KVM: VMX: simplify NMI mask management
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / vmx.c
blob2b99ae72481f2c8a67d147862c6ea936790254e8
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "irq.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
43 #include "trace.h"
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK \
78 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80 (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON \
82 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS \
84 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
85 | X86_CR4_OSXMMEXCPT)
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
93 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94 * ple_gap: upper bound on the amount of time between two successive
95 * executions of PAUSE in a loop. Also indicate if ple enabled.
96 * According to test, this time is usually smaller than 128 cycles.
97 * ple_window: upper bound on the amount of time a guest is allowed to execute
98 * in a PAUSE loop. Tests indicate that most spinlocks are held for
99 * less than 2^12 cycles
100 * Time is measured based on a counter that runs at the same rate as the TSC,
101 * refer SDM volume 3b section 21.6.13 & 22.1.3.
103 #define KVM_VMX_DEFAULT_PLE_GAP 128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
111 #define NR_AUTOLOAD_MSRS 1
113 struct vmcs {
114 u32 revision_id;
115 u32 abort;
116 char data[0];
119 struct shared_msr_entry {
120 unsigned index;
121 u64 data;
122 u64 mask;
125 struct vcpu_vmx {
126 struct kvm_vcpu vcpu;
127 struct list_head local_vcpus_link;
128 unsigned long host_rsp;
129 int launched;
130 u8 fail;
131 u8 cpl;
132 bool nmi_known_unmasked;
133 u32 exit_intr_info;
134 u32 idt_vectoring_info;
135 ulong rflags;
136 struct shared_msr_entry *guest_msrs;
137 int nmsrs;
138 int save_nmsrs;
139 #ifdef CONFIG_X86_64
140 u64 msr_host_kernel_gs_base;
141 u64 msr_guest_kernel_gs_base;
142 #endif
143 struct vmcs *vmcs;
144 struct msr_autoload {
145 unsigned nr;
146 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
147 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148 } msr_autoload;
149 struct {
150 int loaded;
151 u16 fs_sel, gs_sel, ldt_sel;
152 int gs_ldt_reload_needed;
153 int fs_reload_needed;
154 } host_state;
155 struct {
156 int vm86_active;
157 ulong save_rflags;
158 struct kvm_save_segment {
159 u16 selector;
160 unsigned long base;
161 u32 limit;
162 u32 ar;
163 } tr, es, ds, fs, gs;
164 } rmode;
165 int vpid;
166 bool emulation_required;
168 /* Support for vnmi-less CPUs */
169 int soft_vnmi_blocked;
170 ktime_t entry_time;
171 s64 vnmi_blocked_time;
172 u32 exit_reason;
174 bool rdtscp_enabled;
177 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
179 return container_of(vcpu, struct vcpu_vmx, vcpu);
182 static u64 construct_eptp(unsigned long root_hpa);
183 static void kvm_cpu_vmxon(u64 addr);
184 static void kvm_cpu_vmxoff(void);
185 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
186 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
188 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
189 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
190 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
191 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
193 static unsigned long *vmx_io_bitmap_a;
194 static unsigned long *vmx_io_bitmap_b;
195 static unsigned long *vmx_msr_bitmap_legacy;
196 static unsigned long *vmx_msr_bitmap_longmode;
198 static bool cpu_has_load_ia32_efer;
200 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
201 static DEFINE_SPINLOCK(vmx_vpid_lock);
203 static struct vmcs_config {
204 int size;
205 int order;
206 u32 revision_id;
207 u32 pin_based_exec_ctrl;
208 u32 cpu_based_exec_ctrl;
209 u32 cpu_based_2nd_exec_ctrl;
210 u32 vmexit_ctrl;
211 u32 vmentry_ctrl;
212 } vmcs_config;
214 static struct vmx_capability {
215 u32 ept;
216 u32 vpid;
217 } vmx_capability;
219 #define VMX_SEGMENT_FIELD(seg) \
220 [VCPU_SREG_##seg] = { \
221 .selector = GUEST_##seg##_SELECTOR, \
222 .base = GUEST_##seg##_BASE, \
223 .limit = GUEST_##seg##_LIMIT, \
224 .ar_bytes = GUEST_##seg##_AR_BYTES, \
227 static struct kvm_vmx_segment_field {
228 unsigned selector;
229 unsigned base;
230 unsigned limit;
231 unsigned ar_bytes;
232 } kvm_vmx_segment_fields[] = {
233 VMX_SEGMENT_FIELD(CS),
234 VMX_SEGMENT_FIELD(DS),
235 VMX_SEGMENT_FIELD(ES),
236 VMX_SEGMENT_FIELD(FS),
237 VMX_SEGMENT_FIELD(GS),
238 VMX_SEGMENT_FIELD(SS),
239 VMX_SEGMENT_FIELD(TR),
240 VMX_SEGMENT_FIELD(LDTR),
243 static u64 host_efer;
245 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
248 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
249 * away by decrementing the array size.
251 static const u32 vmx_msr_index[] = {
252 #ifdef CONFIG_X86_64
253 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
254 #endif
255 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
257 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
259 static inline bool is_page_fault(u32 intr_info)
261 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
262 INTR_INFO_VALID_MASK)) ==
263 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
266 static inline bool is_no_device(u32 intr_info)
268 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
269 INTR_INFO_VALID_MASK)) ==
270 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
273 static inline bool is_invalid_opcode(u32 intr_info)
275 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
276 INTR_INFO_VALID_MASK)) ==
277 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
280 static inline bool is_external_interrupt(u32 intr_info)
282 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
283 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
286 static inline bool is_machine_check(u32 intr_info)
288 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
289 INTR_INFO_VALID_MASK)) ==
290 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
293 static inline bool cpu_has_vmx_msr_bitmap(void)
295 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
298 static inline bool cpu_has_vmx_tpr_shadow(void)
300 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
303 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
305 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
308 static inline bool cpu_has_secondary_exec_ctrls(void)
310 return vmcs_config.cpu_based_exec_ctrl &
311 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
314 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
316 return vmcs_config.cpu_based_2nd_exec_ctrl &
317 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
320 static inline bool cpu_has_vmx_flexpriority(void)
322 return cpu_has_vmx_tpr_shadow() &&
323 cpu_has_vmx_virtualize_apic_accesses();
326 static inline bool cpu_has_vmx_ept_execute_only(void)
328 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
331 static inline bool cpu_has_vmx_eptp_uncacheable(void)
333 return vmx_capability.ept & VMX_EPTP_UC_BIT;
336 static inline bool cpu_has_vmx_eptp_writeback(void)
338 return vmx_capability.ept & VMX_EPTP_WB_BIT;
341 static inline bool cpu_has_vmx_ept_2m_page(void)
343 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
346 static inline bool cpu_has_vmx_ept_1g_page(void)
348 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
351 static inline bool cpu_has_vmx_ept_4levels(void)
353 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
356 static inline bool cpu_has_vmx_invept_individual_addr(void)
358 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
361 static inline bool cpu_has_vmx_invept_context(void)
363 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
366 static inline bool cpu_has_vmx_invept_global(void)
368 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
371 static inline bool cpu_has_vmx_invvpid_single(void)
373 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
376 static inline bool cpu_has_vmx_invvpid_global(void)
378 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
381 static inline bool cpu_has_vmx_ept(void)
383 return vmcs_config.cpu_based_2nd_exec_ctrl &
384 SECONDARY_EXEC_ENABLE_EPT;
387 static inline bool cpu_has_vmx_unrestricted_guest(void)
389 return vmcs_config.cpu_based_2nd_exec_ctrl &
390 SECONDARY_EXEC_UNRESTRICTED_GUEST;
393 static inline bool cpu_has_vmx_ple(void)
395 return vmcs_config.cpu_based_2nd_exec_ctrl &
396 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
399 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
401 return flexpriority_enabled && irqchip_in_kernel(kvm);
404 static inline bool cpu_has_vmx_vpid(void)
406 return vmcs_config.cpu_based_2nd_exec_ctrl &
407 SECONDARY_EXEC_ENABLE_VPID;
410 static inline bool cpu_has_vmx_rdtscp(void)
412 return vmcs_config.cpu_based_2nd_exec_ctrl &
413 SECONDARY_EXEC_RDTSCP;
416 static inline bool cpu_has_virtual_nmis(void)
418 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
421 static inline bool cpu_has_vmx_wbinvd_exit(void)
423 return vmcs_config.cpu_based_2nd_exec_ctrl &
424 SECONDARY_EXEC_WBINVD_EXITING;
427 static inline bool report_flexpriority(void)
429 return flexpriority_enabled;
432 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
434 int i;
436 for (i = 0; i < vmx->nmsrs; ++i)
437 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
438 return i;
439 return -1;
442 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
444 struct {
445 u64 vpid : 16;
446 u64 rsvd : 48;
447 u64 gva;
448 } operand = { vpid, 0, gva };
450 asm volatile (__ex(ASM_VMX_INVVPID)
451 /* CF==1 or ZF==1 --> rc = -1 */
452 "; ja 1f ; ud2 ; 1:"
453 : : "a"(&operand), "c"(ext) : "cc", "memory");
456 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
458 struct {
459 u64 eptp, gpa;
460 } operand = {eptp, gpa};
462 asm volatile (__ex(ASM_VMX_INVEPT)
463 /* CF==1 or ZF==1 --> rc = -1 */
464 "; ja 1f ; ud2 ; 1:\n"
465 : : "a" (&operand), "c" (ext) : "cc", "memory");
468 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
470 int i;
472 i = __find_msr_index(vmx, msr);
473 if (i >= 0)
474 return &vmx->guest_msrs[i];
475 return NULL;
478 static void vmcs_clear(struct vmcs *vmcs)
480 u64 phys_addr = __pa(vmcs);
481 u8 error;
483 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
484 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
485 : "cc", "memory");
486 if (error)
487 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
488 vmcs, phys_addr);
491 static void vmcs_load(struct vmcs *vmcs)
493 u64 phys_addr = __pa(vmcs);
494 u8 error;
496 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
497 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
498 : "cc", "memory");
499 if (error)
500 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
501 vmcs, phys_addr);
504 static void __vcpu_clear(void *arg)
506 struct vcpu_vmx *vmx = arg;
507 int cpu = raw_smp_processor_id();
509 if (vmx->vcpu.cpu == cpu)
510 vmcs_clear(vmx->vmcs);
511 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
512 per_cpu(current_vmcs, cpu) = NULL;
513 list_del(&vmx->local_vcpus_link);
514 vmx->vcpu.cpu = -1;
515 vmx->launched = 0;
518 static void vcpu_clear(struct vcpu_vmx *vmx)
520 if (vmx->vcpu.cpu == -1)
521 return;
522 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
525 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
527 if (vmx->vpid == 0)
528 return;
530 if (cpu_has_vmx_invvpid_single())
531 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
534 static inline void vpid_sync_vcpu_global(void)
536 if (cpu_has_vmx_invvpid_global())
537 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
540 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
542 if (cpu_has_vmx_invvpid_single())
543 vpid_sync_vcpu_single(vmx);
544 else
545 vpid_sync_vcpu_global();
548 static inline void ept_sync_global(void)
550 if (cpu_has_vmx_invept_global())
551 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
554 static inline void ept_sync_context(u64 eptp)
556 if (enable_ept) {
557 if (cpu_has_vmx_invept_context())
558 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
559 else
560 ept_sync_global();
564 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
566 if (enable_ept) {
567 if (cpu_has_vmx_invept_individual_addr())
568 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
569 eptp, gpa);
570 else
571 ept_sync_context(eptp);
575 static unsigned long vmcs_readl(unsigned long field)
577 unsigned long value = 0;
579 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
580 : "+a"(value) : "d"(field) : "cc");
581 return value;
584 static u16 vmcs_read16(unsigned long field)
586 return vmcs_readl(field);
589 static u32 vmcs_read32(unsigned long field)
591 return vmcs_readl(field);
594 static u64 vmcs_read64(unsigned long field)
596 #ifdef CONFIG_X86_64
597 return vmcs_readl(field);
598 #else
599 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
600 #endif
603 static noinline void vmwrite_error(unsigned long field, unsigned long value)
605 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
606 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
607 dump_stack();
610 static void vmcs_writel(unsigned long field, unsigned long value)
612 u8 error;
614 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
615 : "=q"(error) : "a"(value), "d"(field) : "cc");
616 if (unlikely(error))
617 vmwrite_error(field, value);
620 static void vmcs_write16(unsigned long field, u16 value)
622 vmcs_writel(field, value);
625 static void vmcs_write32(unsigned long field, u32 value)
627 vmcs_writel(field, value);
630 static void vmcs_write64(unsigned long field, u64 value)
632 vmcs_writel(field, value);
633 #ifndef CONFIG_X86_64
634 asm volatile ("");
635 vmcs_writel(field+1, value >> 32);
636 #endif
639 static void vmcs_clear_bits(unsigned long field, u32 mask)
641 vmcs_writel(field, vmcs_readl(field) & ~mask);
644 static void vmcs_set_bits(unsigned long field, u32 mask)
646 vmcs_writel(field, vmcs_readl(field) | mask);
649 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
651 u32 eb;
653 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
654 (1u << NM_VECTOR) | (1u << DB_VECTOR);
655 if ((vcpu->guest_debug &
656 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
657 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
658 eb |= 1u << BP_VECTOR;
659 if (to_vmx(vcpu)->rmode.vm86_active)
660 eb = ~0;
661 if (enable_ept)
662 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
663 if (vcpu->fpu_active)
664 eb &= ~(1u << NM_VECTOR);
665 vmcs_write32(EXCEPTION_BITMAP, eb);
668 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
670 unsigned i;
671 struct msr_autoload *m = &vmx->msr_autoload;
673 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
674 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
675 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
676 return;
679 for (i = 0; i < m->nr; ++i)
680 if (m->guest[i].index == msr)
681 break;
683 if (i == m->nr)
684 return;
685 --m->nr;
686 m->guest[i] = m->guest[m->nr];
687 m->host[i] = m->host[m->nr];
688 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
689 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
692 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
693 u64 guest_val, u64 host_val)
695 unsigned i;
696 struct msr_autoload *m = &vmx->msr_autoload;
698 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
699 vmcs_write64(GUEST_IA32_EFER, guest_val);
700 vmcs_write64(HOST_IA32_EFER, host_val);
701 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
702 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
703 return;
706 for (i = 0; i < m->nr; ++i)
707 if (m->guest[i].index == msr)
708 break;
710 if (i == m->nr) {
711 ++m->nr;
712 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
713 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
716 m->guest[i].index = msr;
717 m->guest[i].value = guest_val;
718 m->host[i].index = msr;
719 m->host[i].value = host_val;
722 static void reload_tss(void)
725 * VT restores TR but not its size. Useless.
