2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t
*xfs_ifork_zone
;
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
61 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
62 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
63 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
67 * Make sure that the extents in the given memory buffer
77 xfs_bmbt_rec_host_t rec
;
80 for (i
= 0; i
< nrecs
; i
++) {
81 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
82 rec
.l0
= get_unaligned(&ep
->l0
);
83 rec
.l1
= get_unaligned(&ep
->l1
);
84 xfs_bmbt_get_all(&rec
, &irec
);
85 if (fmt
== XFS_EXTFMT_NOSTATE
)
86 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
90 #define xfs_validate_extents(ifp, nrecs, fmt)
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
107 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
109 for (i
= 0; i
< j
; i
++) {
110 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
111 i
* mp
->m_sb
.sb_inodesize
);
112 if (!dip
->di_next_unlinked
) {
114 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
116 ASSERT(dip
->di_next_unlinked
);
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
131 struct xfs_imap
*imap
,
141 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
142 (int)imap
->im_len
, buf_flags
, &bp
);
144 if (error
!= EAGAIN
) {
146 "%s: xfs_trans_read_buf() returned error %d.",
149 ASSERT(buf_flags
& XBF_TRYLOCK
);
155 * Validate the magic number and version of every inode in the buffer
156 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
159 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
160 #else /* usual case */
164 for (i
= 0; i
< ni
; i
++) {
168 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
169 (i
<< mp
->m_sb
.sb_inodelog
));
170 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
171 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
172 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
173 XFS_ERRTAG_ITOBP_INOTOBP
,
174 XFS_RANDOM_ITOBP_INOTOBP
))) {
175 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
176 xfs_trans_brelse(tp
, bp
);
177 return XFS_ERROR(EINVAL
);
179 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
180 XFS_ERRLEVEL_HIGH
, mp
, dip
);
183 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
184 (unsigned long long)imap
->im_blkno
, i
,
185 be16_to_cpu(dip
->di_magic
));
188 xfs_trans_brelse(tp
, bp
);
189 return XFS_ERROR(EFSCORRUPTED
);
193 xfs_inobp_check(mp
, bp
);
196 * Mark the buffer as an inode buffer now that it looks good
198 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
205 * This routine is called to map an inode number within a file
206 * system to the buffer containing the on-disk version of the
207 * inode. It returns a pointer to the buffer containing the
208 * on-disk inode in the bpp parameter, and in the dip parameter
209 * it returns a pointer to the on-disk inode within that buffer.
211 * If a non-zero error is returned, then the contents of bpp and
212 * dipp are undefined.
214 * Use xfs_imap() to determine the size and location of the
215 * buffer to read from disk.
227 struct xfs_imap imap
;
232 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
236 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
240 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
242 *offset
= imap
.im_boffset
;
248 * This routine is called to map an inode to the buffer containing
249 * the on-disk version of the inode. It returns a pointer to the
250 * buffer containing the on-disk inode in the bpp parameter, and in
251 * the dip parameter it returns a pointer to the on-disk inode within
254 * If a non-zero error is returned, then the contents of bpp and
255 * dipp are undefined.
257 * The inode is expected to already been mapped to its buffer and read
258 * in once, thus we can use the mapping information stored in the inode
259 * rather than calling xfs_imap(). This allows us to avoid the overhead
260 * of looking at the inode btree for small block file systems
275 ASSERT(ip
->i_imap
.im_blkno
!= 0);
277 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
282 ASSERT(buf_flags
& XBF_TRYLOCK
);
288 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
294 * Move inode type and inode format specific information from the
295 * on-disk inode to the in-core inode. For fifos, devs, and sockets
296 * this means set if_rdev to the proper value. For files, directories,
297 * and symlinks this means to bring in the in-line data or extent
298 * pointers. For a file in B-tree format, only the root is immediately
299 * brought in-core. The rest will be in-lined in if_extents when it
300 * is first referenced (see xfs_iread_extents()).
307 xfs_attr_shortform_t
*atp
;
311 ip
->i_df
.if_ext_max
=
312 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
315 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
316 be16_to_cpu(dip
->di_anextents
) >
317 be64_to_cpu(dip
->di_nblocks
))) {
318 xfs_warn(ip
->i_mount
,
319 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
320 (unsigned long long)ip
->i_ino
,
321 (int)(be32_to_cpu(dip
->di_nextents
) +
322 be16_to_cpu(dip
->di_anextents
)),
324 be64_to_cpu(dip
->di_nblocks
));
325 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
327 return XFS_ERROR(EFSCORRUPTED
);
330 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
331 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
332 (unsigned long long)ip
->i_ino
,
334 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
336 return XFS_ERROR(EFSCORRUPTED
);
339 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
340 !ip
->i_mount
->m_rtdev_targp
)) {
341 xfs_warn(ip
->i_mount
,
342 "corrupt dinode %Lu, has realtime flag set.",
344 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
345 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
346 return XFS_ERROR(EFSCORRUPTED
);
349 switch (ip
->i_d
.di_mode
& S_IFMT
) {
354 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
355 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
357 return XFS_ERROR(EFSCORRUPTED
);
361 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
367 switch (dip
->di_format
) {
368 case XFS_DINODE_FMT_LOCAL
:
370 * no local regular files yet
372 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
373 xfs_warn(ip
->i_mount
,
374 "corrupt inode %Lu (local format for regular file).",
375 (unsigned long long) ip
->i_ino
);
376 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
379 return XFS_ERROR(EFSCORRUPTED
);
382 di_size
= be64_to_cpu(dip
->di_size
);
383 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
384 xfs_warn(ip
->i_mount
,
385 "corrupt inode %Lu (bad size %Ld for local inode).",
386 (unsigned long long) ip
->i_ino
,
387 (long long) di_size
);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED
);
395 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
397 case XFS_DINODE_FMT_EXTENTS
:
398 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
400 case XFS_DINODE_FMT_BTREE
:
401 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
406 return XFS_ERROR(EFSCORRUPTED
);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
412 return XFS_ERROR(EFSCORRUPTED
);
417 if (!XFS_DFORK_Q(dip
))
419 ASSERT(ip
->i_afp
== NULL
);
420 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
421 ip
->i_afp
->if_ext_max
=
422 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
423 switch (dip
->di_aformat
) {
424 case XFS_DINODE_FMT_LOCAL
:
425 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
426 size
= be16_to_cpu(atp
->hdr
.totsize
);
428 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
429 xfs_warn(ip
->i_mount
,
430 "corrupt inode %Lu (bad attr fork size %Ld).",
431 (unsigned long long) ip
->i_ino
,
433 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
436 return XFS_ERROR(EFSCORRUPTED
);
439 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
441 case XFS_DINODE_FMT_EXTENTS
:
442 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
444 case XFS_DINODE_FMT_BTREE
:
445 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
448 error
= XFS_ERROR(EFSCORRUPTED
);
452 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
454 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
460 * The file is in-lined in the on-disk inode.
461 * If it fits into if_inline_data, then copy
462 * it there, otherwise allocate a buffer for it
463 * and copy the data there. Either way, set
464 * if_data to point at the data.
465 * If we allocate a buffer for the data, make
466 * sure that its size is a multiple of 4 and
467 * record the real size in i_real_bytes.
480 * If the size is unreasonable, then something
481 * is wrong and we just bail out rather than crash in
482 * kmem_alloc() or memcpy() below.
484 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
485 xfs_warn(ip
->i_mount
,
486 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
487 (unsigned long long) ip
->i_ino
, size
,
488 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
489 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
491 return XFS_ERROR(EFSCORRUPTED
);
493 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
496 ifp
->if_u1
.if_data
= NULL
;
497 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
498 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
500 real_size
= roundup(size
, 4);
501 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
503 ifp
->if_bytes
= size
;
504 ifp
->if_real_bytes
= real_size
;
506 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
507 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
508 ifp
->if_flags
|= XFS_IFINLINE
;
513 * The file consists of a set of extents all
514 * of which fit into the on-disk inode.
515 * If there are few enough extents to fit into
516 * the if_inline_ext, then copy them there.
517 * Otherwise allocate a buffer for them and copy
518 * them into it. Either way, set if_extents
519 * to point at the extents.
533 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
534 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
535 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
538 * If the number of extents is unreasonable, then something
539 * is wrong and we just bail out rather than crash in
540 * kmem_alloc() or memcpy() below.
542 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
543 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
544 (unsigned long long) ip
->i_ino
, nex
);
545 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
547 return XFS_ERROR(EFSCORRUPTED
);
550 ifp
->if_real_bytes
= 0;
552 ifp
->if_u1
.if_extents
= NULL
;
553 else if (nex
<= XFS_INLINE_EXTS
)
554 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
556 xfs_iext_add(ifp
, 0, nex
);
558 ifp
->if_bytes
= size
;
560 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
561 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
562 for (i
= 0; i
< nex
; i
++, dp
++) {
563 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
564 ep
->l0
= get_unaligned_be64(&dp
->l0
);
565 ep
->l1
= get_unaligned_be64(&dp
->l1
);
567 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
568 if (whichfork
!= XFS_DATA_FORK
||
569 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
570 if (unlikely(xfs_check_nostate_extents(
572 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 return XFS_ERROR(EFSCORRUPTED
);
578 ifp
->if_flags
|= XFS_IFEXTENTS
;
583 * The file has too many extents to fit into
584 * the inode, so they are in B-tree format.
585 * Allocate a buffer for the root of the B-tree
586 * and copy the root into it. The i_extents
587 * field will remain NULL until all of the
588 * extents are read in (when they are needed).
596 xfs_bmdr_block_t
*dfp
;
602 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
603 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
604 size
= XFS_BMAP_BROOT_SPACE(dfp
);
605 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
608 * blow out if -- fork has less extents than can fit in
609 * fork (fork shouldn't be a btree format), root btree
610 * block has more records than can fit into the fork,
611 * or the number of extents is greater than the number of
614 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
615 || XFS_BMDR_SPACE_CALC(nrecs
) >
616 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
617 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
618 xfs_warn(ip
->i_mount
, "corrupt inode %Lu (btree).",
619 (unsigned long long) ip
->i_ino
);
620 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
622 return XFS_ERROR(EFSCORRUPTED
);
625 ifp
->if_broot_bytes
= size
;
626 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
627 ASSERT(ifp
->if_broot
!= NULL
);
629 * Copy and convert from the on-disk structure
630 * to the in-memory structure.
