fs/reiserfs: return f_fsid for statfs(2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / workqueue.c
blob32f8e0d2bf5ad2d629b63432e654f2948949420a
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
38 * The per-CPU workqueue (if single thread, we always use the first
39 * possible cpu).
41 struct cpu_workqueue_struct {
43 spinlock_t lock;
45 struct list_head worklist;
46 wait_queue_head_t more_work;
47 struct work_struct *current_work;
49 struct workqueue_struct *wq;
50 struct task_struct *thread;
51 } ____cacheline_aligned;
54 * The externally visible workqueue abstraction is an array of
55 * per-CPU workqueues:
57 struct workqueue_struct {
58 struct cpu_workqueue_struct *cpu_wq;
59 struct list_head list;
60 const char *name;
61 int singlethread;
62 int freezeable; /* Freeze threads during suspend */
63 int rt;
64 #ifdef CONFIG_LOCKDEP
65 struct lockdep_map lockdep_map;
66 #endif
69 /* Serializes the accesses to the list of workqueues. */
70 static DEFINE_SPINLOCK(workqueue_lock);
71 static LIST_HEAD(workqueues);
73 static int singlethread_cpu __read_mostly;
74 static const struct cpumask *cpu_singlethread_map __read_mostly;
76 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
77 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
78 * which comes in between can't use for_each_online_cpu(). We could
79 * use cpu_possible_map, the cpumask below is more a documentation
80 * than optimization.
82 static cpumask_var_t cpu_populated_map __read_mostly;
84 /* If it's single threaded, it isn't in the list of workqueues. */
85 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
87 return wq->singlethread;
90 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
92 return is_wq_single_threaded(wq)
93 ? cpu_singlethread_map : cpu_populated_map;
96 static
97 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
99 if (unlikely(is_wq_single_threaded(wq)))
100 cpu = singlethread_cpu;
101 return per_cpu_ptr(wq->cpu_wq, cpu);
105 * Set the workqueue on which a work item is to be run
106 * - Must *only* be called if the pending flag is set
108 static inline void set_wq_data(struct work_struct *work,
109 struct cpu_workqueue_struct *cwq)
111 unsigned long new;
113 BUG_ON(!work_pending(work));
115 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
116 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
117 atomic_long_set(&work->data, new);
120 static inline
121 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
123 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
126 static void insert_work(struct cpu_workqueue_struct *cwq,
127 struct work_struct *work, struct list_head *head)
129 set_wq_data(work, cwq);
131 * Ensure that we get the right work->data if we see the
132 * result of list_add() below, see try_to_grab_pending().
134 smp_wmb();
135 list_add_tail(&work->entry, head);
136 wake_up(&cwq->more_work);
139 static void __queue_work(struct cpu_workqueue_struct *cwq,
140 struct work_struct *work)
142 unsigned long flags;
144 spin_lock_irqsave(&cwq->lock, flags);
145 insert_work(cwq, work, &cwq->worklist);
146 spin_unlock_irqrestore(&cwq->lock, flags);
150 * queue_work - queue work on a workqueue
151 * @wq: workqueue to use
152 * @work: work to queue
154 * Returns 0 if @work was already on a queue, non-zero otherwise.
156 * We queue the work to the CPU on which it was submitted, but if the CPU dies
157 * it can be processed by another CPU.
159 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
161 int ret;
163 ret = queue_work_on(get_cpu(), wq, work);
164 put_cpu();
166 return ret;
168 EXPORT_SYMBOL_GPL(queue_work);
171 * queue_work_on - queue work on specific cpu
172 * @cpu: CPU number to execute work on
173 * @wq: workqueue to use
174 * @work: work to queue
176 * Returns 0 if @work was already on a queue, non-zero otherwise.
178 * We queue the work to a specific CPU, the caller must ensure it
179 * can't go away.
182 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
184 int ret = 0;
186 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
187 BUG_ON(!list_empty(&work->entry));
188 __queue_work(wq_per_cpu(wq, cpu), work);
189 ret = 1;
191 return ret;
193 EXPORT_SYMBOL_GPL(queue_work_on);
195 static void delayed_work_timer_fn(unsigned long __data)
197 struct delayed_work *dwork = (struct delayed_work *)__data;
198 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
199 struct workqueue_struct *wq = cwq->wq;
201 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
205 * queue_delayed_work - queue work on a workqueue after delay
206 * @wq: workqueue to use
207 * @dwork: delayable work to queue
208 * @delay: number of jiffies to wait before queueing
210 * Returns 0 if @work was already on a queue, non-zero otherwise.
