2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
39 #include "xfs_trace.h"
41 kmem_zone_t
*xfs_log_ticket_zone
;
43 /* Local miscellaneous function prototypes */
44 STATIC
int xlog_commit_record(struct log
*log
, struct xlog_ticket
*ticket
,
45 xlog_in_core_t
**, xfs_lsn_t
*);
46 STATIC xlog_t
* xlog_alloc_log(xfs_mount_t
*mp
,
47 xfs_buftarg_t
*log_target
,
48 xfs_daddr_t blk_offset
,
50 STATIC
int xlog_space_left(struct log
*log
, atomic64_t
*head
);
51 STATIC
int xlog_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
52 STATIC
void xlog_dealloc_log(xlog_t
*log
);
54 /* local state machine functions */
55 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
56 STATIC
void xlog_state_do_callback(xlog_t
*log
,int aborted
, xlog_in_core_t
*iclog
);
57 STATIC
int xlog_state_get_iclog_space(xlog_t
*log
,
59 xlog_in_core_t
**iclog
,
60 xlog_ticket_t
*ticket
,
63 STATIC
int xlog_state_release_iclog(xlog_t
*log
,
64 xlog_in_core_t
*iclog
);
65 STATIC
void xlog_state_switch_iclogs(xlog_t
*log
,
66 xlog_in_core_t
*iclog
,
68 STATIC
void xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
70 /* local functions to manipulate grant head */
71 STATIC
int xlog_grant_log_space(xlog_t
*log
,
73 STATIC
void xlog_grant_push_ail(struct log
*log
,
75 STATIC
void xlog_regrant_reserve_log_space(xlog_t
*log
,
76 xlog_ticket_t
*ticket
);
77 STATIC
int xlog_regrant_write_log_space(xlog_t
*log
,
78 xlog_ticket_t
*ticket
);
79 STATIC
void xlog_ungrant_log_space(xlog_t
*log
,
80 xlog_ticket_t
*ticket
);
83 STATIC
void xlog_verify_dest_ptr(xlog_t
*log
, char *ptr
);
84 STATIC
void xlog_verify_grant_tail(struct log
*log
);
85 STATIC
void xlog_verify_iclog(xlog_t
*log
, xlog_in_core_t
*iclog
,
86 int count
, boolean_t syncing
);
87 STATIC
void xlog_verify_tail_lsn(xlog_t
*log
, xlog_in_core_t
*iclog
,
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
96 STATIC
int xlog_iclogs_empty(xlog_t
*log
);
104 int64_t head_val
= atomic64_read(head
);
110 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
114 space
+= log
->l_logsize
;
119 new = xlog_assign_grant_head_val(cycle
, space
);
120 head_val
= atomic64_cmpxchg(head
, old
, new);
121 } while (head_val
!= old
);
125 xlog_grant_add_space(
130 int64_t head_val
= atomic64_read(head
);
137 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
139 tmp
= log
->l_logsize
- space
;
148 new = xlog_assign_grant_head_val(cycle
, space
);
149 head_val
= atomic64_cmpxchg(head
, old
, new);
150 } while (head_val
!= old
);
154 xlog_tic_reset_res(xlog_ticket_t
*tic
)
157 tic
->t_res_arr_sum
= 0;
158 tic
->t_res_num_ophdrs
= 0;
162 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
164 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
165 /* add to overflow and start again */
166 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
168 tic
->t_res_arr_sum
= 0;
171 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
172 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
173 tic
->t_res_arr_sum
+= len
;
180 * 1. currblock field gets updated at startup and after in-core logs
181 * marked as with WANT_SYNC.
185 * This routine is called when a user of a log manager ticket is done with
186 * the reservation. If the ticket was ever used, then a commit record for
187 * the associated transaction is written out as a log operation header with
188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
189 * a given ticket. If the ticket was one with a permanent reservation, then
190 * a few operations are done differently. Permanent reservation tickets by
191 * default don't release the reservation. They just commit the current
192 * transaction with the belief that the reservation is still needed. A flag
193 * must be passed in before permanent reservations are actually released.
194 * When these type of tickets are not released, they need to be set into
195 * the inited state again. By doing this, a start record will be written
196 * out when the next write occurs.
200 struct xfs_mount
*mp
,
201 struct xlog_ticket
*ticket
,
202 struct xlog_in_core
**iclog
,
205 struct log
*log
= mp
->m_log
;
208 if (XLOG_FORCED_SHUTDOWN(log
) ||
210 * If nothing was ever written, don't write out commit record.
211 * If we get an error, just continue and give back the log ticket.
213 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
214 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
215 lsn
= (xfs_lsn_t
) -1;
216 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
217 flags
|= XFS_LOG_REL_PERM_RESERV
;
222 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
223 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
224 trace_xfs_log_done_nonperm(log
, ticket
);
227 * Release ticket if not permanent reservation or a specific
228 * request has been made to release a permanent reservation.
230 xlog_ungrant_log_space(log
, ticket
);
231 xfs_log_ticket_put(ticket
);
233 trace_xfs_log_done_perm(log
, ticket
);
235 xlog_regrant_reserve_log_space(log
, ticket
);
236 /* If this ticket was a permanent reservation and we aren't
237 * trying to release it, reset the inited flags; so next time
238 * we write, a start record will be written out.
240 ticket
->t_flags
|= XLOG_TIC_INITED
;
247 * Attaches a new iclog I/O completion callback routine during
248 * transaction commit. If the log is in error state, a non-zero
249 * return code is handed back and the caller is responsible for
250 * executing the callback at an appropriate time.
254 struct xfs_mount
*mp
,
255 struct xlog_in_core
*iclog
,
256 xfs_log_callback_t
*cb
)
260 spin_lock(&iclog
->ic_callback_lock
);
261 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
263 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
264 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
266 *(iclog
->ic_callback_tail
) = cb
;
267 iclog
->ic_callback_tail
= &(cb
->cb_next
);
269 spin_unlock(&iclog
->ic_callback_lock
);
274 xfs_log_release_iclog(
275 struct xfs_mount
*mp
,
276 struct xlog_in_core
*iclog
)
278 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
279 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
288 * to the reservation.
289 * 2. Potentially, push buffers at tail of log to disk.
291 * Each reservation is going to reserve extra space for a log record header.
292 * When writes happen to the on-disk log, we don't subtract the length of the
293 * log record header from any reservation. By wasting space in each
294 * reservation, we prevent over allocation problems.
298 struct xfs_mount
*mp
,
301 struct xlog_ticket
**ticket
,
306 struct log
*log
= mp
->m_log
;
307 struct xlog_ticket
*internal_ticket
;
310 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
312 if (XLOG_FORCED_SHUTDOWN(log
))
313 return XFS_ERROR(EIO
);
315 XFS_STATS_INC(xs_try_logspace
);
318 if (*ticket
!= NULL
) {
319 ASSERT(flags
& XFS_LOG_PERM_RESERV
);
320 internal_ticket
= *ticket
;
323 * this is a new transaction on the ticket, so we need to
324 * change the transaction ID so that the next transaction has a
325 * different TID in the log. Just add one to the existing tid
326 * so that we can see chains of rolling transactions in the log
329 internal_ticket
->t_tid
++;
331 trace_xfs_log_reserve(log
, internal_ticket
);
333 xlog_grant_push_ail(log
, internal_ticket
->t_unit_res
);
334 retval
= xlog_regrant_write_log_space(log
, internal_ticket
);
336 /* may sleep if need to allocate more tickets */
337 internal_ticket
= xlog_ticket_alloc(log
, unit_bytes
, cnt
,
339 KM_SLEEP
|KM_MAYFAIL
);
340 if (!internal_ticket
)
341 return XFS_ERROR(ENOMEM
);
342 internal_ticket
->t_trans_type
= t_type
;
343 *ticket
= internal_ticket
;
345 trace_xfs_log_reserve(log
, internal_ticket
);
347 xlog_grant_push_ail(log
,
348 (internal_ticket
->t_unit_res
*
349 internal_ticket
->t_cnt
));
350 retval
= xlog_grant_log_space(log
, internal_ticket
);
354 } /* xfs_log_reserve */
358 * Mount a log filesystem
360 * mp - ubiquitous xfs mount point structure
361 * log_target - buftarg of on-disk log device
362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
363 * num_bblocks - Number of BBSIZE blocks in on-disk log
365 * Return error or zero.
370 xfs_buftarg_t
*log_target
,
371 xfs_daddr_t blk_offset
,
376 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
377 xfs_notice(mp
, "Mounting Filesystem");
380 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
381 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
384 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
385 if (IS_ERR(mp
->m_log
)) {
386 error
= -PTR_ERR(mp
->m_log
);
391 * Initialize the AIL now we have a log.
393 error
= xfs_trans_ail_init(mp
);
395 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
398 mp
->m_log
->l_ailp
= mp
->m_ail
;
401 * skip log recovery on a norecovery mount. pretend it all
404 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
405 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
408 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
410 error
= xlog_recover(mp
->m_log
);
413 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
415 xfs_warn(mp
, "log mount/recovery failed: error %d",
417 goto out_destroy_ail
;
421 /* Normal transactions can now occur */
422 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
425 * Now the log has been fully initialised and we know were our
426 * space grant counters are, we can initialise the permanent ticket
427 * needed for delayed logging to work.
429 xlog_cil_init_post_recovery(mp
->m_log
);
434 xfs_trans_ail_destroy(mp
);
436 xlog_dealloc_log(mp
->m_log
);
442 * Finish the recovery of the file system. This is separate from
443 * the xfs_log_mount() call, because it depends on the code in
444 * xfs_mountfs() to read in the root and real-time bitmap inodes
445 * between calling xfs_log_mount() and here.
447 * mp - ubiquitous xfs mount point structure
450 xfs_log_mount_finish(xfs_mount_t
*mp
)
454 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
455 error
= xlog_recover_finish(mp
->m_log
);
458 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
465 * Final log writes as part of unmount.
467 * Mark the filesystem clean as unmount happens. Note that during relocation
468 * this routine needs to be executed as part of source-bag while the
469 * deallocation must not be done until source-end.
473 * Unmount record used to have a string "Unmount filesystem--" in the
474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475 * We just write the magic number now since that particular field isn't
476 * currently architecture converted and "nUmount" is a bit foo.
477 * As far as I know, there weren't any dependencies on the old behaviour.
481 xfs_log_unmount_write(xfs_mount_t
*mp
)
483 xlog_t
*log
= mp
->m_log
;
484 xlog_in_core_t
*iclog
;
486 xlog_in_core_t
*first_iclog
;
488 xlog_ticket_t
*tic
= NULL
;
493 * Don't write out unmount record on read-only mounts.
494 * Or, if we are doing a forced umount (typically because of IO errors).
496 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
499 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
500 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
503 first_iclog
= iclog
= log
->l_iclog
;
505 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
506 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
507 ASSERT(iclog
->ic_offset
== 0);
509 iclog
= iclog
->ic_next
;
510 } while (iclog
!= first_iclog
);
512 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
513 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
514 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
516 /* the data section must be 32 bit size aligned */
520 __uint32_t pad2
; /* may as well make it 64 bits */
522 .magic
= XLOG_UNMOUNT_TYPE
,
524 struct xfs_log_iovec reg
= {
526 .i_len
= sizeof(magic
),
527 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
529 struct xfs_log_vec vec
= {
534 /* remove inited flag */
536 error
= xlog_write(log
, &vec
, tic
, &lsn
,
537 NULL
, XLOG_UNMOUNT_TRANS
);
539 * At this point, we're umounting anyway,
540 * so there's no point in transitioning log state
541 * to IOERROR. Just continue...
