powerpc: scan device tree for gigantic pages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / hugetlbpage.c
blobe2a650a9e533494b9686372baa21f82bfc0e297a
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
27 #define HPAGE_SHIFT_64K 16
28 #define HPAGE_SHIFT_16M 24
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32 #define MAX_NUMBER_GPAGES 1024
34 /* Tracks the 16G pages after the device tree is scanned and before the
35 * huge_boot_pages list is ready. */
36 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
37 static unsigned nr_gpages;
39 unsigned int hugepte_shift;
40 #define PTRS_PER_HUGEPTE (1 << hugepte_shift)
41 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << hugepte_shift)
43 #define HUGEPD_SHIFT (HPAGE_SHIFT + hugepte_shift)
44 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
45 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
47 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
49 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
50 * will choke on pointers to hugepte tables, which is handy for
51 * catching screwups early. */
52 #define HUGEPD_OK 0x1
54 typedef struct { unsigned long pd; } hugepd_t;
56 #define hugepd_none(hpd) ((hpd).pd == 0)
58 static inline pte_t *hugepd_page(hugepd_t hpd)
60 BUG_ON(!(hpd.pd & HUGEPD_OK));
61 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
64 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
66 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
67 pte_t *dir = hugepd_page(*hpdp);
69 return dir + idx;
72 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
73 unsigned long address)
75 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
76 GFP_KERNEL|__GFP_REPEAT);
78 if (! new)
79 return -ENOMEM;
81 spin_lock(&mm->page_table_lock);
82 if (!hugepd_none(*hpdp))
83 kmem_cache_free(huge_pgtable_cache, new);
84 else
85 hpdp->pd = (unsigned long)new | HUGEPD_OK;
86 spin_unlock(&mm->page_table_lock);
87 return 0;
90 /* Base page size affects how we walk hugetlb page tables */
91 #ifdef CONFIG_PPC_64K_PAGES
92 #define hpmd_offset(pud, addr) pmd_offset(pud, addr)
93 #define hpmd_alloc(mm, pud, addr) pmd_alloc(mm, pud, addr)
94 #else
95 static inline
96 pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
98 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
99 return pmd_offset(pud, addr);
100 else
101 return (pmd_t *) pud;
103 static inline
104 pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
106 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
107 return pmd_alloc(mm, pud, addr);
108 else
109 return (pmd_t *) pud;
111 #endif
113 /* Build list of addresses of gigantic pages. This function is used in early
114 * boot before the buddy or bootmem allocator is setup.
116 void add_gpage(unsigned long addr, unsigned long page_size,
117 unsigned long number_of_pages)
119 if (!addr)
120 return;
121 while (number_of_pages > 0) {
122 gpage_freearray[nr_gpages] = addr;
123 nr_gpages++;
124 number_of_pages--;
125 addr += page_size;
129 /* Moves the gigantic page addresses from the temporary list to the
130 * huge_boot_pages list. */
131 int alloc_bootmem_huge_page(struct hstate *h)
133 struct huge_bootmem_page *m;
134 if (nr_gpages == 0)
135 return 0;
136 m = phys_to_virt(gpage_freearray[--nr_gpages]);
137 gpage_freearray[nr_gpages] = 0;
138 list_add(&m->list, &huge_boot_pages);
139 m->hstate = h;
140 return 1;
144 /* Modelled after find_linux_pte() */
145 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
147 pgd_t *pg;
148 pud_t *pu;
149 pmd_t *pm;
151 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