727 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
728 struct desc_struct *descs;
730 descs = (void *)gdt->address;
731 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
732 load_TR_desc();
735 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
737 u64 guest_efer;
738 u64 ignore_bits;
740 guest_efer = vmx->vcpu.arch.efer;
743 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
744 * outside long mode
746 ignore_bits = EFER_NX | EFER_SCE;
747 #ifdef CONFIG_X86_64
748 ignore_bits |= EFER_LMA | EFER_LME;
749 /* SCE is meaningful only in long mode on Intel */
750 if (guest_efer & EFER_LMA)
751 ignore_bits &= ~(u64)EFER_SCE;
752 #endif
753 guest_efer &= ~ignore_bits;
754 guest_efer |= host_efer & ignore_bits;
755 vmx->guest_msrs[efer_offset].data = guest_efer;
756 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
758 clear_atomic_switch_msr(vmx, MSR_EFER);
759 /* On ept, can't emulate nx, and must switch nx atomically */
760 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
761 guest_efer = vmx->vcpu.arch.efer;
762 if (!(guest_efer & EFER_LMA))
763 guest_efer &= ~EFER_LME;
764 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
765 return false;
768 return true;
771 static unsigned long segment_base(u16 selector)
773 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
774 struct desc_struct *d;
775 unsigned long table_base;
776 unsigned long v;
778 if (!(selector & ~3))
779 return 0;
781 table_base = gdt->address;
783 if (selector & 4) { /* from ldt */
784 u16 ldt_selector = kvm_read_ldt();
786 if (!(ldt_selector & ~3))
787 return 0;
789 table_base = segment_base(ldt_selector);
791 d = (struct desc_struct *)(table_base + (selector & ~7));
792 v = get_desc_base(d);
793 #ifdef CONFIG_X86_64
794 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
795 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
796 #endif
797 return v;
800 static inline unsigned long kvm_read_tr_base(void)
802 u16 tr;
803 asm("str %0" : "=g"(tr));
804 return segment_base(tr);
807 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
809 struct vcpu_vmx *vmx = to_vmx(vcpu);
810 int i;
812 if (vmx->host_state.loaded)
813 return;
815 vmx->host_state.loaded = 1;
817 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
818 * allow segment selectors with cpl > 0 or ti == 1.
820 vmx->host_state.ldt_sel = kvm_read_ldt();
821 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
822 savesegment(fs, vmx->host_state.fs_sel);
823 if (!(vmx->host_state.fs_sel & 7)) {
824 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
825 vmx->host_state.fs_reload_needed = 0;
826 } else {
827 vmcs_write16(HOST_FS_SELECTOR, 0);
828 vmx->host_state.fs_reload_needed = 1;
830 savesegment(gs, vmx->host_state.gs_sel);
831 if (!(vmx->host_state.gs_sel & 7))
832 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
833 else {
834 vmcs_write16(HOST_GS_SELECTOR, 0);
835 vmx->host_state.gs_ldt_reload_needed = 1;
838 #ifdef CONFIG_X86_64
839 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
840 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
841 #else
842 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
843 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
844 #endif
846 #ifdef CONFIG_X86_64
847 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
848 if (is_long_mode(&vmx->vcpu))
849 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
850 #endif
851 for (i = 0; i < vmx->save_nmsrs; ++i)
852 kvm_set_shared_msr(vmx->guest_msrs[i].index,
853 vmx->guest_msrs[i].data,
854 vmx->guest_msrs[i].mask);
857 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
859 if (!vmx->host_state.loaded)
860 return;
862 ++vmx->vcpu.stat.host_state_reload;
863 vmx->host_state.loaded = 0;
864 #ifdef CONFIG_X86_64
865 if (is_long_mode(&vmx->vcpu))
866 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
867 #endif
868 if (vmx->host_state.gs_ldt_reload_needed) {
869 kvm_load_ldt(vmx->host_state.ldt_sel);
870 #ifdef CONFIG_X86_64
871 load_gs_index(vmx->host_state.gs_sel);
872 #else
873 loadsegment(gs, vmx->host_state.gs_sel);
874 #endif
876 if (vmx->host_state.fs_reload_needed)
877 loadsegment(fs, vmx->host_state.fs_sel);
878 reload_tss();
879 #ifdef CONFIG_X86_64
880 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
881 #endif
882 if (current_thread_info()->status & TS_USEDFPU)
883 clts();
884 load_gdt(&__get_cpu_var(host_gdt));
887 static void vmx_load_host_state(struct vcpu_vmx *vmx)
889 preempt_disable();
890 __vmx_load_host_state(vmx);
891 preempt_enable();
895 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
896 * vcpu mutex is already taken.
898 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
900 struct vcpu_vmx *vmx = to_vmx(vcpu);
901 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
903 if (!vmm_exclusive)
904 kvm_cpu_vmxon(phys_addr);
905 else if (vcpu->cpu != cpu)
906 vcpu_clear(vmx);
908 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
909 per_cpu(current_vmcs, cpu) = vmx->vmcs;
910 vmcs_load(vmx->vmcs);
913 if (vcpu->cpu != cpu) {
914 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
915 unsigned long sysenter_esp;
917 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
918 local_irq_disable();
919 list_add(&vmx->local_vcpus_link,
920 &per_cpu(vcpus_on_cpu, cpu));
921 local_irq_enable();
924 * Linux uses per-cpu TSS and GDT, so set these when switching
925 * processors.
927 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
928 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
930 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
931 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
935 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
937 __vmx_load_host_state(to_vmx(vcpu));
938 if (!vmm_exclusive) {
939 __vcpu_clear(to_vmx(vcpu));
940 kvm_cpu_vmxoff();
944 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
946 ulong cr0;
948 if (vcpu->fpu_active)
949 return;
950 vcpu->fpu_active = 1;
951 cr0 = vmcs_readl(GUEST_CR0);
952 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
953 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
954 vmcs_writel(GUEST_CR0, cr0);
955 update_exception_bitmap(vcpu);
956 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
957 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
960 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
962 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
964 vmx_decache_cr0_guest_bits(vcpu);
965 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
966 update_exception_bitmap(vcpu);
967 vcpu->arch.cr0_guest_owned_bits = 0;
968 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
969 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
972 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
974 unsigned long rflags, save_rflags;
976 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
977 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
978 rflags = vmcs_readl(GUEST_RFLAGS);
979 if (to_vmx(vcpu)->rmode.vm86_active) {
980 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
981 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
982 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
984 to_vmx(vcpu)->rflags = rflags;
986 return to_vmx(vcpu)->rflags;
989 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
991 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
992 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
993 to_vmx(vcpu)->rflags = rflags;
994 if (to_vmx(vcpu)->rmode.vm86_active) {
995 to_vmx(vcpu)->rmode.save_rflags = rflags;
996 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
998 vmcs_writel(GUEST_RFLAGS, rflags);
1001 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1003 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1004 int ret = 0;
1006 if (interruptibility & GUEST_INTR_STATE_STI)
1007 ret |= KVM_X86_SHADOW_INT_STI;
1008 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1009 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1011 return ret & mask;
1014 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1016 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1017 u32 interruptibility = interruptibility_old;
1019 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1021 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1022 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1023 else if (mask & KVM_X86_SHADOW_INT_STI)
1024 interruptibility |= GUEST_INTR_STATE_STI;
1026 if ((interruptibility != interruptibility_old))
1027 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1030 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1032 unsigned long rip;
1034 rip = kvm_rip_read(vcpu);
1035 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1036 kvm_rip_write(vcpu, rip);
1038 /* skipping an emulated instruction also counts */
1039 vmx_set_interrupt_shadow(vcpu, 0);
1042 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1044 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1045 * explicitly skip the instruction because if the HLT state is set, then
1046 * the instruction is already executing and RIP has already been
1047 * advanced. */
1048 if (!yield_on_hlt &&
1049 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1050 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1053 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1054 bool has_error_code, u32 error_code,
1055 bool reinject)
1057 struct vcpu_vmx *vmx = to_vmx(vcpu);
1058 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1060 if (has_error_code) {
1061 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1062 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1065 if (vmx->rmode.vm86_active) {
1066 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1067 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1068 return;
1071 if (kvm_exception_is_soft(nr)) {
1072 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1073 vmx->vcpu.arch.event_exit_inst_len);
1074 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1075 } else
1076 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1078 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1079 vmx_clear_hlt(vcpu);
1082 static bool vmx_rdtscp_supported(void)
1084 return cpu_has_vmx_rdtscp();
1088 * Swap MSR entry in host/guest MSR entry array.
1090 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1092 struct shared_msr_entry tmp;
1094 tmp = vmx->guest_msrs[to];
1095 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1096 vmx->guest_msrs[from] = tmp;
1100 * Set up the vmcs to automatically save and restore system
1101 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1102 * mode, as fiddling with msrs is very expensive.
1104 static void setup_msrs(struct vcpu_vmx *vmx)
1106 int save_nmsrs, index;
1107 unsigned long *msr_bitmap;
1109 vmx_load_host_state(vmx);
1110 save_nmsrs = 0;
1111 #ifdef CONFIG_X86_64
1112 if (is_long_mode(&vmx->vcpu)) {
1113 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1114 if (index >= 0)
1115 move_msr_up(vmx, index, save_nmsrs++);
1116 index = __find_msr_index(vmx, MSR_LSTAR);
1117 if (index >= 0)
1118 move_msr_up(vmx, index, save_nmsrs++);
1119 index = __find_msr_index(vmx, MSR_CSTAR);
1120 if (index >= 0)
1121 move_msr_up(vmx, index, save_nmsrs++);
1122 index = __find_msr_index(vmx, MSR_TSC_AUX);
1123 if (index >= 0 && vmx->rdtscp_enabled)
1124 move_msr_up(vmx, index, save_nmsrs++);
1126 * MSR_STAR is only needed on long mode guests, and only
1127 * if efer.sce is enabled.
1129 index = __find_msr_index(vmx, MSR_STAR);
1130 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1131 move_msr_up(vmx, index, save_nmsrs++);
1133 #endif
1134 index = __find_msr_index(vmx, MSR_EFER);
1135 if (index >= 0 && update_transition_efer(vmx, index))
1136 move_msr_up(vmx, index, save_nmsrs++);
1138 vmx->save_nmsrs = save_nmsrs;
1140 if (cpu_has_vmx_msr_bitmap()) {
1141 if (is_long_mode(&vmx->vcpu))
1142 msr_bitmap = vmx_msr_bitmap_longmode;
1143 else
1144 msr_bitmap = vmx_msr_bitmap_legacy;
1146 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1151 * reads and returns guest's timestamp counter "register"
1152 * guest_tsc = host_tsc + tsc_offset -- 21.3
1154 static u64 guest_read_tsc(void)
1156 u64 host_tsc, tsc_offset;
1158 rdtscll(host_tsc);
1159 tsc_offset = vmcs_read64(TSC_OFFSET);
1160 return host_tsc + tsc_offset;
1164 * writes 'offset' into guest's timestamp counter offset register
1166 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1168 vmcs_write64(TSC_OFFSET, offset);
1171 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1173 u64 offset = vmcs_read64(TSC_OFFSET);
1174 vmcs_write64(TSC_OFFSET, offset + adjustment);
1178 * Reads an msr value (of 'msr_index') into 'pdata'.
1179 * Returns 0 on success, non-0 otherwise.
1180 * Assumes vcpu_load() was already called.
1182 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1184 u64 data;
1185 struct shared_msr_entry *msr;
1187 if (!pdata) {
1188 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1189 return -EINVAL;
1192 switch (msr_index) {
1193 #ifdef CONFIG_X86_64
1194 case MSR_FS_BASE:
1195 data = vmcs_readl(GUEST_FS_BASE);
1196 break;
1197 case MSR_GS_BASE:
1198 data = vmcs_readl(GUEST_GS_BASE);
1199 break;
1200 case MSR_KERNEL_GS_BASE:
1201 vmx_load_host_state(to_vmx(vcpu));
1202 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1203 break;
1204 #endif
1205 case MSR_EFER:
1206 return kvm_get_msr_common(vcpu, msr_index, pdata);
1207 case MSR_IA32_TSC:
1208 data = guest_read_tsc();
1209 break;
1210 case MSR_IA32_SYSENTER_CS:
1211 data = vmcs_read32(GUEST_SYSENTER_CS);
1212 break;
1213 case MSR_IA32_SYSENTER_EIP:
1214 data = vmcs_readl(GUEST_SYSENTER_EIP);
1215 break;
1216 case MSR_IA32_SYSENTER_ESP:
1217 data = vmcs_readl(GUEST_SYSENTER_ESP);
1218 break;
1219 case MSR_TSC_AUX:
1220 if (!to_vmx(vcpu)->rdtscp_enabled)
1221 return 1;
1222 /* Otherwise falls through */
1223 default:
1224 vmx_load_host_state(to_vmx(vcpu));
1225 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1226 if (msr) {
1227 vmx_load_host_state(to_vmx(vcpu));
1228 data = msr->data;
1229 break;
1231 return kvm_get_msr_common(vcpu, msr_index, pdata);
1234 *pdata = data;
1235 return 0;
1239 * Writes msr value into into the appropriate "register".
1240 * Returns 0 on success, non-0 otherwise.
1241 * Assumes vcpu_load() was already called.