546 xfs_alert(mp
, "%s: unmount record failed", __func__
);
549 spin_lock(&log
->l_icloglock
);
550 iclog
= log
->l_iclog
;
551 atomic_inc(&iclog
->ic_refcnt
);
552 xlog_state_want_sync(log
, iclog
);
553 spin_unlock(&log
->l_icloglock
);
554 error
= xlog_state_release_iclog(log
, iclog
);
556 spin_lock(&log
->l_icloglock
);
557 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
558 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
559 if (!XLOG_FORCED_SHUTDOWN(log
)) {
560 xlog_wait(&iclog
->ic_force_wait
,
563 spin_unlock(&log
->l_icloglock
);
566 spin_unlock(&log
->l_icloglock
);
569 trace_xfs_log_umount_write(log
, tic
);
570 xlog_ungrant_log_space(log
, tic
);
571 xfs_log_ticket_put(tic
);
575 * We're already in forced_shutdown mode, couldn't
576 * even attempt to write out the unmount transaction.
578 * Go through the motions of sync'ing and releasing
579 * the iclog, even though no I/O will actually happen,
580 * we need to wait for other log I/Os that may already
581 * be in progress. Do this as a separate section of
582 * code so we'll know if we ever get stuck here that
583 * we're in this odd situation of trying to unmount
584 * a file system that went into forced_shutdown as
585 * the result of an unmount..
587 spin_lock(&log
->l_icloglock
);
588 iclog
= log
->l_iclog
;
589 atomic_inc(&iclog
->ic_refcnt
);
591 xlog_state_want_sync(log
, iclog
);
592 spin_unlock(&log
->l_icloglock
);
593 error
= xlog_state_release_iclog(log
, iclog
);
595 spin_lock(&log
->l_icloglock
);
597 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
598 || iclog
->ic_state
== XLOG_STATE_DIRTY
599 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
601 xlog_wait(&iclog
->ic_force_wait
,
604 spin_unlock(&log
->l_icloglock
);
609 } /* xfs_log_unmount_write */
612 * Deallocate log structures for unmount/relocation.
614 * We need to stop the aild from running before we destroy
615 * and deallocate the log as the aild references the log.
618 xfs_log_unmount(xfs_mount_t
*mp
)
620 xfs_trans_ail_destroy(mp
);
621 xlog_dealloc_log(mp
->m_log
);
626 struct xfs_mount
*mp
,
627 struct xfs_log_item
*item
,
629 struct xfs_item_ops
*ops
)
631 item
->li_mountp
= mp
;
632 item
->li_ailp
= mp
->m_ail
;
633 item
->li_type
= type
;
637 INIT_LIST_HEAD(&item
->li_ail
);
638 INIT_LIST_HEAD(&item
->li_cil
);
642 * Write region vectors to log. The write happens using the space reservation
643 * of the ticket (tic). It is not a requirement that all writes for a given
644 * transaction occur with one call to xfs_log_write(). However, it is important
645 * to note that the transaction reservation code makes an assumption about the
646 * number of log headers a transaction requires that may be violated if you
647 * don't pass all the transaction vectors in one call....
651 struct xfs_mount
*mp
,
652 struct xfs_log_iovec reg
[],
654 struct xlog_ticket
*tic
,
655 xfs_lsn_t
*start_lsn
)
657 struct log
*log
= mp
->m_log
;
659 struct xfs_log_vec vec
= {
660 .lv_niovecs
= nentries
,
664 if (XLOG_FORCED_SHUTDOWN(log
))
665 return XFS_ERROR(EIO
);
667 error
= xlog_write(log
, &vec
, tic
, start_lsn
, NULL
, 0);
669 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
674 xfs_log_move_tail(xfs_mount_t
*mp
,
678 xlog_t
*log
= mp
->m_log
;
679 int need_bytes
, free_bytes
;
681 if (XLOG_FORCED_SHUTDOWN(log
))
685 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
687 /* tail_lsn == 1 implies that we weren't passed a valid value. */
689 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
691 if (!list_empty_careful(&log
->l_writeq
)) {
693 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
694 panic("Recovery problem");
696 spin_lock(&log
->l_grant_write_lock
);
697 free_bytes
= xlog_space_left(log
, &log
->l_grant_write_head
);
698 list_for_each_entry(tic
, &log
->l_writeq
, t_queue
) {
699 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
701 if (free_bytes
< tic
->t_unit_res
&& tail_lsn
!= 1)
704 free_bytes
-= tic
->t_unit_res
;
705 trace_xfs_log_regrant_write_wake_up(log
, tic
);
706 wake_up(&tic
->t_wait
);
708 spin_unlock(&log
->l_grant_write_lock
);
711 if (!list_empty_careful(&log
->l_reserveq
)) {
713 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
714 panic("Recovery problem");
716 spin_lock(&log
->l_grant_reserve_lock
);
717 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
718 list_for_each_entry(tic
, &log
->l_reserveq
, t_queue
) {
719 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
720 need_bytes
= tic
->t_unit_res
*tic
->t_cnt
;
722 need_bytes
= tic
->t_unit_res
;
723 if (free_bytes
< need_bytes
&& tail_lsn
!= 1)
726 free_bytes
-= need_bytes
;
727 trace_xfs_log_grant_wake_up(log
, tic
);
728 wake_up(&tic
->t_wait
);
730 spin_unlock(&log
->l_grant_reserve_lock
);
735 * Determine if we have a transaction that has gone to disk
736 * that needs to be covered. To begin the transition to the idle state
737 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738 * If we are then in a state where covering is needed, the caller is informed
739 * that dummy transactions are required to move the log into the idle state.
741 * Because this is called as part of the sync process, we should also indicate
742 * that dummy transactions should be issued in anything but the covered or
743 * idle states. This ensures that the log tail is accurately reflected in
744 * the log at the end of the sync, hence if a crash occurrs avoids replay
745 * of transactions where the metadata is already on disk.
748 xfs_log_need_covered(xfs_mount_t
*mp
)
751 xlog_t
*log
= mp
->m_log
;
753 if (!xfs_fs_writable(mp
))
756 spin_lock(&log
->l_icloglock
);
757 switch (log
->l_covered_state
) {
758 case XLOG_STATE_COVER_DONE
:
759 case XLOG_STATE_COVER_DONE2
:
760 case XLOG_STATE_COVER_IDLE
:
762 case XLOG_STATE_COVER_NEED
:
763 case XLOG_STATE_COVER_NEED2
:
764 if (!xfs_ail_min_lsn(log
->l_ailp
) &&
765 xlog_iclogs_empty(log
)) {
766 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
767 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
769 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
776 spin_unlock(&log
->l_icloglock
);
780 /******************************************************************************
784 ******************************************************************************
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788 * The log manager must keep track of the last LR which was committed
789 * to disk. The lsn of this LR will become the new tail_lsn whenever
790 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
791 * the situation where stuff could be written into the log but nothing
792 * was ever in the AIL when asked. Eventually, we panic since the
793 * tail hits the head.
795 * We may be holding the log iclog lock upon entering this routine.
798 xlog_assign_tail_lsn(
799 struct xfs_mount
*mp
)
802 struct log
*log
= mp
->m_log
;
804 tail_lsn
= xfs_ail_min_lsn(mp
->m_ail
);
806 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
808 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
813 * Return the space in the log between the tail and the head. The head
814 * is passed in the cycle/bytes formal parms. In the special case where
815 * the reserve head has wrapped passed the tail, this calculation is no
816 * longer valid. In this case, just return 0 which means there is no space
817 * in the log. This works for all places where this function is called
818 * with the reserve head. Of course, if the write head were to ever
819 * wrap the tail, we should blow up. Rather than catch this case here,
820 * we depend on other ASSERTions in other parts of the code. XXXmiken
822 * This code also handles the case where the reservation head is behind
823 * the tail. The details of this case are described below, but the end
824 * result is that we return the size of the log as the amount of space left.
837 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
838 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
839 tail_bytes
= BBTOB(tail_bytes
);
840 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
841 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
842 else if (tail_cycle
+ 1 < head_cycle
)
844 else if (tail_cycle
< head_cycle
) {
845 ASSERT(tail_cycle
== (head_cycle
- 1));
846 free_bytes
= tail_bytes
- head_bytes
;
849 * The reservation head is behind the tail.
850 * In this case we just want to return the size of the
851 * log as the amount of space left.
854 "xlog_space_left: head behind tail\n"
855 " tail_cycle = %d, tail_bytes = %d\n"
856 " GH cycle = %d, GH bytes = %d",
857 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
859 free_bytes
= log
->l_logsize
;
866 * Log function which is called when an io completes.
868 * The log manager needs its own routine, in order to control what
869 * happens with the buffer after the write completes.
872 xlog_iodone(xfs_buf_t
*bp
)
874 xlog_in_core_t
*iclog
;
878 iclog
= XFS_BUF_FSPRIVATE(bp
, xlog_in_core_t
*);
879 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) == (unsigned long) 2);
880 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
885 * Race to shutdown the filesystem if we see an error.
887 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp
)), l
->l_mp
,
888 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
889 xfs_ioerror_alert("xlog_iodone", l
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
891 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
893 * This flag will be propagated to the trans-committed
894 * callback routines to let them know that the log-commit
897 aborted
= XFS_LI_ABORTED
;
898 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
899 aborted
= XFS_LI_ABORTED
;
902 /* log I/O is always issued ASYNC */
903 ASSERT(XFS_BUF_ISASYNC(bp
));
904 xlog_state_done_syncing(iclog
, aborted
);
906 * do not reference the buffer (bp) here as we could race
907 * with it being freed after writing the unmount record to the
914 * Return size of each in-core log record buffer.
916 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
918 * If the filesystem blocksize is too large, we may need to choose a
919 * larger size since the directory code currently logs entire blocks.
923 xlog_get_iclog_buffer_size(xfs_mount_t
*mp
,
929 if (mp
->m_logbufs
<= 0)
930 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
932 log
->l_iclog_bufs
= mp
->m_logbufs
;
935 * Buffer size passed in from mount system call.
937 if (mp
->m_logbsize
> 0) {
938 size
= log
->l_iclog_size
= mp
->m_logbsize
;
939 log
->l_iclog_size_log
= 0;
941 log
->l_iclog_size_log
++;
945 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
946 /* # headers = size / 32k
947 * one header holds cycles from 32k of data
950 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
951 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
953 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
954 log
->l_iclog_heads
= xhdrs
;
956 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
957 log
->l_iclog_hsize
= BBSIZE
;
958 log
->l_iclog_heads
= 1;
963 /* All machines use 32kB buffers by default. */
964 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
965 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
967 /* the default log size is 16k or 32k which is one header sector */
968 log
->l_iclog_hsize
= BBSIZE
;
969 log
->l_iclog_heads
= 1;
972 /* are we being asked to make the sizes selected above visible? */
973 if (mp
->m_logbufs
== 0)
974 mp
->m_logbufs
= log
->l_iclog_bufs
;
975 if (mp
->m_logbsize
== 0)
976 mp
->m_logbsize
= log
->l_iclog_size
;
977 } /* xlog_get_iclog_buffer_size */
981 * This routine initializes some of the log structure for a given mount point.
982 * Its primary purpose is to fill in enough, so recovery can occur. However,
983 * some other stuff may be filled in too.
