gma500: move framebuffer file
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
bloba098a20ca63e29bbd021a266e287d87ca796fd8c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
65 #ifdef DEBUG
67 * Make sure that the extents in the given memory buffer
68 * are valid.
70 STATIC void
71 xfs_validate_extents(
72 xfs_ifork_t *ifp,
73 int nrecs,
74 xfs_exntfmt_t fmt)
76 xfs_bmbt_irec_t irec;
77 xfs_bmbt_rec_host_t rec;
78 int i;
80 for (i = 0; i < nrecs; i++) {
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
103 int i;
104 int j;
105 xfs_dinode_t *dip;
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_alert(mp,
114 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
120 #endif
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
127 STATIC int
128 xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
131 struct xfs_imap *imap,
132 xfs_buf_t **bpp,
133 uint buf_flags,
134 uint iget_flags)
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 (int)imap->im_len, buf_flags, &bp);
143 if (error) {
144 if (error != EAGAIN) {
145 xfs_warn(mp,
146 "%s: xfs_trans_read_buf() returned error %d.",
147 __func__, error);
148 } else {
149 ASSERT(buf_flags & XBF_TRYLOCK);
151 return error;
155 * Validate the magic number and version of every inode in the buffer
156 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 #ifdef DEBUG
159 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
160 #else /* usual case */
161 ni = 1;
162 #endif
164 for (i = 0; i < ni; i++) {
165 int di_ok;
166 xfs_dinode_t *dip;
168 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
169 (i << mp->m_sb.sb_inodelog));
170 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
171 XFS_DINODE_GOOD_VERSION(dip->di_version);
172 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
173 XFS_ERRTAG_ITOBP_INOTOBP,
174 XFS_RANDOM_ITOBP_INOTOBP))) {
175 if (iget_flags & XFS_IGET_UNTRUSTED) {
176 xfs_trans_brelse(tp, bp);
177 return XFS_ERROR(EINVAL);
179 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
180 XFS_ERRLEVEL_HIGH, mp, dip);
181 #ifdef DEBUG
182 xfs_emerg(mp,
183 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
184 (unsigned long long)imap->im_blkno, i,
185 be16_to_cpu(dip->di_magic));
186 ASSERT(0);
187 #endif
188 xfs_trans_brelse(tp, bp);
189 return XFS_ERROR(EFSCORRUPTED);
193 xfs_inobp_check(mp, bp);
196 * Mark the buffer as an inode buffer now that it looks good
198 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
200 *bpp = bp;
201 return 0;
205 * This routine is called to map an inode number within a file
206 * system to the buffer containing the on-disk version of the
207 * inode. It returns a pointer to the buffer containing the
208 * on-disk inode in the bpp parameter, and in the dip parameter
209 * it returns a pointer to the on-disk inode within that buffer.
211 * If a non-zero error is returned, then the contents of bpp and
212 * dipp are undefined.
214 * Use xfs_imap() to determine the size and location of the
215 * buffer to read from disk.
218 xfs_inotobp(
219 xfs_mount_t *mp,
220 xfs_trans_t *tp,
221 xfs_ino_t ino,
222 xfs_dinode_t **dipp,
223 xfs_buf_t **bpp,
224 int *offset,
225 uint imap_flags)
227 struct xfs_imap imap;
228 xfs_buf_t *bp;
229 int error;
231 imap.im_blkno = 0;
232 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
233 if (error)
234 return error;
236 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
237 if (error)
238 return error;
240 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
241 *bpp = bp;
242 *offset = imap.im_boffset;
243 return 0;
248 * This routine is called to map an inode to the buffer containing
249 * the on-disk version of the inode. It returns a pointer to the
250 * buffer containing the on-disk inode in the bpp parameter, and in
251 * the dip parameter it returns a pointer to the on-disk inode within
252 * that buffer.
254 * If a non-zero error is returned, then the contents of bpp and
255 * dipp are undefined.
257 * The inode is expected to already been mapped to its buffer and read
258 * in once, thus we can use the mapping information stored in the inode
259 * rather than calling xfs_imap(). This allows us to avoid the overhead
260 * of looking at the inode btree for small block file systems
261 * (see xfs_imap()).
264 xfs_itobp(
265 xfs_mount_t *mp,
266 xfs_trans_t *tp,
267 xfs_inode_t *ip,
268 xfs_dinode_t **dipp,
269 xfs_buf_t **bpp,
270 uint buf_flags)
272 xfs_buf_t *bp;
273 int error;
275 ASSERT(ip->i_imap.im_blkno != 0);
277 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
278 if (error)
279 return error;
281 if (!bp) {
282 ASSERT(buf_flags & XBF_TRYLOCK);
283 ASSERT(tp == NULL);
284 *bpp = NULL;
285 return EAGAIN;
288 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
289 *bpp = bp;
290 return 0;
294 * Move inode type and inode format specific information from the
295 * on-disk inode to the in-core inode. For fifos, devs, and sockets
296 * this means set if_rdev to the proper value. For files, directories,
297 * and symlinks this means to bring in the in-line data or extent
298 * pointers. For a file in B-tree format, only the root is immediately
299 * brought in-core. The rest will be in-lined in if_extents when it
300 * is first referenced (see xfs_iread_extents()).
302 STATIC int
303 xfs_iformat(
304 xfs_inode_t *ip,
305 xfs_dinode_t *dip)
307 xfs_attr_shortform_t *atp;
308 int size;
309 int error;
310 xfs_fsize_t di_size;
311 ip->i_df.if_ext_max =
312 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
313 error = 0;
315 if (unlikely(be32_to_cpu(dip->di_nextents) +
316 be16_to_cpu(dip->di_anextents) >
317 be64_to_cpu(dip->di_nblocks))) {
318 xfs_warn(ip->i_mount,
319 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
320 (unsigned long long)ip->i_ino,
321 (int)(be32_to_cpu(dip->di_nextents) +
322 be16_to_cpu(dip->di_anextents)),
323 (unsigned long long)
324 be64_to_cpu(dip->di_nblocks));
325 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
326 ip->i_mount, dip);
327 return XFS_ERROR(EFSCORRUPTED);
330 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
331 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
332 (unsigned long long)ip->i_ino,
333 dip->di_forkoff);
334 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
335 ip->i_mount, dip);
336 return XFS_ERROR(EFSCORRUPTED);
339 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
340 !ip->i_mount->m_rtdev_targp)) {
341 xfs_warn(ip->i_mount,
342 "corrupt dinode %Lu, has realtime flag set.",
343 ip->i_ino);
344 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
345 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
346 return XFS_ERROR(EFSCORRUPTED);
349 switch (ip->i_d.di_mode & S_IFMT) {
350 case S_IFIFO:
351 case S_IFCHR:
352 case S_IFBLK:
353 case S_IFSOCK:
354 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
355 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
356 ip->i_mount, dip);
357 return XFS_ERROR(EFSCORRUPTED);
359 ip->i_d.di_size = 0;
360 ip->i_size = 0;
361 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
362 break;
364 case S_IFREG:
365 case S_IFLNK:
366 case S_IFDIR:
367 switch (dip->di_format) {
368 case XFS_DINODE_FMT_LOCAL:
370 * no local regular files yet
372 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
373 xfs_warn(ip->i_mount,
374 "corrupt inode %Lu (local format for regular file).",
375 (unsigned long long) ip->i_ino);
376 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
377 XFS_ERRLEVEL_LOW,
378 ip->i_mount, dip);
379 return XFS_ERROR(EFSCORRUPTED);
382 di_size = be64_to_cpu(dip->di_size);
383 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
384 xfs_warn(ip->i_mount,
385 "corrupt inode %Lu (bad size %Ld for local inode).",
386 (unsigned long long) ip->i_ino,
387 (long long) di_size);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 XFS_ERRLEVEL_LOW,
390 ip->i_mount, dip);
391 return XFS_ERROR(EFSCORRUPTED);
394 size = (int)di_size;
395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 break;
397 case XFS_DINODE_FMT_EXTENTS:
398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 break;
400 case XFS_DINODE_FMT_BTREE:
401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 break;
403 default:
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 ip->i_mount);
406 return XFS_ERROR(EFSCORRUPTED);
408 break;
410 default:
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 return XFS_ERROR(EFSCORRUPTED);
414 if (error) {
415 return error;
417 if (!XFS_DFORK_Q(dip))
418 return 0;
419 ASSERT(ip->i_afp == NULL);
420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
421 ip->i_afp->if_ext_max =
422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 switch (dip->di_aformat) {
424 case XFS_DINODE_FMT_LOCAL:
425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 size = be16_to_cpu(atp->hdr.totsize);
428 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 xfs_warn(ip->i_mount,
430 "corrupt inode %Lu (bad attr fork size %Ld).",
431 (unsigned long long) ip->i_ino,
432 (long long) size);
433 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
434 XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
439 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
440 break;
441 case XFS_DINODE_FMT_EXTENTS:
442 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
443 break;
444 case XFS_DINODE_FMT_BTREE:
445 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
446 break;
447 default:
448 error = XFS_ERROR(EFSCORRUPTED);
449 break;
451 if (error) {
452 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
453 ip->i_afp = NULL;
454 xfs_idestroy_fork(ip, XFS_DATA_FORK);
456 return error;
460 * The file is in-lined in the on-disk inode.
461 * If it fits into if_inline_data, then copy
462 * it there, otherwise allocate a buffer for it
463 * and copy the data there. Either way, set
464 * if_data to point at the data.
465 * If we allocate a buffer for the data, make
466 * sure that its size is a multiple of 4 and
467 * record the real size in i_real_bytes.
469 STATIC int
470 xfs_iformat_local(
471 xfs_inode_t *ip,
472 xfs_dinode_t *dip,
473 int whichfork,
474 int size)
476 xfs_ifork_t *ifp;
477 int real_size;
480 * If the size is unreasonable, then something
481 * is wrong and we just bail out rather than crash in
482 * kmem_alloc() or memcpy() below.
484 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
485 xfs_warn(ip->i_mount,
486 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
487 (unsigned long long) ip->i_ino, size,
488 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
489 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
490 ip->i_mount, dip);
491 return XFS_ERROR(EFSCORRUPTED);
493 ifp = XFS_IFORK_PTR(ip, whichfork);
494 real_size = 0;
495 if (size == 0)
496 ifp->if_u1.if_data = NULL;
497 else if (size <= sizeof(ifp->if_u2.if_inline_data))
498 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
499 else {
500 real_size = roundup(size, 4);
501 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
503 ifp->if_bytes = size;
504 ifp->if_real_bytes = real_size;
505 if (size)
506 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
507 ifp->if_flags &= ~XFS_IFEXTENTS;
508 ifp->if_flags |= XFS_IFINLINE;
509 return 0;
513 * The file consists of a set of extents all
514 * of which fit into the on-disk inode.
515 * If there are few enough extents to fit into
516 * the if_inline_ext, then copy them there.
517 * Otherwise allocate a buffer for them and copy
518 * them into it. Either way, set if_extents
519 * to point at the extents.
521 STATIC int
522 xfs_iformat_extents(
523 xfs_inode_t *ip,
524 xfs_dinode_t *dip,
525 int whichfork)
527 xfs_bmbt_rec_t *dp;
528 xfs_ifork_t *ifp;
529 int nex;
530 int size;
531 int i;
533 ifp = XFS_IFORK_PTR(ip, whichfork);
534 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
535 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
538 * If the number of extents is unreasonable, then something
539 * is wrong and we just bail out rather than crash in
540 * kmem_alloc() or memcpy() below.
542 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
543 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
544 (unsigned long long) ip->i_ino, nex);
545 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
546 ip->i_mount, dip);
547 return XFS_ERROR(EFSCORRUPTED);
550 ifp->if_real_bytes = 0;
551 if (nex == 0)
552 ifp->if_u1.if_extents = NULL;
553 else if (nex <= XFS_INLINE_EXTS)
554 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
555 else
556 xfs_iext_add(ifp, 0, nex);
558 ifp->if_bytes = size;
559 if (size) {
560 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
561 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
562 for (i = 0; i < nex; i++, dp++) {
563 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
564 ep->l0 = get_unaligned_be64(&dp->l0);
565 ep->l1 = get_unaligned_be64(&dp->l1);
567 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
568 if (whichfork != XFS_DATA_FORK ||
569 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
570 if (unlikely(xfs_check_nostate_extents(
571 ifp, 0, nex))) {
572 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
573 XFS_ERRLEVEL_LOW,
574 ip->i_mount);
575 return XFS_ERROR(EFSCORRUPTED);
578 ifp->if_flags |= XFS_IFEXTENTS;
579 return 0;
583 * The file has too many extents to fit into
584 * the inode, so they are in B-tree format.
585 * Allocate a buffer for the root of the B-tree
586 * and copy the root into it. The i_extents
587 * field will remain NULL until all of the
588 * extents are read in (when they are needed).
590 STATIC int
591 xfs_iformat_btree(
592 xfs_inode_t *ip,
593 xfs_dinode_t *dip,
594 int whichfork)
596 xfs_bmdr_block_t *dfp;
597 xfs_ifork_t *ifp;
598 /* REFERENCED */
599 int nrecs;
600 int size;
602 ifp = XFS_IFORK_PTR(ip, whichfork);
603 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
604 size = XFS_BMAP_BROOT_SPACE(dfp);
605 nrecs = be16_to_cpu(dfp->bb_numrecs);
608 * blow out if -- fork has less extents than can fit in
609 * fork (fork shouldn't be a btree format), root btree
610 * block has more records than can fit into the fork,
611 * or the number of extents is greater than the number of
612 * blocks.
614 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
615 || XFS_BMDR_SPACE_CALC(nrecs) >
616 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
617 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
618 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
619 (unsigned long long) ip->i_ino);
620 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
621 ip->i_mount, dip);
622 return XFS_ERROR(EFSCORRUPTED);
625 ifp->if_broot_bytes = size;
626 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
627 ASSERT(ifp->if_broot != NULL);
629 * Copy and convert from the on-disk structure
630 * to the in-memory structure.
