137 .elevator_put_req_fn
= cfq_put_request
,
2138 .elevator_may_queue_fn
= cfq_may_queue
,
2139 .elevator_init_fn
= cfq_init_queue
,
2140 .elevator_exit_fn
= cfq_exit_queue
,
2141 .trim
= cfq_free_io_context
,
2143 .elevator_attrs
= cfq_attrs
,
2144 .elevator_name
= "cfq",
2145 .elevator_owner
= THIS_MODULE
,
2148 static int __init
cfq_init(void)
2153 * could be 0 on HZ < 1000 setups
2155 if (!cfq_slice_async
)
2156 cfq_slice_async
= 1;
2157 if (!cfq_slice_idle
)
2160 if (cfq_slab_setup())
2163 ret
= elv_register(&iosched_cfq
);
2170 static void __exit
cfq_exit(void)
2172 DECLARE_COMPLETION_ONSTACK(all_gone
);
2173 elv_unregister(&iosched_cfq
);
2174 ioc_gone
= &all_gone
;
2175 /* ioc_gone's update must be visible before reading ioc_count */
2177 if (elv_ioc_count_read(ioc_count
))
2178 wait_for_completion(ioc_gone
);
2183 module_init(cfq_init
);
2184 module_exit(cfq_exit
);
2186 MODULE_AUTHOR("Jens Axboe");
2187 MODULE_LICENSE("GPL");
2188 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");