632 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
633 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
634 ifp
->if_broot
, size
);
635 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
636 ifp
->if_flags
|= XFS_IFBROOT
;
642 xfs_dinode_from_disk(
646 to
->di_magic
= be16_to_cpu(from
->di_magic
);
647 to
->di_mode
= be16_to_cpu(from
->di_mode
);
648 to
->di_version
= from
->di_version
;
649 to
->di_format
= from
->di_format
;
650 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
651 to
->di_uid
= be32_to_cpu(from
->di_uid
);
652 to
->di_gid
= be32_to_cpu(from
->di_gid
);
653 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
654 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
655 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
656 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
657 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
658 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
659 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
660 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
661 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
662 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
663 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
664 to
->di_size
= be64_to_cpu(from
->di_size
);
665 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
666 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
667 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
668 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
669 to
->di_forkoff
= from
->di_forkoff
;
670 to
->di_aformat
= from
->di_aformat
;
671 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
672 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
673 to
->di_flags
= be16_to_cpu(from
->di_flags
);
674 to
->di_gen
= be32_to_cpu(from
->di_gen
);
680 xfs_icdinode_t
*from
)
682 to
->di_magic
= cpu_to_be16(from
->di_magic
);
683 to
->di_mode
= cpu_to_be16(from
->di_mode
);
684 to
->di_version
= from
->di_version
;
685 to
->di_format
= from
->di_format
;
686 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
687 to
->di_uid
= cpu_to_be32(from
->di_uid
);
688 to
->di_gid
= cpu_to_be32(from
->di_gid
);
689 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
690 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
691 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
692 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
693 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
694 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
695 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
696 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
697 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
698 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
699 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
700 to
->di_size
= cpu_to_be64(from
->di_size
);
701 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
702 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
703 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
704 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
705 to
->di_forkoff
= from
->di_forkoff
;
706 to
->di_aformat
= from
->di_aformat
;
707 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
708 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
709 to
->di_flags
= cpu_to_be16(from
->di_flags
);
710 to
->di_gen
= cpu_to_be32(from
->di_gen
);
719 if (di_flags
& XFS_DIFLAG_ANY
) {
720 if (di_flags
& XFS_DIFLAG_REALTIME
)
721 flags
|= XFS_XFLAG_REALTIME
;
722 if (di_flags
& XFS_DIFLAG_PREALLOC
)
723 flags
|= XFS_XFLAG_PREALLOC
;
724 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
725 flags
|= XFS_XFLAG_IMMUTABLE
;
726 if (di_flags
& XFS_DIFLAG_APPEND
)
727 flags
|= XFS_XFLAG_APPEND
;
728 if (di_flags
& XFS_DIFLAG_SYNC
)
729 flags
|= XFS_XFLAG_SYNC
;
730 if (di_flags
& XFS_DIFLAG_NOATIME
)
731 flags
|= XFS_XFLAG_NOATIME
;
732 if (di_flags
& XFS_DIFLAG_NODUMP
)
733 flags
|= XFS_XFLAG_NODUMP
;
734 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
735 flags
|= XFS_XFLAG_RTINHERIT
;
736 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
737 flags
|= XFS_XFLAG_PROJINHERIT
;
738 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
739 flags
|= XFS_XFLAG_NOSYMLINKS
;
740 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
741 flags
|= XFS_XFLAG_EXTSIZE
;
742 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
743 flags
|= XFS_XFLAG_EXTSZINHERIT
;
744 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
745 flags
|= XFS_XFLAG_NODEFRAG
;
746 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
747 flags
|= XFS_XFLAG_FILESTREAM
;
757 xfs_icdinode_t
*dic
= &ip
->i_d
;
759 return _xfs_dic2xflags(dic
->di_flags
) |
760 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
767 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
768 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
772 * Read the disk inode attributes into the in-core inode structure.
786 * Fill in the location information in the in-core inode.
788 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
793 * Get pointers to the on-disk inode and the buffer containing it.
795 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
796 XBF_LOCK
, iget_flags
);
799 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
802 * If we got something that isn't an inode it means someone
803 * (nfs or dmi) has a stale handle.
805 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
808 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
809 __func__
, be16_to_cpu(dip
->di_magic
), XFS_DINODE_MAGIC
);
811 error
= XFS_ERROR(EINVAL
);
816 * If the on-disk inode is already linked to a directory
817 * entry, copy all of the inode into the in-core inode.
818 * xfs_iformat() handles copying in the inode format
819 * specific information.
820 * Otherwise, just get the truly permanent information.
823 xfs_dinode_from_disk(&ip
->i_d
, dip
);
824 error
= xfs_iformat(ip
, dip
);
827 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
833 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
834 ip
->i_d
.di_version
= dip
->di_version
;
835 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
836 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
838 * Make sure to pull in the mode here as well in
839 * case the inode is released without being used.
840 * This ensures that xfs_inactive() will see that
841 * the inode is already free and not try to mess
842 * with the uninitialized part of it.
846 * Initialize the per-fork minima and maxima for a new
847 * inode here. xfs_iformat will do it for old inodes.
849 ip
->i_df
.if_ext_max
=
850 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
854 * The inode format changed when we moved the link count and
855 * made it 32 bits long. If this is an old format inode,
856 * convert it in memory to look like a new one. If it gets
857 * flushed to disk we will convert back before flushing or
858 * logging it. We zero out the new projid field and the old link
859 * count field. We'll handle clearing the pad field (the remains
860 * of the old uuid field) when we actually convert the inode to
861 * the new format. We don't change the version number so that we
862 * can distinguish this from a real new format inode.
864 if (ip
->i_d
.di_version
== 1) {
865 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
866 ip
->i_d
.di_onlink
= 0;
867 xfs_set_projid(ip
, 0);
870 ip
->i_delayed_blks
= 0;
871 ip
->i_size
= ip
->i_d
.di_size
;
874 * Mark the buffer containing the inode as something to keep
875 * around for a while. This helps to keep recently accessed
876 * meta-data in-core longer.
878 xfs_buf_set_ref(bp
, XFS_INO_REF
);
881 * Use xfs_trans_brelse() to release the buffer containing the
882 * on-disk inode, because it was acquired with xfs_trans_read_buf()
883 * in xfs_itobp() above. If tp is NULL, this is just a normal
884 * brelse(). If we're within a transaction, then xfs_trans_brelse()
885 * will only release the buffer if it is not dirty within the
886 * transaction. It will be OK to release the buffer in this case,
887 * because inodes on disk are never destroyed and we will be
888 * locking the new in-core inode before putting it in the hash
889 * table where other processes can find it. Thus we don't have
890 * to worry about the inode being changed just because we released
894 xfs_trans_brelse(tp
, bp
);
899 * Read in extents from a btree-format inode.
900 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
910 xfs_extnum_t nextents
;
912 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
913 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
915 return XFS_ERROR(EFSCORRUPTED
);
917 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
918 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
921 * We know that the size is valid (it's checked in iformat_btree)
923 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
924 ifp
->if_flags
|= XFS_IFEXTENTS
;
925 xfs_iext_add(ifp
, 0, nextents
);
926 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
928 xfs_iext_destroy(ifp
);
929 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
932 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
937 * Allocate an inode on disk and return a copy of its in-core version.
938 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
939 * appropriately within the inode. The uid and gid for the inode are
940 * set according to the contents of the given cred structure.
942 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
943 * has a free inode available, call xfs_iget()
944 * to obtain the in-core version of the allocated inode. Finally,
945 * fill in the inode and log its initial contents. In this case,
946 * ialloc_context would be set to NULL and call_again set to false.
948 * If xfs_dialloc() does not have an available inode,
949 * it will replenish its supply by doing an allocation. Since we can
950 * only do one allocation within a transaction without deadlocks, we
951 * must commit the current transaction before returning the inode itself.
952 * In this case, therefore, we will set call_again to true and return.
953 * The caller should then commit the current transaction, start a new
954 * transaction, and call xfs_ialloc() again to actually get the inode.
956 * To ensure that some other process does not grab the inode that
957 * was allocated during the first call to xfs_ialloc(), this routine
958 * also returns the [locked] bp pointing to the head of the freelist
959 * as ialloc_context. The caller should hold this buffer across
960 * the commit and pass it back into this routine on the second call.
962 * If we are allocating quota inodes, we do not have a parent inode
963 * to attach to or associate with (i.e. pip == NULL) because they
964 * are not linked into the directory structure - they are attached
965 * directly to the superblock - and so have no parent.
976 xfs_buf_t
**ialloc_context
,
977 boolean_t
*call_again
,
988 * Call the space management code to pick
989 * the on-disk inode to be allocated.
991 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
992 ialloc_context
, call_again
, &ino
);
995 if (*call_again
|| ino
== NULLFSINO
) {
999 ASSERT(*ialloc_context
== NULL
);
1002 * Get the in-core inode with the lock held exclusively.
1003 * This is because we're setting fields here we need
1004 * to prevent others from looking at until we're done.
1006 error
= xfs_iget(tp
->t_mountp
, tp
, ino
, XFS_IGET_CREATE
,
1007 XFS_ILOCK_EXCL
, &ip
);
1012 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1013 ip
->i_d
.di_onlink
= 0;
1014 ip
->i_d
.di_nlink
= nlink
;
1015 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1016 ip
->i_d
.di_uid
= current_fsuid();
1017 ip
->i_d
.di_gid
= current_fsgid();
1018 xfs_set_projid(ip
, prid
);
1019 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1022 * If the superblock version is up to where we support new format
1023 * inodes and this is currently an old format inode, then change
1024 * the inode version number now. This way we only do the conversion
1025 * here rather than here and in the flush/logging code.
1027 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1028 ip
->i_d
.di_version
== 1) {
1029 ip
->i_d
.di_version
= 2;
1031 * We've already zeroed the old link count, the projid field,
1032 * and the pad field.
1037 * Project ids won't be stored on disk if we are using a version 1 inode.
1039 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1040 xfs_bump_ino_vers2(tp
, ip
);
1042 if (pip
&& XFS_INHERIT_GID(pip
)) {
1043 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1044 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1045 ip
->i_d
.di_mode
|= S_ISGID
;
1050 * If the group ID of the new file does not match the effective group
1051 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1052 * (and only if the irix_sgid_inherit compatibility variable is set).
1054 if ((irix_sgid_inherit
) &&
1055 (ip
->i_d
.di_mode
& S_ISGID
) &&
1056 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1057 ip
->i_d
.di_mode
&= ~S_ISGID
;
1060 ip
->i_d
.di_size
= 0;
1062 ip
->i_d
.di_nextents
= 0;
1063 ASSERT(ip
->i_d
.di_nblocks
== 0);
1066 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1067 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1068 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1069 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1072 * di_gen will have been taken care of in xfs_iread.
1074 ip
->i_d
.di_extsize
= 0;
1075 ip
->i_d
.di_dmevmask
= 0;
1076 ip
->i_d
.di_dmstate
= 0;
1077 ip
->i_d
.di_flags
= 0;
1078 flags
= XFS_ILOG_CORE
;
1079 switch (mode
& S_IFMT
) {
1084 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1085 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1086 ip
->i_df
.if_flags
= 0;
1087 flags
|= XFS_ILOG_DEV
;
1091 * we can't set up filestreams until after the VFS inode
1092 * is set up properly.
1094 if (pip
&& xfs_inode_is_filestream(pip
))
1098 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1101 if ((mode
& S_IFMT
) == S_IFDIR
) {
1102 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1103 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1104 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1105 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1106 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1108 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1109 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1110 di_flags
|= XFS_DIFLAG_REALTIME
;
1111 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1112 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1113 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1116 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1117 xfs_inherit_noatime
)
1118 di_flags
|= XFS_DIFLAG_NOATIME
;
1119 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1121 di_flags
|= XFS_DIFLAG_NODUMP
;
1122 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1124 di_flags
|= XFS_DIFLAG_SYNC
;
1125 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1126 xfs_inherit_nosymlinks
)
1127 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1128 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1129 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1130 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1131 xfs_inherit_nodefrag
)
1132 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1133 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1134 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1135 ip
->i_d
.di_flags
|= di_flags
;
1139 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1140 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1141 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1142 ip
->i_df
.if_u1
.if_extents
= NULL
;
1148 * Attribute fork settings for new inode.
1150 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1151 ip
->i_d
.di_anextents
= 0;
1154 * Log the new values stuffed into the inode.
1156 xfs_trans_ijoin_ref(tp
, ip
, XFS_ILOCK_EXCL
);
1157 xfs_trans_log_inode(tp
, ip
, flags
);
1159 /* now that we have an i_mode we can setup inode ops and unlock */
1160 xfs_setup_inode(ip
);
1162 /* now we have set up the vfs inode we can associate the filestream */
1164 error
= xfs_filestream_associate(pip
, ip
);
1168 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1176 * Check to make sure that there are no blocks allocated to the
1177 * file beyond the size of the file. We don't check this for
1178 * files with fixed size extents or real time extents, but we
1179 * at least do it for regular files.
1188 xfs_fileoff_t map_first
;
1190 xfs_bmbt_irec_t imaps
[2];
1192 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1195 if (XFS_IS_REALTIME_INODE(ip
))
1198 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1202 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1204 * The filesystem could be shutting down, so bmapi may return
1207 if (xfs_bmapi(NULL
, ip
, map_first
,
1209 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1211 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1214 ASSERT(nimaps
== 1);
1215 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1220 * Calculate the last possible buffered byte in a file. This must
1221 * include data that was buffered beyond the EOF by the write code.