632 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
633 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
634 ifp->if_broot, size);
635 ifp->if_flags &= ~XFS_IFEXTENTS;
636 ifp->if_flags |= XFS_IFBROOT;
638 return 0;
641 STATIC void
642 xfs_dinode_from_disk(
643 xfs_icdinode_t *to,
644 xfs_dinode_t *from)
646 to->di_magic = be16_to_cpu(from->di_magic);
647 to->di_mode = be16_to_cpu(from->di_mode);
648 to->di_version = from ->di_version;
649 to->di_format = from->di_format;
650 to->di_onlink = be16_to_cpu(from->di_onlink);
651 to->di_uid = be32_to_cpu(from->di_uid);
652 to->di_gid = be32_to_cpu(from->di_gid);
653 to->di_nlink = be32_to_cpu(from->di_nlink);
654 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
655 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
656 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
657 to->di_flushiter = be16_to_cpu(from->di_flushiter);
658 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
659 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
660 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
661 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
662 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
663 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
664 to->di_size = be64_to_cpu(from->di_size);
665 to->di_nblocks = be64_to_cpu(from->di_nblocks);
666 to->di_extsize = be32_to_cpu(from->di_extsize);
667 to->di_nextents = be32_to_cpu(from->di_nextents);
668 to->di_anextents = be16_to_cpu(from->di_anextents);
669 to->di_forkoff = from->di_forkoff;
670 to->di_aformat = from->di_aformat;
671 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
672 to->di_dmstate = be16_to_cpu(from->di_dmstate);
673 to->di_flags = be16_to_cpu(from->di_flags);
674 to->di_gen = be32_to_cpu(from->di_gen);
677 void
678 xfs_dinode_to_disk(
679 xfs_dinode_t *to,
680 xfs_icdinode_t *from)
682 to->di_magic = cpu_to_be16(from->di_magic);
683 to->di_mode = cpu_to_be16(from->di_mode);
684 to->di_version = from ->di_version;
685 to->di_format = from->di_format;
686 to->di_onlink = cpu_to_be16(from->di_onlink);
687 to->di_uid = cpu_to_be32(from->di_uid);
688 to->di_gid = cpu_to_be32(from->di_gid);
689 to->di_nlink = cpu_to_be32(from->di_nlink);
690 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
691 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
692 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
693 to->di_flushiter = cpu_to_be16(from->di_flushiter);
694 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
695 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
696 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
697 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
698 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
699 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
700 to->di_size = cpu_to_be64(from->di_size);
701 to->di_nblocks = cpu_to_be64(from->di_nblocks);
702 to->di_extsize = cpu_to_be32(from->di_extsize);
703 to->di_nextents = cpu_to_be32(from->di_nextents);
704 to->di_anextents = cpu_to_be16(from->di_anextents);
705 to->di_forkoff = from->di_forkoff;
706 to->di_aformat = from->di_aformat;
707 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
708 to->di_dmstate = cpu_to_be16(from->di_dmstate);
709 to->di_flags = cpu_to_be16(from->di_flags);
710 to->di_gen = cpu_to_be32(from->di_gen);
713 STATIC uint
714 _xfs_dic2xflags(
715 __uint16_t di_flags)
717 uint flags = 0;
719 if (di_flags & XFS_DIFLAG_ANY) {
720 if (di_flags & XFS_DIFLAG_REALTIME)
721 flags |= XFS_XFLAG_REALTIME;
722 if (di_flags & XFS_DIFLAG_PREALLOC)
723 flags |= XFS_XFLAG_PREALLOC;
724 if (di_flags & XFS_DIFLAG_IMMUTABLE)
725 flags |= XFS_XFLAG_IMMUTABLE;
726 if (di_flags & XFS_DIFLAG_APPEND)
727 flags |= XFS_XFLAG_APPEND;
728 if (di_flags & XFS_DIFLAG_SYNC)
729 flags |= XFS_XFLAG_SYNC;
730 if (di_flags & XFS_DIFLAG_NOATIME)
731 flags |= XFS_XFLAG_NOATIME;
732 if (di_flags & XFS_DIFLAG_NODUMP)
733 flags |= XFS_XFLAG_NODUMP;
734 if (di_flags & XFS_DIFLAG_RTINHERIT)
735 flags |= XFS_XFLAG_RTINHERIT;
736 if (di_flags & XFS_DIFLAG_PROJINHERIT)
737 flags |= XFS_XFLAG_PROJINHERIT;
738 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
739 flags |= XFS_XFLAG_NOSYMLINKS;
740 if (di_flags & XFS_DIFLAG_EXTSIZE)
741 flags |= XFS_XFLAG_EXTSIZE;
742 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
743 flags |= XFS_XFLAG_EXTSZINHERIT;
744 if (di_flags & XFS_DIFLAG_NODEFRAG)
745 flags |= XFS_XFLAG_NODEFRAG;
746 if (di_flags & XFS_DIFLAG_FILESTREAM)
747 flags |= XFS_XFLAG_FILESTREAM;
750 return flags;
753 uint
754 xfs_ip2xflags(
755 xfs_inode_t *ip)
757 xfs_icdinode_t *dic = &ip->i_d;
759 return _xfs_dic2xflags(dic->di_flags) |
760 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
763 uint
764 xfs_dic2xflags(
765 xfs_dinode_t *dip)
767 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
768 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
772 * Read the disk inode attributes into the in-core inode structure.
775 xfs_iread(
776 xfs_mount_t *mp,
777 xfs_trans_t *tp,
778 xfs_inode_t *ip,
779 uint iget_flags)
781 xfs_buf_t *bp;
782 xfs_dinode_t *dip;
783 int error;
786 * Fill in the location information in the in-core inode.
788 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
789 if (error)
790 return error;
793 * Get pointers to the on-disk inode and the buffer containing it.
795 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
796 XBF_LOCK, iget_flags);
797 if (error)
798 return error;
799 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
802 * If we got something that isn't an inode it means someone
803 * (nfs or dmi) has a stale handle.
805 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
806 #ifdef DEBUG
807 xfs_alert(mp,
808 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
809 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
810 #endif /* DEBUG */
811 error = XFS_ERROR(EINVAL);
812 goto out_brelse;
816 * If the on-disk inode is already linked to a directory
817 * entry, copy all of the inode into the in-core inode.
818 * xfs_iformat() handles copying in the inode format
819 * specific information.
820 * Otherwise, just get the truly permanent information.
822 if (dip->di_mode) {
823 xfs_dinode_from_disk(&ip->i_d, dip);
824 error = xfs_iformat(ip, dip);
825 if (error) {
826 #ifdef DEBUG
827 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
828 __func__, error);
829 #endif /* DEBUG */
830 goto out_brelse;
832 } else {
833 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
834 ip->i_d.di_version = dip->di_version;
835 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
836 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
838 * Make sure to pull in the mode here as well in
839 * case the inode is released without being used.
840 * This ensures that xfs_inactive() will see that
841 * the inode is already free and not try to mess
842 * with the uninitialized part of it.
844 ip->i_d.di_mode = 0;
846 * Initialize the per-fork minima and maxima for a new
847 * inode here. xfs_iformat will do it for old inodes.
849 ip->i_df.if_ext_max =
850 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
854 * The inode format changed when we moved the link count and
855 * made it 32 bits long. If this is an old format inode,
856 * convert it in memory to look like a new one. If it gets
857 * flushed to disk we will convert back before flushing or
858 * logging it. We zero out the new projid field and the old link
859 * count field. We'll handle clearing the pad field (the remains
860 * of the old uuid field) when we actually convert the inode to
861 * the new format. We don't change the version number so that we
862 * can distinguish this from a real new format inode.
864 if (ip->i_d.di_version == 1) {
865 ip->i_d.di_nlink = ip->i_d.di_onlink;
866 ip->i_d.di_onlink = 0;
867 xfs_set_projid(ip, 0);
870 ip->i_delayed_blks = 0;
871 ip->i_size = ip->i_d.di_size;
874 * Mark the buffer containing the inode as something to keep
875 * around for a while. This helps to keep recently accessed
876 * meta-data in-core longer.
878 xfs_buf_set_ref(bp, XFS_INO_REF);
881 * Use xfs_trans_brelse() to release the buffer containing the
882 * on-disk inode, because it was acquired with xfs_trans_read_buf()
883 * in xfs_itobp() above. If tp is NULL, this is just a normal
884 * brelse(). If we're within a transaction, then xfs_trans_brelse()
885 * will only release the buffer if it is not dirty within the
886 * transaction. It will be OK to release the buffer in this case,
887 * because inodes on disk are never destroyed and we will be
888 * locking the new in-core inode before putting it in the hash
889 * table where other processes can find it. Thus we don't have
890 * to worry about the inode being changed just because we released
891 * the buffer.
893 out_brelse:
894 xfs_trans_brelse(tp, bp);
895 return error;
899 * Read in extents from a btree-format inode.
900 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
903 xfs_iread_extents(
904 xfs_trans_t *tp,
905 xfs_inode_t *ip,
906 int whichfork)
908 int error;
909 xfs_ifork_t *ifp;
910 xfs_extnum_t nextents;
912 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
913 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
914 ip->i_mount);
915 return XFS_ERROR(EFSCORRUPTED);
917 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
918 ifp = XFS_IFORK_PTR(ip, whichfork);
921 * We know that the size is valid (it's checked in iformat_btree)
923 ifp->if_bytes = ifp->if_real_bytes = 0;
924 ifp->if_flags |= XFS_IFEXTENTS;
925 xfs_iext_add(ifp, 0, nextents);
926 error = xfs_bmap_read_extents(tp, ip, whichfork);
927 if (error) {
928 xfs_iext_destroy(ifp);
929 ifp->if_flags &= ~XFS_IFEXTENTS;
930 return error;
932 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
933 return 0;
937 * Allocate an inode on disk and return a copy of its in-core version.
938 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
939 * appropriately within the inode. The uid and gid for the inode are
940 * set according to the contents of the given cred structure.
942 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
943 * has a free inode available, call xfs_iget()
944 * to obtain the in-core version of the allocated inode. Finally,
945 * fill in the inode and log its initial contents. In this case,
946 * ialloc_context would be set to NULL and call_again set to false.
948 * If xfs_dialloc() does not have an available inode,
949 * it will replenish its supply by doing an allocation. Since we can
950 * only do one allocation within a transaction without deadlocks, we
951 * must commit the current transaction before returning the inode itself.
952 * In this case, therefore, we will set call_again to true and return.
953 * The caller should then commit the current transaction, start a new
954 * transaction, and call xfs_ialloc() again to actually get the inode.
956 * To ensure that some other process does not grab the inode that
957 * was allocated during the first call to xfs_ialloc(), this routine
958 * also returns the [locked] bp pointing to the head of the freelist
959 * as ialloc_context. The caller should hold this buffer across
960 * the commit and pass it back into this routine on the second call.
962 * If we are allocating quota inodes, we do not have a parent inode
963 * to attach to or associate with (i.e. pip == NULL) because they
964 * are not linked into the directory structure - they are attached
965 * directly to the superblock - and so have no parent.
968 xfs_ialloc(
969 xfs_trans_t *tp,
970 xfs_inode_t *pip,
971 mode_t mode,
972 xfs_nlink_t nlink,
973 xfs_dev_t rdev,
974 prid_t prid,
975 int okalloc,
976 xfs_buf_t **ialloc_context,
977 boolean_t *call_again,
978 xfs_inode_t **ipp)
980 xfs_ino_t ino;
981 xfs_inode_t *ip;
982 uint flags;
983 int error;
984 timespec_t tv;
985 int filestreams = 0;
988 * Call the space management code to pick
989 * the on-disk inode to be allocated.
991 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
992 ialloc_context, call_again, &ino);
993 if (error)
994 return error;
995 if (*call_again || ino == NULLFSINO) {
996 *ipp = NULL;
997 return 0;
999 ASSERT(*ialloc_context == NULL);
1002 * Get the in-core inode with the lock held exclusively.
1003 * This is because we're setting fields here we need
1004 * to prevent others from looking at until we're done.
1006 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1007 XFS_ILOCK_EXCL, &ip);
1008 if (error)
1009 return error;
1010 ASSERT(ip != NULL);
1012 ip->i_d.di_mode = (__uint16_t)mode;
1013 ip->i_d.di_onlink = 0;
1014 ip->i_d.di_nlink = nlink;
1015 ASSERT(ip->i_d.di_nlink == nlink);
1016 ip->i_d.di_uid = current_fsuid();
1017 ip->i_d.di_gid = current_fsgid();
1018 xfs_set_projid(ip, prid);
1019 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1022 * If the superblock version is up to where we support new format
1023 * inodes and this is currently an old format inode, then change
1024 * the inode version number now. This way we only do the conversion
1025 * here rather than here and in the flush/logging code.
1027 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1028 ip->i_d.di_version == 1) {
1029 ip->i_d.di_version = 2;
1031 * We've already zeroed the old link count, the projid field,
1032 * and the pad field.
1037 * Project ids won't be stored on disk if we are using a version 1 inode.
1039 if ((prid != 0) && (ip->i_d.di_version == 1))
1040 xfs_bump_ino_vers2(tp, ip);
1042 if (pip && XFS_INHERIT_GID(pip)) {
1043 ip->i_d.di_gid = pip->i_d.di_gid;
1044 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1045 ip->i_d.di_mode |= S_ISGID;
1050 * If the group ID of the new file does not match the effective group
1051 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1052 * (and only if the irix_sgid_inherit compatibility variable is set).
1054 if ((irix_sgid_inherit) &&
1055 (ip->i_d.di_mode & S_ISGID) &&
1056 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1057 ip->i_d.di_mode &= ~S_ISGID;
1060 ip->i_d.di_size = 0;
1061 ip->i_size = 0;
1062 ip->i_d.di_nextents = 0;
1063 ASSERT(ip->i_d.di_nblocks == 0);
1065 nanotime(&tv);
1066 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1067 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1068 ip->i_d.di_atime = ip->i_d.di_mtime;
1069 ip->i_d.di_ctime = ip->i_d.di_mtime;
1072 * di_gen will have been taken care of in xfs_iread.
1074 ip->i_d.di_extsize = 0;
1075 ip->i_d.di_dmevmask = 0;
1076 ip->i_d.di_dmstate = 0;
1077 ip->i_d.di_flags = 0;
1078 flags = XFS_ILOG_CORE;
1079 switch (mode & S_IFMT) {
1080 case S_IFIFO:
1081 case S_IFCHR:
1082 case S_IFBLK:
1083 case S_IFSOCK:
1084 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1085 ip->i_df.if_u2.if_rdev = rdev;
1086 ip->i_df.if_flags = 0;
1087 flags |= XFS_ILOG_DEV;
1088 break;
1089 case S_IFREG:
1091 * we can't set up filestreams until after the VFS inode
1092 * is set up properly.
1094 if (pip && xfs_inode_is_filestream(pip))
1095 filestreams = 1;
1096 /* fall through */
1097 case S_IFDIR:
1098 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1099 uint di_flags = 0;
1101 if ((mode & S_IFMT) == S_IFDIR) {
1102 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1103 di_flags |= XFS_DIFLAG_RTINHERIT;
1104 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1105 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1106 ip->i_d.di_extsize = pip->i_d.di_extsize;
1108 } else if ((mode & S_IFMT) == S_IFREG) {
1109 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1110 di_flags |= XFS_DIFLAG_REALTIME;
1111 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1112 di_flags |= XFS_DIFLAG_EXTSIZE;
1113 ip->i_d.di_extsize = pip->i_d.di_extsize;
1116 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1117 xfs_inherit_noatime)
1118 di_flags |= XFS_DIFLAG_NOATIME;
1119 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1120 xfs_inherit_nodump)
1121 di_flags |= XFS_DIFLAG_NODUMP;
1122 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1123 xfs_inherit_sync)
1124 di_flags |= XFS_DIFLAG_SYNC;
1125 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1126 xfs_inherit_nosymlinks)
1127 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1128 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1129 di_flags |= XFS_DIFLAG_PROJINHERIT;
1130 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1131 xfs_inherit_nodefrag)
1132 di_flags |= XFS_DIFLAG_NODEFRAG;
1133 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1134 di_flags |= XFS_DIFLAG_FILESTREAM;
1135 ip->i_d.di_flags |= di_flags;
1137 /* FALLTHROUGH */
1138 case S_IFLNK:
1139 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1140 ip->i_df.if_flags = XFS_IFEXTENTS;
1141 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1142 ip->i_df.if_u1.if_extents = NULL;
1143 break;
1144 default:
1145 ASSERT(0);
1148 * Attribute fork settings for new inode.