1243 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1245 struct vcpu_vmx *vmx = to_vmx(vcpu);
1246 struct shared_msr_entry *msr;
1247 int ret = 0;
1249 switch (msr_index) {
1250 case MSR_EFER:
1251 vmx_load_host_state(vmx);
1252 ret = kvm_set_msr_common(vcpu, msr_index, data);
1253 break;
1254 #ifdef CONFIG_X86_64
1255 case MSR_FS_BASE:
1256 vmcs_writel(GUEST_FS_BASE, data);
1257 break;
1258 case MSR_GS_BASE:
1259 vmcs_writel(GUEST_GS_BASE, data);
1260 break;
1261 case MSR_KERNEL_GS_BASE:
1262 vmx_load_host_state(vmx);
1263 vmx->msr_guest_kernel_gs_base = data;
1264 break;
1265 #endif
1266 case MSR_IA32_SYSENTER_CS:
1267 vmcs_write32(GUEST_SYSENTER_CS, data);
1268 break;
1269 case MSR_IA32_SYSENTER_EIP:
1270 vmcs_writel(GUEST_SYSENTER_EIP, data);
1271 break;
1272 case MSR_IA32_SYSENTER_ESP:
1273 vmcs_writel(GUEST_SYSENTER_ESP, data);
1274 break;
1275 case MSR_IA32_TSC:
1276 kvm_write_tsc(vcpu, data);
1277 break;
1278 case MSR_IA32_CR_PAT:
1279 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1280 vmcs_write64(GUEST_IA32_PAT, data);
1281 vcpu->arch.pat = data;
1282 break;
1284 ret = kvm_set_msr_common(vcpu, msr_index, data);
1285 break;
1286 case MSR_TSC_AUX:
1287 if (!vmx->rdtscp_enabled)
1288 return 1;
1289 /* Check reserved bit, higher 32 bits should be zero */
1290 if ((data >> 32) != 0)
1291 return 1;
1292 /* Otherwise falls through */
1293 default:
1294 msr = find_msr_entry(vmx, msr_index);
1295 if (msr) {
1296 vmx_load_host_state(vmx);
1297 msr->data = data;
1298 break;
1300 ret = kvm_set_msr_common(vcpu, msr_index, data);
1303 return ret;
1306 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1308 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1309 switch (reg) {
1310 case VCPU_REGS_RSP:
1311 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1312 break;
1313 case VCPU_REGS_RIP:
1314 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1315 break;
1316 case VCPU_EXREG_PDPTR:
1317 if (enable_ept)
1318 ept_save_pdptrs(vcpu);
1319 break;
1320 default:
1321 break;
1325 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1327 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1328 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1329 else
1330 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1332 update_exception_bitmap(vcpu);
1335 static __init int cpu_has_kvm_support(void)
1337 return cpu_has_vmx();
1340 static __init int vmx_disabled_by_bios(void)
1342 u64 msr;
1344 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1345 if (msr & FEATURE_CONTROL_LOCKED) {
1346 /* launched w/ TXT and VMX disabled */
1347 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1348 && tboot_enabled())
1349 return 1;
1350 /* launched w/o TXT and VMX only enabled w/ TXT */
1351 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1352 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1353 && !tboot_enabled()) {
1354 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1355 "activate TXT before enabling KVM\n");
1356 return 1;
1358 /* launched w/o TXT and VMX disabled */
1359 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1360 && !tboot_enabled())
1361 return 1;
1364 return 0;
1367 static void kvm_cpu_vmxon(u64 addr)
1369 asm volatile (ASM_VMX_VMXON_RAX
1370 : : "a"(&addr), "m"(addr)
1371 : "memory", "cc");
1374 static int hardware_enable(void *garbage)
1376 int cpu = raw_smp_processor_id();
1377 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1378 u64 old, test_bits;
1380 if (read_cr4() & X86_CR4_VMXE)
1381 return -EBUSY;
1383 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1384 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1386 test_bits = FEATURE_CONTROL_LOCKED;
1387 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1388 if (tboot_enabled())
1389 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1391 if ((old & test_bits) != test_bits) {
1392 /* enable and lock */
1393 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1395 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1397 if (vmm_exclusive) {
1398 kvm_cpu_vmxon(phys_addr);
1399 ept_sync_global();
1402 store_gdt(&__get_cpu_var(host_gdt));
1404 return 0;
1407 static void vmclear_local_vcpus(void)
1409 int cpu = raw_smp_processor_id();
1410 struct vcpu_vmx *vmx, *n;
1412 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1413 local_vcpus_link)
1414 __vcpu_clear(vmx);
1418 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1419 * tricks.
1421 static void kvm_cpu_vmxoff(void)
1423 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1426 static void hardware_disable(void *garbage)
1428 if (vmm_exclusive) {
1429 vmclear_local_vcpus();
1430 kvm_cpu_vmxoff();
1432 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1435 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1436 u32 msr, u32 *result)
1438 u32 vmx_msr_low, vmx_msr_high;
1439 u32 ctl = ctl_min | ctl_opt;
1441 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1443 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1444 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1446 /* Ensure minimum (required) set of control bits are supported. */
1447 if (ctl_min & ~ctl)
1448 return -EIO;
1450 *result = ctl;
1451 return 0;
1454 static __init bool allow_1_setting(u32 msr, u32 ctl)
1456 u32 vmx_msr_low, vmx_msr_high;
1458 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1459 return vmx_msr_high & ctl;
1462 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1464 u32 vmx_msr_low, vmx_msr_high;
1465 u32 min, opt, min2, opt2;
1466 u32 _pin_based_exec_control = 0;
1467 u32 _cpu_based_exec_control = 0;
1468 u32 _cpu_based_2nd_exec_control = 0;
1469 u32 _vmexit_control = 0;
1470 u32 _vmentry_control = 0;
1472 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1473 opt = PIN_BASED_VIRTUAL_NMIS;
1474 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1475 &_pin_based_exec_control) < 0)
1476 return -EIO;
1478 min =
1479 #ifdef CONFIG_X86_64
1480 CPU_BASED_CR8_LOAD_EXITING |
1481 CPU_BASED_CR8_STORE_EXITING |
1482 #endif
1483 CPU_BASED_CR3_LOAD_EXITING |
1484 CPU_BASED_CR3_STORE_EXITING |
1485 CPU_BASED_USE_IO_BITMAPS |
1486 CPU_BASED_MOV_DR_EXITING |
1487 CPU_BASED_USE_TSC_OFFSETING |
1488 CPU_BASED_MWAIT_EXITING |
1489 CPU_BASED_MONITOR_EXITING |
1490 CPU_BASED_INVLPG_EXITING;
1492 if (yield_on_hlt)
1493 min |= CPU_BASED_HLT_EXITING;
1495 opt = CPU_BASED_TPR_SHADOW |
1496 CPU_BASED_USE_MSR_BITMAPS |
1497 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1498 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1499 &_cpu_based_exec_control) < 0)
1500 return -EIO;
1501 #ifdef CONFIG_X86_64
1502 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1503 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1504 ~CPU_BASED_CR8_STORE_EXITING;
1505 #endif
1506 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1507 min2 = 0;
1508 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1509 SECONDARY_EXEC_WBINVD_EXITING |
1510 SECONDARY_EXEC_ENABLE_VPID |
1511 SECONDARY_EXEC_ENABLE_EPT |
1512 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1513 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1514 SECONDARY_EXEC_RDTSCP;
1515 if (adjust_vmx_controls(min2, opt2,
1516 MSR_IA32_VMX_PROCBASED_CTLS2,
1517 &_cpu_based_2nd_exec_control) < 0)
1518 return -EIO;
1520 #ifndef CONFIG_X86_64
1521 if (!(_cpu_based_2nd_exec_control &
1522 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1523 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1524 #endif
1525 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1526 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1527 enabled */
1528 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1529 CPU_BASED_CR3_STORE_EXITING |
1530 CPU_BASED_INVLPG_EXITING);
1531 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1532 vmx_capability.ept, vmx_capability.vpid);
1535 min = 0;
1536 #ifdef CONFIG_X86_64
1537 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1538 #endif
1539 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1540 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1541 &_vmexit_control) < 0)
1542 return -EIO;
1544 min = 0;
1545 opt = VM_ENTRY_LOAD_IA32_PAT;
1546 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1547 &_vmentry_control) < 0)
1548 return -EIO;
1550 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1552 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1553 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1554 return -EIO;
1556 #ifdef CONFIG_X86_64
1557 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1558 if (vmx_msr_high & (1u<<16))
1559 return -EIO;
1560 #endif
1562 /* Require Write-Back (WB) memory type for VMCS accesses. */
1563 if (((vmx_msr_high >> 18) & 15) != 6)
1564 return -EIO;
1566 vmcs_conf->size = vmx_msr_high & 0x1fff;
1567 vmcs_conf->order = get_order(vmcs_config.size);
1568 vmcs_conf->revision_id = vmx_msr_low;
1570 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1571 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1572 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1573 vmcs_conf->vmexit_ctrl = _vmexit_control;
1574 vmcs_conf->vmentry_ctrl = _vmentry_control;
1576 cpu_has_load_ia32_efer =
1577 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1578 VM_ENTRY_LOAD_IA32_EFER)
1579 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1580 VM_EXIT_LOAD_IA32_EFER);
1582 return 0;
1585 static struct vmcs *alloc_vmcs_cpu(int cpu)
1587 int node = cpu_to_node(cpu);
1588 struct page *pages;
1589 struct vmcs *vmcs;
1591 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1592 if (!pages)
1593 return NULL;
1594 vmcs = page_address(pages);
1595 memset(vmcs, 0, vmcs_config.size);
1596 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1597 return vmcs;
1600 static struct vmcs *alloc_vmcs(void)
1602 return alloc_vmcs_cpu(raw_smp_processor_id());
1605 static void free_vmcs(struct vmcs *vmcs)
1607 free_pages((unsigned long)vmcs, vmcs_config.order);
1610 static void free_kvm_area(void)
1612 int cpu;
1614 for_each_possible_cpu(cpu) {
1615 free_vmcs(per_cpu(vmxarea, cpu));
1616 per_cpu(vmxarea, cpu) = NULL;
1620 static __init int alloc_kvm_area(void)
1622 int cpu;
1624 for_each_possible_cpu(cpu) {
1625 struct vmcs *vmcs;
1627 vmcs = alloc_vmcs_cpu(cpu);
1628 if (!vmcs) {
1629 free_kvm_area();
1630 return -ENOMEM;
1633 per_cpu(vmxarea, cpu) = vmcs;
1635 return 0;
1638 static __init int hardware_setup(void)
1640 if (setup_vmcs_config(&vmcs_config) < 0)
1641 return -EIO;
1643 if (boot_cpu_has(X86_FEATURE_NX))
1644 kvm_enable_efer_bits(EFER_NX);
1646 if (!cpu_has_vmx_vpid())
1647 enable_vpid = 0;
1649 if (!cpu_has_vmx_ept() ||
1650 !cpu_has_vmx_ept_4levels()) {
1651 enable_ept = 0;
1652 enable_unrestricted_guest = 0;
1655 if (!cpu_has_vmx_unrestricted_guest())
1656 enable_unrestricted_guest = 0;
1658 if (!cpu_has_vmx_flexpriority())
1659 flexpriority_enabled = 0;
1661 if (!cpu_has_vmx_tpr_shadow())
1662 kvm_x86_ops->update_cr8_intercept = NULL;
1664 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1665 kvm_disable_largepages();
1667 if (!cpu_has_vmx_ple())
1668 ple_gap = 0;
1670 return alloc_kvm_area();
1673 static __exit void hardware_unsetup(void)
1675 free_kvm_area();
1678 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1680 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1682 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1683 vmcs_write16(sf->selector, save->selector);
1684 vmcs_writel(sf->base, save->base);
1685 vmcs_write32(sf->limit, save->limit);
1686 vmcs_write32(sf->ar_bytes, save->ar);
1687 } else {
1688 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1689 << AR_DPL_SHIFT;
1690 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1694 static void enter_pmode(struct kvm_vcpu *vcpu)
1696 unsigned long flags;
1697 struct vcpu_vmx *vmx = to_vmx(vcpu);
1699 vmx->emulation_required = 1;
1700 vmx->rmode.vm86_active = 0;
1702 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1703 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1704 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1705 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1707 flags = vmcs_readl(GUEST_RFLAGS);
1708 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1709 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1710 vmcs_writel(GUEST_RFLAGS, flags);
1712 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1713 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1715 update_exception_bitmap(vcpu);
1717 if (emulate_invalid_guest_state)
1718 return;
1720 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1721 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1722 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1723 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1725 vmcs_write16(GUEST_SS_SELECTOR, 0);
1726 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1728 vmcs_write16(GUEST_CS_SELECTOR,
1729 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1730 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1733 static gva_t rmode_tss_base(struct kvm *kvm)
1735 if (!kvm->arch.tss_addr) {
1736 struct kvm_memslots *slots;
1737 gfn_t base_gfn;
1739 slots = kvm_memslots(kvm);
1740 base_gfn = slots->memslots[0].base_gfn +
1741 kvm->memslots->memslots[0].npages - 3;
1742 return base_gfn << PAGE_SHIFT;
1744 return kvm->arch.tss_addr;
1747 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1749 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1751 save->selector = vmcs_read16(sf->selector);
1752 save->base = vmcs_readl(sf->base);
1753 save->limit = vmcs_read32(sf->limit);
1754 save->ar = vmcs_read32(sf->ar_bytes);
1755 vmcs_write16(sf->selector, save->base >> 4);
1756 vmcs_write32(sf->base, save->base & 0xffff0);
1757 vmcs_write32(sf->limit, 0xffff);
1758 vmcs_write32(sf->ar_bytes, 0xf3);
1759 if (save->base & 0xf)
1760 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1761 " aligned when entering protected mode (seg=%d)",
1762 seg);
1765 static void enter_rmode(struct kvm_vcpu *vcpu)
1767 unsigned long flags;
1768 struct vcpu_vmx *vmx = to_vmx(vcpu);
1770 if (enable_unrestricted_guest)
1771 return;
1773 vmx->emulation_required = 1;
1774 vmx->rmode.vm86_active = 1;
1777 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1778 * vcpu. Call it here with phys address pointing 16M below 4G.