212 int queue_delayed_work(struct workqueue_struct *wq,
213 struct delayed_work *dwork, unsigned long delay)
215 if (delay == 0)
216 return queue_work(wq, &dwork->work);
218 return queue_delayed_work_on(-1, wq, dwork, delay);
220 EXPORT_SYMBOL_GPL(queue_delayed_work);
223 * queue_delayed_work_on - queue work on specific CPU after delay
224 * @cpu: CPU number to execute work on
225 * @wq: workqueue to use
226 * @dwork: work to queue
227 * @delay: number of jiffies to wait before queueing
229 * Returns 0 if @work was already on a queue, non-zero otherwise.
231 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
232 struct delayed_work *dwork, unsigned long delay)
234 int ret = 0;
235 struct timer_list *timer = &dwork->timer;
236 struct work_struct *work = &dwork->work;
238 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
239 BUG_ON(timer_pending(timer));
240 BUG_ON(!list_empty(&work->entry));
242 timer_stats_timer_set_start_info(&dwork->timer);
244 /* This stores cwq for the moment, for the timer_fn */
245 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
246 timer->expires = jiffies + delay;
247 timer->data = (unsigned long)dwork;
248 timer->function = delayed_work_timer_fn;
250 if (unlikely(cpu >= 0))
251 add_timer_on(timer, cpu);
252 else
253 add_timer(timer);
254 ret = 1;
256 return ret;
258 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
260 static void run_workqueue(struct cpu_workqueue_struct *cwq)
262 spin_lock_irq(&cwq->lock);
263 while (!list_empty(&cwq->worklist)) {
264 struct work_struct *work = list_entry(cwq->worklist.next,
265 struct work_struct, entry);
266 work_func_t f = work->func;
267 #ifdef CONFIG_LOCKDEP
269 * It is permissible to free the struct work_struct
270 * from inside the function that is called from it,
271 * this we need to take into account for lockdep too.
272 * To avoid bogus "held lock freed" warnings as well
273 * as problems when looking into work->lockdep_map,
274 * make a copy and use that here.
276 struct lockdep_map lockdep_map = work->lockdep_map;
277 #endif
279 cwq->current_work = work;
280 list_del_init(cwq->worklist.next);
281 spin_unlock_irq(&cwq->lock);
283 BUG_ON(get_wq_data(work) != cwq);
284 work_clear_pending(work);
285 lock_map_acquire(&cwq->wq->lockdep_map);
286 lock_map_acquire(&lockdep_map);
287 f(work);
288 lock_map_release(&lockdep_map);
289 lock_map_release(&cwq->wq->lockdep_map);
291 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
292 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
293 "%s/0x%08x/%d\n",
294 current->comm, preempt_count(),
295 task_pid_nr(current));
296 printk(KERN_ERR " last function: ");
297 print_symbol("%s\n", (unsigned long)f);
298 debug_show_held_locks(current);
299 dump_stack();
302 spin_lock_irq(&cwq->lock);
303 cwq->current_work = NULL;
305 spin_unlock_irq(&cwq->lock);
308 static int worker_thread(void *__cwq)
310 struct cpu_workqueue_struct *cwq = __cwq;
311 DEFINE_WAIT(wait);
313 if (cwq->wq->freezeable)
314 set_freezable();
316 set_user_nice(current, -5);
318 for (;;) {
319 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
320 if (!freezing(current) &&
321 !kthread_should_stop() &&
322 list_empty(&cwq->worklist))
323 schedule();
324 finish_wait(&cwq->more_work, &wait);
326 try_to_freeze();
328 if (kthread_should_stop())
329 break;
331 run_workqueue(cwq);
334 return 0;
337 struct wq_barrier {
338 struct work_struct work;
339 struct completion done;
342 static void wq_barrier_func(struct work_struct *work)
344 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
345 complete(&barr->done);
348 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
349 struct wq_barrier *barr, struct list_head *head)
351 INIT_WORK(&barr->work, wq_barrier_func);
352 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
354 init_completion(&barr->done);
356 insert_work(cwq, &barr->work, head);
359 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
361 int active = 0;
362 struct wq_barrier barr;
364 WARN_ON(cwq->thread == current);
366 spin_lock_irq(&cwq->lock);
367 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
368 insert_wq_barrier(cwq, &barr, &cwq->worklist);
369 active = 1;
371 spin_unlock_irq(&cwq->lock);
373 if (active)
374 wait_for_completion(&barr.done);
376 return active;
380 * flush_workqueue - ensure that any scheduled work has run to completion.