1222 * This also needs to deal with overflowing the xfs_fsize_t type
1223 * which can happen for sizes near the limit.
1225 * We also need to take into account any blocks beyond the EOF. It
1226 * may be the case that they were buffered by a write which failed.
1227 * In that case the pages will still be in memory, but the inode size
1228 * will never have been updated.
1235 xfs_fsize_t last_byte
;
1236 xfs_fileoff_t last_block
;
1237 xfs_fileoff_t size_last_block
;
1240 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1244 * Only check for blocks beyond the EOF if the extents have
1245 * been read in. This eliminates the need for the inode lock,
1246 * and it also saves us from looking when it really isn't
1249 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1250 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1251 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1253 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1260 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1261 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1263 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1264 if (last_byte
< 0) {
1265 return XFS_MAXIOFFSET(mp
);
1267 last_byte
+= (1 << mp
->m_writeio_log
);
1268 if (last_byte
< 0) {
1269 return XFS_MAXIOFFSET(mp
);
1275 * Start the truncation of the file to new_size. The new size
1276 * must be smaller than the current size. This routine will
1277 * clear the buffer and page caches of file data in the removed
1278 * range, and xfs_itruncate_finish() will remove the underlying
1281 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1282 * must NOT have the inode lock held at all. This is because we're
1283 * calling into the buffer/page cache code and we can't hold the
1284 * inode lock when we do so.
1286 * We need to wait for any direct I/Os in flight to complete before we
1287 * proceed with the truncate. This is needed to prevent the extents
1288 * being read or written by the direct I/Os from being removed while the
1289 * I/O is in flight as there is no other method of synchronising
1290 * direct I/O with the truncate operation. Also, because we hold
1291 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1292 * started until the truncate completes and drops the lock. Essentially,
1293 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1294 * ordering between direct I/Os and the truncate operation.
1296 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1297 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1298 * in the case that the caller is locking things out of order and
1299 * may not be able to call xfs_itruncate_finish() with the inode lock
1300 * held without dropping the I/O lock. If the caller must drop the
1301 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1302 * must be called again with all the same restrictions as the initial
1306 xfs_itruncate_start(
1309 xfs_fsize_t new_size
)
1311 xfs_fsize_t last_byte
;
1312 xfs_off_t toss_start
;
1316 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1317 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1318 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1319 (flags
== XFS_ITRUNC_MAYBE
));
1323 /* wait for the completion of any pending DIOs */
1324 if (new_size
== 0 || new_size
< ip
->i_size
)
1328 * Call toss_pages or flushinval_pages to get rid of pages
1329 * overlapping the region being removed. We have to use
1330 * the less efficient flushinval_pages in the case that the
1331 * caller may not be able to finish the truncate without
1332 * dropping the inode's I/O lock. Make sure
1333 * to catch any pages brought in by buffers overlapping
1334 * the EOF by searching out beyond the isize by our
1335 * block size. We round new_size up to a block boundary
1336 * so that we don't toss things on the same block as
1337 * new_size but before it.
1339 * Before calling toss_page or flushinval_pages, make sure to
1340 * call remapf() over the same region if the file is mapped.
1341 * This frees up mapped file references to the pages in the
1342 * given range and for the flushinval_pages case it ensures
1343 * that we get the latest mapped changes flushed out.
1345 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1346 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1347 if (toss_start
< 0) {
1349 * The place to start tossing is beyond our maximum
1350 * file size, so there is no way that the data extended
1355 last_byte
= xfs_file_last_byte(ip
);
1356 trace_xfs_itruncate_start(ip
, new_size
, flags
, toss_start
, last_byte
);
1357 if (last_byte
> toss_start
) {
1358 if (flags
& XFS_ITRUNC_DEFINITE
) {
1359 xfs_tosspages(ip
, toss_start
,
1360 -1, FI_REMAPF_LOCKED
);
1362 error
= xfs_flushinval_pages(ip
, toss_start
,
1363 -1, FI_REMAPF_LOCKED
);
1368 if (new_size
== 0) {
1369 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1376 * Shrink the file to the given new_size. The new size must be smaller than
1377 * the current size. This will free up the underlying blocks in the removed
1378 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1380 * The transaction passed to this routine must have made a permanent log
1381 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1382 * given transaction and start new ones, so make sure everything involved in
1383 * the transaction is tidy before calling here. Some transaction will be
1384 * returned to the caller to be committed. The incoming transaction must
1385 * already include the inode, and both inode locks must be held exclusively.
1386 * The inode must also be "held" within the transaction. On return the inode
1387 * will be "held" within the returned transaction. This routine does NOT
1388 * require any disk space to be reserved for it within the transaction.
1390 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1391 * indicates the fork which is to be truncated. For the attribute fork we only
1392 * support truncation to size 0.
1394 * We use the sync parameter to indicate whether or not the first transaction
1395 * we perform might have to be synchronous. For the attr fork, it needs to be
1396 * so if the unlink of the inode is not yet known to be permanent in the log.
1397 * This keeps us from freeing and reusing the blocks of the attribute fork
1398 * before the unlink of the inode becomes permanent.
1400 * For the data fork, we normally have to run synchronously if we're being
1401 * called out of the inactive path or we're being called out of the create path
1402 * where we're truncating an existing file. Either way, the truncate needs to
1403 * be sync so blocks don't reappear in the file with altered data in case of a
1404 * crash. wsync filesystems can run the first case async because anything that
1405 * shrinks the inode has to run sync so by the time we're called here from
1406 * inactive, the inode size is permanently set to 0.
1408 * Calls from the truncate path always need to be sync unless we're in a wsync
1409 * filesystem and the file has already been unlinked.
1411 * The caller is responsible for correctly setting the sync parameter. It gets
1412 * too hard for us to guess here which path we're being called out of just
1413 * based on inode state.
1415 * If we get an error, we must return with the inode locked and linked into the
1416 * current transaction. This keeps things simple for the higher level code,
1417 * because it always knows that the inode is locked and held in the transaction
1418 * that returns to it whether errors occur or not. We don't mark the inode
1419 * dirty on error so that transactions can be easily aborted if possible.
1422 xfs_itruncate_finish(
1425 xfs_fsize_t new_size
,
1429 xfs_fsblock_t first_block
;
1430 xfs_fileoff_t first_unmap_block
;
1431 xfs_fileoff_t last_block
;
1432 xfs_filblks_t unmap_len
=0;
1437 xfs_bmap_free_t free_list
;
1440 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1441 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1442 ASSERT(*tp
!= NULL
);
1443 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1444 ASSERT(ip
->i_transp
== *tp
);
1445 ASSERT(ip
->i_itemp
!= NULL
);
1446 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1450 mp
= (ntp
)->t_mountp
;
1451 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1454 * We only support truncating the entire attribute fork.
1456 if (fork
== XFS_ATTR_FORK
) {
1459 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1460 trace_xfs_itruncate_finish_start(ip
, new_size
);
1463 * The first thing we do is set the size to new_size permanently
1464 * on disk. This way we don't have to worry about anyone ever
1465 * being able to look at the data being freed even in the face
1466 * of a crash. What we're getting around here is the case where
1467 * we free a block, it is allocated to another file, it is written
1468 * to, and then we crash. If the new data gets written to the
1469 * file but the log buffers containing the free and reallocation
1470 * don't, then we'd end up with garbage in the blocks being freed.
1471 * As long as we make the new_size permanent before actually
1472 * freeing any blocks it doesn't matter if they get written to.
1474 * The callers must signal into us whether or not the size
1475 * setting here must be synchronous. There are a few cases
1476 * where it doesn't have to be synchronous. Those cases
1477 * occur if the file is unlinked and we know the unlink is
1478 * permanent or if the blocks being truncated are guaranteed
1479 * to be beyond the inode eof (regardless of the link count)
1480 * and the eof value is permanent. Both of these cases occur
1481 * only on wsync-mounted filesystems. In those cases, we're
1482 * guaranteed that no user will ever see the data in the blocks
1483 * that are being truncated so the truncate can run async.
1484 * In the free beyond eof case, the file may wind up with
1485 * more blocks allocated to it than it needs if we crash
1486 * and that won't get fixed until the next time the file
1487 * is re-opened and closed but that's ok as that shouldn't
1488 * be too many blocks.
1490 * However, we can't just make all wsync xactions run async
1491 * because there's one call out of the create path that needs
1492 * to run sync where it's truncating an existing file to size
1493 * 0 whose size is > 0.
1495 * It's probably possible to come up with a test in this
1496 * routine that would correctly distinguish all the above
1497 * cases from the values of the function parameters and the
1498 * inode state but for sanity's sake, I've decided to let the
1499 * layers above just tell us. It's simpler to correctly figure
1500 * out in the layer above exactly under what conditions we
1501 * can run async and I think it's easier for others read and
1502 * follow the logic in case something has to be changed.
1503 * cscope is your friend -- rcc.
1505 * The attribute fork is much simpler.
1507 * For the attribute fork we allow the caller to tell us whether
1508 * the unlink of the inode that led to this call is yet permanent
1509 * in the on disk log. If it is not and we will be freeing extents
1510 * in this inode then we make the first transaction synchronous
1511 * to make sure that the unlink is permanent by the time we free
1514 if (fork
== XFS_DATA_FORK
) {
1515 if (ip
->i_d
.di_nextents
> 0) {
1517 * If we are not changing the file size then do
1518 * not update the on-disk file size - we may be
1519 * called from xfs_inactive_free_eofblocks(). If we
1520 * update the on-disk file size and then the system
1521 * crashes before the contents of the file are
1522 * flushed to disk then the files may be full of
1523 * holes (ie NULL files bug).
1525 if (ip
->i_size
!= new_size
) {
1526 ip
->i_d
.di_size
= new_size
;
1527 ip
->i_size
= new_size
;
1528 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1532 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1533 if (ip
->i_d
.di_anextents
> 0)
1534 xfs_trans_set_sync(ntp
);
1536 ASSERT(fork
== XFS_DATA_FORK
||
1537 (fork
== XFS_ATTR_FORK
&&
1538 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1539 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1542 * Since it is possible for space to become allocated beyond
1543 * the end of the file (in a crash where the space is allocated
1544 * but the inode size is not yet updated), simply remove any
1545 * blocks which show up between the new EOF and the maximum
1546 * possible file size. If the first block to be removed is
1547 * beyond the maximum file size (ie it is the same as last_block),
1548 * then there is nothing to do.
1550 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1551 ASSERT(first_unmap_block
<= last_block
);
1553 if (last_block
== first_unmap_block
) {
1556 unmap_len
= last_block
- first_unmap_block
+ 1;
1560 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1561 * will tell us whether it freed the entire range or
1562 * not. If this is a synchronous mount (wsync),
1563 * then we can tell bunmapi to keep all the
1564 * transactions asynchronous since the unlink
1565 * transaction that made this inode inactive has
1566 * already hit the disk. There's no danger of
1567 * the freed blocks being reused, there being a
1568 * crash, and the reused blocks suddenly reappearing
1569 * in this file with garbage in them once recovery
1572 xfs_bmap_init(&free_list
, &first_block
);
1573 error
= xfs_bunmapi(ntp
, ip
,
1574 first_unmap_block
, unmap_len
,
1575 xfs_bmapi_aflag(fork
),
1576 XFS_ITRUNC_MAX_EXTENTS
,
1577 &first_block
, &free_list
,
1581 * If the bunmapi call encounters an error,
1582 * return to the caller where the transaction
1583 * can be properly aborted. We just need to
1584 * make sure we're not holding any resources
1585 * that we were not when we came in.
1587 xfs_bmap_cancel(&free_list
);
1592 * Duplicate the transaction that has the permanent
1593 * reservation and commit the old transaction.