1150 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1151 ip->i_d.di_anextents = 0;
1154 * Log the new values stuffed into the inode.
1156 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1157 xfs_trans_log_inode(tp, ip, flags);
1159 /* now that we have an i_mode we can setup inode ops and unlock */
1160 xfs_setup_inode(ip);
1162 /* now we have set up the vfs inode we can associate the filestream */
1163 if (filestreams) {
1164 error = xfs_filestream_associate(pip, ip);
1165 if (error < 0)
1166 return -error;
1167 if (!error)
1168 xfs_iflags_set(ip, XFS_IFILESTREAM);
1171 *ipp = ip;
1172 return 0;
1176 * Check to make sure that there are no blocks allocated to the
1177 * file beyond the size of the file. We don't check this for
1178 * files with fixed size extents or real time extents, but we
1179 * at least do it for regular files.
1181 #ifdef DEBUG
1182 void
1183 xfs_isize_check(
1184 xfs_mount_t *mp,
1185 xfs_inode_t *ip,
1186 xfs_fsize_t isize)
1188 xfs_fileoff_t map_first;
1189 int nimaps;
1190 xfs_bmbt_irec_t imaps[2];
1192 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1193 return;
1195 if (XFS_IS_REALTIME_INODE(ip))
1196 return;
1198 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1199 return;
1201 nimaps = 2;
1202 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1204 * The filesystem could be shutting down, so bmapi may return
1205 * an error.
1207 if (xfs_bmapi(NULL, ip, map_first,
1208 (XFS_B_TO_FSB(mp,
1209 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1210 map_first),
1211 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1212 NULL))
1213 return;
1214 ASSERT(nimaps == 1);
1215 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1217 #endif /* DEBUG */
1220 * Calculate the last possible buffered byte in a file. This must
1221 * include data that was buffered beyond the EOF by the write code.
1222 * This also needs to deal with overflowing the xfs_fsize_t type
1223 * which can happen for sizes near the limit.
1225 * We also need to take into account any blocks beyond the EOF. It
1226 * may be the case that they were buffered by a write which failed.
1227 * In that case the pages will still be in memory, but the inode size
1228 * will never have been updated.
1230 STATIC xfs_fsize_t
1231 xfs_file_last_byte(
1232 xfs_inode_t *ip)
1234 xfs_mount_t *mp;
1235 xfs_fsize_t last_byte;
1236 xfs_fileoff_t last_block;
1237 xfs_fileoff_t size_last_block;
1238 int error;
1240 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1242 mp = ip->i_mount;
1244 * Only check for blocks beyond the EOF if the extents have
1245 * been read in. This eliminates the need for the inode lock,
1246 * and it also saves us from looking when it really isn't
1247 * necessary.
1249 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1250 xfs_ilock(ip, XFS_ILOCK_SHARED);
1251 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1252 XFS_DATA_FORK);
1253 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1254 if (error) {
1255 last_block = 0;
1257 } else {
1258 last_block = 0;
1260 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1261 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1263 last_byte = XFS_FSB_TO_B(mp, last_block);
1264 if (last_byte < 0) {
1265 return XFS_MAXIOFFSET(mp);
1267 last_byte += (1 << mp->m_writeio_log);
1268 if (last_byte < 0) {
1269 return XFS_MAXIOFFSET(mp);
1271 return last_byte;
1275 * Start the truncation of the file to new_size. The new size
1276 * must be smaller than the current size. This routine will
1277 * clear the buffer and page caches of file data in the removed
1278 * range, and xfs_itruncate_finish() will remove the underlying
1279 * disk blocks.
1281 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1282 * must NOT have the inode lock held at all. This is because we're
1283 * calling into the buffer/page cache code and we can't hold the
1284 * inode lock when we do so.
1286 * We need to wait for any direct I/Os in flight to complete before we
1287 * proceed with the truncate. This is needed to prevent the extents
1288 * being read or written by the direct I/Os from being removed while the
1289 * I/O is in flight as there is no other method of synchronising
1290 * direct I/O with the truncate operation. Also, because we hold
1291 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1292 * started until the truncate completes and drops the lock. Essentially,
1293 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1294 * ordering between direct I/Os and the truncate operation.
1296 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1297 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1298 * in the case that the caller is locking things out of order and
1299 * may not be able to call xfs_itruncate_finish() with the inode lock
1300 * held without dropping the I/O lock. If the caller must drop the
1301 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1302 * must be called again with all the same restrictions as the initial
1303 * call.
1306 xfs_itruncate_start(
1307 xfs_inode_t *ip,
1308 uint flags,
1309 xfs_fsize_t new_size)
1311 xfs_fsize_t last_byte;
1312 xfs_off_t toss_start;
1313 xfs_mount_t *mp;
1314 int error = 0;
1316 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1317 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1318 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1319 (flags == XFS_ITRUNC_MAYBE));
1321 mp = ip->i_mount;
1323 /* wait for the completion of any pending DIOs */
1324 if (new_size == 0 || new_size < ip->i_size)
1325 xfs_ioend_wait(ip);
1328 * Call toss_pages or flushinval_pages to get rid of pages
1329 * overlapping the region being removed. We have to use
1330 * the less efficient flushinval_pages in the case that the
1331 * caller may not be able to finish the truncate without
1332 * dropping the inode's I/O lock. Make sure
1333 * to catch any pages brought in by buffers overlapping
1334 * the EOF by searching out beyond the isize by our
1335 * block size. We round new_size up to a block boundary
1336 * so that we don't toss things on the same block as
1337 * new_size but before it.
1339 * Before calling toss_page or flushinval_pages, make sure to
1340 * call remapf() over the same region if the file is mapped.
1341 * This frees up mapped file references to the pages in the
1342 * given range and for the flushinval_pages case it ensures
1343 * that we get the latest mapped changes flushed out.
1345 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1346 toss_start = XFS_FSB_TO_B(mp, toss_start);
1347 if (toss_start < 0) {
1349 * The place to start tossing is beyond our maximum
1350 * file size, so there is no way that the data extended
1351 * out there.
1353 return 0;
1355 last_byte = xfs_file_last_byte(ip);
1356 trace_xfs_itruncate_start(ip, new_size, flags, toss_start, last_byte);
1357 if (last_byte > toss_start) {
1358 if (flags & XFS_ITRUNC_DEFINITE) {
1359 xfs_tosspages(ip, toss_start,
1360 -1, FI_REMAPF_LOCKED);
1361 } else {
1362 error = xfs_flushinval_pages(ip, toss_start,
1363 -1, FI_REMAPF_LOCKED);
1367 #ifdef DEBUG
1368 if (new_size == 0) {
1369 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1371 #endif
1372 return error;
1376 * Shrink the file to the given new_size. The new size must be smaller than
1377 * the current size. This will free up the underlying blocks in the removed
1378 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1380 * The transaction passed to this routine must have made a permanent log
1381 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1382 * given transaction and start new ones, so make sure everything involved in
1383 * the transaction is tidy before calling here. Some transaction will be
1384 * returned to the caller to be committed. The incoming transaction must
1385 * already include the inode, and both inode locks must be held exclusively.
1386 * The inode must also be "held" within the transaction. On return the inode
1387 * will be "held" within the returned transaction. This routine does NOT
1388 * require any disk space to be reserved for it within the transaction.
1390 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1391 * indicates the fork which is to be truncated. For the attribute fork we only
1392 * support truncation to size 0.
1394 * We use the sync parameter to indicate whether or not the first transaction
1395 * we perform might have to be synchronous. For the attr fork, it needs to be
1396 * so if the unlink of the inode is not yet known to be permanent in the log.
1397 * This keeps us from freeing and reusing the blocks of the attribute fork
1398 * before the unlink of the inode becomes permanent.
1400 * For the data fork, we normally have to run synchronously if we're being
1401 * called out of the inactive path or we're being called out of the create path
1402 * where we're truncating an existing file. Either way, the truncate needs to
1403 * be sync so blocks don't reappear in the file with altered data in case of a
1404 * crash. wsync filesystems can run the first case async because anything that
1405 * shrinks the inode has to run sync so by the time we're called here from
1406 * inactive, the inode size is permanently set to 0.
1408 * Calls from the truncate path always need to be sync unless we're in a wsync
1409 * filesystem and the file has already been unlinked.
1411 * The caller is responsible for correctly setting the sync parameter. It gets
1412 * too hard for us to guess here which path we're being called out of just
1413 * based on inode state.
1415 * If we get an error, we must return with the inode locked and linked into the
1416 * current transaction. This keeps things simple for the higher level code,
1417 * because it always knows that the inode is locked and held in the transaction
1418 * that returns to it whether errors occur or not. We don't mark the inode
1419 * dirty on error so that transactions can be easily aborted if possible.
1422 xfs_itruncate_finish(
1423 xfs_trans_t **tp,
1424 xfs_inode_t *ip,
1425 xfs_fsize_t new_size,
1426 int fork,
1427 int sync)
1429 xfs_fsblock_t first_block;
1430 xfs_fileoff_t first_unmap_block;
1431 xfs_fileoff_t last_block;
1432 xfs_filblks_t unmap_len=0;
1433 xfs_mount_t *mp;
1434 xfs_trans_t *ntp;
1435 int done;
1436 int committed;
1437 xfs_bmap_free_t free_list;
1438 int error;
1440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1441 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1442 ASSERT(*tp != NULL);
1443 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1444 ASSERT(ip->i_transp == *tp);
1445 ASSERT(ip->i_itemp != NULL);
1446 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1449 ntp = *tp;
1450 mp = (ntp)->t_mountp;
1451 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1454 * We only support truncating the entire attribute fork.
1456 if (fork == XFS_ATTR_FORK) {
1457 new_size = 0LL;
1459 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1460 trace_xfs_itruncate_finish_start(ip, new_size);
1463 * The first thing we do is set the size to new_size permanently
1464 * on disk. This way we don't have to worry about anyone ever
1465 * being able to look at the data being freed even in the face
1466 * of a crash. What we're getting around here is the case where
1467 * we free a block, it is allocated to another file, it is written
1468 * to, and then we crash. If the new data gets written to the
1469 * file but the log buffers containing the free and reallocation
1470 * don't, then we'd end up with garbage in the blocks being freed.
1471 * As long as we make the new_size permanent before actually
1472 * freeing any blocks it doesn't matter if they get written to.
1474 * The callers must signal into us whether or not the size
1475 * setting here must be synchronous. There are a few cases
1476 * where it doesn't have to be synchronous. Those cases
1477 * occur if the file is unlinked and we know the unlink is
1478 * permanent or if the blocks being truncated are guaranteed
1479 * to be beyond the inode eof (regardless of the link count)
1480 * and the eof value is permanent. Both of these cases occur
1481 * only on wsync-mounted filesystems. In those cases, we're
1482 * guaranteed that no user will ever see the data in the blocks
1483 * that are being truncated so the truncate can run async.
1484 * In the free beyond eof case, the file may wind up with
1485 * more blocks allocated to it than it needs if we crash
1486 * and that won't get fixed until the next time the file
1487 * is re-opened and closed but that's ok as that shouldn't
1488 * be too many blocks.
1490 * However, we can't just make all wsync xactions run async
1491 * because there's one call out of the create path that needs
1492 * to run sync where it's truncating an existing file to size
1493 * 0 whose size is > 0.
1495 * It's probably possible to come up with a test in this
1496 * routine that would correctly distinguish all the above
1497 * cases from the values of the function parameters and the
1498 * inode state but for sanity's sake, I've decided to let the
1499 * layers above just tell us. It's simpler to correctly figure
1500 * out in the layer above exactly under what conditions we
1501 * can run async and I think it's easier for others read and
1502 * follow the logic in case something has to be changed.
1503 * cscope is your friend -- rcc.
1505 * The attribute fork is much simpler.
1507 * For the attribute fork we allow the caller to tell us whether
1508 * the unlink of the inode that led to this call is yet permanent
1509 * in the on disk log. If it is not and we will be freeing extents
1510 * in this inode then we make the first transaction synchronous
1511 * to make sure that the unlink is permanent by the time we free
1512 * the blocks.
1514 if (fork == XFS_DATA_FORK) {
1515 if (ip->i_d.di_nextents > 0) {
1517 * If we are not changing the file size then do
1518 * not update the on-disk file size - we may be
1519 * called from xfs_inactive_free_eofblocks(). If we
1520 * update the on-disk file size and then the system
1521 * crashes before the contents of the file are
1522 * flushed to disk then the files may be full of
1523 * holes (ie NULL files bug).
1525 if (ip->i_size != new_size) {
1526 ip->i_d.di_size = new_size;
1527 ip->i_size = new_size;
1528 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1531 } else if (sync) {
1532 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1533 if (ip->i_d.di_anextents > 0)
1534 xfs_trans_set_sync(ntp);
1536 ASSERT(fork == XFS_DATA_FORK ||
1537 (fork == XFS_ATTR_FORK &&
1538 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1539 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1542 * Since it is possible for space to become allocated beyond
1543 * the end of the file (in a crash where the space is allocated
1544 * but the inode size is not yet updated), simply remove any
1545 * blocks which show up between the new EOF and the maximum
1546 * possible file size. If the first block to be removed is
1547 * beyond the maximum file size (ie it is the same as last_block),
1548 * then there is nothing to do.
1550 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1551 ASSERT(first_unmap_block <= last_block);
1552 done = 0;
1553 if (last_block == first_unmap_block) {
1554 done = 1;
1555 } else {
1556 unmap_len = last_block - first_unmap_block + 1;
1558 while (!done) {
1560 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1561 * will tell us whether it freed the entire range or
1562 * not. If this is a synchronous mount (wsync),
1563 * then we can tell bunmapi to keep all the
1564 * transactions asynchronous since the unlink
1565 * transaction that made this inode inactive has
1566 * already hit the disk. There's no danger of
1567 * the freed blocks being reused, there being a
1568 * crash, and the reused blocks suddenly reappearing
1569 * in this file with garbage in them once recovery
1570 * runs.