381 * @wq: workqueue to flush
383 * Forces execution of the workqueue and blocks until its completion.
384 * This is typically used in driver shutdown handlers.
386 * We sleep until all works which were queued on entry have been handled,
387 * but we are not livelocked by new incoming ones.
389 * This function used to run the workqueues itself. Now we just wait for the
390 * helper threads to do it.
392 void flush_workqueue(struct workqueue_struct *wq)
394 const struct cpumask *cpu_map = wq_cpu_map(wq);
395 int cpu;
397 might_sleep();
398 lock_map_acquire(&wq->lockdep_map);
399 lock_map_release(&wq->lockdep_map);
400 for_each_cpu(cpu, cpu_map)
401 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
403 EXPORT_SYMBOL_GPL(flush_workqueue);
406 * flush_work - block until a work_struct's callback has terminated
407 * @work: the work which is to be flushed
409 * Returns false if @work has already terminated.
411 * It is expected that, prior to calling flush_work(), the caller has
412 * arranged for the work to not be requeued, otherwise it doesn't make
413 * sense to use this function.
415 int flush_work(struct work_struct *work)
417 struct cpu_workqueue_struct *cwq;
418 struct list_head *prev;
419 struct wq_barrier barr;
421 might_sleep();
422 cwq = get_wq_data(work);
423 if (!cwq)
424 return 0;
426 lock_map_acquire(&cwq->wq->lockdep_map);
427 lock_map_release(&cwq->wq->lockdep_map);
429 prev = NULL;
430 spin_lock_irq(&cwq->lock);
431 if (!list_empty(&work->entry)) {
433 * See the comment near try_to_grab_pending()->smp_rmb().
434 * If it was re-queued under us we are not going to wait.
436 smp_rmb();
437 if (unlikely(cwq != get_wq_data(work)))
438 goto out;
439 prev = &work->entry;
440 } else {
441 if (cwq->current_work != work)
442 goto out;
443 prev = &cwq->worklist;
445 insert_wq_barrier(cwq, &barr, prev->next);
446 out:
447 spin_unlock_irq(&cwq->lock);
448 if (!prev)
449 return 0;
451 wait_for_completion(&barr.done);
452 return 1;
454 EXPORT_SYMBOL_GPL(flush_work);
457 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
458 * so this work can't be re-armed in any way.
460 static int try_to_grab_pending(struct work_struct *work)
462 struct cpu_workqueue_struct *cwq;
463 int ret = -1;
465 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
466 return 0;
469 * The queueing is in progress, or it is already queued. Try to
470 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
473 cwq = get_wq_data(work);
474 if (!cwq)
475 return ret;
477 spin_lock_irq(&cwq->lock);
478 if (!list_empty(&work->entry)) {
480 * This work is queued, but perhaps we locked the wrong cwq.
481 * In that case we must see the new value after rmb(), see
482 * insert_work()->wmb().
484 smp_rmb();
485 if (cwq == get_wq_data(work)) {
486 list_del_init(&work->entry);
487 ret = 1;
490 spin_unlock_irq(&cwq->lock);
492 return ret;
495 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
496 struct work_struct *work)
498 struct wq_barrier barr;
499 int running = 0;
501 spin_lock_irq(&cwq->lock);
502 if (unlikely(cwq->current_work == work)) {
503 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
504 running = 1;
506 spin_unlock_irq(&cwq->lock);
508 if (unlikely(running))
509 wait_for_completion(&barr.done);
512 static void wait_on_work(struct work_struct *work)
514 struct cpu_workqueue_struct *cwq;
515 struct workqueue_struct *wq;
516 const struct cpumask *cpu_map;
517 int cpu;
519 might_sleep();
521 lock_map_acquire(&work->lockdep_map);
522 lock_map_release(&work->lockdep_map);
524 cwq = get_wq_data(work);
525 if (!cwq)
526 return;
528 wq = cwq->wq;
529 cpu_map = wq_cpu_map(wq);
531 for_each_cpu(cpu, cpu_map)
532 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
535 static int __cancel_work_timer(struct work_struct *work,
536 struct timer_list* timer)
538 int ret;
540 do {
541 ret = (timer && likely(del_timer(timer)));
542 if (!ret)
543 ret = try_to_grab_pending(work);
544 wait_on_work(work);
545 } while (unlikely(ret < 0));
547 work_clear_pending(work);
548 return ret;
552 * cancel_work_sync - block until a work_struct's callback has terminated
553 * @work: the work which is to be flushed
555 * Returns true if @work was pending.