153 addr &= HPAGE_MASK;
155 pg = pgd_offset(mm, addr);
156 if (!pgd_none(*pg)) {
157 pu = pud_offset(pg, addr);
158 if (!pud_none(*pu)) {
159 pm = hpmd_offset(pu, addr);
160 if (!pmd_none(*pm))
161 return hugepte_offset((hugepd_t *)pm, addr);
165 return NULL;
168 pte_t *huge_pte_alloc(struct mm_struct *mm,
169 unsigned long addr, unsigned long sz)
171 pgd_t *pg;
172 pud_t *pu;
173 pmd_t *pm;
174 hugepd_t *hpdp = NULL;
176 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
178 addr &= HPAGE_MASK;
180 pg = pgd_offset(mm, addr);
181 pu = pud_alloc(mm, pg, addr);
183 if (pu) {
184 pm = hpmd_alloc(mm, pu, addr);
185 if (pm)
186 hpdp = (hugepd_t *)pm;
189 if (! hpdp)
190 return NULL;
192 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
193 return NULL;
195 return hugepte_offset(hpdp, addr);
198 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
200 return 0;
203 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
205 pte_t *hugepte = hugepd_page(*hpdp);
207 hpdp->pd = 0;
208 tlb->need_flush = 1;
209 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
210 PGF_CACHENUM_MASK));
213 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
214 unsigned long addr, unsigned long end,
215 unsigned long floor, unsigned long ceiling)
217 pmd_t *pmd;
218 unsigned long next;
219 unsigned long start;
221 start = addr;
222 pmd = pmd_offset(pud, addr);
223 do {
224 next = pmd_addr_end(addr, end);
225 if (pmd_none(*pmd))
226 continue;
227 free_hugepte_range(tlb, (hugepd_t *)pmd);
228 } while (pmd++, addr = next, addr != end);
230 start &= PUD_MASK;
231 if (start < floor)
232 return;
233 if (ceiling) {
234 ceiling &= PUD_MASK;
235 if (!ceiling)
236 return;
238 if (end - 1 > ceiling - 1)
239 return;
241 pmd = pmd_offset(pud, start);
242 pud_clear(pud);
243 pmd_free_tlb(tlb, pmd);
246 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
247 unsigned long addr, unsigned long end,
248 unsigned long floor, unsigned long ceiling)
250 pud_t *pud;
251 unsigned long next;
252 unsigned long start;
254 start = addr;
255 pud = pud_offset(pgd, addr);
256 do {
257 next = pud_addr_end(addr, end);
258 #ifdef CONFIG_PPC_64K_PAGES
259 if (pud_none_or_clear_bad(pud))
260 continue;
261 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
262 #else
263 if (HPAGE_SHIFT == HPAGE_SHIFT_64K) {
264 if (pud_none_or_clear_bad(pud))
265 continue;
266 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
267 } else {
268 if (pud_none(*pud))
269 continue;
270 free_hugepte_range(tlb, (hugepd_t *)pud);
272 #endif
273 } while (pud++, addr = next, addr != end);
275 start &= PGDIR_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= PGDIR_MASK;
280 if (!ceiling)
281 return;
283 if (end - 1 > ceiling - 1)
284 return;
286 pud = pud_offset(pgd, start);
287 pgd_clear(pgd);
288 pud_free_tlb(tlb, pud);
292 * This function frees user-level page tables of a process.
294 * Must be called with pagetable lock held.
296 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
297 unsigned long addr, unsigned long end,
298 unsigned long floor, unsigned long ceiling)
300 pgd_t *pgd;
301 unsigned long next;
302 unsigned long start;
305 * Comments below take from the normal free_pgd_range(). They
306 * apply here too. The tests against HUGEPD_MASK below are
307 * essential, because we *don't* test for this at the bottom
308 * level. Without them we'll attempt to free a hugepte table
309 * when we unmap just part of it, even if there are other
310 * active mappings using it.
312 * The next few lines have given us lots of grief...