986 xlog_alloc_log(xfs_mount_t
*mp
,
987 xfs_buftarg_t
*log_target
,
988 xfs_daddr_t blk_offset
,
992 xlog_rec_header_t
*head
;
993 xlog_in_core_t
**iclogp
;
994 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1000 log
= kmem_zalloc(sizeof(xlog_t
), KM_MAYFAIL
);
1002 xfs_warn(mp
, "Log allocation failed: No memory!");
1007 log
->l_targ
= log_target
;
1008 log
->l_logsize
= BBTOB(num_bblks
);
1009 log
->l_logBBstart
= blk_offset
;
1010 log
->l_logBBsize
= num_bblks
;
1011 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1012 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1014 log
->l_prev_block
= -1;
1015 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1016 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1017 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1018 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1019 xlog_assign_grant_head(&log
->l_grant_reserve_head
, 1, 0);
1020 xlog_assign_grant_head(&log
->l_grant_write_head
, 1, 0);
1021 INIT_LIST_HEAD(&log
->l_reserveq
);
1022 INIT_LIST_HEAD(&log
->l_writeq
);
1023 spin_lock_init(&log
->l_grant_reserve_lock
);
1024 spin_lock_init(&log
->l_grant_write_lock
);
1026 error
= EFSCORRUPTED
;
1027 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1028 log2_size
= mp
->m_sb
.sb_logsectlog
;
1029 if (log2_size
< BBSHIFT
) {
1030 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1031 log2_size
, BBSHIFT
);
1035 log2_size
-= BBSHIFT
;
1036 if (log2_size
> mp
->m_sectbb_log
) {
1037 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1038 log2_size
, mp
->m_sectbb_log
);
1042 /* for larger sector sizes, must have v2 or external log */
1043 if (log2_size
&& log
->l_logBBstart
> 0 &&
1044 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1046 "log sector size (0x%x) invalid for configuration.",
1051 log
->l_sectBBsize
= 1 << log2_size
;
1053 xlog_get_iclog_buffer_size(mp
, log
);
1056 bp
= xfs_buf_get_empty(log
->l_iclog_size
, mp
->m_logdev_targp
);
1059 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_iodone
);
1060 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
1061 ASSERT(XFS_BUF_ISBUSY(bp
));
1062 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
1065 spin_lock_init(&log
->l_icloglock
);
1066 init_waitqueue_head(&log
->l_flush_wait
);
1068 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1069 ASSERT((XFS_BUF_SIZE(bp
) & BBMASK
) == 0);
1071 iclogp
= &log
->l_iclog
;
1073 * The amount of memory to allocate for the iclog structure is
1074 * rather funky due to the way the structure is defined. It is
1075 * done this way so that we can use different sizes for machines
1076 * with different amounts of memory. See the definition of
1077 * xlog_in_core_t in xfs_log_priv.h for details.
1079 ASSERT(log
->l_iclog_size
>= 4096);
1080 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1081 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1083 goto out_free_iclog
;
1086 iclog
->ic_prev
= prev_iclog
;
1089 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1090 log
->l_iclog_size
, 0);
1092 goto out_free_iclog
;
1093 if (!XFS_BUF_CPSEMA(bp
))
1095 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_iodone
);
1096 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
1098 iclog
->ic_data
= bp
->b_addr
;
1100 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1102 head
= &iclog
->ic_header
;
1103 memset(head
, 0, sizeof(xlog_rec_header_t
));
1104 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1105 head
->h_version
= cpu_to_be32(
1106 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1107 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1109 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1110 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1112 iclog
->ic_size
= XFS_BUF_SIZE(bp
) - log
->l_iclog_hsize
;
1113 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1114 iclog
->ic_log
= log
;
1115 atomic_set(&iclog
->ic_refcnt
, 0);
1116 spin_lock_init(&iclog
->ic_callback_lock
);
1117 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1118 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1120 ASSERT(XFS_BUF_ISBUSY(iclog
->ic_bp
));
1121 ASSERT(XFS_BUF_VALUSEMA(iclog
->ic_bp
) <= 0);
1122 init_waitqueue_head(&iclog
->ic_force_wait
);
1123 init_waitqueue_head(&iclog
->ic_write_wait
);
1125 iclogp
= &iclog
->ic_next
;
1127 *iclogp
= log
->l_iclog
; /* complete ring */
1128 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1130 error
= xlog_cil_init(log
);
1132 goto out_free_iclog
;
1136 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1137 prev_iclog
= iclog
->ic_next
;
1139 xfs_buf_free(iclog
->ic_bp
);
1142 spinlock_destroy(&log
->l_icloglock
);
1143 xfs_buf_free(log
->l_xbuf
);
1147 return ERR_PTR(-error
);
1148 } /* xlog_alloc_log */
1152 * Write out the commit record of a transaction associated with the given
1153 * ticket. Return the lsn of the commit record.
1158 struct xlog_ticket
*ticket
,
1159 struct xlog_in_core
**iclog
,
1160 xfs_lsn_t
*commitlsnp
)
1162 struct xfs_mount
*mp
= log
->l_mp
;
1164 struct xfs_log_iovec reg
= {
1167 .i_type
= XLOG_REG_TYPE_COMMIT
,
1169 struct xfs_log_vec vec
= {
1174 ASSERT_ALWAYS(iclog
);
1175 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1178 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1183 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1184 * log space. This code pushes on the lsn which would supposedly free up
1185 * the 25% which we want to leave free. We may need to adopt a policy which
1186 * pushes on an lsn which is further along in the log once we reach the high
1187 * water mark. In this manner, we would be creating a low water mark.
1190 xlog_grant_push_ail(
1194 xfs_lsn_t threshold_lsn
= 0;
1195 xfs_lsn_t last_sync_lsn
;
1198 int threshold_block
;
1199 int threshold_cycle
;
1202 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1204 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
1205 free_blocks
= BTOBBT(free_bytes
);
1208 * Set the threshold for the minimum number of free blocks in the
1209 * log to the maximum of what the caller needs, one quarter of the
1210 * log, and 256 blocks.
1212 free_threshold
= BTOBB(need_bytes
);
1213 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1214 free_threshold
= MAX(free_threshold
, 256);
1215 if (free_blocks
>= free_threshold
)
1218 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1220 threshold_block
+= free_threshold
;
1221 if (threshold_block
>= log
->l_logBBsize
) {
1222 threshold_block
-= log
->l_logBBsize
;
1223 threshold_cycle
+= 1;
1225 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1228 * Don't pass in an lsn greater than the lsn of the last
1229 * log record known to be on disk. Use a snapshot of the last sync lsn
1230 * so that it doesn't change between the compare and the set.
1232 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1233 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1234 threshold_lsn
= last_sync_lsn
;
1237 * Get the transaction layer to kick the dirty buffers out to
1238 * disk asynchronously. No point in trying to do this if
1239 * the filesystem is shutting down.
1241 if (!XLOG_FORCED_SHUTDOWN(log
))
1242 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1246 * The bdstrat callback function for log bufs. This gives us a central
1247 * place to trap bufs in case we get hit by a log I/O error and need to
1248 * shutdown. Actually, in practice, even when we didn't get a log error,
1249 * we transition the iclogs to IOERROR state *after* flushing all existing
1250 * iclogs to disk. This is because we don't want anymore new transactions to be
1251 * started or completed afterwards.
1257 struct xlog_in_core
*iclog
;
1259 iclog
= XFS_BUF_FSPRIVATE(bp
, xlog_in_core_t
*);
1260 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1261 XFS_BUF_ERROR(bp
, EIO
);
1263 xfs_buf_ioend(bp
, 0);
1265 * It would seem logical to return EIO here, but we rely on
1266 * the log state machine to propagate I/O errors instead of
1272 bp
->b_flags
|= _XBF_RUN_QUEUES
;
1273 xfs_buf_iorequest(bp
);
1278 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1279 * fashion. Previously, we should have moved the current iclog
1280 * ptr in the log to point to the next available iclog. This allows further
1281 * write to continue while this code syncs out an iclog ready to go.
1282 * Before an in-core log can be written out, the data section must be scanned
1283 * to save away the 1st word of each BBSIZE block into the header. We replace
1284 * it with the current cycle count. Each BBSIZE block is tagged with the
1285 * cycle count because there in an implicit assumption that drives will
1286 * guarantee that entire 512 byte blocks get written at once. In other words,
1287 * we can't have part of a 512 byte block written and part not written. By
1288 * tagging each block, we will know which blocks are valid when recovering
1289 * after an unclean shutdown.
1291 * This routine is single threaded on the iclog. No other thread can be in
1292 * this routine with the same iclog. Changing contents of iclog can there-
1293 * fore be done without grabbing the state machine lock. Updating the global
1294 * log will require grabbing the lock though.
1296 * The entire log manager uses a logical block numbering scheme. Only
1297 * log_sync (and then only bwrite()) know about the fact that the log may
1298 * not start with block zero on a given device. The log block start offset
1299 * is added immediately before calling bwrite().
1303 xlog_sync(xlog_t
*log
,
1304 xlog_in_core_t
*iclog
)
1306 xfs_caddr_t dptr
; /* pointer to byte sized element */
1309 uint count
; /* byte count of bwrite */
1310 uint count_init
; /* initial count before roundup */
1311 int roundoff
; /* roundoff to BB or stripe */
1312 int split
= 0; /* split write into two regions */
1314 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1316 XFS_STATS_INC(xs_log_writes
);
1317 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1319 /* Add for LR header */
1320 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1322 /* Round out the log write size */
1323 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1324 /* we have a v2 stripe unit to use */
1325 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1327 count
= BBTOB(BTOBB(count_init
));
1329 roundoff
= count
- count_init
;
1330 ASSERT(roundoff
>= 0);
1331 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1332 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1334 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1335 roundoff
< BBTOB(1)));
1337 /* move grant heads by roundoff in sync */
1338 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
, roundoff
);
1339 xlog_grant_add_space(log
, &log
->l_grant_write_head
, roundoff
);
1341 /* put cycle number in every block */
1342 xlog_pack_data(log
, iclog
, roundoff
);
1344 /* real byte length */
1346 iclog
->ic_header
.h_len
=
1347 cpu_to_be32(iclog
->ic_offset
+ roundoff
);
1349 iclog
->ic_header
.h_len
=
1350 cpu_to_be32(iclog
->ic_offset
);
1354 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) == (unsigned long)1);
1355 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)2);
1356 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1358 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1360 /* Do we need to split this write into 2 parts? */
1361 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1362 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1363 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1364 iclog
->ic_bwritecnt
= 2; /* split into 2 writes */
1366 iclog
->ic_bwritecnt
= 1;
1368 XFS_BUF_SET_COUNT(bp
, count
);
1369 XFS_BUF_SET_FSPRIVATE(bp
, iclog
); /* save for later */
1370 XFS_BUF_ZEROFLAGS(bp
);
1373 bp
->b_flags
|= XBF_LOG_BUFFER
;
1375 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1377 * If we have an external log device, flush the data device
1378 * before flushing the log to make sure all meta data
1379 * written back from the AIL actually made it to disk
1380 * before writing out the new log tail LSN in the log buffer.