1572 xfs_bmap_init(&free_list, &first_block);
1573 error = xfs_bunmapi(ntp, ip,
1574 first_unmap_block, unmap_len,
1575 xfs_bmapi_aflag(fork),
1576 XFS_ITRUNC_MAX_EXTENTS,
1577 &first_block, &free_list,
1578 &done);
1579 if (error) {
1581 * If the bunmapi call encounters an error,
1582 * return to the caller where the transaction
1583 * can be properly aborted. We just need to
1584 * make sure we're not holding any resources
1585 * that we were not when we came in.
1587 xfs_bmap_cancel(&free_list);
1588 return error;
1592 * Duplicate the transaction that has the permanent
1593 * reservation and commit the old transaction.
1595 error = xfs_bmap_finish(tp, &free_list, &committed);
1596 ntp = *tp;
1597 if (committed)
1598 xfs_trans_ijoin(ntp, ip);
1600 if (error) {
1602 * If the bmap finish call encounters an error, return
1603 * to the caller where the transaction can be properly
1604 * aborted. We just need to make sure we're not
1605 * holding any resources that we were not when we came
1606 * in.
1608 * Aborting from this point might lose some blocks in
1609 * the file system, but oh well.
1611 xfs_bmap_cancel(&free_list);
1612 return error;
1615 if (committed) {
1617 * Mark the inode dirty so it will be logged and
1618 * moved forward in the log as part of every commit.
1620 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1623 ntp = xfs_trans_dup(ntp);
1624 error = xfs_trans_commit(*tp, 0);
1625 *tp = ntp;
1627 xfs_trans_ijoin(ntp, ip);
1629 if (error)
1630 return error;
1632 * transaction commit worked ok so we can drop the extra ticket
1633 * reference that we gained in xfs_trans_dup()
1635 xfs_log_ticket_put(ntp->t_ticket);
1636 error = xfs_trans_reserve(ntp, 0,
1637 XFS_ITRUNCATE_LOG_RES(mp), 0,
1638 XFS_TRANS_PERM_LOG_RES,
1639 XFS_ITRUNCATE_LOG_COUNT);
1640 if (error)
1641 return error;
1644 * Only update the size in the case of the data fork, but
1645 * always re-log the inode so that our permanent transaction
1646 * can keep on rolling it forward in the log.
1648 if (fork == XFS_DATA_FORK) {
1649 xfs_isize_check(mp, ip, new_size);
1651 * If we are not changing the file size then do
1652 * not update the on-disk file size - we may be
1653 * called from xfs_inactive_free_eofblocks(). If we
1654 * update the on-disk file size and then the system
1655 * crashes before the contents of the file are
1656 * flushed to disk then the files may be full of
1657 * holes (ie NULL files bug).
1659 if (ip->i_size != new_size) {
1660 ip->i_d.di_size = new_size;
1661 ip->i_size = new_size;
1664 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1665 ASSERT((new_size != 0) ||
1666 (fork == XFS_ATTR_FORK) ||
1667 (ip->i_delayed_blks == 0));
1668 ASSERT((new_size != 0) ||
1669 (fork == XFS_ATTR_FORK) ||
1670 (ip->i_d.di_nextents == 0));
1671 trace_xfs_itruncate_finish_end(ip, new_size);
1672 return 0;
1676 * This is called when the inode's link count goes to 0.
1677 * We place the on-disk inode on a list in the AGI. It
1678 * will be pulled from this list when the inode is freed.
1681 xfs_iunlink(
1682 xfs_trans_t *tp,
1683 xfs_inode_t *ip)
1685 xfs_mount_t *mp;
1686 xfs_agi_t *agi;
1687 xfs_dinode_t *dip;
1688 xfs_buf_t *agibp;
1689 xfs_buf_t *ibp;
1690 xfs_agino_t agino;
1691 short bucket_index;
1692 int offset;
1693 int error;
1695 ASSERT(ip->i_d.di_nlink == 0);
1696 ASSERT(ip->i_d.di_mode != 0);
1697 ASSERT(ip->i_transp == tp);
1699 mp = tp->t_mountp;
1702 * Get the agi buffer first. It ensures lock ordering
1703 * on the list.
1705 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1706 if (error)
1707 return error;
1708 agi = XFS_BUF_TO_AGI(agibp);
1711 * Get the index into the agi hash table for the
1712 * list this inode will go on.
1714 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1715 ASSERT(agino != 0);
1716 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1717 ASSERT(agi->agi_unlinked[bucket_index]);
1718 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1720 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1722 * There is already another inode in the bucket we need
1723 * to add ourselves to. Add us at the front of the list.
1724 * Here we put the head pointer into our next pointer,
1725 * and then we fall through to point the head at us.
1727 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1728 if (error)
1729 return error;
1731 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1732 /* both on-disk, don't endian flip twice */
1733 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1734 offset = ip->i_imap.im_boffset +
1735 offsetof(xfs_dinode_t, di_next_unlinked);
1736 xfs_trans_inode_buf(tp, ibp);
1737 xfs_trans_log_buf(tp, ibp, offset,
1738 (offset + sizeof(xfs_agino_t) - 1));
1739 xfs_inobp_check(mp, ibp);
1743 * Point the bucket head pointer at the inode being inserted.
1745 ASSERT(agino != 0);
1746 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1747 offset = offsetof(xfs_agi_t, agi_unlinked) +
1748 (sizeof(xfs_agino_t) * bucket_index);
1749 xfs_trans_log_buf(tp, agibp, offset,
1750 (offset + sizeof(xfs_agino_t) - 1));
1751 return 0;
1755 * Pull the on-disk inode from the AGI unlinked list.
1757 STATIC int
1758 xfs_iunlink_remove(
1759 xfs_trans_t *tp,
1760 xfs_inode_t *ip)
1762 xfs_ino_t next_ino;
1763 xfs_mount_t *mp;
1764 xfs_agi_t *agi;
1765 xfs_dinode_t *dip;
1766 xfs_buf_t *agibp;
1767 xfs_buf_t *ibp;
1768 xfs_agnumber_t agno;
1769 xfs_agino_t agino;
1770 xfs_agino_t next_agino;
1771 xfs_buf_t *last_ibp;
1772 xfs_dinode_t *last_dip = NULL;
1773 short bucket_index;
1774 int offset, last_offset = 0;
1775 int error;
1777 mp = tp->t_mountp;
1778 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1781 * Get the agi buffer first. It ensures lock ordering
1782 * on the list.
1784 error = xfs_read_agi(mp, tp, agno, &agibp);
1785 if (error)
1786 return error;
1788 agi = XFS_BUF_TO_AGI(agibp);
1791 * Get the index into the agi hash table for the
1792 * list this inode will go on.
1794 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1795 ASSERT(agino != 0);
1796 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1797 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1798 ASSERT(agi->agi_unlinked[bucket_index]);
1800 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1802 * We're at the head of the list. Get the inode's
1803 * on-disk buffer to see if there is anyone after us
1804 * on the list. Only modify our next pointer if it
1805 * is not already NULLAGINO. This saves us the overhead
1806 * of dealing with the buffer when there is no need to
1807 * change it.
1809 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1810 if (error) {
1811 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1812 __func__, error);
1813 return error;
1815 next_agino = be32_to_cpu(dip->di_next_unlinked);
1816 ASSERT(next_agino != 0);
1817 if (next_agino != NULLAGINO) {
1818 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1819 offset = ip->i_imap.im_boffset +
1820 offsetof(xfs_dinode_t, di_next_unlinked);
1821 xfs_trans_inode_buf(tp, ibp);
1822 xfs_trans_log_buf(tp, ibp, offset,
1823 (offset + sizeof(xfs_agino_t) - 1));
1824 xfs_inobp_check(mp, ibp);
1825 } else {
1826 xfs_trans_brelse(tp, ibp);
1829 * Point the bucket head pointer at the next inode.
1831 ASSERT(next_agino != 0);
1832 ASSERT(next_agino != agino);
1833 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1834 offset = offsetof(xfs_agi_t, agi_unlinked) +
1835 (sizeof(xfs_agino_t) * bucket_index);
1836 xfs_trans_log_buf(tp, agibp, offset,
1837 (offset + sizeof(xfs_agino_t) - 1));
1838 } else {
1840 * We need to search the list for the inode being freed.
1842 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1843 last_ibp = NULL;
1844 while (next_agino != agino) {
1846 * If the last inode wasn't the one pointing to
1847 * us, then release its buffer since we're not
1848 * going to do anything with it.
1850 if (last_ibp != NULL) {
1851 xfs_trans_brelse(tp, last_ibp);
1853 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1854 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1855 &last_ibp, &last_offset, 0);
1856 if (error) {
1857 xfs_warn(mp,
1858 "%s: xfs_inotobp() returned error %d.",
1859 __func__, error);
1860 return error;
1862 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1863 ASSERT(next_agino != NULLAGINO);
1864 ASSERT(next_agino != 0);
1867 * Now last_ibp points to the buffer previous to us on
1868 * the unlinked list. Pull us from the list.
1870 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1871 if (error) {
1872 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1873 __func__, error);
1874 return error;
1876 next_agino = be32_to_cpu(dip->di_next_unlinked);
1877 ASSERT(next_agino != 0);
1878 ASSERT(next_agino != agino);
1879 if (next_agino != NULLAGINO) {
1880 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1881 offset = ip->i_imap.im_boffset +
1882 offsetof(xfs_dinode_t, di_next_unlinked);
1883 xfs_trans_inode_buf(tp, ibp);
1884 xfs_trans_log_buf(tp, ibp, offset,
1885 (offset + sizeof(xfs_agino_t) - 1));
1886 xfs_inobp_check(mp, ibp);
1887 } else {
1888 xfs_trans_brelse(tp, ibp);
1891 * Point the previous inode on the list to the next inode.
1893 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1894 ASSERT(next_agino != 0);
1895 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1896 xfs_trans_inode_buf(tp, last_ibp);
1897 xfs_trans_log_buf(tp, last_ibp, offset,
1898 (offset + sizeof(xfs_agino_t) - 1));
1899 xfs_inobp_check(mp, last_ibp);
1901 return 0;
1905 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1906 * inodes that are in memory - they all must be marked stale and attached to
1907 * the cluster buffer.
1909 STATIC void
1910 xfs_ifree_cluster(
1911 xfs_inode_t *free_ip,
1912 xfs_trans_t *tp,
1913 xfs_ino_t inum)
1915 xfs_mount_t *mp = free_ip->i_mount;
1916 int blks_per_cluster;
1917 int nbufs;
1918 int ninodes;
1919 int i, j;
1920 xfs_daddr_t blkno;
1921 xfs_buf_t *bp;
1922 xfs_inode_t *ip;
1923 xfs_inode_log_item_t *iip;
1924 xfs_log_item_t *lip;
1925 struct xfs_perag *pag;
1927 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1928 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1929 blks_per_cluster = 1;
1930 ninodes = mp->m_sb.sb_inopblock;
1931 nbufs = XFS_IALLOC_BLOCKS(mp);
1932 } else {
1933 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1934 mp->m_sb.sb_blocksize;
1935 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1936 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1939 for (j = 0; j < nbufs; j++, inum += ninodes) {
1940 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1941 XFS_INO_TO_AGBNO(mp, inum));
1944 * We obtain and lock the backing buffer first in the process
1945 * here, as we have to ensure that any dirty inode that we
1946 * can't get the flush lock on is attached to the buffer.
1947 * If we scan the in-memory inodes first, then buffer IO can
1948 * complete before we get a lock on it, and hence we may fail
1949 * to mark all the active inodes on the buffer stale.
1951 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1952 mp->m_bsize * blks_per_cluster,
1953 XBF_LOCK);
1956 * Walk the inodes already attached to the buffer and mark them
1957 * stale. These will all have the flush locks held, so an
1958 * in-memory inode walk can't lock them. By marking them all
1959 * stale first, we will not attempt to lock them in the loop
1960 * below as the XFS_ISTALE flag will be set.
1962 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1963 while (lip) {
1964 if (lip->li_type == XFS_LI_INODE) {
1965 iip = (xfs_inode_log_item_t *)lip;
1966 ASSERT(iip->ili_logged == 1);
1967 lip->li_cb = xfs_istale_done;
1968 xfs_trans_ail_copy_lsn(mp->m_ail,
1969 &iip->ili_flush_lsn,
1970 &iip->ili_item.li_lsn);
1971 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1973 lip = lip->li_bio_list;
1978 * For each inode in memory attempt to add it to the inode
1979 * buffer and set it up for being staled on buffer IO
1980 * completion. This is safe as we've locked out tail pushing
1981 * and flushing by locking the buffer.
1983 * We have already marked every inode that was part of a
1984 * transaction stale above, which means there is no point in
1985 * even trying to lock them.
1987 for (i = 0; i < ninodes; i++) {
1988 retry:
1989 rcu_read_lock();
1990 ip = radix_tree_lookup(&pag->pag_ici_root,
1991 XFS_INO_TO_AGINO(mp, (inum + i)));
1993 /* Inode not in memory, nothing to do */
1994 if (!ip) {
1995 rcu_read_unlock();
1996 continue;
2000 * because this is an RCU protected lookup, we could
2001 * find a recently freed or even reallocated inode
2002 * during the lookup. We need to check under the
2003 * i_flags_lock for a valid inode here. Skip it if it
2004 * is not valid, the wrong inode or stale.
2006 spin_lock(&ip->i_flags_lock);
2007 if (ip->i_ino != inum + i ||
2008 __xfs_iflags_test(ip, XFS_ISTALE)) {
2009 spin_unlock(&ip->i_flags_lock);
2010 rcu_read_unlock();
2011 continue;
2013 spin_unlock(&ip->i_flags_lock);
2016 * Don't try to lock/unlock the current inode, but we
2017 * _cannot_ skip the other inodes that we did not find
2018 * in the list attached to the buffer and are not
2019 * already marked stale. If we can't lock it, back off
2020 * and retry.
2022 if (ip != free_ip &&
2023 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2024 rcu_read_unlock();
2025 delay(1);
2026 goto retry;
2028 rcu_read_unlock();
2030 xfs_iflock(ip);
2031 xfs_iflags_set(ip, XFS_ISTALE);
2034 * we don't need to attach clean inodes or those only
2035 * with unlogged changes (which we throw away, anyway).
2037 iip = ip->i_itemp;
2038 if (!iip || xfs_inode_clean(ip)) {
2039 ASSERT(ip != free_ip);
2040 ip->i_update_core = 0;
2041 xfs_ifunlock(ip);
2042 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2043 continue;
2046 iip->ili_last_fields = iip->ili_format.ilf_fields;
2047 iip->ili_format.ilf_fields = 0;
2048 iip->ili_logged = 1;
2049 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2050 &iip->ili_item.li_lsn);
2052 xfs_buf_attach_iodone(bp, xfs_istale_done,
2053 &iip->ili_item);
2055 if (ip != free_ip)
2056 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2059 xfs_trans_stale_inode_buf(tp, bp);
2060 xfs_trans_binval(tp, bp);
2063 xfs_perag_put(pag);
2067 * This is called to return an inode to the inode free list.