1780 if (!vcpu->kvm->arch.tss_addr) {
1781 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1782 "called before entering vcpu\n");
1783 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1784 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1785 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1788 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1789 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1790 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1792 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1793 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1795 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1796 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1798 flags = vmcs_readl(GUEST_RFLAGS);
1799 vmx->rmode.save_rflags = flags;
1801 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1803 vmcs_writel(GUEST_RFLAGS, flags);
1804 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1805 update_exception_bitmap(vcpu);
1807 if (emulate_invalid_guest_state)
1808 goto continue_rmode;
1810 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1811 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1812 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1814 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1815 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1816 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1817 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1818 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1820 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1821 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1822 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1823 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1825 continue_rmode:
1826 kvm_mmu_reset_context(vcpu);
1829 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1831 struct vcpu_vmx *vmx = to_vmx(vcpu);
1832 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1834 if (!msr)
1835 return;
1838 * Force kernel_gs_base reloading before EFER changes, as control
1839 * of this msr depends on is_long_mode().
1841 vmx_load_host_state(to_vmx(vcpu));
1842 vcpu->arch.efer = efer;
1843 if (efer & EFER_LMA) {
1844 vmcs_write32(VM_ENTRY_CONTROLS,
1845 vmcs_read32(VM_ENTRY_CONTROLS) |
1846 VM_ENTRY_IA32E_MODE);
1847 msr->data = efer;
1848 } else {
1849 vmcs_write32(VM_ENTRY_CONTROLS,
1850 vmcs_read32(VM_ENTRY_CONTROLS) &
1851 ~VM_ENTRY_IA32E_MODE);
1853 msr->data = efer & ~EFER_LME;
1855 setup_msrs(vmx);
1858 #ifdef CONFIG_X86_64
1860 static void enter_lmode(struct kvm_vcpu *vcpu)
1862 u32 guest_tr_ar;
1864 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1865 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1866 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1867 __func__);
1868 vmcs_write32(GUEST_TR_AR_BYTES,
1869 (guest_tr_ar & ~AR_TYPE_MASK)
1870 | AR_TYPE_BUSY_64_TSS);
1872 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1875 static void exit_lmode(struct kvm_vcpu *vcpu)
1877 vmcs_write32(VM_ENTRY_CONTROLS,
1878 vmcs_read32(VM_ENTRY_CONTROLS)
1879 & ~VM_ENTRY_IA32E_MODE);
1880 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1883 #endif
1885 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1887 vpid_sync_context(to_vmx(vcpu));
1888 if (enable_ept) {
1889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1890 return;
1891 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1895 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1897 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1899 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1900 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1903 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1905 if (enable_ept && is_paging(vcpu))
1906 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1907 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1910 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1912 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1914 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1915 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1918 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1920 if (!test_bit(VCPU_EXREG_PDPTR,
1921 (unsigned long *)&vcpu->arch.regs_dirty))
1922 return;
1924 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1925 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1926 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1927 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1928 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1932 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1934 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1935 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1936 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1937 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1938 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1941 __set_bit(VCPU_EXREG_PDPTR,
1942 (unsigned long *)&vcpu->arch.regs_avail);
1943 __set_bit(VCPU_EXREG_PDPTR,
1944 (unsigned long *)&vcpu->arch.regs_dirty);
1947 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1949 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1950 unsigned long cr0,
1951 struct kvm_vcpu *vcpu)
1953 vmx_decache_cr3(vcpu);
1954 if (!(cr0 & X86_CR0_PG)) {
1955 /* From paging/starting to nonpaging */
1956 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1957 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1958 (CPU_BASED_CR3_LOAD_EXITING |
1959 CPU_BASED_CR3_STORE_EXITING));
1960 vcpu->arch.cr0 = cr0;
1961 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1962 } else if (!is_paging(vcpu)) {
1963 /* From nonpaging to paging */
1964 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1965 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1966 ~(CPU_BASED_CR3_LOAD_EXITING |
1967 CPU_BASED_CR3_STORE_EXITING));
1968 vcpu->arch.cr0 = cr0;
1969 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1972 if (!(cr0 & X86_CR0_WP))
1973 *hw_cr0 &= ~X86_CR0_WP;
1976 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1978 struct vcpu_vmx *vmx = to_vmx(vcpu);
1979 unsigned long hw_cr0;
1981 if (enable_unrestricted_guest)
1982 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1983 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1984 else
1985 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1987 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1988 enter_pmode(vcpu);
1990 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1991 enter_rmode(vcpu);
1993 #ifdef CONFIG_X86_64
1994 if (vcpu->arch.efer & EFER_LME) {
1995 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1996 enter_lmode(vcpu);
1997 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1998 exit_lmode(vcpu);
2000 #endif
2002 if (enable_ept)
2003 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2005 if (!vcpu->fpu_active)
2006 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2008 vmcs_writel(CR0_READ_SHADOW, cr0);
2009 vmcs_writel(GUEST_CR0, hw_cr0);
2010 vcpu->arch.cr0 = cr0;
2011 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2014 static u64 construct_eptp(unsigned long root_hpa)
2016 u64 eptp;
2018 /* TODO write the value reading from MSR */
2019 eptp = VMX_EPT_DEFAULT_MT |
2020 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2021 eptp |= (root_hpa & PAGE_MASK);
2023 return eptp;
2026 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2028 unsigned long guest_cr3;
2029 u64 eptp;
2031 guest_cr3 = cr3;
2032 if (enable_ept) {
2033 eptp = construct_eptp(cr3);
2034 vmcs_write64(EPT_POINTER, eptp);
2035 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2036 vcpu->kvm->arch.ept_identity_map_addr;
2037 ept_load_pdptrs(vcpu);
2040 vmx_flush_tlb(vcpu);
2041 vmcs_writel(GUEST_CR3, guest_cr3);
2044 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2046 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2047 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2049 vcpu->arch.cr4 = cr4;
2050 if (enable_ept) {
2051 if (!is_paging(vcpu)) {
2052 hw_cr4 &= ~X86_CR4_PAE;
2053 hw_cr4 |= X86_CR4_PSE;
2054 } else if (!(cr4 & X86_CR4_PAE)) {
2055 hw_cr4 &= ~X86_CR4_PAE;
2059 vmcs_writel(CR4_READ_SHADOW, cr4);
2060 vmcs_writel(GUEST_CR4, hw_cr4);
2063 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2064 struct kvm_segment *var, int seg)
2066 struct vcpu_vmx *vmx = to_vmx(vcpu);
2067 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2068 struct kvm_save_segment *save;
2069 u32 ar;
2071 if (vmx->rmode.vm86_active
2072 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2073 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2074 || seg == VCPU_SREG_GS)
2075 && !emulate_invalid_guest_state) {
2076 switch (seg) {
2077 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2078 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2079 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2080 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2081 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2082 default: BUG();
2084 var->selector = save->selector;
2085 var->base = save->base;
2086 var->limit = save->limit;
2087 ar = save->ar;
2088 if (seg == VCPU_SREG_TR
2089 || var->selector == vmcs_read16(sf->selector))
2090 goto use_saved_rmode_seg;
2092 var->base = vmcs_readl(sf->base);
2093 var->limit = vmcs_read32(sf->limit);
2094 var->selector = vmcs_read16(sf->selector);
2095 ar = vmcs_read32(sf->ar_bytes);
2096 use_saved_rmode_seg:
2097 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2098 ar = 0;
2099 var->type = ar & 15;
2100 var->s = (ar >> 4) & 1;
2101 var->dpl = (ar >> 5) & 3;
2102 var->present = (ar >> 7) & 1;
2103 var->avl = (ar >> 12) & 1;
2104 var->l = (ar >> 13) & 1;
2105 var->db = (ar >> 14) & 1;
2106 var->g = (ar >> 15) & 1;
2107 var->unusable = (ar >> 16) & 1;
2110 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2112 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2113 struct kvm_segment s;
2115 if (to_vmx(vcpu)->rmode.vm86_active) {
2116 vmx_get_segment(vcpu, &s, seg);
2117 return s.base;
2119 return vmcs_readl(sf->base);
2122 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2124 if (!is_protmode(vcpu))
2125 return 0;
2127 if (!is_long_mode(vcpu)
2128 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2129 return 3;
2131 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2134 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2136 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2137 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2138 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2140 return to_vmx(vcpu)->cpl;
2144 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2146 u32 ar;
2148 if (var->unusable)
2149 ar = 1 << 16;
2150 else {
2151 ar = var->type & 15;
2152 ar |= (var->s & 1) << 4;
2153 ar |= (var->dpl & 3) << 5;
2154 ar |= (var->present & 1) << 7;
2155 ar |= (var->avl & 1) << 12;
2156 ar |= (var->l & 1) << 13;
2157 ar |= (var->db & 1) << 14;
2158 ar |= (var->g & 1) << 15;
2160 if (ar == 0) /* a 0 value means unusable */
2161 ar = AR_UNUSABLE_MASK;
2163 return ar;
2166 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2167 struct kvm_segment *var, int seg)
2169 struct vcpu_vmx *vmx = to_vmx(vcpu);
2170 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2171 u32 ar;
2173 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2174 vmcs_write16(sf->selector, var->selector);
2175 vmx->rmode.tr.selector = var->selector;
2176 vmx->rmode.tr.base = var->base;
2177 vmx->rmode.tr.limit = var->limit;
2178 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2179 return;
2181 vmcs_writel(sf->base, var->base);
2182 vmcs_write32(sf->limit, var->limit);
2183 vmcs_write16(sf->selector, var->selector);
2184 if (vmx->rmode.vm86_active && var->s) {
2186 * Hack real-mode segments into vm86 compatibility.
2188 if (var->base == 0xffff0000 && var->selector == 0xf000)
2189 vmcs_writel(sf->base, 0xf0000);
2190 ar = 0xf3;
2191 } else
2192 ar = vmx_segment_access_rights(var);
2195 * Fix the "Accessed" bit in AR field of segment registers for older
2196 * qemu binaries.
2197 * IA32 arch specifies that at the time of processor reset the
2198 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2199 * is setting it to 0 in the usedland code. This causes invalid guest
2200 * state vmexit when "unrestricted guest" mode is turned on.
2201 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2202 * tree. Newer qemu binaries with that qemu fix would not need this
2203 * kvm hack.
2205 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2206 ar |= 0x1; /* Accessed */
2208 vmcs_write32(sf->ar_bytes, ar);
2209 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2212 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2214 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2216 *db = (ar >> 14) & 1;
2217 *l = (ar >> 13) & 1;
2220 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2222 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2223 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2226 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2228 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2229 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2232 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2234 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2235 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2238 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2240 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2241 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2244 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2246 struct kvm_segment var;
2247 u32 ar;
2249 vmx_get_segment(vcpu, &var, seg);
2250 ar = vmx_segment_access_rights(&var);
2252 if (var.base != (var.selector << 4))
2253 return false;
2254 if (var.limit != 0xffff)
2255 return false;
2256 if (ar != 0xf3)
2257 return false;
2259 return true;
2262 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2264 struct kvm_segment cs;
2265 unsigned int cs_rpl;
2267 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2268 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2270 if (cs.unusable)
2271 return false;
2272 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2273 return false;
2274 if (!cs.s)
2275 return false;
2276 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2277 if (cs.dpl > cs_rpl)
2278 return false;
2279 } else {
2280 if (cs.dpl != cs_rpl)
2281 return false;
2283 if (!cs.present)
2284 return false;
2286 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2287 return true;
2290 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2292 struct kvm_segment ss;
2293 unsigned int ss_rpl;
2295 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2296 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2298 if (ss.unusable)
2299 return true;
2300 if (ss.type != 3 && ss.type != 7)
2301 return false;
2302 if (!ss.s)
2303 return false;
2304 if (ss.dpl != ss_rpl) /* DPL != RPL */
2305 return false;
2306 if (!ss.present)
2307 return false;
2309 return true;
2312 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2314 struct kvm_segment var;
2315 unsigned int rpl;
2317 vmx_get_segment(vcpu, &var, seg);
2318 rpl = var.selector & SELECTOR_RPL_MASK;
2320 if (var.unusable)
2321 return true;
2322 if (!var.s)
2323 return false;
2324 if (!var.present)
2325 return false;
2326 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2327 if (var.dpl < rpl) /* DPL < RPL */
2328 return false;
2331 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2332 * rights flags
2334 return true;
2337 static bool tr_valid(struct kvm_vcpu *vcpu)
2339 struct kvm_segment tr;
2341 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2343 if (tr.unusable)
2344 return false;
2345 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2346 return false;
2347 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2348 return false;
2349 if (!tr.present)
2350 return false;
2352 return true;
2355 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2357 struct kvm_segment ldtr;
2359 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2361 if (ldtr.unusable)
2362 return true;
2363 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2364 return false;
2365 if (ldtr.type != 2)
2366 return false;
2367 if (!ldtr.present)
2368 return false;
2370 return true;
2373 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2375 struct kvm_segment cs, ss;
2377 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2378 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2380 return ((cs.selector & SELECTOR_RPL_MASK) ==
2381 (ss.selector & SELECTOR_RPL_MASK));
2385 * Check if guest state is valid. Returns true if valid, false if
2386 * not.