1382 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1383 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1384 XFS_BUF_ORDERED(bp
);
1387 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1388 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1390 xlog_verify_iclog(log
, iclog
, count
, B_TRUE
);
1392 /* account for log which doesn't start at block #0 */
1393 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1395 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1400 if ((error
= xlog_bdstrat(bp
))) {
1401 xfs_ioerror_alert("xlog_sync", log
->l_mp
, bp
,
1406 bp
= iclog
->ic_log
->l_xbuf
;
1407 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) ==
1409 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)2);
1410 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1411 XFS_BUF_SET_PTR(bp
, (xfs_caddr_t
)((__psint_t
)&(iclog
->ic_header
)+
1412 (__psint_t
)count
), split
);
1413 XFS_BUF_SET_FSPRIVATE(bp
, iclog
);
1414 XFS_BUF_ZEROFLAGS(bp
);
1417 bp
->b_flags
|= XBF_LOG_BUFFER
;
1418 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1419 XFS_BUF_ORDERED(bp
);
1420 dptr
= XFS_BUF_PTR(bp
);
1422 * Bump the cycle numbers at the start of each block
1423 * since this part of the buffer is at the start of
1424 * a new cycle. Watch out for the header magic number
1427 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1428 be32_add_cpu((__be32
*)dptr
, 1);
1429 if (be32_to_cpu(*(__be32
*)dptr
) == XLOG_HEADER_MAGIC_NUM
)
1430 be32_add_cpu((__be32
*)dptr
, 1);
1434 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1435 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1437 /* account for internal log which doesn't start at block #0 */
1438 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1440 if ((error
= xlog_bdstrat(bp
))) {
1441 xfs_ioerror_alert("xlog_sync (split)", log
->l_mp
,
1442 bp
, XFS_BUF_ADDR(bp
));
1451 * Deallocate a log structure
1454 xlog_dealloc_log(xlog_t
*log
)
1456 xlog_in_core_t
*iclog
, *next_iclog
;
1459 xlog_cil_destroy(log
);
1462 * always need to ensure that the extra buffer does not point to memory
1463 * owned by another log buffer before we free it.
1465 xfs_buf_set_empty(log
->l_xbuf
, log
->l_iclog_size
);
1466 xfs_buf_free(log
->l_xbuf
);
1468 iclog
= log
->l_iclog
;
1469 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1470 xfs_buf_free(iclog
->ic_bp
);
1471 next_iclog
= iclog
->ic_next
;
1475 spinlock_destroy(&log
->l_icloglock
);
1477 log
->l_mp
->m_log
= NULL
;
1479 } /* xlog_dealloc_log */
1482 * Update counters atomically now that memcpy is done.
1486 xlog_state_finish_copy(xlog_t
*log
,
1487 xlog_in_core_t
*iclog
,
1491 spin_lock(&log
->l_icloglock
);
1493 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1494 iclog
->ic_offset
+= copy_bytes
;
1496 spin_unlock(&log
->l_icloglock
);
1497 } /* xlog_state_finish_copy */
1503 * print out info relating to regions written which consume
1508 struct xfs_mount
*mp
,
1509 struct xlog_ticket
*ticket
)
1512 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1514 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1515 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1536 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1580 "xfs_log_write: reservation summary:\n"
1581 " trans type = %s (%u)\n"
1582 " unit res = %d bytes\n"
1583 " current res = %d bytes\n"
1584 " total reg = %u bytes (o/flow = %u bytes)\n"
1585 " ophdrs = %u (ophdr space = %u bytes)\n"
1586 " ophdr + reg = %u bytes\n"
1587 " num regions = %u\n",
1588 ((ticket
->t_trans_type
<= 0 ||
1589 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1590 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1591 ticket
->t_trans_type
,
1594 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1595 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1596 ticket
->t_res_arr_sum
+
1597 ticket
->t_res_o_flow
+ ophdr_spc
,
1600 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1601 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1602 xfs_warn(mp
, "region[%u]: %s - %u bytes\n", i
,
1603 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1604 "bad-rtype" : res_type_str
[r_type
-1]),
1605 ticket
->t_res_arr
[i
].r_len
);
1608 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
1609 "xfs_log_write: reservation ran out. Need to up reservation");
1610 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1614 * Calculate the potential space needed by the log vector. Each region gets
1615 * its own xlog_op_header_t and may need to be double word aligned.
1618 xlog_write_calc_vec_length(
1619 struct xlog_ticket
*ticket
,
1620 struct xfs_log_vec
*log_vector
)
1622 struct xfs_log_vec
*lv
;
1627 /* acct for start rec of xact */
1628 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1631 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
1632 headers
+= lv
->lv_niovecs
;
1634 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
1635 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
1638 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
1642 ticket
->t_res_num_ophdrs
+= headers
;
1643 len
+= headers
* sizeof(struct xlog_op_header
);
1649 * If first write for transaction, insert start record We can't be trying to
1650 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1653 xlog_write_start_rec(
1654 struct xlog_op_header
*ophdr
,
1655 struct xlog_ticket
*ticket
)
1657 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
1660 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1661 ophdr
->oh_clientid
= ticket
->t_clientid
;
1663 ophdr
->oh_flags
= XLOG_START_TRANS
;
1666 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
1668 return sizeof(struct xlog_op_header
);
1671 static xlog_op_header_t
*
1672 xlog_write_setup_ophdr(
1674 struct xlog_op_header
*ophdr
,
1675 struct xlog_ticket
*ticket
,
1678 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1679 ophdr
->oh_clientid
= ticket
->t_clientid
;
1682 /* are we copying a commit or unmount record? */
1683 ophdr
->oh_flags
= flags
;
1686 * We've seen logs corrupted with bad transaction client ids. This
1687 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1688 * and shut down the filesystem.
1690 switch (ophdr
->oh_clientid
) {
1691 case XFS_TRANSACTION
:
1697 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1698 ophdr
->oh_clientid
, ticket
);
1706 * Set up the parameters of the region copy into the log. This has
1707 * to handle region write split across multiple log buffers - this
1708 * state is kept external to this function so that this code can
1709 * can be written in an obvious, self documenting manner.
1712 xlog_write_setup_copy(
1713 struct xlog_ticket
*ticket
,
1714 struct xlog_op_header
*ophdr
,
1715 int space_available
,
1719 int *last_was_partial_copy
,
1720 int *bytes_consumed
)
1724 still_to_copy
= space_required
- *bytes_consumed
;
1725 *copy_off
= *bytes_consumed
;
1727 if (still_to_copy
<= space_available
) {
1728 /* write of region completes here */
1729 *copy_len
= still_to_copy
;
1730 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1731 if (*last_was_partial_copy
)
1732 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
1733 *last_was_partial_copy
= 0;
1734 *bytes_consumed
= 0;
1738 /* partial write of region, needs extra log op header reservation */
1739 *copy_len
= space_available
;
1740 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1741 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
1742 if (*last_was_partial_copy
)
1743 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
1744 *bytes_consumed
+= *copy_len
;
1745 (*last_was_partial_copy
)++;
1747 /* account for new log op header */
1748 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
1749 ticket
->t_res_num_ophdrs
++;
1751 return sizeof(struct xlog_op_header
);
1755 xlog_write_copy_finish(
1757 struct xlog_in_core
*iclog
,
1762 int *partial_copy_len
,
1764 struct xlog_in_core
**commit_iclog
)
1766 if (*partial_copy
) {
1768 * This iclog has already been marked WANT_SYNC by
1769 * xlog_state_get_iclog_space.
1771 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1774 return xlog_state_release_iclog(log
, iclog
);
1778 *partial_copy_len
= 0;
1780 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
1781 /* no more space in this iclog - push it. */
1782 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1786 spin_lock(&log
->l_icloglock
);
1787 xlog_state_want_sync(log
, iclog
);
1788 spin_unlock(&log
->l_icloglock
);
1791 return xlog_state_release_iclog(log
, iclog
);
1792 ASSERT(flags
& XLOG_COMMIT_TRANS
);
1793 *commit_iclog
= iclog
;
1800 * Write some region out to in-core log
1802 * This will be called when writing externally provided regions or when
1803 * writing out a commit record for a given transaction.
1805 * General algorithm:
1806 * 1. Find total length of this write. This may include adding to the
1807 * lengths passed in.
1808 * 2. Check whether we violate the tickets reservation.
1809 * 3. While writing to this iclog
1810 * A. Reserve as much space in this iclog as can get
1811 * B. If this is first write, save away start lsn
1812 * C. While writing this region:
1813 * 1. If first write of transaction, write start record
1814 * 2. Write log operation header (header per region)
1815 * 3. Find out if we can fit entire region into this iclog
1816 * 4. Potentially, verify destination memcpy ptr
1817 * 5. Memcpy (partial) region
1818 * 6. If partial copy, release iclog; otherwise, continue
1819 * copying more regions into current iclog
1820 * 4. Mark want sync bit (in simulation mode)
1821 * 5. Release iclog for potential flush to on-disk log.
1824 * 1. Panic if reservation is overrun. This should never happen since
1825 * reservation amounts are generated internal to the filesystem.
1827 * 1. Tickets are single threaded data structures.
1828 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1829 * syncing routine. When a single log_write region needs to span
1830 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1831 * on all log operation writes which don't contain the end of the
1832 * region. The XLOG_END_TRANS bit is used for the in-core log
1833 * operation which contains the end of the continued log_write region.
1834 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1835 * we don't really know exactly how much space will be used. As a result,
1836 * we don't update ic_offset until the end when we know exactly how many
1837 * bytes have been written out.
1842 struct xfs_log_vec
*log_vector
,
1843 struct xlog_ticket
*ticket
,
1844 xfs_lsn_t
*start_lsn
,
1845 struct xlog_in_core
**commit_iclog
,
1848 struct xlog_in_core
*iclog
= NULL
;
1849 struct xfs_log_iovec
*vecp
;
1850 struct xfs_log_vec
*lv
;
1853 int partial_copy
= 0;
1854 int partial_copy_len
= 0;
1862 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
1865 * Region headers and bytes are already accounted for.
1866 * We only need to take into account start records and
1867 * split regions in this function.
1869 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1870 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1873 * Commit record headers need to be accounted for. These
1874 * come in as separate writes so are easy to detect.
1876 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
1877 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1879 ticket
->t_curr_res
-= len
;
1881 if (ticket
->t_curr_res
< 0)
1882 xlog_print_tic_res(log
->l_mp
, ticket
);
1886 vecp
= lv
->lv_iovecp
;
1887 while (lv
&& index
< lv
->lv_niovecs
) {
1891 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
1892 &contwr
, &log_offset
);
1896 ASSERT(log_offset
<= iclog
->ic_size
- 1);
1897 ptr
= iclog
->ic_datap
+ log_offset
;
1899 /* start_lsn is the first lsn written to. That's all we need. */
1901 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
1904 * This loop writes out as many regions as can fit in the amount
1905 * of space which was allocated by xlog_state_get_iclog_space().
1907 while (lv
&& index
< lv
->lv_niovecs
) {
1908 struct xfs_log_iovec
*reg
= &vecp
[index
];
1909 struct xlog_op_header
*ophdr
;
1914 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
1915 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
1917 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
1918 if (start_rec_copy
) {
1920 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
1924 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
1926 return XFS_ERROR(EIO
);
1928 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
1929 sizeof(struct xlog_op_header
));
1931 len
+= xlog_write_setup_copy(ticket
, ophdr
,
1932 iclog
->ic_size
-log_offset
,
1934 ©_off
, ©_len
,
1937 xlog_verify_dest_ptr(log
, ptr
);
1940 ASSERT(copy_len
>= 0);
1941 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
1942 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
1944 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
1946 data_cnt
+= contwr
? copy_len
: 0;
1948 error
= xlog_write_copy_finish(log
, iclog
, flags
,
1949 &record_cnt
, &data_cnt
,
1958 * if we had a partial copy, we need to get more iclog
1959 * space but we don't want to increment the region
1960 * index because there is still more is this region to
1963 * If we completed writing this region, and we flushed
1964 * the iclog (indicated by resetting of the record
1965 * count), then we also need to get more log space. If
1966 * this was the last record, though, we are done and
1972 if (++index
== lv
->lv_niovecs
) {
1976 vecp
= lv
->lv_iovecp
;
1978 if (record_cnt
== 0) {
1988 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
1990 return xlog_state_release_iclog(log
, iclog
);
1992 ASSERT(flags
& XLOG_COMMIT_TRANS
);
1993 *commit_iclog
= iclog
;
1998 /*****************************************************************************
2000 * State Machine functions
2002 *****************************************************************************
2005 /* Clean iclogs starting from the head. This ordering must be
2006 * maintained, so an iclog doesn't become ACTIVE beyond one that
2007 * is SYNCING. This is also required to maintain the notion that we use
2008 * a ordered wait queue to hold off would be writers to the log when every
2009 * iclog is trying to sync to disk.