2068 * The inode should already be truncated to 0 length and have
2069 * no pages associated with it. This routine also assumes that
2070 * the inode is already a part of the transaction.
2072 * The on-disk copy of the inode will have been added to the list
2073 * of unlinked inodes in the AGI. We need to remove the inode from
2074 * that list atomically with respect to freeing it here.
2077 xfs_ifree(
2078 xfs_trans_t *tp,
2079 xfs_inode_t *ip,
2080 xfs_bmap_free_t *flist)
2082 int error;
2083 int delete;
2084 xfs_ino_t first_ino;
2085 xfs_dinode_t *dip;
2086 xfs_buf_t *ibp;
2088 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2089 ASSERT(ip->i_transp == tp);
2090 ASSERT(ip->i_d.di_nlink == 0);
2091 ASSERT(ip->i_d.di_nextents == 0);
2092 ASSERT(ip->i_d.di_anextents == 0);
2093 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2094 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2095 ASSERT(ip->i_d.di_nblocks == 0);
2098 * Pull the on-disk inode from the AGI unlinked list.
2100 error = xfs_iunlink_remove(tp, ip);
2101 if (error != 0) {
2102 return error;
2105 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2106 if (error != 0) {
2107 return error;
2109 ip->i_d.di_mode = 0; /* mark incore inode as free */
2110 ip->i_d.di_flags = 0;
2111 ip->i_d.di_dmevmask = 0;
2112 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2113 ip->i_df.if_ext_max =
2114 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2115 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2116 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2118 * Bump the generation count so no one will be confused
2119 * by reincarnations of this inode.
2121 ip->i_d.di_gen++;
2123 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2125 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2126 if (error)
2127 return error;
2130 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2131 * from picking up this inode when it is reclaimed (its incore state
2132 * initialzed but not flushed to disk yet). The in-core di_mode is
2133 * already cleared and a corresponding transaction logged.
2134 * The hack here just synchronizes the in-core to on-disk
2135 * di_mode value in advance before the actual inode sync to disk.
2136 * This is OK because the inode is already unlinked and would never
2137 * change its di_mode again for this inode generation.
2138 * This is a temporary hack that would require a proper fix
2139 * in the future.
2141 dip->di_mode = 0;
2143 if (delete) {
2144 xfs_ifree_cluster(ip, tp, first_ino);
2147 return 0;
2151 * Reallocate the space for if_broot based on the number of records
2152 * being added or deleted as indicated in rec_diff. Move the records
2153 * and pointers in if_broot to fit the new size. When shrinking this
2154 * will eliminate holes between the records and pointers created by
2155 * the caller. When growing this will create holes to be filled in
2156 * by the caller.
2158 * The caller must not request to add more records than would fit in
2159 * the on-disk inode root. If the if_broot is currently NULL, then
2160 * if we adding records one will be allocated. The caller must also
2161 * not request that the number of records go below zero, although
2162 * it can go to zero.
2164 * ip -- the inode whose if_broot area is changing
2165 * ext_diff -- the change in the number of records, positive or negative,
2166 * requested for the if_broot array.
2168 void
2169 xfs_iroot_realloc(
2170 xfs_inode_t *ip,
2171 int rec_diff,
2172 int whichfork)
2174 struct xfs_mount *mp = ip->i_mount;
2175 int cur_max;
2176 xfs_ifork_t *ifp;
2177 struct xfs_btree_block *new_broot;
2178 int new_max;
2179 size_t new_size;
2180 char *np;
2181 char *op;
2184 * Handle the degenerate case quietly.
2186 if (rec_diff == 0) {
2187 return;
2190 ifp = XFS_IFORK_PTR(ip, whichfork);
2191 if (rec_diff > 0) {
2193 * If there wasn't any memory allocated before, just
2194 * allocate it now and get out.
2196 if (ifp->if_broot_bytes == 0) {
2197 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2198 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2199 ifp->if_broot_bytes = (int)new_size;
2200 return;
2204 * If there is already an existing if_broot, then we need
2205 * to realloc() it and shift the pointers to their new
2206 * location. The records don't change location because
2207 * they are kept butted up against the btree block header.
2209 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2210 new_max = cur_max + rec_diff;
2211 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2212 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2213 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2214 KM_SLEEP | KM_NOFS);
2215 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2216 ifp->if_broot_bytes);
2217 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2218 (int)new_size);
2219 ifp->if_broot_bytes = (int)new_size;
2220 ASSERT(ifp->if_broot_bytes <=
2221 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2222 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2223 return;
2227 * rec_diff is less than 0. In this case, we are shrinking the
2228 * if_broot buffer. It must already exist. If we go to zero
2229 * records, just get rid of the root and clear the status bit.
2231 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2232 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2233 new_max = cur_max + rec_diff;
2234 ASSERT(new_max >= 0);
2235 if (new_max > 0)
2236 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2237 else
2238 new_size = 0;
2239 if (new_size > 0) {
2240 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2242 * First copy over the btree block header.
2244 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2245 } else {
2246 new_broot = NULL;
2247 ifp->if_flags &= ~XFS_IFBROOT;
2251 * Only copy the records and pointers if there are any.
2253 if (new_max > 0) {
2255 * First copy the records.
2257 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2258 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2259 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2262 * Then copy the pointers.
2264 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2265 ifp->if_broot_bytes);
2266 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2267 (int)new_size);
2268 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2270 kmem_free(ifp->if_broot);
2271 ifp->if_broot = new_broot;
2272 ifp->if_broot_bytes = (int)new_size;
2273 ASSERT(ifp->if_broot_bytes <=
2274 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2275 return;
2280 * This is called when the amount of space needed for if_data
2281 * is increased or decreased. The change in size is indicated by
2282 * the number of bytes that need to be added or deleted in the
2283 * byte_diff parameter.
2285 * If the amount of space needed has decreased below the size of the
2286 * inline buffer, then switch to using the inline buffer. Otherwise,
2287 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2288 * to what is needed.
2290 * ip -- the inode whose if_data area is changing
2291 * byte_diff -- the change in the number of bytes, positive or negative,
2292 * requested for the if_data array.
2294 void
2295 xfs_idata_realloc(
2296 xfs_inode_t *ip,
2297 int byte_diff,
2298 int whichfork)
2300 xfs_ifork_t *ifp;
2301 int new_size;
2302 int real_size;
2304 if (byte_diff == 0) {
2305 return;
2308 ifp = XFS_IFORK_PTR(ip, whichfork);
2309 new_size = (int)ifp->if_bytes + byte_diff;
2310 ASSERT(new_size >= 0);
2312 if (new_size == 0) {
2313 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2314 kmem_free(ifp->if_u1.if_data);
2316 ifp->if_u1.if_data = NULL;
2317 real_size = 0;
2318 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2320 * If the valid extents/data can fit in if_inline_ext/data,
2321 * copy them from the malloc'd vector and free it.
2323 if (ifp->if_u1.if_data == NULL) {
2324 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2325 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2326 ASSERT(ifp->if_real_bytes != 0);
2327 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2328 new_size);
2329 kmem_free(ifp->if_u1.if_data);
2330 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2332 real_size = 0;
2333 } else {
2335 * Stuck with malloc/realloc.
2336 * For inline data, the underlying buffer must be
2337 * a multiple of 4 bytes in size so that it can be
2338 * logged and stay on word boundaries. We enforce
2339 * that here.
2341 real_size = roundup(new_size, 4);
2342 if (ifp->if_u1.if_data == NULL) {
2343 ASSERT(ifp->if_real_bytes == 0);
2344 ifp->if_u1.if_data = kmem_alloc(real_size,
2345 KM_SLEEP | KM_NOFS);
2346 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2348 * Only do the realloc if the underlying size
2349 * is really changing.
2351 if (ifp->if_real_bytes != real_size) {
2352 ifp->if_u1.if_data =
2353 kmem_realloc(ifp->if_u1.if_data,
2354 real_size,
2355 ifp->if_real_bytes,
2356 KM_SLEEP | KM_NOFS);
2358 } else {
2359 ASSERT(ifp->if_real_bytes == 0);
2360 ifp->if_u1.if_data = kmem_alloc(real_size,
2361 KM_SLEEP | KM_NOFS);
2362 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2363 ifp->if_bytes);
2366 ifp->if_real_bytes = real_size;
2367 ifp->if_bytes = new_size;
2368 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2371 void
2372 xfs_idestroy_fork(
2373 xfs_inode_t *ip,
2374 int whichfork)
2376 xfs_ifork_t *ifp;
2378 ifp = XFS_IFORK_PTR(ip, whichfork);
2379 if (ifp->if_broot != NULL) {
2380 kmem_free(ifp->if_broot);
2381 ifp->if_broot = NULL;
2385 * If the format is local, then we can't have an extents
2386 * array so just look for an inline data array. If we're
2387 * not local then we may or may not have an extents list,
2388 * so check and free it up if we do.
2390 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2391 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2392 (ifp->if_u1.if_data != NULL)) {
2393 ASSERT(ifp->if_real_bytes != 0);
2394 kmem_free(ifp->if_u1.if_data);
2395 ifp->if_u1.if_data = NULL;
2396 ifp->if_real_bytes = 0;
2398 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2399 ((ifp->if_flags & XFS_IFEXTIREC) ||
2400 ((ifp->if_u1.if_extents != NULL) &&
2401 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2402 ASSERT(ifp->if_real_bytes != 0);
2403 xfs_iext_destroy(ifp);
2405 ASSERT(ifp->if_u1.if_extents == NULL ||
2406 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2407 ASSERT(ifp->if_real_bytes == 0);
2408 if (whichfork == XFS_ATTR_FORK) {
2409 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2410 ip->i_afp = NULL;
2415 * This is called to unpin an inode. The caller must have the inode locked
2416 * in at least shared mode so that the buffer cannot be subsequently pinned
2417 * once someone is waiting for it to be unpinned.
2419 static void
2420 xfs_iunpin_nowait(
2421 struct xfs_inode *ip)
2423 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2425 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2427 /* Give the log a push to start the unpinning I/O */
2428 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2432 void
2433 xfs_iunpin_wait(
2434 struct xfs_inode *ip)
2436 if (xfs_ipincount(ip)) {
2437 xfs_iunpin_nowait(ip);
2438 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2443 * xfs_iextents_copy()
2445 * This is called to copy the REAL extents (as opposed to the delayed
2446 * allocation extents) from the inode into the given buffer. It
2447 * returns the number of bytes copied into the buffer.
2449 * If there are no delayed allocation extents, then we can just
2450 * memcpy() the extents into the buffer. Otherwise, we need to
2451 * examine each extent in turn and skip those which are delayed.
2454 xfs_iextents_copy(
2455 xfs_inode_t *ip,
2456 xfs_bmbt_rec_t *dp,
2457 int whichfork)
2459 int copied;
2460 int i;
2461 xfs_ifork_t *ifp;
2462 int nrecs;
2463 xfs_fsblock_t start_block;
2465 ifp = XFS_IFORK_PTR(ip, whichfork);
2466 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2467 ASSERT(ifp->if_bytes > 0);
2469 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2470 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2471 ASSERT(nrecs > 0);
2474 * There are some delayed allocation extents in the
2475 * inode, so copy the extents one at a time and skip
2476 * the delayed ones. There must be at least one
2477 * non-delayed extent.
2479 copied = 0;
2480 for (i = 0; i < nrecs; i++) {
2481 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2482 start_block = xfs_bmbt_get_startblock(ep);
2483 if (isnullstartblock(start_block)) {
2485 * It's a delayed allocation extent, so skip it.
2487 continue;
2490 /* Translate to on disk format */
2491 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2492 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2493 dp++;
2494 copied++;
2496 ASSERT(copied != 0);
2497 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2499 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2503 * Each of the following cases stores data into the same region
2504 * of the on-disk inode, so only one of them can be valid at
2505 * any given time. While it is possible to have conflicting formats
2506 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2507 * in EXTENTS format, this can only happen when the fork has
2508 * changed formats after being modified but before being flushed.
2509 * In these cases, the format always takes precedence, because the
2510 * format indicates the current state of the fork.
2512 /*ARGSUSED*/
2513 STATIC void
2514 xfs_iflush_fork(
2515 xfs_inode_t *ip,
2516 xfs_dinode_t *dip,
2517 xfs_inode_log_item_t *iip,
2518 int whichfork,
2519 xfs_buf_t *bp)
2521 char *cp;
2522 xfs_ifork_t *ifp;
2523 xfs_mount_t *mp;
2524 #ifdef XFS_TRANS_DEBUG
2525 int first;
2526 #endif
2527 static const short brootflag[2] =
2528 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2529 static const short dataflag[2] =
2530 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2531 static const short extflag[2] =
2532 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2534 if (!iip)
2535 return;
2536 ifp = XFS_IFORK_PTR(ip, whichfork);
2538 * This can happen if we gave up in iformat in an error path,
2539 * for the attribute fork.
2541 if (!ifp) {
2542 ASSERT(whichfork == XFS_ATTR_FORK);
2543 return;
2545 cp = XFS_DFORK_PTR(dip, whichfork);
2546 mp = ip->i_mount;
2547 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2548 case XFS_DINODE_FMT_LOCAL:
2549 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2550 (ifp->if_bytes > 0)) {
2551 ASSERT(ifp->if_u1.if_data != NULL);
2552 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2553 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2555 break;
2557 case XFS_DINODE_FMT_EXTENTS:
2558 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2559 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2560 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2561 (ifp->if_bytes > 0)) {
2562 ASSERT(xfs_iext_get_ext(ifp, 0));
2563 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2564 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2565 whichfork);
2567 break;
2569 case XFS_DINODE_FMT_BTREE:
2570 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2571 (ifp->if_broot_bytes > 0)) {
2572 ASSERT(ifp->if_broot != NULL);
2573 ASSERT(ifp->if_broot_bytes <=
2574 (XFS_IFORK_SIZE(ip, whichfork) +
2575 XFS_BROOT_SIZE_ADJ));
2576 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2577 (xfs_bmdr_block_t *)cp,
2578 XFS_DFORK_SIZE(dip, mp, whichfork));
2580 break;
2582 case XFS_DINODE_FMT_DEV:
2583 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2584 ASSERT(whichfork == XFS_DATA_FORK);
2585 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2587 break;
2589 case XFS_DINODE_FMT_UUID:
2590 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2591 ASSERT(whichfork == XFS_DATA_FORK);
2592 memcpy(XFS_DFORK_DPTR(dip),
2593 &ip->i_df.if_u2.if_uuid,
2594 sizeof(uuid_t));
2596 break;
2598 default:
2599 ASSERT(0);
2600 break;
2604 STATIC int
2605 xfs_iflush_cluster(
2606 xfs_inode_t *ip,
2607 xfs_buf_t *bp)
2609 xfs_mount_t *mp = ip->i_mount;
2610 struct xfs_perag *pag;
2611 unsigned long first_index, mask;
2612 unsigned long inodes_per_cluster;
2613 int ilist_size;
2614 xfs_inode_t **ilist;
2615 xfs_inode_t *iq;
2616 int nr_found;
2617 int clcount = 0;
2618 int bufwasdelwri;
2619 int i;
2621 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2623 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2624 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2625 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2626 if (!ilist)
2627 goto out_put;
2629 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2630 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2631 rcu_read_lock();
2632 /* really need a gang lookup range call here */
2633 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2634 first_index, inodes_per_cluster);
2635 if (nr_found == 0)
2636 goto out_free;
2638 for (i = 0; i < nr_found; i++) {
2639 iq = ilist[i];
2640 if (iq == ip)
2641 continue;
2644 * because this is an RCU protected lookup, we could find a
2645 * recently freed or even reallocated inode during the lookup.