1595 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1598 xfs_trans_ijoin(ntp
, ip
);
1602 * If the bmap finish call encounters an error, return
1603 * to the caller where the transaction can be properly
1604 * aborted. We just need to make sure we're not
1605 * holding any resources that we were not when we came
1608 * Aborting from this point might lose some blocks in
1609 * the file system, but oh well.
1611 xfs_bmap_cancel(&free_list
);
1617 * Mark the inode dirty so it will be logged and
1618 * moved forward in the log as part of every commit.
1620 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1623 ntp
= xfs_trans_dup(ntp
);
1624 error
= xfs_trans_commit(*tp
, 0);
1627 xfs_trans_ijoin(ntp
, ip
);
1632 * transaction commit worked ok so we can drop the extra ticket
1633 * reference that we gained in xfs_trans_dup()
1635 xfs_log_ticket_put(ntp
->t_ticket
);
1636 error
= xfs_trans_reserve(ntp
, 0,
1637 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1638 XFS_TRANS_PERM_LOG_RES
,
1639 XFS_ITRUNCATE_LOG_COUNT
);
1644 * Only update the size in the case of the data fork, but
1645 * always re-log the inode so that our permanent transaction
1646 * can keep on rolling it forward in the log.
1648 if (fork
== XFS_DATA_FORK
) {
1649 xfs_isize_check(mp
, ip
, new_size
);
1651 * If we are not changing the file size then do
1652 * not update the on-disk file size - we may be
1653 * called from xfs_inactive_free_eofblocks(). If we
1654 * update the on-disk file size and then the system
1655 * crashes before the contents of the file are
1656 * flushed to disk then the files may be full of
1657 * holes (ie NULL files bug).
1659 if (ip
->i_size
!= new_size
) {
1660 ip
->i_d
.di_size
= new_size
;
1661 ip
->i_size
= new_size
;
1664 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1665 ASSERT((new_size
!= 0) ||
1666 (fork
== XFS_ATTR_FORK
) ||
1667 (ip
->i_delayed_blks
== 0));
1668 ASSERT((new_size
!= 0) ||
1669 (fork
== XFS_ATTR_FORK
) ||
1670 (ip
->i_d
.di_nextents
== 0));
1671 trace_xfs_itruncate_finish_end(ip
, new_size
);
1676 * This is called when the inode's link count goes to 0.
1677 * We place the on-disk inode on a list in the AGI. It
1678 * will be pulled from this list when the inode is freed.
1695 ASSERT(ip
->i_d
.di_nlink
== 0);
1696 ASSERT(ip
->i_d
.di_mode
!= 0);
1697 ASSERT(ip
->i_transp
== tp
);
1702 * Get the agi buffer first. It ensures lock ordering
1705 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1708 agi
= XFS_BUF_TO_AGI(agibp
);
1711 * Get the index into the agi hash table for the
1712 * list this inode will go on.
1714 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1716 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1717 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1718 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1720 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1722 * There is already another inode in the bucket we need
1723 * to add ourselves to. Add us at the front of the list.
1724 * Here we put the head pointer into our next pointer,
1725 * and then we fall through to point the head at us.
1727 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1731 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1732 /* both on-disk, don't endian flip twice */
1733 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1734 offset
= ip
->i_imap
.im_boffset
+
1735 offsetof(xfs_dinode_t
, di_next_unlinked
);
1736 xfs_trans_inode_buf(tp
, ibp
);
1737 xfs_trans_log_buf(tp
, ibp
, offset
,
1738 (offset
+ sizeof(xfs_agino_t
) - 1));
1739 xfs_inobp_check(mp
, ibp
);
1743 * Point the bucket head pointer at the inode being inserted.
1746 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1747 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1748 (sizeof(xfs_agino_t
) * bucket_index
);
1749 xfs_trans_log_buf(tp
, agibp
, offset
,
1750 (offset
+ sizeof(xfs_agino_t
) - 1));
1755 * Pull the on-disk inode from the AGI unlinked list.
1768 xfs_agnumber_t agno
;
1770 xfs_agino_t next_agino
;
1771 xfs_buf_t
*last_ibp
;
1772 xfs_dinode_t
*last_dip
= NULL
;
1774 int offset
, last_offset
= 0;
1778 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1781 * Get the agi buffer first. It ensures lock ordering
1784 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1788 agi
= XFS_BUF_TO_AGI(agibp
);
1791 * Get the index into the agi hash table for the
1792 * list this inode will go on.
1794 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1796 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1797 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1798 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1800 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1802 * We're at the head of the list. Get the inode's
1803 * on-disk buffer to see if there is anyone after us
1804 * on the list. Only modify our next pointer if it
1805 * is not already NULLAGINO. This saves us the overhead
1806 * of dealing with the buffer when there is no need to
1809 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1811 xfs_warn(mp
, "%s: xfs_itobp() returned error %d.",
1815 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1816 ASSERT(next_agino
!= 0);
1817 if (next_agino
!= NULLAGINO
) {
1818 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1819 offset
= ip
->i_imap
.im_boffset
+
1820 offsetof(xfs_dinode_t
, di_next_unlinked
);
1821 xfs_trans_inode_buf(tp
, ibp
);
1822 xfs_trans_log_buf(tp
, ibp
, offset
,
1823 (offset
+ sizeof(xfs_agino_t
) - 1));
1824 xfs_inobp_check(mp
, ibp
);
1826 xfs_trans_brelse(tp
, ibp
);
1829 * Point the bucket head pointer at the next inode.
1831 ASSERT(next_agino
!= 0);
1832 ASSERT(next_agino
!= agino
);
1833 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1834 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1835 (sizeof(xfs_agino_t
) * bucket_index
);
1836 xfs_trans_log_buf(tp
, agibp
, offset
,
1837 (offset
+ sizeof(xfs_agino_t
) - 1));
1840 * We need to search the list for the inode being freed.
1842 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1844 while (next_agino
!= agino
) {
1846 * If the last inode wasn't the one pointing to
1847 * us, then release its buffer since we're not
1848 * going to do anything with it.
1850 if (last_ibp
!= NULL
) {
1851 xfs_trans_brelse(tp
, last_ibp
);
1853 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1854 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1855 &last_ibp
, &last_offset
, 0);
1858 "%s: xfs_inotobp() returned error %d.",
1862 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1863 ASSERT(next_agino
!= NULLAGINO
);
1864 ASSERT(next_agino
!= 0);
1867 * Now last_ibp points to the buffer previous to us on
1868 * the unlinked list. Pull us from the list.
1870 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1872 xfs_warn(mp
, "%s: xfs_itobp(2) returned error %d.",
1876 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1877 ASSERT(next_agino
!= 0);
1878 ASSERT(next_agino
!= agino
);
1879 if (next_agino
!= NULLAGINO
) {
1880 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1881 offset
= ip
->i_imap
.im_boffset
+
1882 offsetof(xfs_dinode_t
, di_next_unlinked
);
1883 xfs_trans_inode_buf(tp
, ibp
);
1884 xfs_trans_log_buf(tp
, ibp
, offset
,
1885 (offset
+ sizeof(xfs_agino_t
) - 1));
1886 xfs_inobp_check(mp
, ibp
);
1888 xfs_trans_brelse(tp
, ibp
);
1891 * Point the previous inode on the list to the next inode.
1893 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1894 ASSERT(next_agino
!= 0);
1895 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1896 xfs_trans_inode_buf(tp
, last_ibp
);
1897 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1898 (offset
+ sizeof(xfs_agino_t
) - 1));
1899 xfs_inobp_check(mp
, last_ibp
);
1905 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1906 * inodes that are in memory - they all must be marked stale and attached to
1907 * the cluster buffer.
1911 xfs_inode_t
*free_ip
,
1915 xfs_mount_t
*mp
= free_ip
->i_mount
;
1916 int blks_per_cluster
;
1923 xfs_inode_log_item_t
*iip
;
1924 xfs_log_item_t
*lip
;
1925 struct xfs_perag
*pag
;
1927 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1928 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1929 blks_per_cluster
= 1;
1930 ninodes
= mp
->m_sb
.sb_inopblock
;
1931 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1933 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1934 mp
->m_sb
.sb_blocksize
;
1935 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1936 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1939 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1940 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1941 XFS_INO_TO_AGBNO(mp
, inum
));
1944 * We obtain and lock the backing buffer first in the process
1945 * here, as we have to ensure that any dirty inode that we
1946 * can't get the flush lock on is attached to the buffer.
1947 * If we scan the in-memory inodes first, then buffer IO can
1948 * complete before we get a lock on it, and hence we may fail
1949 * to mark all the active inodes on the buffer stale.
1951 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1952 mp
->m_bsize
* blks_per_cluster
,
1956 * Walk the inodes already attached to the buffer and mark them
1957 * stale. These will all have the flush locks held, so an
1958 * in-memory inode walk can't lock them. By marking them all
1959 * stale first, we will not attempt to lock them in the loop
1960 * below as the XFS_ISTALE flag will be set.
1962 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
1964 if (lip
->li_type
== XFS_LI_INODE
) {
1965 iip
= (xfs_inode_log_item_t
*)lip
;
1966 ASSERT(iip
->ili_logged
== 1);
1967 lip
->li_cb
= xfs_istale_done
;
1968 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1969 &iip
->ili_flush_lsn
,
1970 &iip
->ili_item
.li_lsn
);
1971 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1973 lip
= lip
->li_bio_list
;
1978 * For each inode in memory attempt to add it to the inode
1979 * buffer and set it up for being staled on buffer IO
1980 * completion. This is safe as we've locked out tail pushing
1981 * and flushing by locking the buffer.
1983 * We have already marked every inode that was part of a
1984 * transaction stale above, which means there is no point in
1985 * even trying to lock them.
1987 for (i
= 0; i
< ninodes
; i
++) {
1990 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1991 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1993 /* Inode not in memory, nothing to do */
2000 * because this is an RCU protected lookup, we could
2001 * find a recently freed or even reallocated inode
2002 * during the lookup. We need to check under the
2003 * i_flags_lock for a valid inode here. Skip it if it
2004 * is not valid, the wrong inode or stale.
2006 spin_lock(&ip
->i_flags_lock
);
2007 if (ip
->i_ino
!= inum
+ i
||
2008 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2009 spin_unlock(&ip
->i_flags_lock
);
2013 spin_unlock(&ip
->i_flags_lock
);
2016 * Don't try to lock/unlock the current inode, but we
2017 * _cannot_ skip the other inodes that we did not find
2018 * in the list attached to the buffer and are not
2019 * already marked stale. If we can't lock it, back off
2022 if (ip
!= free_ip
&&
2023 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2031 xfs_iflags_set(ip
, XFS_ISTALE
);
2034 * we don't need to attach clean inodes or those only
2035 * with unlogged changes (which we throw away, anyway).
2038 if (!iip
|| xfs_inode_clean(ip
)) {
2039 ASSERT(ip
!= free_ip
);
2040 ip
->i_update_core
= 0;
2042 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2046 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2047 iip
->ili_format
.ilf_fields
= 0;
2048 iip
->ili_logged
= 1;
2049 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2050 &iip
->ili_item
.li_lsn
);
2052 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2056 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2059 xfs_trans_stale_inode_buf(tp
, bp
);
2060 xfs_trans_binval(tp
, bp
);
2067 * This is called to return an inode to the inode free list.
2068 * The inode should already be truncated to 0 length and have
2069 * no pages associated with it. This routine also assumes that
2070 * the inode is already a part of the transaction.
2072 * The on-disk copy of the inode will have been added to the list
2073 * of unlinked inodes in the AGI. We need to remove the inode from
2074 * that list atomically with respect to freeing it here.
2080 xfs_bmap_free_t
*flist
)
2084 xfs_ino_t first_ino
;
2088 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2089 ASSERT(ip
->i_transp
== tp
);
2090 ASSERT(ip
->i_d
.di_nlink
== 0);
2091 ASSERT(ip
->i_d
.di_nextents
== 0);
2092 ASSERT(ip
->i_d
.di_anextents
== 0);
2093 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2094 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2095 ASSERT(ip
->i_d
.di_nblocks
== 0);
2098 * Pull the on-disk inode from the AGI unlinked list.