2011 * State Change: DIRTY -> ACTIVE
2014 xlog_state_clean_log(xlog_t
*log
)
2016 xlog_in_core_t
*iclog
;
2019 iclog
= log
->l_iclog
;
2021 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2022 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2023 iclog
->ic_offset
= 0;
2024 ASSERT(iclog
->ic_callback
== NULL
);
2026 * If the number of ops in this iclog indicate it just
2027 * contains the dummy transaction, we can
2028 * change state into IDLE (the second time around).
2029 * Otherwise we should change the state into
2031 * We don't need to cover the dummy.
2034 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2039 * We have two dirty iclogs so start over
2040 * This could also be num of ops indicates
2041 * this is not the dummy going out.
2045 iclog
->ic_header
.h_num_logops
= 0;
2046 memset(iclog
->ic_header
.h_cycle_data
, 0,
2047 sizeof(iclog
->ic_header
.h_cycle_data
));
2048 iclog
->ic_header
.h_lsn
= 0;
2049 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2052 break; /* stop cleaning */
2053 iclog
= iclog
->ic_next
;
2054 } while (iclog
!= log
->l_iclog
);
2056 /* log is locked when we are called */
2058 * Change state for the dummy log recording.
2059 * We usually go to NEED. But we go to NEED2 if the changed indicates
2060 * we are done writing the dummy record.
2061 * If we are done with the second dummy recored (DONE2), then
2065 switch (log
->l_covered_state
) {
2066 case XLOG_STATE_COVER_IDLE
:
2067 case XLOG_STATE_COVER_NEED
:
2068 case XLOG_STATE_COVER_NEED2
:
2069 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2072 case XLOG_STATE_COVER_DONE
:
2074 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2076 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2079 case XLOG_STATE_COVER_DONE2
:
2081 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2083 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2090 } /* xlog_state_clean_log */
2093 xlog_get_lowest_lsn(
2096 xlog_in_core_t
*lsn_log
;
2097 xfs_lsn_t lowest_lsn
, lsn
;
2099 lsn_log
= log
->l_iclog
;
2102 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2103 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2104 if ((lsn
&& !lowest_lsn
) ||
2105 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2109 lsn_log
= lsn_log
->ic_next
;
2110 } while (lsn_log
!= log
->l_iclog
);
2116 xlog_state_do_callback(
2119 xlog_in_core_t
*ciclog
)
2121 xlog_in_core_t
*iclog
;
2122 xlog_in_core_t
*first_iclog
; /* used to know when we've
2123 * processed all iclogs once */
2124 xfs_log_callback_t
*cb
, *cb_next
;
2126 xfs_lsn_t lowest_lsn
;
2127 int ioerrors
; /* counter: iclogs with errors */
2128 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2129 int funcdidcallbacks
; /* flag: function did callbacks */
2130 int repeats
; /* for issuing console warnings if
2131 * looping too many times */
2134 spin_lock(&log
->l_icloglock
);
2135 first_iclog
= iclog
= log
->l_iclog
;
2137 funcdidcallbacks
= 0;
2142 * Scan all iclogs starting with the one pointed to by the
2143 * log. Reset this starting point each time the log is
2144 * unlocked (during callbacks).
2146 * Keep looping through iclogs until one full pass is made
2147 * without running any callbacks.
2149 first_iclog
= log
->l_iclog
;
2150 iclog
= log
->l_iclog
;
2151 loopdidcallbacks
= 0;
2156 /* skip all iclogs in the ACTIVE & DIRTY states */
2157 if (iclog
->ic_state
&
2158 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2159 iclog
= iclog
->ic_next
;
2164 * Between marking a filesystem SHUTDOWN and stopping
2165 * the log, we do flush all iclogs to disk (if there
2166 * wasn't a log I/O error). So, we do want things to
2167 * go smoothly in case of just a SHUTDOWN w/o a
2170 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2172 * Can only perform callbacks in order. Since
2173 * this iclog is not in the DONE_SYNC/
2174 * DO_CALLBACK state, we skip the rest and
2175 * just try to clean up. If we set our iclog
2176 * to DO_CALLBACK, we will not process it when
2177 * we retry since a previous iclog is in the
2178 * CALLBACK and the state cannot change since
2179 * we are holding the l_icloglock.
2181 if (!(iclog
->ic_state
&
2182 (XLOG_STATE_DONE_SYNC
|
2183 XLOG_STATE_DO_CALLBACK
))) {
2184 if (ciclog
&& (ciclog
->ic_state
==
2185 XLOG_STATE_DONE_SYNC
)) {
2186 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2191 * We now have an iclog that is in either the
2192 * DO_CALLBACK or DONE_SYNC states. The other
2193 * states (WANT_SYNC, SYNCING, or CALLBACK were
2194 * caught by the above if and are going to
2195 * clean (i.e. we aren't doing their callbacks)
2200 * We will do one more check here to see if we
2201 * have chased our tail around.
2204 lowest_lsn
= xlog_get_lowest_lsn(log
);
2206 XFS_LSN_CMP(lowest_lsn
,
2207 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2208 iclog
= iclog
->ic_next
;
2209 continue; /* Leave this iclog for
2213 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2217 * update the last_sync_lsn before we drop the
2218 * icloglock to ensure we are the only one that
2221 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2222 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2223 atomic64_set(&log
->l_last_sync_lsn
,
2224 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2229 spin_unlock(&log
->l_icloglock
);
2232 * Keep processing entries in the callback list until
2233 * we come around and it is empty. We need to
2234 * atomically see that the list is empty and change the
2235 * state to DIRTY so that we don't miss any more
2236 * callbacks being added.
2238 spin_lock(&iclog
->ic_callback_lock
);
2239 cb
= iclog
->ic_callback
;
2241 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2242 iclog
->ic_callback
= NULL
;
2243 spin_unlock(&iclog
->ic_callback_lock
);
2245 /* perform callbacks in the order given */
2246 for (; cb
; cb
= cb_next
) {
2247 cb_next
= cb
->cb_next
;
2248 cb
->cb_func(cb
->cb_arg
, aborted
);
2250 spin_lock(&iclog
->ic_callback_lock
);
2251 cb
= iclog
->ic_callback
;
2257 spin_lock(&log
->l_icloglock
);
2258 ASSERT(iclog
->ic_callback
== NULL
);
2259 spin_unlock(&iclog
->ic_callback_lock
);
2260 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2261 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2264 * Transition from DIRTY to ACTIVE if applicable.
2265 * NOP if STATE_IOERROR.
2267 xlog_state_clean_log(log
);
2269 /* wake up threads waiting in xfs_log_force() */
2270 wake_up_all(&iclog
->ic_force_wait
);
2272 iclog
= iclog
->ic_next
;
2273 } while (first_iclog
!= iclog
);
2275 if (repeats
> 5000) {
2276 flushcnt
+= repeats
;
2279 "%s: possible infinite loop (%d iterations)",
2280 __func__
, flushcnt
);
2282 } while (!ioerrors
&& loopdidcallbacks
);
2285 * make one last gasp attempt to see if iclogs are being left in
2289 if (funcdidcallbacks
) {
2290 first_iclog
= iclog
= log
->l_iclog
;
2292 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2294 * Terminate the loop if iclogs are found in states
2295 * which will cause other threads to clean up iclogs.
2297 * SYNCING - i/o completion will go through logs
2298 * DONE_SYNC - interrupt thread should be waiting for
2300 * IOERROR - give up hope all ye who enter here
2302 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2303 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2304 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2305 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2307 iclog
= iclog
->ic_next
;
2308 } while (first_iclog
!= iclog
);
2312 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2314 spin_unlock(&log
->l_icloglock
);
2317 wake_up_all(&log
->l_flush_wait
);
2322 * Finish transitioning this iclog to the dirty state.
2324 * Make sure that we completely execute this routine only when this is
2325 * the last call to the iclog. There is a good chance that iclog flushes,
2326 * when we reach the end of the physical log, get turned into 2 separate
2327 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2328 * routine. By using the reference count bwritecnt, we guarantee that only
2329 * the second completion goes through.
2331 * Callbacks could take time, so they are done outside the scope of the
2332 * global state machine log lock.
2335 xlog_state_done_syncing(
2336 xlog_in_core_t
*iclog
,
2339 xlog_t
*log
= iclog
->ic_log
;
2341 spin_lock(&log
->l_icloglock
);
2343 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2344 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2345 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2346 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2350 * If we got an error, either on the first buffer, or in the case of
2351 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2352 * and none should ever be attempted to be written to disk
2355 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2356 if (--iclog
->ic_bwritecnt
== 1) {
2357 spin_unlock(&log
->l_icloglock
);
2360 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2364 * Someone could be sleeping prior to writing out the next
2365 * iclog buffer, we wake them all, one will get to do the
2366 * I/O, the others get to wait for the result.
2368 wake_up_all(&iclog
->ic_write_wait
);
2369 spin_unlock(&log
->l_icloglock
);
2370 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2371 } /* xlog_state_done_syncing */
2375 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2376 * sleep. We wait on the flush queue on the head iclog as that should be
2377 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2378 * we will wait here and all new writes will sleep until a sync completes.
2380 * The in-core logs are used in a circular fashion. They are not used
2381 * out-of-order even when an iclog past the head is free.
2384 * * log_offset where xlog_write() can start writing into the in-core
2386 * * in-core log pointer to which xlog_write() should write.
2387 * * boolean indicating this is a continued write to an in-core log.
2388 * If this is the last write, then the in-core log's offset field
2389 * needs to be incremented, depending on the amount of data which
2393 xlog_state_get_iclog_space(xlog_t
*log
,
2395 xlog_in_core_t
**iclogp
,
2396 xlog_ticket_t
*ticket
,
2397 int *continued_write
,
2401 xlog_rec_header_t
*head
;
2402 xlog_in_core_t
*iclog
;
2406 spin_lock(&log
->l_icloglock
);
2407 if (XLOG_FORCED_SHUTDOWN(log
)) {
2408 spin_unlock(&log
->l_icloglock
);
2409 return XFS_ERROR(EIO
);
2412 iclog
= log
->l_iclog
;
2413 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2414 XFS_STATS_INC(xs_log_noiclogs
);
2416 /* Wait for log writes to have flushed */
2417 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2421 head
= &iclog
->ic_header
;
2423 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2424 log_offset
= iclog
->ic_offset
;
2426 /* On the 1st write to an iclog, figure out lsn. This works
2427 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2428 * committing to. If the offset is set, that's how many blocks
2431 if (log_offset
== 0) {
2432 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2433 xlog_tic_add_region(ticket
,
2435 XLOG_REG_TYPE_LRHEADER
);
2436 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2437 head
->h_lsn
= cpu_to_be64(
2438 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2439 ASSERT(log
->l_curr_block
>= 0);
2442 /* If there is enough room to write everything, then do it. Otherwise,
2443 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2444 * bit is on, so this will get flushed out. Don't update ic_offset
2445 * until you know exactly how many bytes get copied. Therefore, wait
2446 * until later to update ic_offset.
2448 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2449 * can fit into remaining data section.