314 * Why are we testing HUGEPD* at this top level? Because
315 * often there will be no work to do at all, and we'd prefer
316 * not to go all the way down to the bottom just to discover
317 * that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we
328 * must be careful to reject "the opposite 0" before it
329 * confuses the subsequent tests. But what about where end is
330 * brought down by HUGEPD_SIZE below? no, end can't go down to
331 * 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
339 addr &= HUGEPD_MASK;
340 if (addr < floor) {
341 addr += HUGEPD_SIZE;
342 if (!addr)
343 return;
345 if (ceiling) {
346 ceiling &= HUGEPD_MASK;
347 if (!ceiling)
348 return;
350 if (end - 1 > ceiling - 1)
351 end -= HUGEPD_SIZE;
352 if (addr > end - 1)
353 return;
355 start = addr;
356 pgd = pgd_offset(tlb->mm, addr);
357 do {
358 BUG_ON(get_slice_psize(tlb->mm, addr) != mmu_huge_psize);
359 next = pgd_addr_end(addr, end);
360 if (pgd_none_or_clear_bad(pgd))
361 continue;
362 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
363 } while (pgd++, addr = next, addr != end);
366 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
367 pte_t *ptep, pte_t pte)
369 if (pte_present(*ptep)) {
370 /* We open-code pte_clear because we need to pass the right
371 * argument to hpte_need_flush (huge / !huge). Might not be
372 * necessary anymore if we make hpte_need_flush() get the
373 * page size from the slices
375 pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
377 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
380 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
381 pte_t *ptep)
383 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
384 return __pte(old);
387 struct page *
388 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
390 pte_t *ptep;
391 struct page *page;
393 if (get_slice_psize(mm, address) != mmu_huge_psize)
394 return ERR_PTR(-EINVAL);
396 ptep = huge_pte_offset(mm, address);
397 page = pte_page(*ptep);
398 if (page)
399 page += (address % HPAGE_SIZE) / PAGE_SIZE;
401 return page;
404 int pmd_huge(pmd_t pmd)
406 return 0;
409 int pud_huge(pud_t pud)
411 return 0;
414 struct page *
415 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
416 pmd_t *pmd, int write)
418 BUG();
419 return NULL;
423 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
424 unsigned long len, unsigned long pgoff,
425 unsigned long flags)
427 return slice_get_unmapped_area(addr, len, flags,
428 mmu_huge_psize, 1, 0);
432 * Called by asm hashtable.S for doing lazy icache flush
434 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
435 pte_t pte, int trap)
437 struct page *page;
438 int i;
440 if (!pfn_valid(pte_pfn(pte)))
441 return rflags;
443 page = pte_page(pte);
445 /* page is dirty */
446 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
447 if (trap == 0x400) {
448 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
449 __flush_dcache_icache(page_address(page+i));
450 set_bit(PG_arch_1, &page->flags);
451 } else {
452 rflags |= HPTE_R_N;
455 return rflags;
458 int hash_huge_page(struct mm_struct *mm, unsigned long access,
459 unsigned long ea, unsigned long vsid, int local,
460 unsigned long trap)
462 pte_t *ptep;
463 unsigned long old_pte, new_pte;
464 unsigned long va, rflags, pa;
465 long slot;
466 int err = 1;
467 int ssize = user_segment_size(ea);
469 ptep = huge_pte_offset(mm, ea);
471 /* Search the Linux page table for a match with va */
472 va = hpt_va(ea, vsid, ssize);
475 * If no pte found or not present, send the problem up to
476 * do_page_fault
478 if (unlikely(!ptep || pte_none(*ptep)))
479 goto out;
482 * Check the user's access rights to the page. If access should be
483 * prevented then send the problem up to do_page_fault.
485 if (unlikely(access & ~pte_val(*ptep)))
486 goto out;
488 * At this point, we have a pte (old_pte) which can be used to build
489 * or update an HPTE. There are 2 cases:
491 * 1. There is a valid (present) pte with no associated HPTE (this is
492 * the most common case)
493 * 2. There is a valid (present) pte with an associated HPTE. The
494 * current values of the pp bits in the HPTE prevent access
495 * because we are doing software DIRTY bit management and the
496 * page is currently not DIRTY.