2646 * We need to check under the i_flags_lock for a valid inode
2647 * here. Skip it if it is not valid or the wrong inode.
2649 spin_lock(&ip->i_flags_lock);
2650 if (!ip->i_ino ||
2651 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2652 spin_unlock(&ip->i_flags_lock);
2653 continue;
2655 spin_unlock(&ip->i_flags_lock);
2658 * Do an un-protected check to see if the inode is dirty and
2659 * is a candidate for flushing. These checks will be repeated
2660 * later after the appropriate locks are acquired.
2662 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2663 continue;
2666 * Try to get locks. If any are unavailable or it is pinned,
2667 * then this inode cannot be flushed and is skipped.
2670 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2671 continue;
2672 if (!xfs_iflock_nowait(iq)) {
2673 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2674 continue;
2676 if (xfs_ipincount(iq)) {
2677 xfs_ifunlock(iq);
2678 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2679 continue;
2683 * arriving here means that this inode can be flushed. First
2684 * re-check that it's dirty before flushing.
2686 if (!xfs_inode_clean(iq)) {
2687 int error;
2688 error = xfs_iflush_int(iq, bp);
2689 if (error) {
2690 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2691 goto cluster_corrupt_out;
2693 clcount++;
2694 } else {
2695 xfs_ifunlock(iq);
2697 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2700 if (clcount) {
2701 XFS_STATS_INC(xs_icluster_flushcnt);
2702 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2705 out_free:
2706 rcu_read_unlock();
2707 kmem_free(ilist);
2708 out_put:
2709 xfs_perag_put(pag);
2710 return 0;
2713 cluster_corrupt_out:
2715 * Corruption detected in the clustering loop. Invalidate the
2716 * inode buffer and shut down the filesystem.
2718 rcu_read_unlock();
2720 * Clean up the buffer. If it was B_DELWRI, just release it --
2721 * brelse can handle it with no problems. If not, shut down the
2722 * filesystem before releasing the buffer.
2724 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2725 if (bufwasdelwri)
2726 xfs_buf_relse(bp);
2728 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2730 if (!bufwasdelwri) {
2732 * Just like incore_relse: if we have b_iodone functions,
2733 * mark the buffer as an error and call them. Otherwise
2734 * mark it as stale and brelse.
2736 if (XFS_BUF_IODONE_FUNC(bp)) {
2737 XFS_BUF_UNDONE(bp);
2738 XFS_BUF_STALE(bp);
2739 XFS_BUF_ERROR(bp,EIO);
2740 xfs_buf_ioend(bp, 0);
2741 } else {
2742 XFS_BUF_STALE(bp);
2743 xfs_buf_relse(bp);
2748 * Unlocks the flush lock
2750 xfs_iflush_abort(iq);
2751 kmem_free(ilist);
2752 xfs_perag_put(pag);
2753 return XFS_ERROR(EFSCORRUPTED);
2757 * xfs_iflush() will write a modified inode's changes out to the
2758 * inode's on disk home. The caller must have the inode lock held
2759 * in at least shared mode and the inode flush completion must be
2760 * active as well. The inode lock will still be held upon return from
2761 * the call and the caller is free to unlock it.
2762 * The inode flush will be completed when the inode reaches the disk.
2763 * The flags indicate how the inode's buffer should be written out.
2766 xfs_iflush(
2767 xfs_inode_t *ip,
2768 uint flags)
2770 xfs_inode_log_item_t *iip;
2771 xfs_buf_t *bp;
2772 xfs_dinode_t *dip;
2773 xfs_mount_t *mp;
2774 int error;
2776 XFS_STATS_INC(xs_iflush_count);
2778 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2779 ASSERT(!completion_done(&ip->i_flush));
2780 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2781 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2783 iip = ip->i_itemp;
2784 mp = ip->i_mount;
2787 * We can't flush the inode until it is unpinned, so wait for it if we
2788 * are allowed to block. We know no one new can pin it, because we are
2789 * holding the inode lock shared and you need to hold it exclusively to
2790 * pin the inode.
2792 * If we are not allowed to block, force the log out asynchronously so
2793 * that when we come back the inode will be unpinned. If other inodes
2794 * in the same cluster are dirty, they will probably write the inode
2795 * out for us if they occur after the log force completes.
2797 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2798 xfs_iunpin_nowait(ip);
2799 xfs_ifunlock(ip);
2800 return EAGAIN;
2802 xfs_iunpin_wait(ip);
2805 * For stale inodes we cannot rely on the backing buffer remaining
2806 * stale in cache for the remaining life of the stale inode and so
2807 * xfs_itobp() below may give us a buffer that no longer contains
2808 * inodes below. We have to check this after ensuring the inode is
2809 * unpinned so that it is safe to reclaim the stale inode after the
2810 * flush call.
2812 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2813 xfs_ifunlock(ip);
2814 return 0;
2818 * This may have been unpinned because the filesystem is shutting
2819 * down forcibly. If that's the case we must not write this inode
2820 * to disk, because the log record didn't make it to disk!
2822 if (XFS_FORCED_SHUTDOWN(mp)) {
2823 ip->i_update_core = 0;
2824 if (iip)
2825 iip->ili_format.ilf_fields = 0;
2826 xfs_ifunlock(ip);
2827 return XFS_ERROR(EIO);
2831 * Get the buffer containing the on-disk inode.
2833 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2834 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2835 if (error || !bp) {
2836 xfs_ifunlock(ip);
2837 return error;
2841 * First flush out the inode that xfs_iflush was called with.
2843 error = xfs_iflush_int(ip, bp);
2844 if (error)
2845 goto corrupt_out;
2848 * If the buffer is pinned then push on the log now so we won't
2849 * get stuck waiting in the write for too long.
2851 if (XFS_BUF_ISPINNED(bp))
2852 xfs_log_force(mp, 0);
2855 * inode clustering:
2856 * see if other inodes can be gathered into this write
2858 error = xfs_iflush_cluster(ip, bp);
2859 if (error)
2860 goto cluster_corrupt_out;
2862 if (flags & SYNC_WAIT)
2863 error = xfs_bwrite(mp, bp);
2864 else
2865 xfs_bdwrite(mp, bp);
2866 return error;
2868 corrupt_out:
2869 xfs_buf_relse(bp);
2870 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2871 cluster_corrupt_out:
2873 * Unlocks the flush lock
2875 xfs_iflush_abort(ip);
2876 return XFS_ERROR(EFSCORRUPTED);
2880 STATIC int
2881 xfs_iflush_int(
2882 xfs_inode_t *ip,
2883 xfs_buf_t *bp)
2885 xfs_inode_log_item_t *iip;
2886 xfs_dinode_t *dip;
2887 xfs_mount_t *mp;
2888 #ifdef XFS_TRANS_DEBUG
2889 int first;
2890 #endif
2892 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2893 ASSERT(!completion_done(&ip->i_flush));
2894 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2895 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2897 iip = ip->i_itemp;
2898 mp = ip->i_mount;
2900 /* set *dip = inode's place in the buffer */
2901 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2904 * Clear i_update_core before copying out the data.
2905 * This is for coordination with our timestamp updates
2906 * that don't hold the inode lock. They will always
2907 * update the timestamps BEFORE setting i_update_core,
2908 * so if we clear i_update_core after they set it we
2909 * are guaranteed to see their updates to the timestamps.
2910 * I believe that this depends on strongly ordered memory
2911 * semantics, but we have that. We use the SYNCHRONIZE
2912 * macro to make sure that the compiler does not reorder
2913 * the i_update_core access below the data copy below.
2915 ip->i_update_core = 0;
2916 SYNCHRONIZE();
2919 * Make sure to get the latest timestamps from the Linux inode.
2921 xfs_synchronize_times(ip);
2923 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2924 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2925 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2926 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2927 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2928 goto corrupt_out;
2930 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2931 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2932 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2933 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2934 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2935 goto corrupt_out;
2937 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2938 if (XFS_TEST_ERROR(
2939 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2940 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2941 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2942 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2943 "%s: Bad regular inode %Lu, ptr 0x%p",
2944 __func__, ip->i_ino, ip);
2945 goto corrupt_out;
2947 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2948 if (XFS_TEST_ERROR(
2949 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2950 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2951 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2952 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2953 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2954 "%s: Bad directory inode %Lu, ptr 0x%p",
2955 __func__, ip->i_ino, ip);
2956 goto corrupt_out;
2959 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2960 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2961 XFS_RANDOM_IFLUSH_5)) {
2962 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2963 "%s: detected corrupt incore inode %Lu, "
2964 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2965 __func__, ip->i_ino,
2966 ip->i_d.di_nextents + ip->i_d.di_anextents,
2967 ip->i_d.di_nblocks, ip);
2968 goto corrupt_out;
2970 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2971 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2972 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2973 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2974 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2975 goto corrupt_out;
2978 * bump the flush iteration count, used to detect flushes which
2979 * postdate a log record during recovery.
2982 ip->i_d.di_flushiter++;
2985 * Copy the dirty parts of the inode into the on-disk
2986 * inode. We always copy out the core of the inode,
2987 * because if the inode is dirty at all the core must
2988 * be.
2990 xfs_dinode_to_disk(dip, &ip->i_d);
2992 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2993 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2994 ip->i_d.di_flushiter = 0;
2997 * If this is really an old format inode and the superblock version
2998 * has not been updated to support only new format inodes, then
2999 * convert back to the old inode format. If the superblock version
3000 * has been updated, then make the conversion permanent.
3002 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3003 if (ip->i_d.di_version == 1) {
3004 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3006 * Convert it back.
3008 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3009 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3010 } else {
3012 * The superblock version has already been bumped,
3013 * so just make the conversion to the new inode
3014 * format permanent.
3016 ip->i_d.di_version = 2;
3017 dip->di_version = 2;
3018 ip->i_d.di_onlink = 0;
3019 dip->di_onlink = 0;
3020 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3021 memset(&(dip->di_pad[0]), 0,
3022 sizeof(dip->di_pad));
3023 ASSERT(xfs_get_projid(ip) == 0);
3027 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3028 if (XFS_IFORK_Q(ip))
3029 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3030 xfs_inobp_check(mp, bp);
3033 * We've recorded everything logged in the inode, so we'd
3034 * like to clear the ilf_fields bits so we don't log and
3035 * flush things unnecessarily. However, we can't stop
3036 * logging all this information until the data we've copied
3037 * into the disk buffer is written to disk. If we did we might
3038 * overwrite the copy of the inode in the log with all the
3039 * data after re-logging only part of it, and in the face of
3040 * a crash we wouldn't have all the data we need to recover.
3042 * What we do is move the bits to the ili_last_fields field.
3043 * When logging the inode, these bits are moved back to the
3044 * ilf_fields field. In the xfs_iflush_done() routine we
3045 * clear ili_last_fields, since we know that the information
3046 * those bits represent is permanently on disk. As long as
3047 * the flush completes before the inode is logged again, then
3048 * both ilf_fields and ili_last_fields will be cleared.
3050 * We can play with the ilf_fields bits here, because the inode
3051 * lock must be held exclusively in order to set bits there
3052 * and the flush lock protects the ili_last_fields bits.
3053 * Set ili_logged so the flush done
3054 * routine can tell whether or not to look in the AIL.
3055 * Also, store the current LSN of the inode so that we can tell
3056 * whether the item has moved in the AIL from xfs_iflush_done().
3057 * In order to read the lsn we need the AIL lock, because
3058 * it is a 64 bit value that cannot be read atomically.
3060 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3061 iip->ili_last_fields = iip->ili_format.ilf_fields;
3062 iip->ili_format.ilf_fields = 0;
3063 iip->ili_logged = 1;
3065 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3066 &iip->ili_item.li_lsn);
3069 * Attach the function xfs_iflush_done to the inode's
3070 * buffer. This will remove the inode from the AIL
3071 * and unlock the inode's flush lock when the inode is
3072 * completely written to disk.
3074 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3076 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3077 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3078 } else {
3080 * We're flushing an inode which is not in the AIL and has
3081 * not been logged but has i_update_core set. For this
3082 * case we can use a B_DELWRI flush and immediately drop
3083 * the inode flush lock because we can avoid the whole
3084 * AIL state thing. It's OK to drop the flush lock now,
3085 * because we've already locked the buffer and to do anything
3086 * you really need both.
3088 if (iip != NULL) {
3089 ASSERT(iip->ili_logged == 0);
3090 ASSERT(iip->ili_last_fields == 0);
3091 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3093 xfs_ifunlock(ip);
3096 return 0;
3098 corrupt_out:
3099 return XFS_ERROR(EFSCORRUPTED);
3103 * Return a pointer to the extent record at file index idx.
3105 xfs_bmbt_rec_host_t *
3106 xfs_iext_get_ext(
3107 xfs_ifork_t *ifp, /* inode fork pointer */
3108 xfs_extnum_t idx) /* index of target extent */
3110 ASSERT(idx >= 0);
3111 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3113 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3114 return ifp->if_u1.if_ext_irec->er_extbuf;
3115 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3116 xfs_ext_irec_t *erp; /* irec pointer */
3117 int erp_idx = 0; /* irec index */
3118 xfs_extnum_t page_idx = idx; /* ext index in target list */
3120 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3121 return &erp->er_extbuf[page_idx];
3122 } else if (ifp->if_bytes) {
3123 return &ifp->if_u1.if_extents[idx];
3124 } else {
3125 return NULL;
3130 * Insert new item(s) into the extent records for incore inode
3131 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3133 void
3134 xfs_iext_insert(
3135 xfs_inode_t *ip, /* incore inode pointer */
3136 xfs_extnum_t idx, /* starting index of new items */
3137 xfs_extnum_t count, /* number of inserted items */
3138 xfs_bmbt_irec_t *new, /* items to insert */
3139 int state) /* type of extent conversion */
3141 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3142 xfs_extnum_t i; /* extent record index */
3144 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3146 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3147 xfs_iext_add(ifp, idx, count);
3148 for (i = idx; i < idx + count; i++, new++)
3149 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3153 * This is called when the amount of space required for incore file
3154 * extents needs to be increased. The ext_diff parameter stores the
3155 * number of new extents being added and the idx parameter contains
3156 * the extent index where the new extents will be added. If the new
3157 * extents are being appended, then we just need to (re)allocate and
3158 * initialize the space. Otherwise, if the new extents are being
3159 * inserted into the middle of the existing entries, a bit more work
3160 * is required to make room for the new extents to be inserted. The
3161 * caller is responsible for filling in the new extent entries upon
3162 * return.