2451 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2452 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2455 * If I'm the only one writing to this iclog, sync it to disk.
2456 * We need to do an atomic compare and decrement here to avoid
2457 * racing with concurrent atomic_dec_and_lock() calls in
2458 * xlog_state_release_iclog() when there is more than one
2459 * reference to the iclog.
2461 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2462 /* we are the only one */
2463 spin_unlock(&log
->l_icloglock
);
2464 error
= xlog_state_release_iclog(log
, iclog
);
2468 spin_unlock(&log
->l_icloglock
);
2473 /* Do we have enough room to write the full amount in the remainder
2474 * of this iclog? Or must we continue a write on the next iclog and
2475 * mark this iclog as completely taken? In the case where we switch
2476 * iclogs (to mark it taken), this particular iclog will release/sync
2477 * to disk in xlog_write().
2479 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2480 *continued_write
= 0;
2481 iclog
->ic_offset
+= len
;
2483 *continued_write
= 1;
2484 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2488 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2489 spin_unlock(&log
->l_icloglock
);
2491 *logoffsetp
= log_offset
;
2493 } /* xlog_state_get_iclog_space */
2496 * Atomically get the log space required for a log ticket.
2498 * Once a ticket gets put onto the reserveq, it will only return after
2499 * the needed reservation is satisfied.
2501 * This function is structured so that it has a lock free fast path. This is
2502 * necessary because every new transaction reservation will come through this
2503 * path. Hence any lock will be globally hot if we take it unconditionally on
2506 * As tickets are only ever moved on and off the reserveq under the
2507 * l_grant_reserve_lock, we only need to take that lock if we are going
2508 * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2509 * ticket was never added to the reserveq because the t_queue list head will be
2510 * empty and we hold the only reference to it so it can safely be checked
2514 xlog_grant_log_space(xlog_t
*log
,
2521 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
2522 panic("grant Recovery problem");
2525 trace_xfs_log_grant_enter(log
, tic
);
2527 need_bytes
= tic
->t_unit_res
;
2528 if (tic
->t_flags
& XFS_LOG_PERM_RESERV
)
2529 need_bytes
*= tic
->t_ocnt
;
2531 /* something is already sleeping; insert new transaction at end */
2532 if (!list_empty_careful(&log
->l_reserveq
)) {
2533 spin_lock(&log
->l_grant_reserve_lock
);
2534 /* recheck the queue now we are locked */
2535 if (list_empty(&log
->l_reserveq
)) {
2536 spin_unlock(&log
->l_grant_reserve_lock
);
2539 list_add_tail(&tic
->t_queue
, &log
->l_reserveq
);
2541 trace_xfs_log_grant_sleep1(log
, tic
);
2544 * Gotta check this before going to sleep, while we're
2545 * holding the grant lock.
2547 if (XLOG_FORCED_SHUTDOWN(log
))
2550 XFS_STATS_INC(xs_sleep_logspace
);
2551 xlog_wait(&tic
->t_wait
, &log
->l_grant_reserve_lock
);
2554 * If we got an error, and the filesystem is shutting down,
2555 * we'll catch it down below. So just continue...
2557 trace_xfs_log_grant_wake1(log
, tic
);
2561 if (XLOG_FORCED_SHUTDOWN(log
))
2562 goto error_return_unlocked
;
2564 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
2565 if (free_bytes
< need_bytes
) {
2566 spin_lock(&log
->l_grant_reserve_lock
);
2567 if (list_empty(&tic
->t_queue
))
2568 list_add_tail(&tic
->t_queue
, &log
->l_reserveq
);
2570 trace_xfs_log_grant_sleep2(log
, tic
);
2572 if (XLOG_FORCED_SHUTDOWN(log
))
2575 xlog_grant_push_ail(log
, need_bytes
);
2577 XFS_STATS_INC(xs_sleep_logspace
);
2578 xlog_wait(&tic
->t_wait
, &log
->l_grant_reserve_lock
);
2580 trace_xfs_log_grant_wake2(log
, tic
);
2584 if (!list_empty(&tic
->t_queue
)) {
2585 spin_lock(&log
->l_grant_reserve_lock
);
2586 list_del_init(&tic
->t_queue
);
2587 spin_unlock(&log
->l_grant_reserve_lock
);
2590 /* we've got enough space */
2591 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
, need_bytes
);
2592 xlog_grant_add_space(log
, &log
->l_grant_write_head
, need_bytes
);
2593 trace_xfs_log_grant_exit(log
, tic
);
2594 xlog_verify_grant_tail(log
);
2597 error_return_unlocked
:
2598 spin_lock(&log
->l_grant_reserve_lock
);
2600 list_del_init(&tic
->t_queue
);
2601 spin_unlock(&log
->l_grant_reserve_lock
);
2602 trace_xfs_log_grant_error(log
, tic
);
2605 * If we are failing, make sure the ticket doesn't have any
2606 * current reservations. We don't want to add this back when
2607 * the ticket/transaction gets cancelled.
2609 tic
->t_curr_res
= 0;
2610 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
2611 return XFS_ERROR(EIO
);
2612 } /* xlog_grant_log_space */
2616 * Replenish the byte reservation required by moving the grant write head.
2618 * Similar to xlog_grant_log_space, the function is structured to have a lock
2622 xlog_regrant_write_log_space(xlog_t
*log
,
2625 int free_bytes
, need_bytes
;
2627 tic
->t_curr_res
= tic
->t_unit_res
;
2628 xlog_tic_reset_res(tic
);
2634 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
2635 panic("regrant Recovery problem");
2638 trace_xfs_log_regrant_write_enter(log
, tic
);
2639 if (XLOG_FORCED_SHUTDOWN(log
))
2640 goto error_return_unlocked
;
2642 /* If there are other waiters on the queue then give them a
2643 * chance at logspace before us. Wake up the first waiters,
2644 * if we do not wake up all the waiters then go to sleep waiting
2645 * for more free space, otherwise try to get some space for
2648 need_bytes
= tic
->t_unit_res
;
2649 if (!list_empty_careful(&log
->l_writeq
)) {
2650 struct xlog_ticket
*ntic
;
2652 spin_lock(&log
->l_grant_write_lock
);
2653 free_bytes
= xlog_space_left(log
, &log
->l_grant_write_head
);
2654 list_for_each_entry(ntic
, &log
->l_writeq
, t_queue
) {
2655 ASSERT(ntic
->t_flags
& XLOG_TIC_PERM_RESERV
);
2657 if (free_bytes
< ntic
->t_unit_res
)
2659 free_bytes
-= ntic
->t_unit_res
;
2660 wake_up(&ntic
->t_wait
);
2663 if (ntic
!= list_first_entry(&log
->l_writeq
,
2664 struct xlog_ticket
, t_queue
)) {
2665 if (list_empty(&tic
->t_queue
))
2666 list_add_tail(&tic
->t_queue
, &log
->l_writeq
);
2667 trace_xfs_log_regrant_write_sleep1(log
, tic
);
2669 xlog_grant_push_ail(log
, need_bytes
);
2671 XFS_STATS_INC(xs_sleep_logspace
);
2672 xlog_wait(&tic
->t_wait
, &log
->l_grant_write_lock
);
2673 trace_xfs_log_regrant_write_wake1(log
, tic
);
2675 spin_unlock(&log
->l_grant_write_lock
);
2679 if (XLOG_FORCED_SHUTDOWN(log
))
2680 goto error_return_unlocked
;
2682 free_bytes
= xlog_space_left(log
, &log
->l_grant_write_head
);
2683 if (free_bytes
< need_bytes
) {
2684 spin_lock(&log
->l_grant_write_lock
);
2685 if (list_empty(&tic
->t_queue
))
2686 list_add_tail(&tic
->t_queue
, &log
->l_writeq
);
2688 if (XLOG_FORCED_SHUTDOWN(log
))
2691 xlog_grant_push_ail(log
, need_bytes
);
2693 XFS_STATS_INC(xs_sleep_logspace
);
2694 trace_xfs_log_regrant_write_sleep2(log
, tic
);
2695 xlog_wait(&tic
->t_wait
, &log
->l_grant_write_lock
);
2697 trace_xfs_log_regrant_write_wake2(log
, tic
);
2701 if (!list_empty(&tic
->t_queue
)) {
2702 spin_lock(&log
->l_grant_write_lock
);
2703 list_del_init(&tic
->t_queue
);
2704 spin_unlock(&log
->l_grant_write_lock
);
2707 /* we've got enough space */
2708 xlog_grant_add_space(log
, &log
->l_grant_write_head
, need_bytes
);
2709 trace_xfs_log_regrant_write_exit(log
, tic
);
2710 xlog_verify_grant_tail(log
);
2714 error_return_unlocked
:
2715 spin_lock(&log
->l_grant_write_lock
);
2717 list_del_init(&tic
->t_queue
);
2718 spin_unlock(&log
->l_grant_write_lock
);
2719 trace_xfs_log_regrant_write_error(log
, tic
);
2722 * If we are failing, make sure the ticket doesn't have any
2723 * current reservations. We don't want to add this back when
2724 * the ticket/transaction gets cancelled.
2726 tic
->t_curr_res
= 0;
2727 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
2728 return XFS_ERROR(EIO
);
2729 } /* xlog_regrant_write_log_space */
2732 /* The first cnt-1 times through here we don't need to
2733 * move the grant write head because the permanent
2734 * reservation has reserved cnt times the unit amount.
2735 * Release part of current permanent unit reservation and
2736 * reset current reservation to be one units worth. Also
2737 * move grant reservation head forward.
2740 xlog_regrant_reserve_log_space(xlog_t
*log
,
2741 xlog_ticket_t
*ticket
)
2743 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2745 if (ticket
->t_cnt
> 0)
2748 xlog_grant_sub_space(log
, &log
->l_grant_reserve_head
,
2749 ticket
->t_curr_res
);
2750 xlog_grant_sub_space(log
, &log
->l_grant_write_head
,
2751 ticket
->t_curr_res
);
2752 ticket
->t_curr_res
= ticket
->t_unit_res
;
2753 xlog_tic_reset_res(ticket
);
2755 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2757 /* just return if we still have some of the pre-reserved space */
2758 if (ticket
->t_cnt
> 0)
2761 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
,
2762 ticket
->t_unit_res
);
2764 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2766 ticket
->t_curr_res
= ticket
->t_unit_res
;
2767 xlog_tic_reset_res(ticket
);
2768 } /* xlog_regrant_reserve_log_space */
2772 * Give back the space left from a reservation.
2774 * All the information we need to make a correct determination of space left
2775 * is present. For non-permanent reservations, things are quite easy. The
2776 * count should have been decremented to zero. We only need to deal with the
2777 * space remaining in the current reservation part of the ticket. If the
2778 * ticket contains a permanent reservation, there may be left over space which
2779 * needs to be released. A count of N means that N-1 refills of the current
2780 * reservation can be done before we need to ask for more space. The first
2781 * one goes to fill up the first current reservation. Once we run out of
2782 * space, the count will stay at zero and the only space remaining will be
2783 * in the current reservation field.
2786 xlog_ungrant_log_space(xlog_t
*log
,
2787 xlog_ticket_t
*ticket
)
2791 if (ticket
->t_cnt
> 0)
2794 trace_xfs_log_ungrant_enter(log
, ticket
);
2795 trace_xfs_log_ungrant_sub(log
, ticket
);
2798 * If this is a permanent reservation ticket, we may be able to free
2799 * up more space based on the remaining count.