2387 * We assume that registers are always usable
2389 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2391 /* real mode guest state checks */
2392 if (!is_protmode(vcpu)) {
2393 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2394 return false;
2395 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2396 return false;
2397 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2398 return false;
2399 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2400 return false;
2401 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2402 return false;
2403 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2404 return false;
2405 } else {
2406 /* protected mode guest state checks */
2407 if (!cs_ss_rpl_check(vcpu))
2408 return false;
2409 if (!code_segment_valid(vcpu))
2410 return false;
2411 if (!stack_segment_valid(vcpu))
2412 return false;
2413 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2414 return false;
2415 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2416 return false;
2417 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2418 return false;
2419 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2420 return false;
2421 if (!tr_valid(vcpu))
2422 return false;
2423 if (!ldtr_valid(vcpu))
2424 return false;
2426 /* TODO:
2427 * - Add checks on RIP
2428 * - Add checks on RFLAGS
2431 return true;
2434 static int init_rmode_tss(struct kvm *kvm)
2436 gfn_t fn;
2437 u16 data = 0;
2438 int r, idx, ret = 0;
2440 idx = srcu_read_lock(&kvm->srcu);
2441 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2442 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2443 if (r < 0)
2444 goto out;
2445 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2446 r = kvm_write_guest_page(kvm, fn++, &data,
2447 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2448 if (r < 0)
2449 goto out;
2450 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2451 if (r < 0)
2452 goto out;
2453 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2454 if (r < 0)
2455 goto out;
2456 data = ~0;
2457 r = kvm_write_guest_page(kvm, fn, &data,
2458 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2459 sizeof(u8));
2460 if (r < 0)
2461 goto out;
2463 ret = 1;
2464 out:
2465 srcu_read_unlock(&kvm->srcu, idx);
2466 return ret;
2469 static int init_rmode_identity_map(struct kvm *kvm)
2471 int i, idx, r, ret;
2472 pfn_t identity_map_pfn;
2473 u32 tmp;
2475 if (!enable_ept)
2476 return 1;
2477 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2478 printk(KERN_ERR "EPT: identity-mapping pagetable "
2479 "haven't been allocated!\n");
2480 return 0;
2482 if (likely(kvm->arch.ept_identity_pagetable_done))
2483 return 1;
2484 ret = 0;
2485 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2486 idx = srcu_read_lock(&kvm->srcu);
2487 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2488 if (r < 0)
2489 goto out;
2490 /* Set up identity-mapping pagetable for EPT in real mode */
2491 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2492 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2493 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2494 r = kvm_write_guest_page(kvm, identity_map_pfn,
2495 &tmp, i * sizeof(tmp), sizeof(tmp));
2496 if (r < 0)
2497 goto out;
2499 kvm->arch.ept_identity_pagetable_done = true;
2500 ret = 1;
2501 out:
2502 srcu_read_unlock(&kvm->srcu, idx);
2503 return ret;
2506 static void seg_setup(int seg)
2508 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2509 unsigned int ar;
2511 vmcs_write16(sf->selector, 0);
2512 vmcs_writel(sf->base, 0);
2513 vmcs_write32(sf->limit, 0xffff);
2514 if (enable_unrestricted_guest) {
2515 ar = 0x93;
2516 if (seg == VCPU_SREG_CS)
2517 ar |= 0x08; /* code segment */
2518 } else
2519 ar = 0xf3;
2521 vmcs_write32(sf->ar_bytes, ar);
2524 static int alloc_apic_access_page(struct kvm *kvm)
2526 struct kvm_userspace_memory_region kvm_userspace_mem;
2527 int r = 0;
2529 mutex_lock(&kvm->slots_lock);
2530 if (kvm->arch.apic_access_page)
2531 goto out;
2532 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2533 kvm_userspace_mem.flags = 0;
2534 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2535 kvm_userspace_mem.memory_size = PAGE_SIZE;
2536 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2537 if (r)
2538 goto out;
2540 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2541 out:
2542 mutex_unlock(&kvm->slots_lock);
2543 return r;
2546 static int alloc_identity_pagetable(struct kvm *kvm)
2548 struct kvm_userspace_memory_region kvm_userspace_mem;
2549 int r = 0;
2551 mutex_lock(&kvm->slots_lock);
2552 if (kvm->arch.ept_identity_pagetable)
2553 goto out;
2554 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2555 kvm_userspace_mem.flags = 0;
2556 kvm_userspace_mem.guest_phys_addr =
2557 kvm->arch.ept_identity_map_addr;
2558 kvm_userspace_mem.memory_size = PAGE_SIZE;
2559 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2560 if (r)
2561 goto out;
2563 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2564 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2565 out:
2566 mutex_unlock(&kvm->slots_lock);
2567 return r;
2570 static void allocate_vpid(struct vcpu_vmx *vmx)
2572 int vpid;
2574 vmx->vpid = 0;
2575 if (!enable_vpid)
2576 return;
2577 spin_lock(&vmx_vpid_lock);
2578 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2579 if (vpid < VMX_NR_VPIDS) {
2580 vmx->vpid = vpid;
2581 __set_bit(vpid, vmx_vpid_bitmap);
2583 spin_unlock(&vmx_vpid_lock);
2586 static void free_vpid(struct vcpu_vmx *vmx)
2588 if (!enable_vpid)
2589 return;
2590 spin_lock(&vmx_vpid_lock);
2591 if (vmx->vpid != 0)
2592 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2593 spin_unlock(&vmx_vpid_lock);
2596 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2598 int f = sizeof(unsigned long);
2600 if (!cpu_has_vmx_msr_bitmap())
2601 return;
2604 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2605 * have the write-low and read-high bitmap offsets the wrong way round.
2606 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2608 if (msr <= 0x1fff) {
2609 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2610 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2611 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2612 msr &= 0x1fff;
2613 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2614 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2618 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2620 if (!longmode_only)
2621 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2622 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2626 * Sets up the vmcs for emulated real mode.
2628 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2630 u32 host_sysenter_cs, msr_low, msr_high;
2631 u32 junk;
2632 u64 host_pat;
2633 unsigned long a;
2634 struct desc_ptr dt;
2635 int i;
2636 unsigned long kvm_vmx_return;
2637 u32 exec_control;
2639 /* I/O */
2640 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2641 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2643 if (cpu_has_vmx_msr_bitmap())
2644 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2646 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2648 /* Control */
2649 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2650 vmcs_config.pin_based_exec_ctrl);
2652 exec_control = vmcs_config.cpu_based_exec_ctrl;
2653 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2654 exec_control &= ~CPU_BASED_TPR_SHADOW;
2655 #ifdef CONFIG_X86_64
2656 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2657 CPU_BASED_CR8_LOAD_EXITING;
2658 #endif
2660 if (!enable_ept)
2661 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2662 CPU_BASED_CR3_LOAD_EXITING |
2663 CPU_BASED_INVLPG_EXITING;
2664 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2666 if (cpu_has_secondary_exec_ctrls()) {
2667 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2668 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2669 exec_control &=
2670 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2671 if (vmx->vpid == 0)
2672 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2673 if (!enable_ept) {
2674 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2675 enable_unrestricted_guest = 0;
2677 if (!enable_unrestricted_guest)
2678 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2679 if (!ple_gap)
2680 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2681 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2684 if (ple_gap) {
2685 vmcs_write32(PLE_GAP, ple_gap);
2686 vmcs_write32(PLE_WINDOW, ple_window);
2689 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2690 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2691 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2693 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2694 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2695 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2697 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2698 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2699 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2700 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2701 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2702 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2703 #ifdef CONFIG_X86_64
2704 rdmsrl(MSR_FS_BASE, a);
2705 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2706 rdmsrl(MSR_GS_BASE, a);
2707 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2708 #else
2709 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2710 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2711 #endif
2713 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2715 native_store_idt(&dt);
2716 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2718 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2719 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2720 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2721 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2722 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2723 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2724 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2726 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2727 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2728 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2729 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2730 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2731 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2733 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2734 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2735 host_pat = msr_low | ((u64) msr_high << 32);
2736 vmcs_write64(HOST_IA32_PAT, host_pat);
2738 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2739 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2740 host_pat = msr_low | ((u64) msr_high << 32);
2741 /* Write the default value follow host pat */
2742 vmcs_write64(GUEST_IA32_PAT, host_pat);
2743 /* Keep arch.pat sync with GUEST_IA32_PAT */
2744 vmx->vcpu.arch.pat = host_pat;
2747 for (i = 0; i < NR_VMX_MSR; ++i) {
2748 u32 index = vmx_msr_index[i];
2749 u32 data_low, data_high;
2750 int j = vmx->nmsrs;
2752 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2753 continue;
2754 if (wrmsr_safe(index, data_low, data_high) < 0)
2755 continue;
2756 vmx->guest_msrs[j].index = i;
2757 vmx->guest_msrs[j].data = 0;
2758 vmx->guest_msrs[j].mask = -1ull;
2759 ++vmx->nmsrs;
2762 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2764 /* 22.2.1, 20.8.1 */
2765 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2767 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2768 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2769 if (enable_ept)
2770 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2771 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2773 kvm_write_tsc(&vmx->vcpu, 0);
2775 return 0;
2778 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2780 struct vcpu_vmx *vmx = to_vmx(vcpu);
2781 u64 msr;
2782 int ret;
2784 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2786 vmx->rmode.vm86_active = 0;
2788 vmx->soft_vnmi_blocked = 0;
2790 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2791 kvm_set_cr8(&vmx->vcpu, 0);
2792 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2793 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2794 msr |= MSR_IA32_APICBASE_BSP;
2795 kvm_set_apic_base(&vmx->vcpu, msr);
2797 ret = fx_init(&vmx->vcpu);
2798 if (ret != 0)
2799 goto out;
2801 seg_setup(VCPU_SREG_CS);
2803 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2804 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2806 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2807 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2808 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2809 } else {
2810 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2811 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2814 seg_setup(VCPU_SREG_DS);
2815 seg_setup(VCPU_SREG_ES);
2816 seg_setup(VCPU_SREG_FS);
2817 seg_setup(VCPU_SREG_GS);
2818 seg_setup(VCPU_SREG_SS);
2820 vmcs_write16(GUEST_TR_SELECTOR, 0);
2821 vmcs_writel(GUEST_TR_BASE, 0);
2822 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2823 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2825 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2826 vmcs_writel(GUEST_LDTR_BASE, 0);
2827 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2828 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2830 vmcs_write32(GUEST_SYSENTER_CS, 0);
2831 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2832 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2834 vmcs_writel(GUEST_RFLAGS, 0x02);
2835 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2836 kvm_rip_write(vcpu, 0xfff0);
2837 else
2838 kvm_rip_write(vcpu, 0);
2839 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2841 vmcs_writel(GUEST_DR7, 0x400);
2843 vmcs_writel(GUEST_GDTR_BASE, 0);
2844 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2846 vmcs_writel(GUEST_IDTR_BASE, 0);
2847 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2849 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2850 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2851 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2853 /* Special registers */
2854 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2856 setup_msrs(vmx);
2858 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2860 if (cpu_has_vmx_tpr_shadow()) {
2861 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2862 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2863 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2864 __pa(vmx->vcpu.arch.apic->regs));
2865 vmcs_write32(TPR_THRESHOLD, 0);
2868 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2869 vmcs_write64(APIC_ACCESS_ADDR,
2870 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2872 if (vmx->vpid != 0)
2873 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2875 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2876 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2877 vmx_set_cr4(&vmx->vcpu, 0);
2878 vmx_set_efer(&vmx->vcpu, 0);
2879 vmx_fpu_activate(&vmx->vcpu);
2880 update_exception_bitmap(&vmx->vcpu);
2882 vpid_sync_context(vmx);
2884 ret = 0;
2886 /* HACK: Don't enable emulation on guest boot/reset */
2887 vmx->emulation_required = 0;
2889 out:
2890 return ret;
2893 static void enable_irq_window(struct kvm_vcpu *vcpu)
2895 u32 cpu_based_vm_exec_control;
2897 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2898 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2899 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2902 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2904 u32 cpu_based_vm_exec_control;
2906 if (!cpu_has_virtual_nmis()) {
2907 enable_irq_window(vcpu);
2908 return;
2911 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2912 enable_irq_window(vcpu);
2913 return;
2915 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2916 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2917 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2920 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2922 struct vcpu_vmx *vmx = to_vmx(vcpu);
2923 uint32_t intr;
2924 int irq = vcpu->arch.interrupt.nr;
2926 trace_kvm_inj_virq(irq);
2928 ++vcpu->stat.irq_injections;
2929 if (vmx->rmode.vm86_active) {
2930 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2931 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932 return;
2934 intr = irq | INTR_INFO_VALID_MASK;
2935 if (vcpu->arch.interrupt.soft) {
2936 intr |= INTR_TYPE_SOFT_INTR;
2937 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2938 vmx->vcpu.arch.event_exit_inst_len);
2939 } else
2940 intr |= INTR_TYPE_EXT_INTR;
2941 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2942 vmx_clear_hlt(vcpu);
2945 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2947 struct vcpu_vmx *vmx = to_vmx(vcpu);
2949 if (!cpu_has_virtual_nmis()) {
2951 * Tracking the NMI-blocked state in software is built upon
2952 * finding the next open IRQ window. This, in turn, depends on
2953 * well-behaving guests: They have to keep IRQs disabled at
2954 * least as long as the NMI handler runs. Otherwise we may
2955 * cause NMI nesting, maybe breaking the guest. But as this is
2956 * highly unlikely, we can live with the residual risk.
2958 vmx->soft_vnmi_blocked = 1;
2959 vmx->vnmi_blocked_time = 0;
2962 ++vcpu->stat.nmi_injections;
2963 vmx->nmi_known_unmasked = false;
2964 if (vmx->rmode.vm86_active) {
2965 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2966 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2967 return;
2969 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2970 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2971 vmx_clear_hlt(vcpu);
2974 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2976 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2977 return 0;
2979 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2980 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2981 | GUEST_INTR_STATE_NMI));
2984 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2986 if (!cpu_has_virtual_nmis())
2987 return to_vmx(vcpu)->soft_vnmi_blocked;
2988 if (to_vmx(vcpu)->nmi_known_unmasked)
2989 return false;
2990 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2993 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2995 struct vcpu_vmx *vmx = to_vmx(vcpu);
2997 if (!cpu_has_virtual_nmis()) {
2998 if (vmx->soft_vnmi_blocked != masked) {
2999 vmx->soft_vnmi_blocked = masked;
3000 vmx->vnmi_blocked_time = 0;
3002 } else {
3003 vmx->nmi_known_unmasked = !masked;
3004 if (masked)
3005 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3006 GUEST_INTR_STATE_NMI);
3007 else
3008 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3009 GUEST_INTR_STATE_NMI);
3013 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3015 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3016 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3017 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3020 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3022 int ret;
3023 struct kvm_userspace_memory_region tss_mem = {
3024 .slot = TSS_PRIVATE_MEMSLOT,
3025 .guest_phys_addr = addr,
3026 .memory_size = PAGE_SIZE * 3,
3027 .flags = 0,
3030 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3031 if (ret)
3032 return ret;
3033 kvm->arch.tss_addr = addr;
3034 if (!init_rmode_tss(kvm))
3035 return -ENOMEM;
3037 return 0;
3040 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3041 int vec, u32 err_code)
3044 * Instruction with address size override prefix opcode 0x67
3045 * Cause the #SS fault with 0 error code in VM86 mode.