557 * cancel_work_sync() will cancel the work if it is queued. If the work's
558 * callback appears to be running, cancel_work_sync() will block until it
559 * has completed.
561 * It is possible to use this function if the work re-queues itself. It can
562 * cancel the work even if it migrates to another workqueue, however in that
563 * case it only guarantees that work->func() has completed on the last queued
564 * workqueue.
566 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
567 * pending, otherwise it goes into a busy-wait loop until the timer expires.
569 * The caller must ensure that workqueue_struct on which this work was last
570 * queued can't be destroyed before this function returns.
572 int cancel_work_sync(struct work_struct *work)
574 return __cancel_work_timer(work, NULL);
576 EXPORT_SYMBOL_GPL(cancel_work_sync);
579 * cancel_delayed_work_sync - reliably kill off a delayed work.
580 * @dwork: the delayed work struct
582 * Returns true if @dwork was pending.
584 * It is possible to use this function if @dwork rearms itself via queue_work()
585 * or queue_delayed_work(). See also the comment for cancel_work_sync().
587 int cancel_delayed_work_sync(struct delayed_work *dwork)
589 return __cancel_work_timer(&dwork->work, &dwork->timer);
591 EXPORT_SYMBOL(cancel_delayed_work_sync);
593 static struct workqueue_struct *keventd_wq __read_mostly;
596 * schedule_work - put work task in global workqueue
597 * @work: job to be done
599 * This puts a job in the kernel-global workqueue.
601 int schedule_work(struct work_struct *work)
603 return queue_work(keventd_wq, work);
605 EXPORT_SYMBOL(schedule_work);
608 * schedule_work_on - put work task on a specific cpu
609 * @cpu: cpu to put the work task on
610 * @work: job to be done
612 * This puts a job on a specific cpu
614 int schedule_work_on(int cpu, struct work_struct *work)
616 return queue_work_on(cpu, keventd_wq, work);
618 EXPORT_SYMBOL(schedule_work_on);
621 * schedule_delayed_work - put work task in global workqueue after delay
622 * @dwork: job to be done
623 * @delay: number of jiffies to wait or 0 for immediate execution
625 * After waiting for a given time this puts a job in the kernel-global
626 * workqueue.
628 int schedule_delayed_work(struct delayed_work *dwork,
629 unsigned long delay)
631 return queue_delayed_work(keventd_wq, dwork, delay);
633 EXPORT_SYMBOL(schedule_delayed_work);
636 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
637 * @cpu: cpu to use
638 * @dwork: job to be done
639 * @delay: number of jiffies to wait
641 * After waiting for a given time this puts a job in the kernel-global
642 * workqueue on the specified CPU.
644 int schedule_delayed_work_on(int cpu,
645 struct delayed_work *dwork, unsigned long delay)
647 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
649 EXPORT_SYMBOL(schedule_delayed_work_on);
652 * schedule_on_each_cpu - call a function on each online CPU from keventd
653 * @func: the function to call
655 * Returns zero on success.
656 * Returns -ve errno on failure.
658 * schedule_on_each_cpu() is very slow.
660 int schedule_on_each_cpu(work_func_t func)
662 int cpu;
663 struct work_struct *works;
665 works = alloc_percpu(struct work_struct);
666 if (!works)
667 return -ENOMEM;
669 get_online_cpus();
670 for_each_online_cpu(cpu) {
671 struct work_struct *work = per_cpu_ptr(works, cpu);
673 INIT_WORK(work, func);
674 schedule_work_on(cpu, work);
676 for_each_online_cpu(cpu)
677 flush_work(per_cpu_ptr(works, cpu));
678 put_online_cpus();
679 free_percpu(works);
680 return 0;
683 void flush_scheduled_work(void)
685 flush_workqueue(keventd_wq);
687 EXPORT_SYMBOL(flush_scheduled_work);
690 * execute_in_process_context - reliably execute the routine with user context
691 * @fn: the function to execute
692 * @ew: guaranteed storage for the execute work structure (must
693 * be available when the work executes)
695 * Executes the function immediately if process context is available,
696 * otherwise schedules the function for delayed execution.