2801 bytes
= ticket
->t_curr_res
;
2802 if (ticket
->t_cnt
> 0) {
2803 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2804 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2807 xlog_grant_sub_space(log
, &log
->l_grant_reserve_head
, bytes
);
2808 xlog_grant_sub_space(log
, &log
->l_grant_write_head
, bytes
);
2810 trace_xfs_log_ungrant_exit(log
, ticket
);
2812 xfs_log_move_tail(log
->l_mp
, 1);
2813 } /* xlog_ungrant_log_space */
2817 * Flush iclog to disk if this is the last reference to the given iclog and
2818 * the WANT_SYNC bit is set.
2820 * When this function is entered, the iclog is not necessarily in the
2821 * WANT_SYNC state. It may be sitting around waiting to get filled.
2826 xlog_state_release_iclog(
2828 xlog_in_core_t
*iclog
)
2830 int sync
= 0; /* do we sync? */
2832 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
2833 return XFS_ERROR(EIO
);
2835 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
2836 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
2839 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2840 spin_unlock(&log
->l_icloglock
);
2841 return XFS_ERROR(EIO
);
2843 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2844 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2846 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
2847 /* update tail before writing to iclog */
2848 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
2850 iclog
->ic_state
= XLOG_STATE_SYNCING
;
2851 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
2852 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
2853 /* cycle incremented when incrementing curr_block */
2855 spin_unlock(&log
->l_icloglock
);
2858 * We let the log lock go, so it's possible that we hit a log I/O
2859 * error or some other SHUTDOWN condition that marks the iclog
2860 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2861 * this iclog has consistent data, so we ignore IOERROR
2862 * flags after this point.
2865 return xlog_sync(log
, iclog
);
2867 } /* xlog_state_release_iclog */
2871 * This routine will mark the current iclog in the ring as WANT_SYNC
2872 * and move the current iclog pointer to the next iclog in the ring.
2873 * When this routine is called from xlog_state_get_iclog_space(), the
2874 * exact size of the iclog has not yet been determined. All we know is
2875 * that every data block. We have run out of space in this log record.
2878 xlog_state_switch_iclogs(xlog_t
*log
,
2879 xlog_in_core_t
*iclog
,
2882 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
2884 eventual_size
= iclog
->ic_offset
;
2885 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
2886 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
2887 log
->l_prev_block
= log
->l_curr_block
;
2888 log
->l_prev_cycle
= log
->l_curr_cycle
;
2890 /* roll log?: ic_offset changed later */
2891 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
2893 /* Round up to next log-sunit */
2894 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
2895 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
2896 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
2897 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
2900 if (log
->l_curr_block
>= log
->l_logBBsize
) {
2901 log
->l_curr_cycle
++;
2902 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
2903 log
->l_curr_cycle
++;
2904 log
->l_curr_block
-= log
->l_logBBsize
;
2905 ASSERT(log
->l_curr_block
>= 0);
2907 ASSERT(iclog
== log
->l_iclog
);
2908 log
->l_iclog
= iclog
->ic_next
;
2909 } /* xlog_state_switch_iclogs */
2912 * Write out all data in the in-core log as of this exact moment in time.
2914 * Data may be written to the in-core log during this call. However,
2915 * we don't guarantee this data will be written out. A change from past
2916 * implementation means this routine will *not* write out zero length LRs.
2918 * Basically, we try and perform an intelligent scan of the in-core logs.
2919 * If we determine there is no flushable data, we just return. There is no
2920 * flushable data if:
2922 * 1. the current iclog is active and has no data; the previous iclog
2923 * is in the active or dirty state.
2924 * 2. the current iclog is drity, and the previous iclog is in the
2925 * active or dirty state.
2929 * 1. the current iclog is not in the active nor dirty state.
2930 * 2. the current iclog dirty, and the previous iclog is not in the
2931 * active nor dirty state.
2932 * 3. the current iclog is active, and there is another thread writing
2933 * to this particular iclog.
2934 * 4. a) the current iclog is active and has no other writers
2935 * b) when we return from flushing out this iclog, it is still
2936 * not in the active nor dirty state.
2940 struct xfs_mount
*mp
,
2944 struct log
*log
= mp
->m_log
;
2945 struct xlog_in_core
*iclog
;
2948 XFS_STATS_INC(xs_log_force
);
2951 xlog_cil_force(log
);
2953 spin_lock(&log
->l_icloglock
);
2955 iclog
= log
->l_iclog
;
2956 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2957 spin_unlock(&log
->l_icloglock
);
2958 return XFS_ERROR(EIO
);
2961 /* If the head iclog is not active nor dirty, we just attach
2962 * ourselves to the head and go to sleep.
2964 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2965 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2967 * If the head is dirty or (active and empty), then
2968 * we need to look at the previous iclog. If the previous
2969 * iclog is active or dirty we are done. There is nothing
2970 * to sync out. Otherwise, we attach ourselves to the
2971 * previous iclog and go to sleep.
2973 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
2974 (atomic_read(&iclog
->ic_refcnt
) == 0
2975 && iclog
->ic_offset
== 0)) {
2976 iclog
= iclog
->ic_prev
;
2977 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2978 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2983 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
2984 /* We are the only one with access to this
2985 * iclog. Flush it out now. There should
2986 * be a roundoff of zero to show that someone
2987 * has already taken care of the roundoff from
2988 * the previous sync.
2990 atomic_inc(&iclog
->ic_refcnt
);
2991 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2992 xlog_state_switch_iclogs(log
, iclog
, 0);
2993 spin_unlock(&log
->l_icloglock
);
2995 if (xlog_state_release_iclog(log
, iclog
))
2996 return XFS_ERROR(EIO
);
3000 spin_lock(&log
->l_icloglock
);
3001 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3002 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3007 /* Someone else is writing to this iclog.
3008 * Use its call to flush out the data. However,
3009 * the other thread may not force out this LR,
3010 * so we mark it WANT_SYNC.
3012 xlog_state_switch_iclogs(log
, iclog
, 0);
3018 /* By the time we come around again, the iclog could've been filled
3019 * which would give it another lsn. If we have a new lsn, just
3020 * return because the relevant data has been flushed.
3023 if (flags
& XFS_LOG_SYNC
) {
3025 * We must check if we're shutting down here, before
3026 * we wait, while we're holding the l_icloglock.
3027 * Then we check again after waking up, in case our
3028 * sleep was disturbed by a bad news.
3030 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3031 spin_unlock(&log
->l_icloglock
);
3032 return XFS_ERROR(EIO
);
3034 XFS_STATS_INC(xs_log_force_sleep
);
3035 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3037 * No need to grab the log lock here since we're
3038 * only deciding whether or not to return EIO
3039 * and the memory read should be atomic.
3041 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3042 return XFS_ERROR(EIO
);
3048 spin_unlock(&log
->l_icloglock
);
3054 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3055 * about errors or whether the log was flushed or not. This is the normal
3056 * interface to use when trying to unpin items or move the log forward.
3065 error
= _xfs_log_force(mp
, flags
, NULL
);
3067 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3071 * Force the in-core log to disk for a specific LSN.
3073 * Find in-core log with lsn.
3074 * If it is in the DIRTY state, just return.
3075 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3076 * state and go to sleep or return.
3077 * If it is in any other state, go to sleep or return.
3079 * Synchronous forces are implemented with a signal variable. All callers
3080 * to force a given lsn to disk will wait on a the sv attached to the
3081 * specific in-core log. When given in-core log finally completes its
3082 * write to disk, that thread will wake up all threads waiting on the
3087 struct xfs_mount
*mp
,
3092 struct log
*log
= mp
->m_log
;
3093 struct xlog_in_core
*iclog
;
3094 int already_slept
= 0;
3098 XFS_STATS_INC(xs_log_force
);
3101 lsn
= xlog_cil_force_lsn(log
, lsn
);
3102 if (lsn
== NULLCOMMITLSN
)
3107 spin_lock(&log
->l_icloglock
);
3108 iclog
= log
->l_iclog
;
3109 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3110 spin_unlock(&log
->l_icloglock
);
3111 return XFS_ERROR(EIO
);
3115 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3116 iclog
= iclog
->ic_next
;
3120 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3121 spin_unlock(&log
->l_icloglock
);
3125 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3127 * We sleep here if we haven't already slept (e.g.
3128 * this is the first time we've looked at the correct
3129 * iclog buf) and the buffer before us is going to
3130 * be sync'ed. The reason for this is that if we
3131 * are doing sync transactions here, by waiting for
3132 * the previous I/O to complete, we can allow a few
3133 * more transactions into this iclog before we close
3136 * Otherwise, we mark the buffer WANT_SYNC, and bump
3137 * up the refcnt so we can release the log (which
3138 * drops the ref count). The state switch keeps new
3139 * transaction commits from using this buffer. When
3140 * the current commits finish writing into the buffer,
3141 * the refcount will drop to zero and the buffer will
3144 if (!already_slept
&&
3145 (iclog
->ic_prev
->ic_state
&
3146 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3147 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3149 XFS_STATS_INC(xs_log_force_sleep
);
3151 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3158 atomic_inc(&iclog
->ic_refcnt
);
3159 xlog_state_switch_iclogs(log
, iclog
, 0);
3160 spin_unlock(&log
->l_icloglock
);
3161 if (xlog_state_release_iclog(log
, iclog
))
3162 return XFS_ERROR(EIO
);
3165 spin_lock(&log
->l_icloglock
);
3168 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3170 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3172 * Don't wait on completion if we know that we've
3173 * gotten a log write error.
3175 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3176 spin_unlock(&log
->l_icloglock
);
3177 return XFS_ERROR(EIO
);
3179 XFS_STATS_INC(xs_log_force_sleep
);
3180 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3182 * No need to grab the log lock here since we're
3183 * only deciding whether or not to return EIO
3184 * and the memory read should be atomic.
3186 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3187 return XFS_ERROR(EIO
);
3191 } else { /* just return */
3192 spin_unlock(&log
->l_icloglock
);
3196 } while (iclog
!= log
->l_iclog
);
3198 spin_unlock(&log
->l_icloglock
);
3203 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3204 * about errors or whether the log was flushed or not. This is the normal
3205 * interface to use when trying to unpin items or move the log forward.
3215 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3217 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3221 * Called when we want to mark the current iclog as being ready to sync to
3225 xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
)
3227 assert_spin_locked(&log
->l_icloglock
);
3229 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3230 xlog_state_switch_iclogs(log
, iclog
, 0);
3232 ASSERT(iclog
->ic_state
&
3233 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3238 /*****************************************************************************
3242 *****************************************************************************
3246 * Free a used ticket when its refcount falls to zero.
3250 xlog_ticket_t
*ticket
)
3252 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3253 if (atomic_dec_and_test(&ticket
->t_ref
))
3254 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3259 xlog_ticket_t
*ticket
)
3261 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3262 atomic_inc(&ticket
->t_ref
);
3267 * Allocate and initialise a new log ticket.
3278 struct xlog_ticket
*tic
;
3282 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3287 * Permanent reservations have up to 'cnt'-1 active log operations
3288 * in the log. A unit in this case is the amount of space for one
3289 * of these log operations. Normal reservations have a cnt of 1
3290 * and their unit amount is the total amount of space required.
3292 * The following lines of code account for non-transaction data
3293 * which occupy space in the on-disk log.
3295 * Normal form of a transaction is:
3296 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3297 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3299 * We need to account for all the leadup data and trailer data
3300 * around the transaction data.
3301 * And then we need to account for the worst case in terms of using
3303 * The worst case will happen if:
3304 * - the placement of the transaction happens to be such that the
3305 * roundoff is at its maximum
3306 * - the transaction data is synced before the commit record is synced
3307 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3308 * Therefore the commit record is in its own Log Record.