3047 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3048 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3049 return 1;
3051 * Forward all other exceptions that are valid in real mode.
3052 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3053 * the required debugging infrastructure rework.
3055 switch (vec) {
3056 case DB_VECTOR:
3057 if (vcpu->guest_debug &
3058 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3059 return 0;
3060 kvm_queue_exception(vcpu, vec);
3061 return 1;
3062 case BP_VECTOR:
3064 * Update instruction length as we may reinject the exception
3065 * from user space while in guest debugging mode.
3067 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3068 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3069 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3070 return 0;
3071 /* fall through */
3072 case DE_VECTOR:
3073 case OF_VECTOR:
3074 case BR_VECTOR:
3075 case UD_VECTOR:
3076 case DF_VECTOR:
3077 case SS_VECTOR:
3078 case GP_VECTOR:
3079 case MF_VECTOR:
3080 kvm_queue_exception(vcpu, vec);
3081 return 1;
3083 return 0;
3087 * Trigger machine check on the host. We assume all the MSRs are already set up
3088 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3089 * We pass a fake environment to the machine check handler because we want
3090 * the guest to be always treated like user space, no matter what context
3091 * it used internally.
3093 static void kvm_machine_check(void)
3095 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3096 struct pt_regs regs = {
3097 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3098 .flags = X86_EFLAGS_IF,
3101 do_machine_check(&regs, 0);
3102 #endif
3105 static int handle_machine_check(struct kvm_vcpu *vcpu)
3107 /* already handled by vcpu_run */
3108 return 1;
3111 static int handle_exception(struct kvm_vcpu *vcpu)
3113 struct vcpu_vmx *vmx = to_vmx(vcpu);
3114 struct kvm_run *kvm_run = vcpu->run;
3115 u32 intr_info, ex_no, error_code;
3116 unsigned long cr2, rip, dr6;
3117 u32 vect_info;
3118 enum emulation_result er;
3120 vect_info = vmx->idt_vectoring_info;
3121 intr_info = vmx->exit_intr_info;
3123 if (is_machine_check(intr_info))
3124 return handle_machine_check(vcpu);
3126 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3127 !is_page_fault(intr_info)) {
3128 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3129 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3130 vcpu->run->internal.ndata = 2;
3131 vcpu->run->internal.data[0] = vect_info;
3132 vcpu->run->internal.data[1] = intr_info;
3133 return 0;
3136 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3137 return 1; /* already handled by vmx_vcpu_run() */
3139 if (is_no_device(intr_info)) {
3140 vmx_fpu_activate(vcpu);
3141 return 1;
3144 if (is_invalid_opcode(intr_info)) {
3145 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3146 if (er != EMULATE_DONE)
3147 kvm_queue_exception(vcpu, UD_VECTOR);
3148 return 1;
3151 error_code = 0;
3152 rip = kvm_rip_read(vcpu);
3153 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3154 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3155 if (is_page_fault(intr_info)) {
3156 /* EPT won't cause page fault directly */
3157 if (enable_ept)
3158 BUG();
3159 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3160 trace_kvm_page_fault(cr2, error_code);
3162 if (kvm_event_needs_reinjection(vcpu))
3163 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3164 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3167 if (vmx->rmode.vm86_active &&
3168 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3169 error_code)) {
3170 if (vcpu->arch.halt_request) {
3171 vcpu->arch.halt_request = 0;
3172 return kvm_emulate_halt(vcpu);
3174 return 1;
3177 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3178 switch (ex_no) {
3179 case DB_VECTOR:
3180 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3181 if (!(vcpu->guest_debug &
3182 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3183 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3184 kvm_queue_exception(vcpu, DB_VECTOR);
3185 return 1;
3187 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3188 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3189 /* fall through */
3190 case BP_VECTOR:
3192 * Update instruction length as we may reinject #BP from
3193 * user space while in guest debugging mode. Reading it for
3194 * #DB as well causes no harm, it is not used in that case.
3196 vmx->vcpu.arch.event_exit_inst_len =
3197 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3198 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3199 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3200 kvm_run->debug.arch.exception = ex_no;
3201 break;
3202 default:
3203 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3204 kvm_run->ex.exception = ex_no;
3205 kvm_run->ex.error_code = error_code;
3206 break;
3208 return 0;
3211 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3213 ++vcpu->stat.irq_exits;
3214 return 1;
3217 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3219 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3220 return 0;
3223 static int handle_io(struct kvm_vcpu *vcpu)
3225 unsigned long exit_qualification;
3226 int size, in, string;
3227 unsigned port;
3229 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3230 string = (exit_qualification & 16) != 0;
3231 in = (exit_qualification & 8) != 0;
3233 ++vcpu->stat.io_exits;
3235 if (string || in)
3236 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3238 port = exit_qualification >> 16;
3239 size = (exit_qualification & 7) + 1;
3240 skip_emulated_instruction(vcpu);
3242 return kvm_fast_pio_out(vcpu, size, port);
3245 static void
3246 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3249 * Patch in the VMCALL instruction:
3251 hypercall[0] = 0x0f;
3252 hypercall[1] = 0x01;
3253 hypercall[2] = 0xc1;
3256 static int handle_cr(struct kvm_vcpu *vcpu)
3258 unsigned long exit_qualification, val;
3259 int cr;
3260 int reg;
3261 int err;
3263 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3264 cr = exit_qualification & 15;
3265 reg = (exit_qualification >> 8) & 15;
3266 switch ((exit_qualification >> 4) & 3) {
3267 case 0: /* mov to cr */
3268 val = kvm_register_read(vcpu, reg);
3269 trace_kvm_cr_write(cr, val);
3270 switch (cr) {
3271 case 0:
3272 err = kvm_set_cr0(vcpu, val);
3273 kvm_complete_insn_gp(vcpu, err);
3274 return 1;
3275 case 3:
3276 err = kvm_set_cr3(vcpu, val);
3277 kvm_complete_insn_gp(vcpu, err);
3278 return 1;
3279 case 4:
3280 err = kvm_set_cr4(vcpu, val);
3281 kvm_complete_insn_gp(vcpu, err);
3282 return 1;
3283 case 8: {
3284 u8 cr8_prev = kvm_get_cr8(vcpu);
3285 u8 cr8 = kvm_register_read(vcpu, reg);
3286 err = kvm_set_cr8(vcpu, cr8);
3287 kvm_complete_insn_gp(vcpu, err);
3288 if (irqchip_in_kernel(vcpu->kvm))
3289 return 1;
3290 if (cr8_prev <= cr8)
3291 return 1;
3292 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3293 return 0;
3296 break;
3297 case 2: /* clts */
3298 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3299 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3300 skip_emulated_instruction(vcpu);
3301 vmx_fpu_activate(vcpu);
3302 return 1;
3303 case 1: /*mov from cr*/
3304 switch (cr) {
3305 case 3:
3306 val = kvm_read_cr3(vcpu);
3307 kvm_register_write(vcpu, reg, val);
3308 trace_kvm_cr_read(cr, val);
3309 skip_emulated_instruction(vcpu);
3310 return 1;
3311 case 8:
3312 val = kvm_get_cr8(vcpu);
3313 kvm_register_write(vcpu, reg, val);
3314 trace_kvm_cr_read(cr, val);
3315 skip_emulated_instruction(vcpu);
3316 return 1;
3318 break;
3319 case 3: /* lmsw */
3320 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3321 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3322 kvm_lmsw(vcpu, val);
3324 skip_emulated_instruction(vcpu);
3325 return 1;
3326 default:
3327 break;
3329 vcpu->run->exit_reason = 0;
3330 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3331 (int)(exit_qualification >> 4) & 3, cr);
3332 return 0;
3335 static int handle_dr(struct kvm_vcpu *vcpu)
3337 unsigned long exit_qualification;
3338 int dr, reg;
3340 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3341 if (!kvm_require_cpl(vcpu, 0))
3342 return 1;
3343 dr = vmcs_readl(GUEST_DR7);
3344 if (dr & DR7_GD) {
3346 * As the vm-exit takes precedence over the debug trap, we
3347 * need to emulate the latter, either for the host or the
3348 * guest debugging itself.
3350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3351 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3352 vcpu->run->debug.arch.dr7 = dr;
3353 vcpu->run->debug.arch.pc =
3354 vmcs_readl(GUEST_CS_BASE) +
3355 vmcs_readl(GUEST_RIP);
3356 vcpu->run->debug.arch.exception = DB_VECTOR;
3357 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3358 return 0;
3359 } else {
3360 vcpu->arch.dr7 &= ~DR7_GD;
3361 vcpu->arch.dr6 |= DR6_BD;
3362 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3363 kvm_queue_exception(vcpu, DB_VECTOR);
3364 return 1;
3368 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3369 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3370 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3371 if (exit_qualification & TYPE_MOV_FROM_DR) {
3372 unsigned long val;
3373 if (!kvm_get_dr(vcpu, dr, &val))
3374 kvm_register_write(vcpu, reg, val);
3375 } else
3376 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3377 skip_emulated_instruction(vcpu);
3378 return 1;
3381 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3383 vmcs_writel(GUEST_DR7, val);
3386 static int handle_cpuid(struct kvm_vcpu *vcpu)
3388 kvm_emulate_cpuid(vcpu);
3389 return 1;
3392 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3394 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3395 u64 data;
3397 if (vmx_get_msr(vcpu, ecx, &data)) {
3398 trace_kvm_msr_read_ex(ecx);
3399 kvm_inject_gp(vcpu, 0);
3400 return 1;
3403 trace_kvm_msr_read(ecx, data);
3405 /* FIXME: handling of bits 32:63 of rax, rdx */
3406 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3407 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3408 skip_emulated_instruction(vcpu);
3409 return 1;
3412 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3414 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3415 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3416 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3418 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3419 trace_kvm_msr_write_ex(ecx, data);
3420 kvm_inject_gp(vcpu, 0);
3421 return 1;
3424 trace_kvm_msr_write(ecx, data);
3425 skip_emulated_instruction(vcpu);
3426 return 1;
3429 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3431 kvm_make_request(KVM_REQ_EVENT, vcpu);
3432 return 1;
3435 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3437 u32 cpu_based_vm_exec_control;
3439 /* clear pending irq */
3440 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3441 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3442 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3444 kvm_make_request(KVM_REQ_EVENT, vcpu);
3446 ++vcpu->stat.irq_window_exits;
3449 * If the user space waits to inject interrupts, exit as soon as
3450 * possible
3452 if (!irqchip_in_kernel(vcpu->kvm) &&
3453 vcpu->run->request_interrupt_window &&
3454 !kvm_cpu_has_interrupt(vcpu)) {
3455 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3456 return 0;
3458 return 1;
3461 static int handle_halt(struct kvm_vcpu *vcpu)
3463 skip_emulated_instruction(vcpu);
3464 return kvm_emulate_halt(vcpu);
3467 static int handle_vmcall(struct kvm_vcpu *vcpu)
3469 skip_emulated_instruction(vcpu);
3470 kvm_emulate_hypercall(vcpu);
3471 return 1;
3474 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3476 kvm_queue_exception(vcpu, UD_VECTOR);
3477 return 1;
3480 static int handle_invd(struct kvm_vcpu *vcpu)
3482 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3485 static int handle_invlpg(struct kvm_vcpu *vcpu)
3487 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3489 kvm_mmu_invlpg(vcpu, exit_qualification);
3490 skip_emulated_instruction(vcpu);
3491 return 1;
3494 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3496 skip_emulated_instruction(vcpu);
3497 kvm_emulate_wbinvd(vcpu);
3498 return 1;
3501 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3503 u64 new_bv = kvm_read_edx_eax(vcpu);
3504 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3506 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3507 skip_emulated_instruction(vcpu);
3508 return 1;
3511 static int handle_apic_access(struct kvm_vcpu *vcpu)
3513 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3516 static int handle_task_switch(struct kvm_vcpu *vcpu)
3518 struct vcpu_vmx *vmx = to_vmx(vcpu);
3519 unsigned long exit_qualification;
3520 bool has_error_code = false;
3521 u32 error_code = 0;
3522 u16 tss_selector;
3523 int reason, type, idt_v;
3525 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3526 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3528 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3530 reason = (u32)exit_qualification >> 30;
3531 if (reason == TASK_SWITCH_GATE && idt_v) {
3532 switch (type) {
3533 case INTR_TYPE_NMI_INTR:
3534 vcpu->arch.nmi_injected = false;
3535 vmx_set_nmi_mask(vcpu, true);
3536 break;
3537 case INTR_TYPE_EXT_INTR:
3538 case INTR_TYPE_SOFT_INTR:
3539 kvm_clear_interrupt_queue(vcpu);
3540 break;
3541 case INTR_TYPE_HARD_EXCEPTION:
3542 if (vmx->idt_vectoring_info &
3543 VECTORING_INFO_DELIVER_CODE_MASK) {
3544 has_error_code = true;
3545 error_code =
3546 vmcs_read32(IDT_VECTORING_ERROR_CODE);
3548 /* fall through */
3549 case INTR_TYPE_SOFT_EXCEPTION:
3550 kvm_clear_exception_queue(vcpu);
3551 break;
3552 default:
3553 break;
3556 tss_selector = exit_qualification;
3558 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3559 type != INTR_TYPE_EXT_INTR &&
3560 type != INTR_TYPE_NMI_INTR))
3561 skip_emulated_instruction(vcpu);
3563 if (kvm_task_switch(vcpu, tss_selector, reason,
3564 has_error_code, error_code) == EMULATE_FAIL) {
3565 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3566 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3567 vcpu->run->internal.ndata = 0;
3568 return 0;
3571 /* clear all local breakpoint enable flags */
3572 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3575 * TODO: What about debug traps on tss switch?
3576 * Are we supposed to inject them and update dr6?