2100 error
= xfs_iunlink_remove(tp
, ip
);
2105 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2109 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2110 ip
->i_d
.di_flags
= 0;
2111 ip
->i_d
.di_dmevmask
= 0;
2112 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2113 ip
->i_df
.if_ext_max
=
2114 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2115 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2116 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2118 * Bump the generation count so no one will be confused
2119 * by reincarnations of this inode.
2123 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2125 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
2130 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2131 * from picking up this inode when it is reclaimed (its incore state
2132 * initialzed but not flushed to disk yet). The in-core di_mode is
2133 * already cleared and a corresponding transaction logged.
2134 * The hack here just synchronizes the in-core to on-disk
2135 * di_mode value in advance before the actual inode sync to disk.
2136 * This is OK because the inode is already unlinked and would never
2137 * change its di_mode again for this inode generation.
2138 * This is a temporary hack that would require a proper fix
2144 xfs_ifree_cluster(ip
, tp
, first_ino
);
2151 * Reallocate the space for if_broot based on the number of records
2152 * being added or deleted as indicated in rec_diff. Move the records
2153 * and pointers in if_broot to fit the new size. When shrinking this
2154 * will eliminate holes between the records and pointers created by
2155 * the caller. When growing this will create holes to be filled in
2158 * The caller must not request to add more records than would fit in
2159 * the on-disk inode root. If the if_broot is currently NULL, then
2160 * if we adding records one will be allocated. The caller must also
2161 * not request that the number of records go below zero, although
2162 * it can go to zero.
2164 * ip -- the inode whose if_broot area is changing
2165 * ext_diff -- the change in the number of records, positive or negative,
2166 * requested for the if_broot array.
2174 struct xfs_mount
*mp
= ip
->i_mount
;
2177 struct xfs_btree_block
*new_broot
;
2184 * Handle the degenerate case quietly.
2186 if (rec_diff
== 0) {
2190 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2193 * If there wasn't any memory allocated before, just
2194 * allocate it now and get out.
2196 if (ifp
->if_broot_bytes
== 0) {
2197 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2198 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2199 ifp
->if_broot_bytes
= (int)new_size
;
2204 * If there is already an existing if_broot, then we need
2205 * to realloc() it and shift the pointers to their new
2206 * location. The records don't change location because
2207 * they are kept butted up against the btree block header.
2209 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2210 new_max
= cur_max
+ rec_diff
;
2211 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2212 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2213 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2214 KM_SLEEP
| KM_NOFS
);
2215 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2216 ifp
->if_broot_bytes
);
2217 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2219 ifp
->if_broot_bytes
= (int)new_size
;
2220 ASSERT(ifp
->if_broot_bytes
<=
2221 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2222 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2227 * rec_diff is less than 0. In this case, we are shrinking the
2228 * if_broot buffer. It must already exist. If we go to zero
2229 * records, just get rid of the root and clear the status bit.
2231 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2232 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2233 new_max
= cur_max
+ rec_diff
;
2234 ASSERT(new_max
>= 0);
2236 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2240 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2242 * First copy over the btree block header.
2244 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2247 ifp
->if_flags
&= ~XFS_IFBROOT
;
2251 * Only copy the records and pointers if there are any.
2255 * First copy the records.
2257 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2258 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2259 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2262 * Then copy the pointers.
2264 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2265 ifp
->if_broot_bytes
);
2266 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2268 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2270 kmem_free(ifp
->if_broot
);
2271 ifp
->if_broot
= new_broot
;
2272 ifp
->if_broot_bytes
= (int)new_size
;
2273 ASSERT(ifp
->if_broot_bytes
<=
2274 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2280 * This is called when the amount of space needed for if_data
2281 * is increased or decreased. The change in size is indicated by
2282 * the number of bytes that need to be added or deleted in the
2283 * byte_diff parameter.
2285 * If the amount of space needed has decreased below the size of the
2286 * inline buffer, then switch to using the inline buffer. Otherwise,
2287 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2288 * to what is needed.
2290 * ip -- the inode whose if_data area is changing
2291 * byte_diff -- the change in the number of bytes, positive or negative,
2292 * requested for the if_data array.
2304 if (byte_diff
== 0) {
2308 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2309 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2310 ASSERT(new_size
>= 0);
2312 if (new_size
== 0) {
2313 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2314 kmem_free(ifp
->if_u1
.if_data
);
2316 ifp
->if_u1
.if_data
= NULL
;
2318 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2320 * If the valid extents/data can fit in if_inline_ext/data,
2321 * copy them from the malloc'd vector and free it.
2323 if (ifp
->if_u1
.if_data
== NULL
) {
2324 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2325 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2326 ASSERT(ifp
->if_real_bytes
!= 0);
2327 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2329 kmem_free(ifp
->if_u1
.if_data
);
2330 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2335 * Stuck with malloc/realloc.
2336 * For inline data, the underlying buffer must be
2337 * a multiple of 4 bytes in size so that it can be
2338 * logged and stay on word boundaries. We enforce
2341 real_size
= roundup(new_size
, 4);
2342 if (ifp
->if_u1
.if_data
== NULL
) {
2343 ASSERT(ifp
->if_real_bytes
== 0);
2344 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2345 KM_SLEEP
| KM_NOFS
);
2346 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2348 * Only do the realloc if the underlying size
2349 * is really changing.
2351 if (ifp
->if_real_bytes
!= real_size
) {
2352 ifp
->if_u1
.if_data
=
2353 kmem_realloc(ifp
->if_u1
.if_data
,
2356 KM_SLEEP
| KM_NOFS
);
2359 ASSERT(ifp
->if_real_bytes
== 0);
2360 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2361 KM_SLEEP
| KM_NOFS
);
2362 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2366 ifp
->if_real_bytes
= real_size
;
2367 ifp
->if_bytes
= new_size
;
2368 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2378 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2379 if (ifp
->if_broot
!= NULL
) {
2380 kmem_free(ifp
->if_broot
);
2381 ifp
->if_broot
= NULL
;
2385 * If the format is local, then we can't have an extents
2386 * array so just look for an inline data array. If we're
2387 * not local then we may or may not have an extents list,
2388 * so check and free it up if we do.
2390 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2391 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2392 (ifp
->if_u1
.if_data
!= NULL
)) {
2393 ASSERT(ifp
->if_real_bytes
!= 0);
2394 kmem_free(ifp
->if_u1
.if_data
);
2395 ifp
->if_u1
.if_data
= NULL
;
2396 ifp
->if_real_bytes
= 0;
2398 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2399 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2400 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2401 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2402 ASSERT(ifp
->if_real_bytes
!= 0);
2403 xfs_iext_destroy(ifp
);
2405 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2406 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2407 ASSERT(ifp
->if_real_bytes
== 0);
2408 if (whichfork
== XFS_ATTR_FORK
) {
2409 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2415 * This is called to unpin an inode. The caller must have the inode locked
2416 * in at least shared mode so that the buffer cannot be subsequently pinned
2417 * once someone is waiting for it to be unpinned.
2421 struct xfs_inode
*ip
)
2423 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2425 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2427 /* Give the log a push to start the unpinning I/O */
2428 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2434 struct xfs_inode
*ip
)
2436 if (xfs_ipincount(ip
)) {
2437 xfs_iunpin_nowait(ip
);
2438 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2443 * xfs_iextents_copy()
2445 * This is called to copy the REAL extents (as opposed to the delayed
2446 * allocation extents) from the inode into the given buffer. It
2447 * returns the number of bytes copied into the buffer.
2449 * If there are no delayed allocation extents, then we can just
2450 * memcpy() the extents into the buffer. Otherwise, we need to
2451 * examine each extent in turn and skip those which are delayed.
2463 xfs_fsblock_t start_block
;
2465 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2466 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2467 ASSERT(ifp
->if_bytes
> 0);
2469 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2470 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2474 * There are some delayed allocation extents in the
2475 * inode, so copy the extents one at a time and skip
2476 * the delayed ones. There must be at least one
2477 * non-delayed extent.
2480 for (i
= 0; i
< nrecs
; i
++) {
2481 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2482 start_block
= xfs_bmbt_get_startblock(ep
);
2483 if (isnullstartblock(start_block
)) {
2485 * It's a delayed allocation extent, so skip it.
2490 /* Translate to on disk format */
2491 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2492 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2496 ASSERT(copied
!= 0);
2497 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2499 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2503 * Each of the following cases stores data into the same region
2504 * of the on-disk inode, so only one of them can be valid at
2505 * any given time. While it is possible to have conflicting formats
2506 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2507 * in EXTENTS format, this can only happen when the fork has
2508 * changed formats after being modified but before being flushed.
2509 * In these cases, the format always takes precedence, because the
2510 * format indicates the current state of the fork.
2517 xfs_inode_log_item_t
*iip
,
2524 #ifdef XFS_TRANS_DEBUG
2527 static const short brootflag
[2] =
2528 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2529 static const short dataflag
[2] =
2530 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2531 static const short extflag
[2] =
2532 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2536 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2538 * This can happen if we gave up in iformat in an error path,
2539 * for the attribute fork.
2542 ASSERT(whichfork
== XFS_ATTR_FORK
);
2545 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2547 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2548 case XFS_DINODE_FMT_LOCAL
:
2549 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2550 (ifp
->if_bytes
> 0)) {
2551 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2552 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2553 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2557 case XFS_DINODE_FMT_EXTENTS
:
2558 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2559 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2560 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2561 (ifp
->if_bytes
> 0)) {
2562 ASSERT(xfs_iext_get_ext(ifp
, 0));
2563 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2564 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2569 case XFS_DINODE_FMT_BTREE
:
2570 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2571 (ifp
->if_broot_bytes
> 0)) {
2572 ASSERT(ifp
->if_broot
!= NULL
);
2573 ASSERT(ifp
->if_broot_bytes
<=
2574 (XFS_IFORK_SIZE(ip
, whichfork
) +
2575 XFS_BROOT_SIZE_ADJ
));
2576 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2577 (xfs_bmdr_block_t
*)cp
,
2578 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2582 case XFS_DINODE_FMT_DEV
:
2583 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2584 ASSERT(whichfork
== XFS_DATA_FORK
);
2585 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2589 case XFS_DINODE_FMT_UUID
:
2590 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2591 ASSERT(whichfork
== XFS_DATA_FORK
);
2592 memcpy(XFS_DFORK_DPTR(dip
),
2593 &ip
->i_df
.if_u2
.if_uuid
,
2609 xfs_mount_t
*mp
= ip
->i_mount
;
2610 struct xfs_perag
*pag
;
2611 unsigned long first_index
, mask
;
2612 unsigned long inodes_per_cluster
;
2614 xfs_inode_t
**ilist
;
2621 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2623 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2624 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2625 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2629 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2630 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2632 /* really need a gang lookup range call here */
2633 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2634 first_index
, inodes_per_cluster
);
2638 for (i
= 0; i
< nr_found
; i
++) {
2644 * because this is an RCU protected lookup, we could find a
2645 * recently freed or even reallocated inode during the lookup.
2646 * We need to check under the i_flags_lock for a valid inode
2647 * here. Skip it if it is not valid or the wrong inode.
2649 spin_lock(&ip
->i_flags_lock
);
2651 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2652 spin_unlock(&ip
->i_flags_lock
);
2655 spin_unlock(&ip
->i_flags_lock
);
2658 * Do an un-protected check to see if the inode is dirty and
2659 * is a candidate for flushing. These checks will be repeated
2660 * later after the appropriate locks are acquired.
2662 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2666 * Try to get locks. If any are unavailable or it is pinned,
2667 * then this inode cannot be flushed and is skipped.