3164 void
3165 xfs_iext_add(
3166 xfs_ifork_t *ifp, /* inode fork pointer */
3167 xfs_extnum_t idx, /* index to begin adding exts */
3168 int ext_diff) /* number of extents to add */
3170 int byte_diff; /* new bytes being added */
3171 int new_size; /* size of extents after adding */
3172 xfs_extnum_t nextents; /* number of extents in file */
3174 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3175 ASSERT((idx >= 0) && (idx <= nextents));
3176 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3177 new_size = ifp->if_bytes + byte_diff;
3179 * If the new number of extents (nextents + ext_diff)
3180 * fits inside the inode, then continue to use the inline
3181 * extent buffer.
3183 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3184 if (idx < nextents) {
3185 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3186 &ifp->if_u2.if_inline_ext[idx],
3187 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3188 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3190 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3191 ifp->if_real_bytes = 0;
3194 * Otherwise use a linear (direct) extent list.
3195 * If the extents are currently inside the inode,
3196 * xfs_iext_realloc_direct will switch us from
3197 * inline to direct extent allocation mode.
3199 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3200 xfs_iext_realloc_direct(ifp, new_size);
3201 if (idx < nextents) {
3202 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3203 &ifp->if_u1.if_extents[idx],
3204 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3205 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3208 /* Indirection array */
3209 else {
3210 xfs_ext_irec_t *erp;
3211 int erp_idx = 0;
3212 int page_idx = idx;
3214 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3215 if (ifp->if_flags & XFS_IFEXTIREC) {
3216 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3217 } else {
3218 xfs_iext_irec_init(ifp);
3219 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3220 erp = ifp->if_u1.if_ext_irec;
3222 /* Extents fit in target extent page */
3223 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3224 if (page_idx < erp->er_extcount) {
3225 memmove(&erp->er_extbuf[page_idx + ext_diff],
3226 &erp->er_extbuf[page_idx],
3227 (erp->er_extcount - page_idx) *
3228 sizeof(xfs_bmbt_rec_t));
3229 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3231 erp->er_extcount += ext_diff;
3232 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3234 /* Insert a new extent page */
3235 else if (erp) {
3236 xfs_iext_add_indirect_multi(ifp,
3237 erp_idx, page_idx, ext_diff);
3240 * If extent(s) are being appended to the last page in
3241 * the indirection array and the new extent(s) don't fit
3242 * in the page, then erp is NULL and erp_idx is set to
3243 * the next index needed in the indirection array.
3245 else {
3246 int count = ext_diff;
3248 while (count) {
3249 erp = xfs_iext_irec_new(ifp, erp_idx);
3250 erp->er_extcount = count;
3251 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3252 if (count) {
3253 erp_idx++;
3258 ifp->if_bytes = new_size;
3262 * This is called when incore extents are being added to the indirection
3263 * array and the new extents do not fit in the target extent list. The
3264 * erp_idx parameter contains the irec index for the target extent list
3265 * in the indirection array, and the idx parameter contains the extent
3266 * index within the list. The number of extents being added is stored
3267 * in the count parameter.
3269 * |-------| |-------|
3270 * | | | | idx - number of extents before idx
3271 * | idx | | count |
3272 * | | | | count - number of extents being inserted at idx
3273 * |-------| |-------|
3274 * | count | | nex2 | nex2 - number of extents after idx + count
3275 * |-------| |-------|
3277 void
3278 xfs_iext_add_indirect_multi(
3279 xfs_ifork_t *ifp, /* inode fork pointer */
3280 int erp_idx, /* target extent irec index */
3281 xfs_extnum_t idx, /* index within target list */
3282 int count) /* new extents being added */
3284 int byte_diff; /* new bytes being added */
3285 xfs_ext_irec_t *erp; /* pointer to irec entry */
3286 xfs_extnum_t ext_diff; /* number of extents to add */
3287 xfs_extnum_t ext_cnt; /* new extents still needed */
3288 xfs_extnum_t nex2; /* extents after idx + count */
3289 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3290 int nlists; /* number of irec's (lists) */
3292 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3293 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3294 nex2 = erp->er_extcount - idx;
3295 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3298 * Save second part of target extent list
3299 * (all extents past */
3300 if (nex2) {
3301 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3302 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3303 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3304 erp->er_extcount -= nex2;
3305 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3306 memset(&erp->er_extbuf[idx], 0, byte_diff);
3310 * Add the new extents to the end of the target
3311 * list, then allocate new irec record(s) and
3312 * extent buffer(s) as needed to store the rest
3313 * of the new extents.
3315 ext_cnt = count;
3316 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3317 if (ext_diff) {
3318 erp->er_extcount += ext_diff;
3319 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3320 ext_cnt -= ext_diff;
3322 while (ext_cnt) {
3323 erp_idx++;
3324 erp = xfs_iext_irec_new(ifp, erp_idx);
3325 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3326 erp->er_extcount = ext_diff;
3327 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3328 ext_cnt -= ext_diff;
3331 /* Add nex2 extents back to indirection array */
3332 if (nex2) {
3333 xfs_extnum_t ext_avail;
3334 int i;
3336 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3337 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3338 i = 0;
3340 * If nex2 extents fit in the current page, append
3341 * nex2_ep after the new extents.
3343 if (nex2 <= ext_avail) {
3344 i = erp->er_extcount;
3347 * Otherwise, check if space is available in the
3348 * next page.
3350 else if ((erp_idx < nlists - 1) &&
3351 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3352 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3353 erp_idx++;
3354 erp++;
3355 /* Create a hole for nex2 extents */
3356 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3357 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3360 * Final choice, create a new extent page for
3361 * nex2 extents.
3363 else {
3364 erp_idx++;
3365 erp = xfs_iext_irec_new(ifp, erp_idx);
3367 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3368 kmem_free(nex2_ep);
3369 erp->er_extcount += nex2;
3370 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3375 * This is called when the amount of space required for incore file
3376 * extents needs to be decreased. The ext_diff parameter stores the
3377 * number of extents to be removed and the idx parameter contains
3378 * the extent index where the extents will be removed from.
3380 * If the amount of space needed has decreased below the linear
3381 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3382 * extent array. Otherwise, use kmem_realloc() to adjust the
3383 * size to what is needed.
3385 void
3386 xfs_iext_remove(
3387 xfs_inode_t *ip, /* incore inode pointer */
3388 xfs_extnum_t idx, /* index to begin removing exts */
3389 int ext_diff, /* number of extents to remove */
3390 int state) /* type of extent conversion */
3392 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3393 xfs_extnum_t nextents; /* number of extents in file */
3394 int new_size; /* size of extents after removal */
3396 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3398 ASSERT(ext_diff > 0);
3399 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3400 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3402 if (new_size == 0) {
3403 xfs_iext_destroy(ifp);
3404 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3405 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3406 } else if (ifp->if_real_bytes) {
3407 xfs_iext_remove_direct(ifp, idx, ext_diff);
3408 } else {
3409 xfs_iext_remove_inline(ifp, idx, ext_diff);
3411 ifp->if_bytes = new_size;
3415 * This removes ext_diff extents from the inline buffer, beginning
3416 * at extent index idx.
3418 void
3419 xfs_iext_remove_inline(
3420 xfs_ifork_t *ifp, /* inode fork pointer */
3421 xfs_extnum_t idx, /* index to begin removing exts */
3422 int ext_diff) /* number of extents to remove */
3424 int nextents; /* number of extents in file */
3426 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3427 ASSERT(idx < XFS_INLINE_EXTS);
3428 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3429 ASSERT(((nextents - ext_diff) > 0) &&
3430 (nextents - ext_diff) < XFS_INLINE_EXTS);
3432 if (idx + ext_diff < nextents) {
3433 memmove(&ifp->if_u2.if_inline_ext[idx],
3434 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3435 (nextents - (idx + ext_diff)) *
3436 sizeof(xfs_bmbt_rec_t));
3437 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3438 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3439 } else {
3440 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3441 ext_diff * sizeof(xfs_bmbt_rec_t));
3446 * This removes ext_diff extents from a linear (direct) extent list,
3447 * beginning at extent index idx. If the extents are being removed
3448 * from the end of the list (ie. truncate) then we just need to re-
3449 * allocate the list to remove the extra space. Otherwise, if the
3450 * extents are being removed from the middle of the existing extent
3451 * entries, then we first need to move the extent records beginning
3452 * at idx + ext_diff up in the list to overwrite the records being
3453 * removed, then remove the extra space via kmem_realloc.
3455 void
3456 xfs_iext_remove_direct(
3457 xfs_ifork_t *ifp, /* inode fork pointer */
3458 xfs_extnum_t idx, /* index to begin removing exts */
3459 int ext_diff) /* number of extents to remove */
3461 xfs_extnum_t nextents; /* number of extents in file */
3462 int new_size; /* size of extents after removal */
3464 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3465 new_size = ifp->if_bytes -
3466 (ext_diff * sizeof(xfs_bmbt_rec_t));
3467 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3469 if (new_size == 0) {
3470 xfs_iext_destroy(ifp);
3471 return;
3473 /* Move extents up in the list (if needed) */
3474 if (idx + ext_diff < nextents) {
3475 memmove(&ifp->if_u1.if_extents[idx],
3476 &ifp->if_u1.if_extents[idx + ext_diff],
3477 (nextents - (idx + ext_diff)) *
3478 sizeof(xfs_bmbt_rec_t));
3480 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3481 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3483 * Reallocate the direct extent list. If the extents
3484 * will fit inside the inode then xfs_iext_realloc_direct
3485 * will switch from direct to inline extent allocation
3486 * mode for us.
3488 xfs_iext_realloc_direct(ifp, new_size);
3489 ifp->if_bytes = new_size;
3493 * This is called when incore extents are being removed from the
3494 * indirection array and the extents being removed span multiple extent
3495 * buffers. The idx parameter contains the file extent index where we
3496 * want to begin removing extents, and the count parameter contains
3497 * how many extents need to be removed.
3499 * |-------| |-------|
3500 * | nex1 | | | nex1 - number of extents before idx
3501 * |-------| | count |
3502 * | | | | count - number of extents being removed at idx
3503 * | count | |-------|
3504 * | | | nex2 | nex2 - number of extents after idx + count
3505 * |-------| |-------|
3507 void
3508 xfs_iext_remove_indirect(
3509 xfs_ifork_t *ifp, /* inode fork pointer */
3510 xfs_extnum_t idx, /* index to begin removing extents */
3511 int count) /* number of extents to remove */
3513 xfs_ext_irec_t *erp; /* indirection array pointer */
3514 int erp_idx = 0; /* indirection array index */
3515 xfs_extnum_t ext_cnt; /* extents left to remove */
3516 xfs_extnum_t ext_diff; /* extents to remove in current list */
3517 xfs_extnum_t nex1; /* number of extents before idx */
3518 xfs_extnum_t nex2; /* extents after idx + count */
3519 int page_idx = idx; /* index in target extent list */
3521 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3522 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3523 ASSERT(erp != NULL);
3524 nex1 = page_idx;
3525 ext_cnt = count;
3526 while (ext_cnt) {
3527 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3528 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3530 * Check for deletion of entire list;
3531 * xfs_iext_irec_remove() updates extent offsets.
3533 if (ext_diff == erp->er_extcount) {
3534 xfs_iext_irec_remove(ifp, erp_idx);
3535 ext_cnt -= ext_diff;
3536 nex1 = 0;
3537 if (ext_cnt) {
3538 ASSERT(erp_idx < ifp->if_real_bytes /
3539 XFS_IEXT_BUFSZ);
3540 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3541 nex1 = 0;
3542 continue;
3543 } else {
3544 break;
3547 /* Move extents up (if needed) */
3548 if (nex2) {
3549 memmove(&erp->er_extbuf[nex1],
3550 &erp->er_extbuf[nex1 + ext_diff],
3551 nex2 * sizeof(xfs_bmbt_rec_t));
3553 /* Zero out rest of page */
3554 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3555 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3556 /* Update remaining counters */
3557 erp->er_extcount -= ext_diff;
3558 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3559 ext_cnt -= ext_diff;
3560 nex1 = 0;
3561 erp_idx++;
3562 erp++;
3564 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3565 xfs_iext_irec_compact(ifp);
3569 * Create, destroy, or resize a linear (direct) block of extents.
3571 void
3572 xfs_iext_realloc_direct(
3573 xfs_ifork_t *ifp, /* inode fork pointer */
3574 int new_size) /* new size of extents */
3576 int rnew_size; /* real new size of extents */
3578 rnew_size = new_size;
3580 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3581 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3582 (new_size != ifp->if_real_bytes)));
3584 /* Free extent records */
3585 if (new_size == 0) {
3586 xfs_iext_destroy(ifp);
3588 /* Resize direct extent list and zero any new bytes */
3589 else if (ifp->if_real_bytes) {
3590 /* Check if extents will fit inside the inode */
3591 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3592 xfs_iext_direct_to_inline(ifp, new_size /
3593 (uint)sizeof(xfs_bmbt_rec_t));
3594 ifp->if_bytes = new_size;
3595 return;
3597 if (!is_power_of_2(new_size)){
3598 rnew_size = roundup_pow_of_two(new_size);
3600 if (rnew_size != ifp->if_real_bytes) {
3601 ifp->if_u1.if_extents =
3602 kmem_realloc(ifp->if_u1.if_extents,
3603 rnew_size,
3604 ifp->if_real_bytes, KM_NOFS);
3606 if (rnew_size > ifp->if_real_bytes) {
3607 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3608 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3609 rnew_size - ifp->if_real_bytes);
3613 * Switch from the inline extent buffer to a direct
3614 * extent list. Be sure to include the inline extent
3615 * bytes in new_size.
3617 else {
3618 new_size += ifp->if_bytes;
3619 if (!is_power_of_2(new_size)) {
3620 rnew_size = roundup_pow_of_two(new_size);
3622 xfs_iext_inline_to_direct(ifp, rnew_size);
3624 ifp->if_real_bytes = rnew_size;
3625 ifp->if_bytes = new_size;
3629 * Switch from linear (direct) extent records to inline buffer.