3579 return 1;
3582 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3584 unsigned long exit_qualification;
3585 gpa_t gpa;
3586 int gla_validity;
3588 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3590 if (exit_qualification & (1 << 6)) {
3591 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3592 return -EINVAL;
3595 gla_validity = (exit_qualification >> 7) & 0x3;
3596 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3597 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3598 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3599 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3600 vmcs_readl(GUEST_LINEAR_ADDRESS));
3601 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3602 (long unsigned int)exit_qualification);
3603 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3604 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3605 return 0;
3608 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3609 trace_kvm_page_fault(gpa, exit_qualification);
3610 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3613 static u64 ept_rsvd_mask(u64 spte, int level)
3615 int i;
3616 u64 mask = 0;
3618 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3619 mask |= (1ULL << i);
3621 if (level > 2)
3622 /* bits 7:3 reserved */
3623 mask |= 0xf8;
3624 else if (level == 2) {
3625 if (spte & (1ULL << 7))
3626 /* 2MB ref, bits 20:12 reserved */
3627 mask |= 0x1ff000;
3628 else
3629 /* bits 6:3 reserved */
3630 mask |= 0x78;
3633 return mask;
3636 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3637 int level)
3639 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3641 /* 010b (write-only) */
3642 WARN_ON((spte & 0x7) == 0x2);
3644 /* 110b (write/execute) */
3645 WARN_ON((spte & 0x7) == 0x6);
3647 /* 100b (execute-only) and value not supported by logical processor */
3648 if (!cpu_has_vmx_ept_execute_only())
3649 WARN_ON((spte & 0x7) == 0x4);
3651 /* not 000b */
3652 if ((spte & 0x7)) {
3653 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3655 if (rsvd_bits != 0) {
3656 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3657 __func__, rsvd_bits);
3658 WARN_ON(1);
3661 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3662 u64 ept_mem_type = (spte & 0x38) >> 3;
3664 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3665 ept_mem_type == 7) {
3666 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3667 __func__, ept_mem_type);
3668 WARN_ON(1);
3674 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3676 u64 sptes[4];
3677 int nr_sptes, i;
3678 gpa_t gpa;
3680 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3682 printk(KERN_ERR "EPT: Misconfiguration.\n");
3683 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3685 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3687 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3688 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3690 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3691 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3693 return 0;
3696 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3698 u32 cpu_based_vm_exec_control;
3700 /* clear pending NMI */
3701 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3702 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3703 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3704 ++vcpu->stat.nmi_window_exits;
3705 kvm_make_request(KVM_REQ_EVENT, vcpu);
3707 return 1;
3710 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3712 struct vcpu_vmx *vmx = to_vmx(vcpu);
3713 enum emulation_result err = EMULATE_DONE;
3714 int ret = 1;
3715 u32 cpu_exec_ctrl;
3716 bool intr_window_requested;
3718 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3719 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3721 while (!guest_state_valid(vcpu)) {
3722 if (intr_window_requested
3723 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3724 return handle_interrupt_window(&vmx->vcpu);
3726 err = emulate_instruction(vcpu, 0);
3728 if (err == EMULATE_DO_MMIO) {
3729 ret = 0;
3730 goto out;
3733 if (err != EMULATE_DONE)
3734 return 0;
3736 if (signal_pending(current))
3737 goto out;
3738 if (need_resched())
3739 schedule();
3742 vmx->emulation_required = 0;
3743 out:
3744 return ret;
3748 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3749 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3751 static int handle_pause(struct kvm_vcpu *vcpu)
3753 skip_emulated_instruction(vcpu);
3754 kvm_vcpu_on_spin(vcpu);
3756 return 1;
3759 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3761 kvm_queue_exception(vcpu, UD_VECTOR);
3762 return 1;
3766 * The exit handlers return 1 if the exit was handled fully and guest execution
3767 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3768 * to be done to userspace and return 0.
3770 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3771 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3772 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3773 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3774 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3775 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3776 [EXIT_REASON_CR_ACCESS] = handle_cr,
3777 [EXIT_REASON_DR_ACCESS] = handle_dr,
3778 [EXIT_REASON_CPUID] = handle_cpuid,
3779 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3780 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3781 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3782 [EXIT_REASON_HLT] = handle_halt,
3783 [EXIT_REASON_INVD] = handle_invd,
3784 [EXIT_REASON_INVLPG] = handle_invlpg,
3785 [EXIT_REASON_VMCALL] = handle_vmcall,
3786 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3787 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3788 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3789 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3790 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3791 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3792 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3793 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3794 [EXIT_REASON_VMON] = handle_vmx_insn,
3795 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3796 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3797 [EXIT_REASON_WBINVD] = handle_wbinvd,
3798 [EXIT_REASON_XSETBV] = handle_xsetbv,
3799 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3800 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3801 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3802 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3803 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3804 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3805 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3808 static const int kvm_vmx_max_exit_handlers =
3809 ARRAY_SIZE(kvm_vmx_exit_handlers);
3811 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3813 *info1 = vmcs_readl(EXIT_QUALIFICATION);
3814 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3818 * The guest has exited. See if we can fix it or if we need userspace
3819 * assistance.
3821 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3823 struct vcpu_vmx *vmx = to_vmx(vcpu);
3824 u32 exit_reason = vmx->exit_reason;
3825 u32 vectoring_info = vmx->idt_vectoring_info;
3827 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3829 /* If guest state is invalid, start emulating */
3830 if (vmx->emulation_required && emulate_invalid_guest_state)
3831 return handle_invalid_guest_state(vcpu);
3833 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3834 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3835 vcpu->run->fail_entry.hardware_entry_failure_reason
3836 = exit_reason;
3837 return 0;
3840 if (unlikely(vmx->fail)) {
3841 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3842 vcpu->run->fail_entry.hardware_entry_failure_reason
3843 = vmcs_read32(VM_INSTRUCTION_ERROR);
3844 return 0;
3847 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3848 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3849 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3850 exit_reason != EXIT_REASON_TASK_SWITCH))
3851 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3852 "(0x%x) and exit reason is 0x%x\n",
3853 __func__, vectoring_info, exit_reason);
3855 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3856 if (vmx_interrupt_allowed(vcpu)) {
3857 vmx->soft_vnmi_blocked = 0;
3858 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3859 vcpu->arch.nmi_pending) {
3861 * This CPU don't support us in finding the end of an
3862 * NMI-blocked window if the guest runs with IRQs
3863 * disabled. So we pull the trigger after 1 s of
3864 * futile waiting, but inform the user about this.
3866 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3867 "state on VCPU %d after 1 s timeout\n",
3868 __func__, vcpu->vcpu_id);
3869 vmx->soft_vnmi_blocked = 0;
3873 if (exit_reason < kvm_vmx_max_exit_handlers
3874 && kvm_vmx_exit_handlers[exit_reason])
3875 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3876 else {
3877 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3878 vcpu->run->hw.hardware_exit_reason = exit_reason;
3880 return 0;
3883 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3885 if (irr == -1 || tpr < irr) {
3886 vmcs_write32(TPR_THRESHOLD, 0);
3887 return;
3890 vmcs_write32(TPR_THRESHOLD, irr);
3893 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3895 u32 exit_intr_info;
3897 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
3898 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
3899 return;
3901 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3902 exit_intr_info = vmx->exit_intr_info;
3904 /* Handle machine checks before interrupts are enabled */
3905 if (is_machine_check(exit_intr_info))
3906 kvm_machine_check();
3908 /* We need to handle NMIs before interrupts are enabled */
3909 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3910 (exit_intr_info & INTR_INFO_VALID_MASK)) {
3911 kvm_before_handle_nmi(&vmx->vcpu);
3912 asm("int $2");
3913 kvm_after_handle_nmi(&vmx->vcpu);
3917 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3919 u32 exit_intr_info;
3920 bool unblock_nmi;
3921 u8 vector;
3922 bool idtv_info_valid;
3924 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3926 if (cpu_has_virtual_nmis()) {
3927 if (vmx->nmi_known_unmasked)
3928 return;
3930 * Can't use vmx->exit_intr_info since we're not sure what
3931 * the exit reason is.
3933 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3934 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3935 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3937 * SDM 3: 27.7.1.2 (September 2008)
3938 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3939 * a guest IRET fault.
3940 * SDM 3: 23.2.2 (September 2008)
3941 * Bit 12 is undefined in any of the following cases:
3942 * If the VM exit sets the valid bit in the IDT-vectoring
3943 * information field.
3944 * If the VM exit is due to a double fault.
3946 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3947 vector != DF_VECTOR && !idtv_info_valid)
3948 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3949 GUEST_INTR_STATE_NMI);
3950 else
3951 vmx->nmi_known_unmasked =
3952 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
3953 & GUEST_INTR_STATE_NMI);
3954 } else if (unlikely(vmx->soft_vnmi_blocked))
3955 vmx->vnmi_blocked_time +=
3956 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3959 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3960 u32 idt_vectoring_info,
3961 int instr_len_field,
3962 int error_code_field)
3964 u8 vector;
3965 int type;
3966 bool idtv_info_valid;
3968 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3970 vmx->vcpu.arch.nmi_injected = false;
3971 kvm_clear_exception_queue(&vmx->vcpu);
3972 kvm_clear_interrupt_queue(&vmx->vcpu);
3974 if (!idtv_info_valid)
3975 return;
3977 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3979 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3980 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3982 switch (type) {
3983 case INTR_TYPE_NMI_INTR:
3984 vmx->vcpu.arch.nmi_injected = true;
3986 * SDM 3: 27.7.1.2 (September 2008)
3987 * Clear bit "block by NMI" before VM entry if a NMI
3988 * delivery faulted.
3990 vmx_set_nmi_mask(&vmx->vcpu, false);
3991 break;
3992 case INTR_TYPE_SOFT_EXCEPTION:
3993 vmx->vcpu.arch.event_exit_inst_len =
3994 vmcs_read32(instr_len_field);
3995 /* fall through */
3996 case INTR_TYPE_HARD_EXCEPTION:
3997 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3998 u32 err = vmcs_read32(error_code_field);
3999 kvm_queue_exception_e(&vmx->vcpu, vector, err);
4000 } else
4001 kvm_queue_exception(&vmx->vcpu, vector);
4002 break;
4003 case INTR_TYPE_SOFT_INTR:
4004 vmx->vcpu.arch.event_exit_inst_len =
4005 vmcs_read32(instr_len_field);
4006 /* fall through */
4007 case INTR_TYPE_EXT_INTR:
4008 kvm_queue_interrupt(&vmx->vcpu, vector,
4009 type == INTR_TYPE_SOFT_INTR);
4010 break;
4011 default:
4012 break;
4016 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4018 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4019 VM_EXIT_INSTRUCTION_LEN,
4020 IDT_VECTORING_ERROR_CODE);
4023 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4025 __vmx_complete_interrupts(to_vmx(vcpu),
4026 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4027 VM_ENTRY_INSTRUCTION_LEN,
4028 VM_ENTRY_EXCEPTION_ERROR_CODE);
4030 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4033 #ifdef CONFIG_X86_64
4034 #define R "r"
4035 #define Q "q"
4036 #else
4037 #define R "e"
4038 #define Q "l"
4039 #endif
4041 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4043 struct vcpu_vmx *vmx = to_vmx(vcpu);
4045 /* Record the guest's net vcpu time for enforced NMI injections. */
4046 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4047 vmx->entry_time = ktime_get();
4049 /* Don't enter VMX if guest state is invalid, let the exit handler
4050 start emulation until we arrive back to a valid state */
4051 if (vmx->emulation_required && emulate_invalid_guest_state)
4052 return;
4054 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4055 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4056 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4057 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4059 /* When single-stepping over STI and MOV SS, we must clear the
4060 * corresponding interruptibility bits in the guest state. Otherwise
4061 * vmentry fails as it then expects bit 14 (BS) in pending debug
4062 * exceptions being set, but that's not correct for the guest debugging
4063 * case. */
4064 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4065 vmx_set_interrupt_shadow(vcpu, 0);
4067 asm(
4068 /* Store host registers */
4069 "push %%"R"dx; push %%"R"bp;"
4070 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4071 "push %%"R"cx \n\t"