2670 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2672 if (!xfs_iflock_nowait(iq
)) {
2673 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2676 if (xfs_ipincount(iq
)) {
2678 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2683 * arriving here means that this inode can be flushed. First
2684 * re-check that it's dirty before flushing.
2686 if (!xfs_inode_clean(iq
)) {
2688 error
= xfs_iflush_int(iq
, bp
);
2690 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2691 goto cluster_corrupt_out
;
2697 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2701 XFS_STATS_INC(xs_icluster_flushcnt
);
2702 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2713 cluster_corrupt_out
:
2715 * Corruption detected in the clustering loop. Invalidate the
2716 * inode buffer and shut down the filesystem.
2720 * Clean up the buffer. If it was B_DELWRI, just release it --
2721 * brelse can handle it with no problems. If not, shut down the
2722 * filesystem before releasing the buffer.
2724 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2728 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2730 if (!bufwasdelwri
) {
2732 * Just like incore_relse: if we have b_iodone functions,
2733 * mark the buffer as an error and call them. Otherwise
2734 * mark it as stale and brelse.
2736 if (XFS_BUF_IODONE_FUNC(bp
)) {
2739 XFS_BUF_ERROR(bp
,EIO
);
2740 xfs_buf_ioend(bp
, 0);
2748 * Unlocks the flush lock
2750 xfs_iflush_abort(iq
);
2753 return XFS_ERROR(EFSCORRUPTED
);
2757 * xfs_iflush() will write a modified inode's changes out to the
2758 * inode's on disk home. The caller must have the inode lock held
2759 * in at least shared mode and the inode flush completion must be
2760 * active as well. The inode lock will still be held upon return from
2761 * the call and the caller is free to unlock it.
2762 * The inode flush will be completed when the inode reaches the disk.
2763 * The flags indicate how the inode's buffer should be written out.
2770 xfs_inode_log_item_t
*iip
;
2776 XFS_STATS_INC(xs_iflush_count
);
2778 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2779 ASSERT(!completion_done(&ip
->i_flush
));
2780 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2781 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2787 * We can't flush the inode until it is unpinned, so wait for it if we
2788 * are allowed to block. We know no one new can pin it, because we are
2789 * holding the inode lock shared and you need to hold it exclusively to
2792 * If we are not allowed to block, force the log out asynchronously so
2793 * that when we come back the inode will be unpinned. If other inodes
2794 * in the same cluster are dirty, they will probably write the inode
2795 * out for us if they occur after the log force completes.
2797 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2798 xfs_iunpin_nowait(ip
);
2802 xfs_iunpin_wait(ip
);
2805 * For stale inodes we cannot rely on the backing buffer remaining
2806 * stale in cache for the remaining life of the stale inode and so
2807 * xfs_itobp() below may give us a buffer that no longer contains
2808 * inodes below. We have to check this after ensuring the inode is
2809 * unpinned so that it is safe to reclaim the stale inode after the
2812 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2818 * This may have been unpinned because the filesystem is shutting
2819 * down forcibly. If that's the case we must not write this inode
2820 * to disk, because the log record didn't make it to disk!
2822 if (XFS_FORCED_SHUTDOWN(mp
)) {
2823 ip
->i_update_core
= 0;
2825 iip
->ili_format
.ilf_fields
= 0;
2827 return XFS_ERROR(EIO
);
2831 * Get the buffer containing the on-disk inode.
2833 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2834 (flags
& SYNC_TRYLOCK
) ? XBF_TRYLOCK
: XBF_LOCK
);
2841 * First flush out the inode that xfs_iflush was called with.
2843 error
= xfs_iflush_int(ip
, bp
);
2848 * If the buffer is pinned then push on the log now so we won't
2849 * get stuck waiting in the write for too long.
2851 if (XFS_BUF_ISPINNED(bp
))
2852 xfs_log_force(mp
, 0);
2856 * see if other inodes can be gathered into this write
2858 error
= xfs_iflush_cluster(ip
, bp
);
2860 goto cluster_corrupt_out
;
2862 if (flags
& SYNC_WAIT
)
2863 error
= xfs_bwrite(mp
, bp
);
2865 xfs_bdwrite(mp
, bp
);
2870 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2871 cluster_corrupt_out
:
2873 * Unlocks the flush lock
2875 xfs_iflush_abort(ip
);
2876 return XFS_ERROR(EFSCORRUPTED
);
2885 xfs_inode_log_item_t
*iip
;
2888 #ifdef XFS_TRANS_DEBUG
2892 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2893 ASSERT(!completion_done(&ip
->i_flush
));
2894 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2895 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2900 /* set *dip = inode's place in the buffer */
2901 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2904 * Clear i_update_core before copying out the data.
2905 * This is for coordination with our timestamp updates
2906 * that don't hold the inode lock. They will always
2907 * update the timestamps BEFORE setting i_update_core,
2908 * so if we clear i_update_core after they set it we
2909 * are guaranteed to see their updates to the timestamps.
2910 * I believe that this depends on strongly ordered memory
2911 * semantics, but we have that. We use the SYNCHRONIZE
2912 * macro to make sure that the compiler does not reorder
2913 * the i_update_core access below the data copy below.
2915 ip
->i_update_core
= 0;
2919 * Make sure to get the latest timestamps from the Linux inode.
2921 xfs_synchronize_times(ip
);
2923 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
2924 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2925 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2926 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2927 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2930 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2931 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2932 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2933 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2934 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2937 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
2939 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2940 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2941 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2942 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2943 "%s: Bad regular inode %Lu, ptr 0x%p",
2944 __func__
, ip
->i_ino
, ip
);
2947 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
2949 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2950 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2951 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2952 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2953 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2954 "%s: Bad directory inode %Lu, ptr 0x%p",
2955 __func__
, ip
->i_ino
, ip
);
2959 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2960 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2961 XFS_RANDOM_IFLUSH_5
)) {
2962 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2963 "%s: detected corrupt incore inode %Lu, "
2964 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2965 __func__
, ip
->i_ino
,
2966 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2967 ip
->i_d
.di_nblocks
, ip
);
2970 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2971 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2972 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2973 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2974 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2978 * bump the flush iteration count, used to detect flushes which
2979 * postdate a log record during recovery.
2982 ip
->i_d
.di_flushiter
++;
2985 * Copy the dirty parts of the inode into the on-disk
2986 * inode. We always copy out the core of the inode,
2987 * because if the inode is dirty at all the core must
2990 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2992 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2993 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2994 ip
->i_d
.di_flushiter
= 0;
2997 * If this is really an old format inode and the superblock version
2998 * has not been updated to support only new format inodes, then
2999 * convert back to the old inode format. If the superblock version
3000 * has been updated, then make the conversion permanent.
3002 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3003 if (ip
->i_d
.di_version
== 1) {
3004 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3008 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3009 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3012 * The superblock version has already been bumped,
3013 * so just make the conversion to the new inode
3016 ip
->i_d
.di_version
= 2;
3017 dip
->di_version
= 2;
3018 ip
->i_d
.di_onlink
= 0;
3020 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3021 memset(&(dip
->di_pad
[0]), 0,
3022 sizeof(dip
->di_pad
));
3023 ASSERT(xfs_get_projid(ip
) == 0);
3027 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3028 if (XFS_IFORK_Q(ip
))
3029 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3030 xfs_inobp_check(mp
, bp
);
3033 * We've recorded everything logged in the inode, so we'd
3034 * like to clear the ilf_fields bits so we don't log and
3035 * flush things unnecessarily. However, we can't stop
3036 * logging all this information until the data we've copied
3037 * into the disk buffer is written to disk. If we did we might
3038 * overwrite the copy of the inode in the log with all the
3039 * data after re-logging only part of it, and in the face of
3040 * a crash we wouldn't have all the data we need to recover.
3042 * What we do is move the bits to the ili_last_fields field.
3043 * When logging the inode, these bits are moved back to the
3044 * ilf_fields field. In the xfs_iflush_done() routine we
3045 * clear ili_last_fields, since we know that the information
3046 * those bits represent is permanently on disk. As long as
3047 * the flush completes before the inode is logged again, then
3048 * both ilf_fields and ili_last_fields will be cleared.
3050 * We can play with the ilf_fields bits here, because the inode
3051 * lock must be held exclusively in order to set bits there
3052 * and the flush lock protects the ili_last_fields bits.
3053 * Set ili_logged so the flush done
3054 * routine can tell whether or not to look in the AIL.
3055 * Also, store the current LSN of the inode so that we can tell
3056 * whether the item has moved in the AIL from xfs_iflush_done().
3057 * In order to read the lsn we need the AIL lock, because
3058 * it is a 64 bit value that cannot be read atomically.
3060 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3061 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3062 iip
->ili_format
.ilf_fields
= 0;
3063 iip
->ili_logged
= 1;
3065 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3066 &iip
->ili_item
.li_lsn
);
3069 * Attach the function xfs_iflush_done to the inode's
3070 * buffer. This will remove the inode from the AIL
3071 * and unlock the inode's flush lock when the inode is
3072 * completely written to disk.
3074 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3076 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3077 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3080 * We're flushing an inode which is not in the AIL and has
3081 * not been logged but has i_update_core set. For this
3082 * case we can use a B_DELWRI flush and immediately drop
3083 * the inode flush lock because we can avoid the whole
3084 * AIL state thing. It's OK to drop the flush lock now,
3085 * because we've already locked the buffer and to do anything
3086 * you really need both.
3089 ASSERT(iip
->ili_logged
== 0);
3090 ASSERT(iip
->ili_last_fields
== 0);
3091 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3099 return XFS_ERROR(EFSCORRUPTED
);
3103 * Return a pointer to the extent record at file index idx.
3105 xfs_bmbt_rec_host_t
*
3107 xfs_ifork_t
*ifp
, /* inode fork pointer */
3108 xfs_extnum_t idx
) /* index of target extent */
3111 ASSERT(idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3113 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3114 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3115 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3116 xfs_ext_irec_t
*erp
; /* irec pointer */
3117 int erp_idx
= 0; /* irec index */
3118 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3120 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3121 return &erp
->er_extbuf
[page_idx
];
3122 } else if (ifp
->if_bytes
) {
3123 return &ifp
->if_u1
.if_extents
[idx
];
3130 * Insert new item(s) into the extent records for incore inode
3131 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3135 xfs_inode_t
*ip
, /* incore inode pointer */
3136 xfs_extnum_t idx
, /* starting index of new items */
3137 xfs_extnum_t count
, /* number of inserted items */
3138 xfs_bmbt_irec_t
*new, /* items to insert */
3139 int state
) /* type of extent conversion */
3141 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3142 xfs_extnum_t i
; /* extent record index */
3144 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3146 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3147 xfs_iext_add(ifp
, idx
, count
);
3148 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3149 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3153 * This is called when the amount of space required for incore file
3154 * extents needs to be increased. The ext_diff parameter stores the
3155 * number of new extents being added and the idx parameter contains
3156 * the extent index where the new extents will be added. If the new
3157 * extents are being appended, then we just need to (re)allocate and
3158 * initialize the space. Otherwise, if the new extents are being
3159 * inserted into the middle of the existing entries, a bit more work
3160 * is required to make room for the new extents to be inserted. The
3161 * caller is responsible for filling in the new extent entries upon
3166 xfs_ifork_t
*ifp
, /* inode fork pointer */
3167 xfs_extnum_t idx
, /* index to begin adding exts */
3168 int ext_diff
) /* number of extents to add */
3170 int byte_diff
; /* new bytes being added */
3171 int new_size
; /* size of extents after adding */
3172 xfs_extnum_t nextents
; /* number of extents in file */
3174 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3175 ASSERT((idx
>= 0) && (idx
<= nextents
));
3176 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3177 new_size
= ifp
->if_bytes
+ byte_diff
;
3179 * If the new number of extents (nextents + ext_diff)
3180 * fits inside the inode, then continue to use the inline
3183 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3184 if (idx
< nextents
) {
3185 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3186 &ifp
->if_u2
.if_inline_ext
[idx
],
3187 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3188 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3190 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3191 ifp
->if_real_bytes
= 0;
3194 * Otherwise use a linear (direct) extent list.