3631 void
3632 xfs_iext_direct_to_inline(
3633 xfs_ifork_t *ifp, /* inode fork pointer */
3634 xfs_extnum_t nextents) /* number of extents in file */
3636 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3637 ASSERT(nextents <= XFS_INLINE_EXTS);
3639 * The inline buffer was zeroed when we switched
3640 * from inline to direct extent allocation mode,
3641 * so we don't need to clear it here.
3643 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3644 nextents * sizeof(xfs_bmbt_rec_t));
3645 kmem_free(ifp->if_u1.if_extents);
3646 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3647 ifp->if_real_bytes = 0;
3651 * Switch from inline buffer to linear (direct) extent records.
3652 * new_size should already be rounded up to the next power of 2
3653 * by the caller (when appropriate), so use new_size as it is.
3654 * However, since new_size may be rounded up, we can't update
3655 * if_bytes here. It is the caller's responsibility to update
3656 * if_bytes upon return.
3658 void
3659 xfs_iext_inline_to_direct(
3660 xfs_ifork_t *ifp, /* inode fork pointer */
3661 int new_size) /* number of extents in file */
3663 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3664 memset(ifp->if_u1.if_extents, 0, new_size);
3665 if (ifp->if_bytes) {
3666 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3667 ifp->if_bytes);
3668 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3669 sizeof(xfs_bmbt_rec_t));
3671 ifp->if_real_bytes = new_size;
3675 * Resize an extent indirection array to new_size bytes.
3677 STATIC void
3678 xfs_iext_realloc_indirect(
3679 xfs_ifork_t *ifp, /* inode fork pointer */
3680 int new_size) /* new indirection array size */
3682 int nlists; /* number of irec's (ex lists) */
3683 int size; /* current indirection array size */
3685 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3686 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687 size = nlists * sizeof(xfs_ext_irec_t);
3688 ASSERT(ifp->if_real_bytes);
3689 ASSERT((new_size >= 0) && (new_size != size));
3690 if (new_size == 0) {
3691 xfs_iext_destroy(ifp);
3692 } else {
3693 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3694 kmem_realloc(ifp->if_u1.if_ext_irec,
3695 new_size, size, KM_NOFS);
3700 * Switch from indirection array to linear (direct) extent allocations.
3702 STATIC void
3703 xfs_iext_indirect_to_direct(
3704 xfs_ifork_t *ifp) /* inode fork pointer */
3706 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3707 xfs_extnum_t nextents; /* number of extents in file */
3708 int size; /* size of file extents */
3710 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3711 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3712 ASSERT(nextents <= XFS_LINEAR_EXTS);
3713 size = nextents * sizeof(xfs_bmbt_rec_t);
3715 xfs_iext_irec_compact_pages(ifp);
3716 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3718 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3719 kmem_free(ifp->if_u1.if_ext_irec);
3720 ifp->if_flags &= ~XFS_IFEXTIREC;
3721 ifp->if_u1.if_extents = ep;
3722 ifp->if_bytes = size;
3723 if (nextents < XFS_LINEAR_EXTS) {
3724 xfs_iext_realloc_direct(ifp, size);
3729 * Free incore file extents.
3731 void
3732 xfs_iext_destroy(
3733 xfs_ifork_t *ifp) /* inode fork pointer */
3735 if (ifp->if_flags & XFS_IFEXTIREC) {
3736 int erp_idx;
3737 int nlists;
3739 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3740 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3741 xfs_iext_irec_remove(ifp, erp_idx);
3743 ifp->if_flags &= ~XFS_IFEXTIREC;
3744 } else if (ifp->if_real_bytes) {
3745 kmem_free(ifp->if_u1.if_extents);
3746 } else if (ifp->if_bytes) {
3747 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3748 sizeof(xfs_bmbt_rec_t));
3750 ifp->if_u1.if_extents = NULL;
3751 ifp->if_real_bytes = 0;
3752 ifp->if_bytes = 0;
3756 * Return a pointer to the extent record for file system block bno.
3758 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3759 xfs_iext_bno_to_ext(
3760 xfs_ifork_t *ifp, /* inode fork pointer */
3761 xfs_fileoff_t bno, /* block number to search for */
3762 xfs_extnum_t *idxp) /* index of target extent */
3764 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3765 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3766 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3767 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3768 int high; /* upper boundary in search */
3769 xfs_extnum_t idx = 0; /* index of target extent */
3770 int low; /* lower boundary in search */
3771 xfs_extnum_t nextents; /* number of file extents */
3772 xfs_fileoff_t startoff = 0; /* start offset of extent */
3774 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3775 if (nextents == 0) {
3776 *idxp = 0;
3777 return NULL;
3779 low = 0;
3780 if (ifp->if_flags & XFS_IFEXTIREC) {
3781 /* Find target extent list */
3782 int erp_idx = 0;
3783 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3784 base = erp->er_extbuf;
3785 high = erp->er_extcount - 1;
3786 } else {
3787 base = ifp->if_u1.if_extents;
3788 high = nextents - 1;
3790 /* Binary search extent records */
3791 while (low <= high) {
3792 idx = (low + high) >> 1;
3793 ep = base + idx;
3794 startoff = xfs_bmbt_get_startoff(ep);
3795 blockcount = xfs_bmbt_get_blockcount(ep);
3796 if (bno < startoff) {
3797 high = idx - 1;
3798 } else if (bno >= startoff + blockcount) {
3799 low = idx + 1;
3800 } else {
3801 /* Convert back to file-based extent index */
3802 if (ifp->if_flags & XFS_IFEXTIREC) {
3803 idx += erp->er_extoff;
3805 *idxp = idx;
3806 return ep;
3809 /* Convert back to file-based extent index */
3810 if (ifp->if_flags & XFS_IFEXTIREC) {
3811 idx += erp->er_extoff;
3813 if (bno >= startoff + blockcount) {
3814 if (++idx == nextents) {
3815 ep = NULL;
3816 } else {
3817 ep = xfs_iext_get_ext(ifp, idx);
3820 *idxp = idx;
3821 return ep;
3825 * Return a pointer to the indirection array entry containing the
3826 * extent record for filesystem block bno. Store the index of the
3827 * target irec in *erp_idxp.
3829 xfs_ext_irec_t * /* pointer to found extent record */
3830 xfs_iext_bno_to_irec(
3831 xfs_ifork_t *ifp, /* inode fork pointer */
3832 xfs_fileoff_t bno, /* block number to search for */
3833 int *erp_idxp) /* irec index of target ext list */
3835 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3836 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3837 int erp_idx; /* indirection array index */
3838 int nlists; /* number of extent irec's (lists) */
3839 int high; /* binary search upper limit */
3840 int low; /* binary search lower limit */
3842 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3843 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3844 erp_idx = 0;
3845 low = 0;
3846 high = nlists - 1;
3847 while (low <= high) {
3848 erp_idx = (low + high) >> 1;
3849 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3850 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3851 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3852 high = erp_idx - 1;
3853 } else if (erp_next && bno >=
3854 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3855 low = erp_idx + 1;
3856 } else {
3857 break;
3860 *erp_idxp = erp_idx;
3861 return erp;
3865 * Return a pointer to the indirection array entry containing the
3866 * extent record at file extent index *idxp. Store the index of the
3867 * target irec in *erp_idxp and store the page index of the target
3868 * extent record in *idxp.
3870 xfs_ext_irec_t *
3871 xfs_iext_idx_to_irec(
3872 xfs_ifork_t *ifp, /* inode fork pointer */
3873 xfs_extnum_t *idxp, /* extent index (file -> page) */
3874 int *erp_idxp, /* pointer to target irec */
3875 int realloc) /* new bytes were just added */
3877 xfs_ext_irec_t *prev; /* pointer to previous irec */
3878 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3879 int erp_idx; /* indirection array index */
3880 int nlists; /* number of irec's (ex lists) */
3881 int high; /* binary search upper limit */
3882 int low; /* binary search lower limit */
3883 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3885 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3886 ASSERT(page_idx >= 0);
3887 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3888 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3890 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3891 erp_idx = 0;
3892 low = 0;
3893 high = nlists - 1;
3895 /* Binary search extent irec's */
3896 while (low <= high) {
3897 erp_idx = (low + high) >> 1;
3898 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3899 prev = erp_idx > 0 ? erp - 1 : NULL;
3900 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3901 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3902 high = erp_idx - 1;
3903 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3904 (page_idx == erp->er_extoff + erp->er_extcount &&
3905 !realloc)) {
3906 low = erp_idx + 1;
3907 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3908 erp->er_extcount == XFS_LINEAR_EXTS) {
3909 ASSERT(realloc);
3910 page_idx = 0;
3911 erp_idx++;
3912 erp = erp_idx < nlists ? erp + 1 : NULL;
3913 break;
3914 } else {
3915 page_idx -= erp->er_extoff;
3916 break;
3919 *idxp = page_idx;
3920 *erp_idxp = erp_idx;
3921 return(erp);
3925 * Allocate and initialize an indirection array once the space needed
3926 * for incore extents increases above XFS_IEXT_BUFSZ.
3928 void
3929 xfs_iext_irec_init(
3930 xfs_ifork_t *ifp) /* inode fork pointer */
3932 xfs_ext_irec_t *erp; /* indirection array pointer */
3933 xfs_extnum_t nextents; /* number of extents in file */
3935 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3936 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3937 ASSERT(nextents <= XFS_LINEAR_EXTS);
3939 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3941 if (nextents == 0) {
3942 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3943 } else if (!ifp->if_real_bytes) {
3944 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3945 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3946 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3948 erp->er_extbuf = ifp->if_u1.if_extents;
3949 erp->er_extcount = nextents;
3950 erp->er_extoff = 0;
3952 ifp->if_flags |= XFS_IFEXTIREC;
3953 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3954 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3955 ifp->if_u1.if_ext_irec = erp;
3957 return;
3961 * Allocate and initialize a new entry in the indirection array.
3963 xfs_ext_irec_t *
3964 xfs_iext_irec_new(
3965 xfs_ifork_t *ifp, /* inode fork pointer */
3966 int erp_idx) /* index for new irec */
3968 xfs_ext_irec_t *erp; /* indirection array pointer */
3969 int i; /* loop counter */
3970 int nlists; /* number of irec's (ex lists) */
3972 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3973 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3975 /* Resize indirection array */
3976 xfs_iext_realloc_indirect(ifp, ++nlists *
3977 sizeof(xfs_ext_irec_t));
3979 * Move records down in the array so the
3980 * new page can use erp_idx.
3982 erp = ifp->if_u1.if_ext_irec;
3983 for (i = nlists - 1; i > erp_idx; i--) {
3984 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3986 ASSERT(i == erp_idx);
3988 /* Initialize new extent record */
3989 erp = ifp->if_u1.if_ext_irec;
3990 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3991 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3992 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3993 erp[erp_idx].er_extcount = 0;
3994 erp[erp_idx].er_extoff = erp_idx > 0 ?
3995 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3996 return (&erp[erp_idx]);
4000 * Remove a record from the indirection array.
4002 void
4003 xfs_iext_irec_remove(
4004 xfs_ifork_t *ifp, /* inode fork pointer */
4005 int erp_idx) /* irec index to remove */
4007 xfs_ext_irec_t *erp; /* indirection array pointer */
4008 int i; /* loop counter */
4009 int nlists; /* number of irec's (ex lists) */
4011 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4012 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4013 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4014 if (erp->er_extbuf) {
4015 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4016 -erp->er_extcount);
4017 kmem_free(erp->er_extbuf);
4019 /* Compact extent records */
4020 erp = ifp->if_u1.if_ext_irec;
4021 for (i = erp_idx; i < nlists - 1; i++) {
4022 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4025 * Manually free the last extent record from the indirection
4026 * array. A call to xfs_iext_realloc_indirect() with a size
4027 * of zero would result in a call to xfs_iext_destroy() which
4028 * would in turn call this function again, creating a nasty
4029 * infinite loop.
4031 if (--nlists) {
4032 xfs_iext_realloc_indirect(ifp,
4033 nlists * sizeof(xfs_ext_irec_t));
4034 } else {
4035 kmem_free(ifp->if_u1.if_ext_irec);
4037 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4041 * This is called to clean up large amounts of unused memory allocated
4042 * by the indirection array. Before compacting anything though, verify
4043 * that the indirection array is still needed and switch back to the
4044 * linear extent list (or even the inline buffer) if possible. The
4045 * compaction policy is as follows:
4047 * Full Compaction: Extents fit into a single page (or inline buffer)
4048 * Partial Compaction: Extents occupy less than 50% of allocated space
4049 * No Compaction: Extents occupy at least 50% of allocated space
4051 void
4052 xfs_iext_irec_compact(
4053 xfs_ifork_t *ifp) /* inode fork pointer */
4055 xfs_extnum_t nextents; /* number of extents in file */
4056 int nlists; /* number of irec's (ex lists) */
4058 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4059 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4060 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4062 if (nextents == 0) {
4063 xfs_iext_destroy(ifp);
4064 } else if (nextents <= XFS_INLINE_EXTS) {
4065 xfs_iext_indirect_to_direct(ifp);
4066 xfs_iext_direct_to_inline(ifp, nextents);
4067 } else if (nextents <= XFS_LINEAR_EXTS) {
4068 xfs_iext_indirect_to_direct(ifp);
4069 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4070 xfs_iext_irec_compact_pages(ifp);
4075 * Combine extents from neighboring extent pages.
4077 void
4078 xfs_iext_irec_compact_pages(
4079 xfs_ifork_t *ifp) /* inode fork pointer */
4081 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4082 int erp_idx = 0; /* indirection array index */
4083 int nlists; /* number of irec's (ex lists) */
4085 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4086 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4087 while (erp_idx < nlists - 1) {
4088 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4089 erp_next = erp + 1;
4090 if (erp_next->er_extcount <=
4091 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4092 memcpy(&erp->er_extbuf[erp->er_extcount],
4093 erp_next->er_extbuf, erp_next->er_extcount *
4094 sizeof(xfs_bmbt_rec_t));
4095 erp->er_extcount += erp_next->er_extcount;
4097 * Free page before removing extent record
4098 * so er_extoffs don't get modified in
4099 * xfs_iext_irec_remove.
4101 kmem_free(erp_next->er_extbuf);
4102 erp_next->er_extbuf = NULL;
4103 xfs_iext_irec_remove(ifp, erp_idx + 1);
4104 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4105 } else {
4106 erp_idx++;
4112 * This is called to update the er_extoff field in the indirection
4113 * array when extents have been added or removed from one of the
4114 * extent lists. erp_idx contains the irec index to begin updating
4115 * at and ext_diff contains the number of extents that were added
4116 * or removed.
4118 void
4119 xfs_iext_irec_update_extoffs(
4120 xfs_ifork_t *ifp, /* inode fork pointer */
4121 int erp_idx, /* irec index to update */
4122 int ext_diff) /* number of new extents */
4124 int i; /* loop counter */
4125 int nlists; /* number of irec's (ex lists */
4127 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4128 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4129 for (i = erp_idx; i < nlists; i++) {
4130 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;