4072 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4073 "je 1f \n\t"
4074 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4075 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4076 "1: \n\t"
4077 /* Reload cr2 if changed */
4078 "mov %c[cr2](%0), %%"R"ax \n\t"
4079 "mov %%cr2, %%"R"dx \n\t"
4080 "cmp %%"R"ax, %%"R"dx \n\t"
4081 "je 2f \n\t"
4082 "mov %%"R"ax, %%cr2 \n\t"
4083 "2: \n\t"
4084 /* Check if vmlaunch of vmresume is needed */
4085 "cmpl $0, %c[launched](%0) \n\t"
4086 /* Load guest registers. Don't clobber flags. */
4087 "mov %c[rax](%0), %%"R"ax \n\t"
4088 "mov %c[rbx](%0), %%"R"bx \n\t"
4089 "mov %c[rdx](%0), %%"R"dx \n\t"
4090 "mov %c[rsi](%0), %%"R"si \n\t"
4091 "mov %c[rdi](%0), %%"R"di \n\t"
4092 "mov %c[rbp](%0), %%"R"bp \n\t"
4093 #ifdef CONFIG_X86_64
4094 "mov %c[r8](%0), %%r8 \n\t"
4095 "mov %c[r9](%0), %%r9 \n\t"
4096 "mov %c[r10](%0), %%r10 \n\t"
4097 "mov %c[r11](%0), %%r11 \n\t"
4098 "mov %c[r12](%0), %%r12 \n\t"
4099 "mov %c[r13](%0), %%r13 \n\t"
4100 "mov %c[r14](%0), %%r14 \n\t"
4101 "mov %c[r15](%0), %%r15 \n\t"
4102 #endif
4103 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4105 /* Enter guest mode */
4106 "jne .Llaunched \n\t"
4107 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4108 "jmp .Lkvm_vmx_return \n\t"
4109 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4110 ".Lkvm_vmx_return: "
4111 /* Save guest registers, load host registers, keep flags */
4112 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4113 "pop %0 \n\t"
4114 "mov %%"R"ax, %c[rax](%0) \n\t"
4115 "mov %%"R"bx, %c[rbx](%0) \n\t"
4116 "pop"Q" %c[rcx](%0) \n\t"
4117 "mov %%"R"dx, %c[rdx](%0) \n\t"
4118 "mov %%"R"si, %c[rsi](%0) \n\t"
4119 "mov %%"R"di, %c[rdi](%0) \n\t"
4120 "mov %%"R"bp, %c[rbp](%0) \n\t"
4121 #ifdef CONFIG_X86_64
4122 "mov %%r8, %c[r8](%0) \n\t"
4123 "mov %%r9, %c[r9](%0) \n\t"
4124 "mov %%r10, %c[r10](%0) \n\t"
4125 "mov %%r11, %c[r11](%0) \n\t"
4126 "mov %%r12, %c[r12](%0) \n\t"
4127 "mov %%r13, %c[r13](%0) \n\t"
4128 "mov %%r14, %c[r14](%0) \n\t"
4129 "mov %%r15, %c[r15](%0) \n\t"
4130 #endif
4131 "mov %%cr2, %%"R"ax \n\t"
4132 "mov %%"R"ax, %c[cr2](%0) \n\t"
4134 "pop %%"R"bp; pop %%"R"dx \n\t"
4135 "setbe %c[fail](%0) \n\t"
4136 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4137 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4138 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4139 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4140 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4141 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4142 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4143 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4144 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4145 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4146 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4147 #ifdef CONFIG_X86_64
4148 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4149 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4150 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4151 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4152 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4153 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4154 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4155 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4156 #endif
4157 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4158 [wordsize]"i"(sizeof(ulong))
4159 : "cc", "memory"
4160 , R"ax", R"bx", R"di", R"si"
4161 #ifdef CONFIG_X86_64
4162 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4163 #endif
4166 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4167 | (1 << VCPU_EXREG_RFLAGS)
4168 | (1 << VCPU_EXREG_CPL)
4169 | (1 << VCPU_EXREG_PDPTR)
4170 | (1 << VCPU_EXREG_CR3));
4171 vcpu->arch.regs_dirty = 0;
4173 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4175 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4176 vmx->launched = 1;
4178 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4180 vmx_complete_atomic_exit(vmx);
4181 vmx_recover_nmi_blocking(vmx);
4182 vmx_complete_interrupts(vmx);
4185 #undef R
4186 #undef Q
4188 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4190 struct vcpu_vmx *vmx = to_vmx(vcpu);
4192 if (vmx->vmcs) {
4193 vcpu_clear(vmx);
4194 free_vmcs(vmx->vmcs);
4195 vmx->vmcs = NULL;
4199 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4201 struct vcpu_vmx *vmx = to_vmx(vcpu);
4203 free_vpid(vmx);
4204 vmx_free_vmcs(vcpu);
4205 kfree(vmx->guest_msrs);
4206 kvm_vcpu_uninit(vcpu);
4207 kmem_cache_free(kvm_vcpu_cache, vmx);
4210 static inline void vmcs_init(struct vmcs *vmcs)
4212 u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4214 if (!vmm_exclusive)
4215 kvm_cpu_vmxon(phys_addr);
4217 vmcs_clear(vmcs);
4219 if (!vmm_exclusive)
4220 kvm_cpu_vmxoff();
4223 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4225 int err;
4226 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4227 int cpu;
4229 if (!vmx)
4230 return ERR_PTR(-ENOMEM);
4232 allocate_vpid(vmx);
4234 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4235 if (err)
4236 goto free_vcpu;
4238 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4239 if (!vmx->guest_msrs) {
4240 err = -ENOMEM;
4241 goto uninit_vcpu;
4244 vmx->vmcs = alloc_vmcs();
4245 if (!vmx->vmcs)
4246 goto free_msrs;
4248 vmcs_init(vmx->vmcs);
4250 cpu = get_cpu();
4251 vmx_vcpu_load(&vmx->vcpu, cpu);
4252 vmx->vcpu.cpu = cpu;
4253 err = vmx_vcpu_setup(vmx);
4254 vmx_vcpu_put(&vmx->vcpu);
4255 put_cpu();
4256 if (err)
4257 goto free_vmcs;
4258 if (vm_need_virtualize_apic_accesses(kvm))
4259 if (alloc_apic_access_page(kvm) != 0)
4260 goto free_vmcs;
4262 if (enable_ept) {
4263 if (!kvm->arch.ept_identity_map_addr)
4264 kvm->arch.ept_identity_map_addr =
4265 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4266 err = -ENOMEM;
4267 if (alloc_identity_pagetable(kvm) != 0)
4268 goto free_vmcs;
4269 if (!init_rmode_identity_map(kvm))
4270 goto free_vmcs;
4273 return &vmx->vcpu;
4275 free_vmcs:
4276 free_vmcs(vmx->vmcs);
4277 free_msrs:
4278 kfree(vmx->guest_msrs);
4279 uninit_vcpu:
4280 kvm_vcpu_uninit(&vmx->vcpu);
4281 free_vcpu:
4282 free_vpid(vmx);
4283 kmem_cache_free(kvm_vcpu_cache, vmx);
4284 return ERR_PTR(err);
4287 static void __init vmx_check_processor_compat(void *rtn)
4289 struct vmcs_config vmcs_conf;
4291 *(int *)rtn = 0;
4292 if (setup_vmcs_config(&vmcs_conf) < 0)
4293 *(int *)rtn = -EIO;
4294 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4295 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4296 smp_processor_id());
4297 *(int *)rtn = -EIO;
4301 static int get_ept_level(void)
4303 return VMX_EPT_DEFAULT_GAW + 1;
4306 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4308 u64 ret;
4310 /* For VT-d and EPT combination
4311 * 1. MMIO: always map as UC
4312 * 2. EPT with VT-d:
4313 * a. VT-d without snooping control feature: can't guarantee the
4314 * result, try to trust guest.
4315 * b. VT-d with snooping control feature: snooping control feature of
4316 * VT-d engine can guarantee the cache correctness. Just set it
4317 * to WB to keep consistent with host. So the same as item 3.
4318 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4319 * consistent with host MTRR
4321 if (is_mmio)
4322 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4323 else if (vcpu->kvm->arch.iommu_domain &&
4324 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4325 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4326 VMX_EPT_MT_EPTE_SHIFT;
4327 else
4328 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4329 | VMX_EPT_IPAT_BIT;
4331 return ret;
4334 #define _ER(x) { EXIT_REASON_##x, #x }
4336 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4337 _ER(EXCEPTION_NMI),
4338 _ER(EXTERNAL_INTERRUPT),
4339 _ER(TRIPLE_FAULT),
4340 _ER(PENDING_INTERRUPT),
4341 _ER(NMI_WINDOW),
4342 _ER(TASK_SWITCH),
4343 _ER(CPUID),
4344 _ER(HLT),
4345 _ER(INVLPG),
4346 _ER(RDPMC),
4347 _ER(RDTSC),
4348 _ER(VMCALL),
4349 _ER(VMCLEAR),
4350 _ER(VMLAUNCH),
4351 _ER(VMPTRLD),
4352 _ER(VMPTRST),
4353 _ER(VMREAD),
4354 _ER(VMRESUME),
4355 _ER(VMWRITE),
4356 _ER(VMOFF),
4357 _ER(VMON),
4358 _ER(CR_ACCESS),
4359 _ER(DR_ACCESS),
4360 _ER(IO_INSTRUCTION),
4361 _ER(MSR_READ),
4362 _ER(MSR_WRITE),
4363 _ER(MWAIT_INSTRUCTION),
4364 _ER(MONITOR_INSTRUCTION),
4365 _ER(PAUSE_INSTRUCTION),
4366 _ER(MCE_DURING_VMENTRY),
4367 _ER(TPR_BELOW_THRESHOLD),
4368 _ER(APIC_ACCESS),
4369 _ER(EPT_VIOLATION),
4370 _ER(EPT_MISCONFIG),
4371 _ER(WBINVD),
4372 { -1, NULL }
4375 #undef _ER
4377 static int vmx_get_lpage_level(void)
4379 if (enable_ept && !cpu_has_vmx_ept_1g_page())
4380 return PT_DIRECTORY_LEVEL;
4381 else
4382 /* For shadow and EPT supported 1GB page */
4383 return PT_PDPE_LEVEL;
4386 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4388 struct kvm_cpuid_entry2 *best;
4389 struct vcpu_vmx *vmx = to_vmx(vcpu);
4390 u32 exec_control;
4392 vmx->rdtscp_enabled = false;
4393 if (vmx_rdtscp_supported()) {
4394 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4395 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4396 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4397 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4398 vmx->rdtscp_enabled = true;
4399 else {
4400 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4401 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4402 exec_control);
4408 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4412 static struct kvm_x86_ops vmx_x86_ops = {
4413 .cpu_has_kvm_support = cpu_has_kvm_support,
4414 .disabled_by_bios = vmx_disabled_by_bios,
4415 .hardware_setup = hardware_setup,
4416 .hardware_unsetup = hardware_unsetup,
4417 .check_processor_compatibility = vmx_check_processor_compat,
4418 .hardware_enable = hardware_enable,
4419 .hardware_disable = hardware_disable,
4420 .cpu_has_accelerated_tpr = report_flexpriority,
4422 .vcpu_create = vmx_create_vcpu,
4423 .vcpu_free = vmx_free_vcpu,
4424 .vcpu_reset = vmx_vcpu_reset,
4426 .prepare_guest_switch = vmx_save_host_state,
4427 .vcpu_load = vmx_vcpu_load,
4428 .vcpu_put = vmx_vcpu_put,
4430 .set_guest_debug = set_guest_debug,
4431 .get_msr = vmx_get_msr,
4432 .set_msr = vmx_set_msr,
4433 .get_segment_base = vmx_get_segment_base,
4434 .get_segment = vmx_get_segment,
4435 .set_segment = vmx_set_segment,
4436 .get_cpl = vmx_get_cpl,
4437 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4438 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4439 .decache_cr3 = vmx_decache_cr3,
4440 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4441 .set_cr0 = vmx_set_cr0,
4442 .set_cr3 = vmx_set_cr3,
4443 .set_cr4 = vmx_set_cr4,
4444 .set_efer = vmx_set_efer,
4445 .get_idt = vmx_get_idt,
4446 .set_idt = vmx_set_idt,
4447 .get_gdt = vmx_get_gdt,
4448 .set_gdt = vmx_set_gdt,
4449 .set_dr7 = vmx_set_dr7,
4450 .cache_reg = vmx_cache_reg,
4451 .get_rflags = vmx_get_rflags,
4452 .set_rflags = vmx_set_rflags,
4453 .fpu_activate = vmx_fpu_activate,
4454 .fpu_deactivate = vmx_fpu_deactivate,
4456 .tlb_flush = vmx_flush_tlb,
4458 .run = vmx_vcpu_run,
4459 .handle_exit = vmx_handle_exit,
4460 .skip_emulated_instruction = skip_emulated_instruction,
4461 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4462 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4463 .patch_hypercall = vmx_patch_hypercall,
4464 .set_irq = vmx_inject_irq,
4465 .set_nmi = vmx_inject_nmi,
4466 .queue_exception = vmx_queue_exception,
4467 .cancel_injection = vmx_cancel_injection,
4468 .interrupt_allowed = vmx_interrupt_allowed,
4469 .nmi_allowed = vmx_nmi_allowed,
4470 .get_nmi_mask = vmx_get_nmi_mask,
4471 .set_nmi_mask = vmx_set_nmi_mask,
4472 .enable_nmi_window = enable_nmi_window,
4473 .enable_irq_window = enable_irq_window,
4474 .update_cr8_intercept = update_cr8_intercept,
4476 .set_tss_addr = vmx_set_tss_addr,
4477 .get_tdp_level = get_ept_level,
4478 .get_mt_mask = vmx_get_mt_mask,
4480 .get_exit_info = vmx_get_exit_info,
4481 .exit_reasons_str = vmx_exit_reasons_str,
4483 .get_lpage_level = vmx_get_lpage_level,
4485 .cpuid_update = vmx_cpuid_update,
4487 .rdtscp_supported = vmx_rdtscp_supported,
4489 .set_supported_cpuid = vmx_set_supported_cpuid,
4491 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4493 .write_tsc_offset = vmx_write_tsc_offset,
4494 .adjust_tsc_offset = vmx_adjust_tsc_offset,
4496 .set_tdp_cr3 = vmx_set_cr3,
4499 static int __init vmx_init(void)
4501 int r, i;
4503 rdmsrl_safe(MSR_EFER, &host_efer);
4505 for (i = 0; i < NR_VMX_MSR; ++i)
4506 kvm_define_shared_msr(i, vmx_msr_index[i]);
4508 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4509 if (!vmx_io_bitmap_a)
4510 return -ENOMEM;
4512 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4513 if (!vmx_io_bitmap_b) {
4514 r = -ENOMEM;
4515 goto out;
4518 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4519 if (!vmx_msr_bitmap_legacy) {
4520 r = -ENOMEM;
4521 goto out1;
4524 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4525 if (!vmx_msr_bitmap_longmode) {
4526 r = -ENOMEM;
4527 goto out2;
4531 * Allow direct access to the PC debug port (it is often used for I/O
4532 * delays, but the vmexits simply slow things down).
4534 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4535 clear_bit(0x80, vmx_io_bitmap_a);
4537 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4539 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4540 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4542 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4544 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4545 __alignof__(struct vcpu_vmx), THIS_MODULE);
4546 if (r)
4547 goto out3;
4549 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4550 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4551 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4552 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4553 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4554 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4556 if (enable_ept) {
4557 bypass_guest_pf = 0;
4558 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4559 VMX_EPT_EXECUTABLE_MASK);
4560 kvm_enable_tdp();
4561 } else
4562 kvm_disable_tdp();
4564 if (bypass_guest_pf)
4565 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4567 return 0;
4569 out3:
4570 free_page((unsigned long)vmx_msr_bitmap_longmode);
4571 out2:
4572 free_page((unsigned long)vmx_msr_bitmap_legacy);
4573 out1:
4574 free_page((unsigned long)vmx_io_bitmap_b);
4575 out:
4576 free_page((unsigned long)vmx_io_bitmap_a);
4577 return r;
4580 static void __exit vmx_exit(void)
4582 free_page((unsigned long)vmx_msr_bitmap_legacy);
4583 free_page((unsigned long)vmx_msr_bitmap_longmode);
4584 free_page((unsigned long)vmx_io_bitmap_b);
4585 free_page((unsigned long)vmx_io_bitmap_a);
4587 kvm_exit();
4590 module_init(vmx_init)
4591 module_exit(vmx_exit)