698 * Returns: 0 - function was executed
699 * 1 - function was scheduled for execution
701 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
703 if (!in_interrupt()) {
704 fn(&ew->work);
705 return 0;
708 INIT_WORK(&ew->work, fn);
709 schedule_work(&ew->work);
711 return 1;
713 EXPORT_SYMBOL_GPL(execute_in_process_context);
715 int keventd_up(void)
717 return keventd_wq != NULL;
720 int current_is_keventd(void)
722 struct cpu_workqueue_struct *cwq;
723 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
724 int ret = 0;
726 BUG_ON(!keventd_wq);
728 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
729 if (current == cwq->thread)
730 ret = 1;
732 return ret;
736 static struct cpu_workqueue_struct *
737 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
739 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
741 cwq->wq = wq;
742 spin_lock_init(&cwq->lock);
743 INIT_LIST_HEAD(&cwq->worklist);
744 init_waitqueue_head(&cwq->more_work);
746 return cwq;
749 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
751 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
752 struct workqueue_struct *wq = cwq->wq;
753 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
754 struct task_struct *p;
756 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
758 * Nobody can add the work_struct to this cwq,
759 * if (caller is __create_workqueue)
760 * nobody should see this wq
761 * else // caller is CPU_UP_PREPARE
762 * cpu is not on cpu_online_map
763 * so we can abort safely.
765 if (IS_ERR(p))
766 return PTR_ERR(p);
767 if (cwq->wq->rt)
768 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
769 cwq->thread = p;
771 return 0;
774 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
776 struct task_struct *p = cwq->thread;
778 if (p != NULL) {
779 if (cpu >= 0)
780 kthread_bind(p, cpu);
781 wake_up_process(p);
785 struct workqueue_struct *__create_workqueue_key(const char *name,
786 int singlethread,
787 int freezeable,
788 int rt,
789 struct lock_class_key *key,
790 const char *lock_name)
792 struct workqueue_struct *wq;
793 struct cpu_workqueue_struct *cwq;
794 int err = 0, cpu;
796 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
797 if (!wq)
798 return NULL;
800 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
801 if (!wq->cpu_wq) {
802 kfree(wq);
803 return NULL;
806 wq->name = name;
807 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
808 wq->singlethread = singlethread;
809 wq->freezeable = freezeable;
810 wq->rt = rt;
811 INIT_LIST_HEAD(&wq->list);
813 if (singlethread) {
814 cwq = init_cpu_workqueue(wq, singlethread_cpu);
815 err = create_workqueue_thread(cwq, singlethread_cpu);
816 start_workqueue_thread(cwq, -1);
817 } else {
818 cpu_maps_update_begin();
820 * We must place this wq on list even if the code below fails.
821 * cpu_down(cpu) can remove cpu from cpu_populated_map before
822 * destroy_workqueue() takes the lock, in that case we leak
823 * cwq[cpu]->thread.
825 spin_lock(&workqueue_lock);
826 list_add(&wq->list, &workqueues);
827 spin_unlock(&workqueue_lock);
829 * We must initialize cwqs for each possible cpu even if we
830 * are going to call destroy_workqueue() finally. Otherwise
831 * cpu_up() can hit the uninitialized cwq once we drop the
832 * lock.
834 for_each_possible_cpu(cpu) {
835 cwq = init_cpu_workqueue(wq, cpu);
836 if (err || !cpu_online(cpu))
837 continue;
838 err = create_workqueue_thread(cwq, cpu);
839 start_workqueue_thread(cwq, cpu);
841 cpu_maps_update_done();
844 if (err) {
845 destroy_workqueue(wq);
846 wq = NULL;
848 return wq;
850 EXPORT_SYMBOL_GPL(__create_workqueue_key);
852 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
855 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
856 * cpu_add_remove_lock protects cwq->thread.