500 do {
501 old_pte = pte_val(*ptep);
502 if (old_pte & _PAGE_BUSY)
503 goto out;
504 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
505 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
506 old_pte, new_pte));
508 rflags = 0x2 | (!(new_pte & _PAGE_RW));
509 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
510 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
511 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
512 /* No CPU has hugepages but lacks no execute, so we
513 * don't need to worry about that case */
514 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
515 trap);
517 /* Check if pte already has an hpte (case 2) */
518 if (unlikely(old_pte & _PAGE_HASHPTE)) {
519 /* There MIGHT be an HPTE for this pte */
520 unsigned long hash, slot;
522 hash = hpt_hash(va, HPAGE_SHIFT, ssize);
523 if (old_pte & _PAGE_F_SECOND)
524 hash = ~hash;
525 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
526 slot += (old_pte & _PAGE_F_GIX) >> 12;
528 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
529 ssize, local) == -1)
530 old_pte &= ~_PAGE_HPTEFLAGS;
533 if (likely(!(old_pte & _PAGE_HASHPTE))) {
534 unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
535 unsigned long hpte_group;
537 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
539 repeat:
540 hpte_group = ((hash & htab_hash_mask) *
541 HPTES_PER_GROUP) & ~0x7UL;
543 /* clear HPTE slot informations in new PTE */
544 #ifdef CONFIG_PPC_64K_PAGES
545 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
546 #else
547 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
548 #endif
549 /* Add in WIMG bits */
550 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
551 _PAGE_COHERENT | _PAGE_GUARDED));
553 /* Insert into the hash table, primary slot */
554 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
555 mmu_huge_psize, ssize);
557 /* Primary is full, try the secondary */
558 if (unlikely(slot == -1)) {
559 hpte_group = ((~hash & htab_hash_mask) *
560 HPTES_PER_GROUP) & ~0x7UL;
561 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
562 HPTE_V_SECONDARY,
563 mmu_huge_psize, ssize);
564 if (slot == -1) {
565 if (mftb() & 0x1)
566 hpte_group = ((hash & htab_hash_mask) *
567 HPTES_PER_GROUP)&~0x7UL;
569 ppc_md.hpte_remove(hpte_group);
570 goto repeat;
574 if (unlikely(slot == -2))
575 panic("hash_huge_page: pte_insert failed\n");
577 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
581 * No need to use ldarx/stdcx here
583 *ptep = __pte(new_pte & ~_PAGE_BUSY);
585 err = 0;
587 out:
588 return err;
591 void set_huge_psize(int psize)
593 /* Check that it is a page size supported by the hardware and
594 * that it fits within pagetable limits. */
595 if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT &&
596 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
597 mmu_psize_defs[psize].shift == HPAGE_SHIFT_64K)) {
598 HPAGE_SHIFT = mmu_psize_defs[psize].shift;
599 mmu_huge_psize = psize;
600 #ifdef CONFIG_PPC_64K_PAGES
601 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
602 #else
603 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
604 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
605 else
606 hugepte_shift = (PUD_SHIFT-HPAGE_SHIFT);
607 #endif
609 } else
610 HPAGE_SHIFT = 0;
613 static int __init hugepage_setup_sz(char *str)
615 unsigned long long size;
616 int mmu_psize = -1;
617 int shift;
619 size = memparse(str, &str);
621 shift = __ffs(size);
622 switch (shift) {
623 #ifndef CONFIG_PPC_64K_PAGES
624 case HPAGE_SHIFT_64K:
625 mmu_psize = MMU_PAGE_64K;
626 break;
627 #endif
628 case HPAGE_SHIFT_16M:
629 mmu_psize = MMU_PAGE_16M;
630 break;
633 if (mmu_psize >=0 && mmu_psize_defs[mmu_psize].shift)
634 set_huge_psize(mmu_psize);
635 else
636 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
638 return 1;
640 __setup("hugepagesz=", hugepage_setup_sz);
642 static void zero_ctor(struct kmem_cache *cache, void *addr)
644 memset(addr, 0, kmem_cache_size(cache));
647 static int __init hugetlbpage_init(void)
649 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
650 return -ENODEV;
652 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
653 HUGEPTE_TABLE_SIZE,
654 HUGEPTE_TABLE_SIZE,
656 zero_ctor);
657 if (! huge_pgtable_cache)
658 panic("hugetlbpage_init(): could not create hugepte cache\n");
660 return 0;
663 module_init(hugetlbpage_init);