3195 * If the extents are currently inside the inode,
3196 * xfs_iext_realloc_direct will switch us from
3197 * inline to direct extent allocation mode.
3199 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3200 xfs_iext_realloc_direct(ifp
, new_size
);
3201 if (idx
< nextents
) {
3202 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3203 &ifp
->if_u1
.if_extents
[idx
],
3204 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3205 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3208 /* Indirection array */
3210 xfs_ext_irec_t
*erp
;
3214 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3215 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3216 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3218 xfs_iext_irec_init(ifp
);
3219 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3220 erp
= ifp
->if_u1
.if_ext_irec
;
3222 /* Extents fit in target extent page */
3223 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3224 if (page_idx
< erp
->er_extcount
) {
3225 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3226 &erp
->er_extbuf
[page_idx
],
3227 (erp
->er_extcount
- page_idx
) *
3228 sizeof(xfs_bmbt_rec_t
));
3229 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3231 erp
->er_extcount
+= ext_diff
;
3232 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3234 /* Insert a new extent page */
3236 xfs_iext_add_indirect_multi(ifp
,
3237 erp_idx
, page_idx
, ext_diff
);
3240 * If extent(s) are being appended to the last page in
3241 * the indirection array and the new extent(s) don't fit
3242 * in the page, then erp is NULL and erp_idx is set to
3243 * the next index needed in the indirection array.
3246 int count
= ext_diff
;
3249 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3250 erp
->er_extcount
= count
;
3251 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3258 ifp
->if_bytes
= new_size
;
3262 * This is called when incore extents are being added to the indirection
3263 * array and the new extents do not fit in the target extent list. The
3264 * erp_idx parameter contains the irec index for the target extent list
3265 * in the indirection array, and the idx parameter contains the extent
3266 * index within the list. The number of extents being added is stored
3267 * in the count parameter.
3269 * |-------| |-------|
3270 * | | | | idx - number of extents before idx
3272 * | | | | count - number of extents being inserted at idx
3273 * |-------| |-------|
3274 * | count | | nex2 | nex2 - number of extents after idx + count
3275 * |-------| |-------|
3278 xfs_iext_add_indirect_multi(
3279 xfs_ifork_t
*ifp
, /* inode fork pointer */
3280 int erp_idx
, /* target extent irec index */
3281 xfs_extnum_t idx
, /* index within target list */
3282 int count
) /* new extents being added */
3284 int byte_diff
; /* new bytes being added */
3285 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3286 xfs_extnum_t ext_diff
; /* number of extents to add */
3287 xfs_extnum_t ext_cnt
; /* new extents still needed */
3288 xfs_extnum_t nex2
; /* extents after idx + count */
3289 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3290 int nlists
; /* number of irec's (lists) */
3292 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3293 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3294 nex2
= erp
->er_extcount
- idx
;
3295 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3298 * Save second part of target extent list
3299 * (all extents past */
3301 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3302 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3303 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3304 erp
->er_extcount
-= nex2
;
3305 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3306 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3310 * Add the new extents to the end of the target
3311 * list, then allocate new irec record(s) and
3312 * extent buffer(s) as needed to store the rest
3313 * of the new extents.
3316 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3318 erp
->er_extcount
+= ext_diff
;
3319 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3320 ext_cnt
-= ext_diff
;
3324 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3325 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3326 erp
->er_extcount
= ext_diff
;
3327 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3328 ext_cnt
-= ext_diff
;
3331 /* Add nex2 extents back to indirection array */
3333 xfs_extnum_t ext_avail
;
3336 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3337 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3340 * If nex2 extents fit in the current page, append
3341 * nex2_ep after the new extents.
3343 if (nex2
<= ext_avail
) {
3344 i
= erp
->er_extcount
;
3347 * Otherwise, check if space is available in the
3350 else if ((erp_idx
< nlists
- 1) &&
3351 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3352 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3355 /* Create a hole for nex2 extents */
3356 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3357 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3360 * Final choice, create a new extent page for
3365 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3367 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3369 erp
->er_extcount
+= nex2
;
3370 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3375 * This is called when the amount of space required for incore file
3376 * extents needs to be decreased. The ext_diff parameter stores the
3377 * number of extents to be removed and the idx parameter contains
3378 * the extent index where the extents will be removed from.
3380 * If the amount of space needed has decreased below the linear
3381 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3382 * extent array. Otherwise, use kmem_realloc() to adjust the
3383 * size to what is needed.
3387 xfs_inode_t
*ip
, /* incore inode pointer */
3388 xfs_extnum_t idx
, /* index to begin removing exts */
3389 int ext_diff
, /* number of extents to remove */
3390 int state
) /* type of extent conversion */
3392 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3393 xfs_extnum_t nextents
; /* number of extents in file */
3394 int new_size
; /* size of extents after removal */
3396 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3398 ASSERT(ext_diff
> 0);
3399 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3400 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3402 if (new_size
== 0) {
3403 xfs_iext_destroy(ifp
);
3404 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3405 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3406 } else if (ifp
->if_real_bytes
) {
3407 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3409 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3411 ifp
->if_bytes
= new_size
;
3415 * This removes ext_diff extents from the inline buffer, beginning
3416 * at extent index idx.
3419 xfs_iext_remove_inline(
3420 xfs_ifork_t
*ifp
, /* inode fork pointer */
3421 xfs_extnum_t idx
, /* index to begin removing exts */
3422 int ext_diff
) /* number of extents to remove */
3424 int nextents
; /* number of extents in file */
3426 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3427 ASSERT(idx
< XFS_INLINE_EXTS
);
3428 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3429 ASSERT(((nextents
- ext_diff
) > 0) &&
3430 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3432 if (idx
+ ext_diff
< nextents
) {
3433 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3434 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3435 (nextents
- (idx
+ ext_diff
)) *
3436 sizeof(xfs_bmbt_rec_t
));
3437 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3438 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3440 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3441 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3446 * This removes ext_diff extents from a linear (direct) extent list,
3447 * beginning at extent index idx. If the extents are being removed
3448 * from the end of the list (ie. truncate) then we just need to re-
3449 * allocate the list to remove the extra space. Otherwise, if the
3450 * extents are being removed from the middle of the existing extent
3451 * entries, then we first need to move the extent records beginning
3452 * at idx + ext_diff up in the list to overwrite the records being
3453 * removed, then remove the extra space via kmem_realloc.
3456 xfs_iext_remove_direct(
3457 xfs_ifork_t
*ifp
, /* inode fork pointer */
3458 xfs_extnum_t idx
, /* index to begin removing exts */
3459 int ext_diff
) /* number of extents to remove */
3461 xfs_extnum_t nextents
; /* number of extents in file */
3462 int new_size
; /* size of extents after removal */
3464 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3465 new_size
= ifp
->if_bytes
-
3466 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3467 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3469 if (new_size
== 0) {
3470 xfs_iext_destroy(ifp
);
3473 /* Move extents up in the list (if needed) */
3474 if (idx
+ ext_diff
< nextents
) {
3475 memmove(&ifp
->if_u1
.if_extents
[idx
],
3476 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3477 (nextents
- (idx
+ ext_diff
)) *
3478 sizeof(xfs_bmbt_rec_t
));
3480 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3481 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3483 * Reallocate the direct extent list. If the extents
3484 * will fit inside the inode then xfs_iext_realloc_direct
3485 * will switch from direct to inline extent allocation
3488 xfs_iext_realloc_direct(ifp
, new_size
);
3489 ifp
->if_bytes
= new_size
;
3493 * This is called when incore extents are being removed from the
3494 * indirection array and the extents being removed span multiple extent
3495 * buffers. The idx parameter contains the file extent index where we
3496 * want to begin removing extents, and the count parameter contains
3497 * how many extents need to be removed.
3499 * |-------| |-------|
3500 * | nex1 | | | nex1 - number of extents before idx
3501 * |-------| | count |
3502 * | | | | count - number of extents being removed at idx
3503 * | count | |-------|
3504 * | | | nex2 | nex2 - number of extents after idx + count
3505 * |-------| |-------|
3508 xfs_iext_remove_indirect(
3509 xfs_ifork_t
*ifp
, /* inode fork pointer */
3510 xfs_extnum_t idx
, /* index to begin removing extents */
3511 int count
) /* number of extents to remove */
3513 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3514 int erp_idx
= 0; /* indirection array index */
3515 xfs_extnum_t ext_cnt
; /* extents left to remove */
3516 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3517 xfs_extnum_t nex1
; /* number of extents before idx */
3518 xfs_extnum_t nex2
; /* extents after idx + count */
3519 int page_idx
= idx
; /* index in target extent list */
3521 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3522 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3523 ASSERT(erp
!= NULL
);
3527 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3528 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3530 * Check for deletion of entire list;
3531 * xfs_iext_irec_remove() updates extent offsets.
3533 if (ext_diff
== erp
->er_extcount
) {
3534 xfs_iext_irec_remove(ifp
, erp_idx
);
3535 ext_cnt
-= ext_diff
;
3538 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3540 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3547 /* Move extents up (if needed) */
3549 memmove(&erp
->er_extbuf
[nex1
],
3550 &erp
->er_extbuf
[nex1
+ ext_diff
],
3551 nex2
* sizeof(xfs_bmbt_rec_t
));
3553 /* Zero out rest of page */
3554 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3555 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3556 /* Update remaining counters */
3557 erp
->er_extcount
-= ext_diff
;
3558 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3559 ext_cnt
-= ext_diff
;
3564 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3565 xfs_iext_irec_compact(ifp
);
3569 * Create, destroy, or resize a linear (direct) block of extents.
3572 xfs_iext_realloc_direct(
3573 xfs_ifork_t
*ifp
, /* inode fork pointer */
3574 int new_size
) /* new size of extents */
3576 int rnew_size
; /* real new size of extents */
3578 rnew_size
= new_size
;
3580 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3581 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3582 (new_size
!= ifp
->if_real_bytes
)));
3584 /* Free extent records */
3585 if (new_size
== 0) {
3586 xfs_iext_destroy(ifp
);
3588 /* Resize direct extent list and zero any new bytes */
3589 else if (ifp
->if_real_bytes
) {
3590 /* Check if extents will fit inside the inode */
3591 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3592 xfs_iext_direct_to_inline(ifp
, new_size
/
3593 (uint
)sizeof(xfs_bmbt_rec_t
));
3594 ifp
->if_bytes
= new_size
;
3597 if (!is_power_of_2(new_size
)){
3598 rnew_size
= roundup_pow_of_two(new_size
);
3600 if (rnew_size
!= ifp
->if_real_bytes
) {
3601 ifp
->if_u1
.if_extents
=
3602 kmem_realloc(ifp
->if_u1
.if_extents
,
3604 ifp
->if_real_bytes
, KM_NOFS
);
3606 if (rnew_size
> ifp
->if_real_bytes
) {
3607 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3608 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3609 rnew_size
- ifp
->if_real_bytes
);
3613 * Switch from the inline extent buffer to a direct
3614 * extent list. Be sure to include the inline extent
3615 * bytes in new_size.
3618 new_size
+= ifp
->if_bytes
;
3619 if (!is_power_of_2(new_size
)) {
3620 rnew_size
= roundup_pow_of_two(new_size
);
3622 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3624 ifp
->if_real_bytes
= rnew_size
;
3625 ifp
->if_bytes
= new_size
;
3629 * Switch from linear (direct) extent records to inline buffer.
3632 xfs_iext_direct_to_inline(
3633 xfs_ifork_t
*ifp
, /* inode fork pointer */
3634 xfs_extnum_t nextents
) /* number of extents in file */
3636 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3637 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3639 * The inline buffer was zeroed when we switched
3640 * from inline to direct extent allocation mode,
3641 * so we don't need to clear it here.