3309 * This can happen as the commit record is called with its
3310 * own region to xlog_write().
3311 * This then means that in the worst case, roundoff can happen for
3312 * the commit-rec as well.
3313 * The commit-rec is smaller than padding in this scenario and so it is
3314 * not added separately.
3317 /* for trans header */
3318 unit_bytes
+= sizeof(xlog_op_header_t
);
3319 unit_bytes
+= sizeof(xfs_trans_header_t
);
3322 unit_bytes
+= sizeof(xlog_op_header_t
);
3325 * for LR headers - the space for data in an iclog is the size minus
3326 * the space used for the headers. If we use the iclog size, then we
3327 * undercalculate the number of headers required.
3329 * Furthermore - the addition of op headers for split-recs might
3330 * increase the space required enough to require more log and op
3331 * headers, so take that into account too.
3333 * IMPORTANT: This reservation makes the assumption that if this
3334 * transaction is the first in an iclog and hence has the LR headers
3335 * accounted to it, then the remaining space in the iclog is
3336 * exclusively for this transaction. i.e. if the transaction is larger
3337 * than the iclog, it will be the only thing in that iclog.
3338 * Fundamentally, this means we must pass the entire log vector to
3339 * xlog_write to guarantee this.
3341 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3342 num_headers
= howmany(unit_bytes
, iclog_space
);
3344 /* for split-recs - ophdrs added when data split over LRs */
3345 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3347 /* add extra header reservations if we overrun */
3348 while (!num_headers
||
3349 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3350 unit_bytes
+= sizeof(xlog_op_header_t
);
3353 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3355 /* for commit-rec LR header - note: padding will subsume the ophdr */
3356 unit_bytes
+= log
->l_iclog_hsize
;
3358 /* for roundoff padding for transaction data and one for commit record */
3359 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3360 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3361 /* log su roundoff */
3362 unit_bytes
+= 2*log
->l_mp
->m_sb
.sb_logsunit
;
3365 unit_bytes
+= 2*BBSIZE
;
3368 atomic_set(&tic
->t_ref
, 1);
3369 INIT_LIST_HEAD(&tic
->t_queue
);
3370 tic
->t_unit_res
= unit_bytes
;
3371 tic
->t_curr_res
= unit_bytes
;
3374 tic
->t_tid
= random32();
3375 tic
->t_clientid
= client
;
3376 tic
->t_flags
= XLOG_TIC_INITED
;
3377 tic
->t_trans_type
= 0;
3378 if (xflags
& XFS_LOG_PERM_RESERV
)
3379 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3380 init_waitqueue_head(&tic
->t_wait
);
3382 xlog_tic_reset_res(tic
);
3388 /******************************************************************************
3390 * Log debug routines
3392 ******************************************************************************
3396 * Make sure that the destination ptr is within the valid data region of
3397 * one of the iclogs. This uses backup pointers stored in a different
3398 * part of the log in case we trash the log structure.
3401 xlog_verify_dest_ptr(
3408 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3409 if (ptr
>= log
->l_iclog_bak
[i
] &&
3410 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3415 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3419 * Check to make sure the grant write head didn't just over lap the tail. If
3420 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3421 * the cycles differ by exactly one and check the byte count.
3423 * This check is run unlocked, so can give false positives. Rather than assert
3424 * on failures, use a warn-once flag and a panic tag to allow the admin to
3425 * determine if they want to panic the machine when such an error occurs. For
3426 * debug kernels this will have the same effect as using an assert but, unlinke
3427 * an assert, it can be turned off at runtime.
3430 xlog_verify_grant_tail(
3433 int tail_cycle
, tail_blocks
;
3436 xlog_crack_grant_head(&log
->l_grant_write_head
, &cycle
, &space
);
3437 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3438 if (tail_cycle
!= cycle
) {
3439 if (cycle
- 1 != tail_cycle
&&
3440 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3441 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3442 "%s: cycle - 1 != tail_cycle", __func__
);
3443 log
->l_flags
|= XLOG_TAIL_WARN
;
3446 if (space
> BBTOB(tail_blocks
) &&
3447 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3448 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3449 "%s: space > BBTOB(tail_blocks)", __func__
);
3450 log
->l_flags
|= XLOG_TAIL_WARN
;
3455 /* check if it will fit */
3457 xlog_verify_tail_lsn(xlog_t
*log
,
3458 xlog_in_core_t
*iclog
,
3463 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3465 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3466 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3467 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3469 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3471 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3472 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3474 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3475 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3476 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3478 } /* xlog_verify_tail_lsn */
3481 * Perform a number of checks on the iclog before writing to disk.
3483 * 1. Make sure the iclogs are still circular
3484 * 2. Make sure we have a good magic number
3485 * 3. Make sure we don't have magic numbers in the data
3486 * 4. Check fields of each log operation header for:
3487 * A. Valid client identifier
3488 * B. tid ptr value falls in valid ptr space (user space code)
3489 * C. Length in log record header is correct according to the
3490 * individual operation headers within record.
3491 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3492 * log, check the preceding blocks of the physical log to make sure all
3493 * the cycle numbers agree with the current cycle number.
3496 xlog_verify_iclog(xlog_t
*log
,
3497 xlog_in_core_t
*iclog
,
3501 xlog_op_header_t
*ophead
;
3502 xlog_in_core_t
*icptr
;
3503 xlog_in_core_2_t
*xhdr
;
3505 xfs_caddr_t base_ptr
;
3506 __psint_t field_offset
;
3508 int len
, i
, j
, k
, op_len
;
3511 /* check validity of iclog pointers */
3512 spin_lock(&log
->l_icloglock
);
3513 icptr
= log
->l_iclog
;
3514 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
3516 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3517 icptr
= icptr
->ic_next
;
3519 if (icptr
!= log
->l_iclog
)
3520 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3521 spin_unlock(&log
->l_icloglock
);
3523 /* check log magic numbers */
3524 if (be32_to_cpu(iclog
->ic_header
.h_magicno
) != XLOG_HEADER_MAGIC_NUM
)
3525 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3527 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3528 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3530 if (be32_to_cpu(*(__be32
*)ptr
) == XLOG_HEADER_MAGIC_NUM
)
3531 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3536 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3537 ptr
= iclog
->ic_datap
;
3539 ophead
= (xlog_op_header_t
*)ptr
;
3540 xhdr
= iclog
->ic_data
;
3541 for (i
= 0; i
< len
; i
++) {
3542 ophead
= (xlog_op_header_t
*)ptr
;
3544 /* clientid is only 1 byte */
3545 field_offset
= (__psint_t
)
3546 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3547 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3548 clientid
= ophead
->oh_clientid
;
3550 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3551 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3552 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3553 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3554 clientid
= xlog_get_client_id(
3555 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3557 clientid
= xlog_get_client_id(
3558 iclog
->ic_header
.h_cycle_data
[idx
]);
3561 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3563 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3564 __func__
, clientid
, ophead
,
3565 (unsigned long)field_offset
);
3568 field_offset
= (__psint_t
)
3569 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3570 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3571 op_len
= be32_to_cpu(ophead
->oh_len
);
3573 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3574 (__psint_t
)iclog
->ic_datap
);
3575 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3576 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3577 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3578 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3580 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3583 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3585 } /* xlog_verify_iclog */
3589 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3595 xlog_in_core_t
*iclog
, *ic
;
3597 iclog
= log
->l_iclog
;
3598 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3600 * Mark all the incore logs IOERROR.
3601 * From now on, no log flushes will result.
3605 ic
->ic_state
= XLOG_STATE_IOERROR
;
3607 } while (ic
!= iclog
);
3611 * Return non-zero, if state transition has already happened.
3617 * This is called from xfs_force_shutdown, when we're forcibly
3618 * shutting down the filesystem, typically because of an IO error.
3619 * Our main objectives here are to make sure that:
3620 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3621 * parties to find out, 'atomically'.
3622 * b. those who're sleeping on log reservations, pinned objects and
3623 * other resources get woken up, and be told the bad news.
3624 * c. nothing new gets queued up after (a) and (b) are done.
3625 * d. if !logerror, flush the iclogs to disk, then seal them off
3628 * Note: for delayed logging the !logerror case needs to flush the regions
3629 * held in memory out to the iclogs before flushing them to disk. This needs
3630 * to be done before the log is marked as shutdown, otherwise the flush to the
3634 xfs_log_force_umount(
3635 struct xfs_mount
*mp
,
3645 * If this happens during log recovery, don't worry about
3646 * locking; the log isn't open for business yet.
3649 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3650 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3652 XFS_BUF_DONE(mp
->m_sb_bp
);
3657 * Somebody could've already done the hard work for us.
3658 * No need to get locks for this.
3660 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3661 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3667 * Flush the in memory commit item list before marking the log as
3668 * being shut down. We need to do it in this order to ensure all the
3669 * completed transactions are flushed to disk with the xfs_log_force()
3672 if (!logerror
&& (mp
->m_flags
& XFS_MOUNT_DELAYLOG
))
3673 xlog_cil_force(log
);
3676 * mark the filesystem and the as in a shutdown state and wake
3677 * everybody up to tell them the bad news.
3679 spin_lock(&log
->l_icloglock
);
3680 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3682 XFS_BUF_DONE(mp
->m_sb_bp
);
3685 * This flag is sort of redundant because of the mount flag, but
3686 * it's good to maintain the separation between the log and the rest
3689 log
->l_flags
|= XLOG_IO_ERROR
;
3692 * If we hit a log error, we want to mark all the iclogs IOERROR
3693 * while we're still holding the loglock.
3696 retval
= xlog_state_ioerror(log
);
3697 spin_unlock(&log
->l_icloglock
);
3700 * We don't want anybody waiting for log reservations after this. That
3701 * means we have to wake up everybody queued up on reserveq as well as
3702 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3703 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3704 * action is protected by the grant locks.
3706 spin_lock(&log
->l_grant_reserve_lock
);
3707 list_for_each_entry(tic
, &log
->l_reserveq
, t_queue
)
3708 wake_up(&tic
->t_wait
);
3709 spin_unlock(&log
->l_grant_reserve_lock
);
3711 spin_lock(&log
->l_grant_write_lock
);
3712 list_for_each_entry(tic
, &log
->l_writeq
, t_queue
)
3713 wake_up(&tic
->t_wait
);
3714 spin_unlock(&log
->l_grant_write_lock
);
3716 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3719 * Force the incore logs to disk before shutting the
3720 * log down completely.
3722 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3724 spin_lock(&log
->l_icloglock
);
3725 retval
= xlog_state_ioerror(log
);
3726 spin_unlock(&log
->l_icloglock
);
3729 * Wake up everybody waiting on xfs_log_force.
3730 * Callback all log item committed functions as if the
3731 * log writes were completed.
3733 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3735 #ifdef XFSERRORDEBUG
3737 xlog_in_core_t
*iclog
;
3739 spin_lock(&log
->l_icloglock
);
3740 iclog
= log
->l_iclog
;
3742 ASSERT(iclog
->ic_callback
== 0);
3743 iclog
= iclog
->ic_next
;
3744 } while (iclog
!= log
->l_iclog
);
3745 spin_unlock(&log
->l_icloglock
);
3748 /* return non-zero if log IOERROR transition had already happened */
3753 xlog_iclogs_empty(xlog_t
*log
)
3755 xlog_in_core_t
*iclog
;
3757 iclog
= log
->l_iclog
;
3759 /* endianness does not matter here, zero is zero in
3762 if (iclog
->ic_header
.h_num_logops
)
3764 iclog
= iclog
->ic_next
;
3765 } while (iclog
!= log
->l_iclog
);