858 if (cwq->thread == NULL)
859 return;
861 lock_map_acquire(&cwq->wq->lockdep_map);
862 lock_map_release(&cwq->wq->lockdep_map);
864 flush_cpu_workqueue(cwq);
866 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
867 * a concurrent flush_workqueue() can insert a barrier after us.
868 * However, in that case run_workqueue() won't return and check
869 * kthread_should_stop() until it flushes all work_struct's.
870 * When ->worklist becomes empty it is safe to exit because no
871 * more work_structs can be queued on this cwq: flush_workqueue
872 * checks list_empty(), and a "normal" queue_work() can't use
873 * a dead CPU.
875 kthread_stop(cwq->thread);
876 cwq->thread = NULL;
880 * destroy_workqueue - safely terminate a workqueue
881 * @wq: target workqueue
883 * Safely destroy a workqueue. All work currently pending will be done first.
885 void destroy_workqueue(struct workqueue_struct *wq)
887 const struct cpumask *cpu_map = wq_cpu_map(wq);
888 int cpu;
890 cpu_maps_update_begin();
891 spin_lock(&workqueue_lock);
892 list_del(&wq->list);
893 spin_unlock(&workqueue_lock);
895 for_each_cpu(cpu, cpu_map)
896 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
897 cpu_maps_update_done();
899 free_percpu(wq->cpu_wq);
900 kfree(wq);
902 EXPORT_SYMBOL_GPL(destroy_workqueue);
904 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
905 unsigned long action,
906 void *hcpu)
908 unsigned int cpu = (unsigned long)hcpu;
909 struct cpu_workqueue_struct *cwq;
910 struct workqueue_struct *wq;
911 int ret = NOTIFY_OK;
913 action &= ~CPU_TASKS_FROZEN;
915 switch (action) {
916 case CPU_UP_PREPARE:
917 cpumask_set_cpu(cpu, cpu_populated_map);
919 undo:
920 list_for_each_entry(wq, &workqueues, list) {
921 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
923 switch (action) {
924 case CPU_UP_PREPARE:
925 if (!create_workqueue_thread(cwq, cpu))
926 break;
927 printk(KERN_ERR "workqueue [%s] for %i failed\n",
928 wq->name, cpu);
929 action = CPU_UP_CANCELED;
930 ret = NOTIFY_BAD;
931 goto undo;
933 case CPU_ONLINE:
934 start_workqueue_thread(cwq, cpu);
935 break;
937 case CPU_UP_CANCELED:
938 start_workqueue_thread(cwq, -1);
939 case CPU_POST_DEAD:
940 cleanup_workqueue_thread(cwq);
941 break;
945 switch (action) {
946 case CPU_UP_CANCELED:
947 case CPU_POST_DEAD:
948 cpumask_clear_cpu(cpu, cpu_populated_map);
951 return ret;
954 #ifdef CONFIG_SMP
955 static struct workqueue_struct *work_on_cpu_wq __read_mostly;
957 struct work_for_cpu {
958 struct work_struct work;
959 long (*fn)(void *);
960 void *arg;
961 long ret;
964 static void do_work_for_cpu(struct work_struct *w)
966 struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
968 wfc->ret = wfc->fn(wfc->arg);
972 * work_on_cpu - run a function in user context on a particular cpu
973 * @cpu: the cpu to run on
974 * @fn: the function to run
975 * @arg: the function arg
977 * This will return the value @fn returns.
978 * It is up to the caller to ensure that the cpu doesn't go offline.
980 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
982 struct work_for_cpu wfc;
984 INIT_WORK(&wfc.work, do_work_for_cpu);
985 wfc.fn = fn;
986 wfc.arg = arg;
987 queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
988 flush_work(&wfc.work);
990 return wfc.ret;
992 EXPORT_SYMBOL_GPL(work_on_cpu);
993 #endif /* CONFIG_SMP */
995 void __init init_workqueues(void)
997 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
999 cpumask_copy(cpu_populated_map, cpu_online_mask);
1000 singlethread_cpu = cpumask_first(cpu_possible_mask);
1001 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1002 hotcpu_notifier(workqueue_cpu_callback, 0);
1003 keventd_wq = create_workqueue("events");
1004 BUG_ON(!keventd_wq);
1005 #ifdef CONFIG_SMP
1006 work_on_cpu_wq = create_workqueue("work_on_cpu");
1007 BUG_ON(!work_on_cpu_wq);
1008 #endif