3643 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3644 nextents
* sizeof(xfs_bmbt_rec_t
));
3645 kmem_free(ifp
->if_u1
.if_extents
);
3646 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3647 ifp
->if_real_bytes
= 0;
3651 * Switch from inline buffer to linear (direct) extent records.
3652 * new_size should already be rounded up to the next power of 2
3653 * by the caller (when appropriate), so use new_size as it is.
3654 * However, since new_size may be rounded up, we can't update
3655 * if_bytes here. It is the caller's responsibility to update
3656 * if_bytes upon return.
3659 xfs_iext_inline_to_direct(
3660 xfs_ifork_t
*ifp
, /* inode fork pointer */
3661 int new_size
) /* number of extents in file */
3663 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3664 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3665 if (ifp
->if_bytes
) {
3666 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3668 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3669 sizeof(xfs_bmbt_rec_t
));
3671 ifp
->if_real_bytes
= new_size
;
3675 * Resize an extent indirection array to new_size bytes.
3678 xfs_iext_realloc_indirect(
3679 xfs_ifork_t
*ifp
, /* inode fork pointer */
3680 int new_size
) /* new indirection array size */
3682 int nlists
; /* number of irec's (ex lists) */
3683 int size
; /* current indirection array size */
3685 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3686 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3687 size
= nlists
* sizeof(xfs_ext_irec_t
);
3688 ASSERT(ifp
->if_real_bytes
);
3689 ASSERT((new_size
>= 0) && (new_size
!= size
));
3690 if (new_size
== 0) {
3691 xfs_iext_destroy(ifp
);
3693 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3694 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3695 new_size
, size
, KM_NOFS
);
3700 * Switch from indirection array to linear (direct) extent allocations.
3703 xfs_iext_indirect_to_direct(
3704 xfs_ifork_t
*ifp
) /* inode fork pointer */
3706 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3707 xfs_extnum_t nextents
; /* number of extents in file */
3708 int size
; /* size of file extents */
3710 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3711 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3712 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3713 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3715 xfs_iext_irec_compact_pages(ifp
);
3716 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3718 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3719 kmem_free(ifp
->if_u1
.if_ext_irec
);
3720 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3721 ifp
->if_u1
.if_extents
= ep
;
3722 ifp
->if_bytes
= size
;
3723 if (nextents
< XFS_LINEAR_EXTS
) {
3724 xfs_iext_realloc_direct(ifp
, size
);
3729 * Free incore file extents.
3733 xfs_ifork_t
*ifp
) /* inode fork pointer */
3735 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3739 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3740 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3741 xfs_iext_irec_remove(ifp
, erp_idx
);
3743 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3744 } else if (ifp
->if_real_bytes
) {
3745 kmem_free(ifp
->if_u1
.if_extents
);
3746 } else if (ifp
->if_bytes
) {
3747 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3748 sizeof(xfs_bmbt_rec_t
));
3750 ifp
->if_u1
.if_extents
= NULL
;
3751 ifp
->if_real_bytes
= 0;
3756 * Return a pointer to the extent record for file system block bno.
3758 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3759 xfs_iext_bno_to_ext(
3760 xfs_ifork_t
*ifp
, /* inode fork pointer */
3761 xfs_fileoff_t bno
, /* block number to search for */
3762 xfs_extnum_t
*idxp
) /* index of target extent */
3764 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3765 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3766 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3767 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3768 int high
; /* upper boundary in search */
3769 xfs_extnum_t idx
= 0; /* index of target extent */
3770 int low
; /* lower boundary in search */
3771 xfs_extnum_t nextents
; /* number of file extents */
3772 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3774 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3775 if (nextents
== 0) {
3780 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3781 /* Find target extent list */
3783 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3784 base
= erp
->er_extbuf
;
3785 high
= erp
->er_extcount
- 1;
3787 base
= ifp
->if_u1
.if_extents
;
3788 high
= nextents
- 1;
3790 /* Binary search extent records */
3791 while (low
<= high
) {
3792 idx
= (low
+ high
) >> 1;
3794 startoff
= xfs_bmbt_get_startoff(ep
);
3795 blockcount
= xfs_bmbt_get_blockcount(ep
);
3796 if (bno
< startoff
) {
3798 } else if (bno
>= startoff
+ blockcount
) {
3801 /* Convert back to file-based extent index */
3802 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3803 idx
+= erp
->er_extoff
;
3809 /* Convert back to file-based extent index */
3810 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3811 idx
+= erp
->er_extoff
;
3813 if (bno
>= startoff
+ blockcount
) {
3814 if (++idx
== nextents
) {
3817 ep
= xfs_iext_get_ext(ifp
, idx
);
3825 * Return a pointer to the indirection array entry containing the
3826 * extent record for filesystem block bno. Store the index of the
3827 * target irec in *erp_idxp.
3829 xfs_ext_irec_t
* /* pointer to found extent record */
3830 xfs_iext_bno_to_irec(
3831 xfs_ifork_t
*ifp
, /* inode fork pointer */
3832 xfs_fileoff_t bno
, /* block number to search for */
3833 int *erp_idxp
) /* irec index of target ext list */
3835 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3836 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3837 int erp_idx
; /* indirection array index */
3838 int nlists
; /* number of extent irec's (lists) */
3839 int high
; /* binary search upper limit */
3840 int low
; /* binary search lower limit */
3842 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3843 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3847 while (low
<= high
) {
3848 erp_idx
= (low
+ high
) >> 1;
3849 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3850 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3851 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3853 } else if (erp_next
&& bno
>=
3854 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3860 *erp_idxp
= erp_idx
;
3865 * Return a pointer to the indirection array entry containing the
3866 * extent record at file extent index *idxp. Store the index of the
3867 * target irec in *erp_idxp and store the page index of the target
3868 * extent record in *idxp.
3871 xfs_iext_idx_to_irec(
3872 xfs_ifork_t
*ifp
, /* inode fork pointer */
3873 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3874 int *erp_idxp
, /* pointer to target irec */
3875 int realloc
) /* new bytes were just added */
3877 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3878 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3879 int erp_idx
; /* indirection array index */
3880 int nlists
; /* number of irec's (ex lists) */
3881 int high
; /* binary search upper limit */
3882 int low
; /* binary search lower limit */
3883 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3885 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3886 ASSERT(page_idx
>= 0);
3887 ASSERT(page_idx
<= ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3888 ASSERT(page_idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) || realloc
);
3890 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3895 /* Binary search extent irec's */
3896 while (low
<= high
) {
3897 erp_idx
= (low
+ high
) >> 1;
3898 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3899 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3900 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3901 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3903 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3904 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3907 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3908 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3912 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3915 page_idx
-= erp
->er_extoff
;
3920 *erp_idxp
= erp_idx
;
3925 * Allocate and initialize an indirection array once the space needed
3926 * for incore extents increases above XFS_IEXT_BUFSZ.
3930 xfs_ifork_t
*ifp
) /* inode fork pointer */
3932 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3933 xfs_extnum_t nextents
; /* number of extents in file */
3935 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3936 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3937 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3939 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3941 if (nextents
== 0) {
3942 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3943 } else if (!ifp
->if_real_bytes
) {
3944 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3945 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3946 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3948 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3949 erp
->er_extcount
= nextents
;
3952 ifp
->if_flags
|= XFS_IFEXTIREC
;
3953 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3954 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3955 ifp
->if_u1
.if_ext_irec
= erp
;
3961 * Allocate and initialize a new entry in the indirection array.
3965 xfs_ifork_t
*ifp
, /* inode fork pointer */
3966 int erp_idx
) /* index for new irec */
3968 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3969 int i
; /* loop counter */
3970 int nlists
; /* number of irec's (ex lists) */
3972 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3973 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3975 /* Resize indirection array */
3976 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3977 sizeof(xfs_ext_irec_t
));
3979 * Move records down in the array so the
3980 * new page can use erp_idx.
3982 erp
= ifp
->if_u1
.if_ext_irec
;
3983 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3984 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3986 ASSERT(i
== erp_idx
);
3988 /* Initialize new extent record */
3989 erp
= ifp
->if_u1
.if_ext_irec
;
3990 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3991 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3992 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3993 erp
[erp_idx
].er_extcount
= 0;
3994 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3995 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3996 return (&erp
[erp_idx
]);
4000 * Remove a record from the indirection array.
4003 xfs_iext_irec_remove(
4004 xfs_ifork_t
*ifp
, /* inode fork pointer */
4005 int erp_idx
) /* irec index to remove */
4007 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4008 int i
; /* loop counter */
4009 int nlists
; /* number of irec's (ex lists) */
4011 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4012 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4013 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4014 if (erp
->er_extbuf
) {
4015 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4017 kmem_free(erp
->er_extbuf
);
4019 /* Compact extent records */
4020 erp
= ifp
->if_u1
.if_ext_irec
;
4021 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4022 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4025 * Manually free the last extent record from the indirection
4026 * array. A call to xfs_iext_realloc_indirect() with a size
4027 * of zero would result in a call to xfs_iext_destroy() which
4028 * would in turn call this function again, creating a nasty
4032 xfs_iext_realloc_indirect(ifp
,
4033 nlists
* sizeof(xfs_ext_irec_t
));
4035 kmem_free(ifp
->if_u1
.if_ext_irec
);
4037 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4041 * This is called to clean up large amounts of unused memory allocated
4042 * by the indirection array. Before compacting anything though, verify
4043 * that the indirection array is still needed and switch back to the
4044 * linear extent list (or even the inline buffer) if possible. The
4045 * compaction policy is as follows:
4047 * Full Compaction: Extents fit into a single page (or inline buffer)
4048 * Partial Compaction: Extents occupy less than 50% of allocated space
4049 * No Compaction: Extents occupy at least 50% of allocated space
4052 xfs_iext_irec_compact(
4053 xfs_ifork_t
*ifp
) /* inode fork pointer */
4055 xfs_extnum_t nextents
; /* number of extents in file */
4056 int nlists
; /* number of irec's (ex lists) */
4058 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4059 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4060 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4062 if (nextents
== 0) {
4063 xfs_iext_destroy(ifp
);
4064 } else if (nextents
<= XFS_INLINE_EXTS
) {
4065 xfs_iext_indirect_to_direct(ifp
);
4066 xfs_iext_direct_to_inline(ifp
, nextents
);
4067 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4068 xfs_iext_indirect_to_direct(ifp
);
4069 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4070 xfs_iext_irec_compact_pages(ifp
);
4075 * Combine extents from neighboring extent pages.
4078 xfs_iext_irec_compact_pages(
4079 xfs_ifork_t
*ifp
) /* inode fork pointer */
4081 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4082 int erp_idx
= 0; /* indirection array index */
4083 int nlists
; /* number of irec's (ex lists) */
4085 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4086 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4087 while (erp_idx
< nlists
- 1) {
4088 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4090 if (erp_next
->er_extcount
<=
4091 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4092 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4093 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4094 sizeof(xfs_bmbt_rec_t
));
4095 erp
->er_extcount
+= erp_next
->er_extcount
;
4097 * Free page before removing extent record
4098 * so er_extoffs don't get modified in
4099 * xfs_iext_irec_remove.
4101 kmem_free(erp_next
->er_extbuf
);
4102 erp_next
->er_extbuf
= NULL
;
4103 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4104 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4112 * This is called to update the er_extoff field in the indirection
4113 * array when extents have been added or removed from one of the
4114 * extent lists. erp_idx contains the irec index to begin updating
4115 * at and ext_diff contains the number of extents that were added
4119 xfs_iext_irec_update_extoffs(
4120 xfs_ifork_t
*ifp
, /* inode fork pointer */
4121 int erp_idx
, /* irec index to update */
4122 int ext_diff
) /* number of new extents */
4124 int i
; /* loop counter */
4125 int nlists
; /* number of irec's (ex lists */
4127 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4128 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4129 for (i
= erp_idx
; i
< nlists
; i
++) {
4130 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;