Staging: ft1000: fix world writable debugfs file
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobdc91a4d09ac3b71a3c347187ff2a1691c952cebd
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
263 #endif
265 struct rcu_head rcu;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
287 #endif
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
317 u64 exec_clock;
318 u64 min_vruntime;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
348 #ifdef CONFIG_SMP
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
371 #endif
372 #endif
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
408 #ifdef CONFIG_SMP
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
494 u64 clock_task;
496 atomic_t nr_iowait;
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
514 unsigned long avg_load_per_task;
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
556 /* BKL stats */
557 unsigned int bkl_count;
558 #endif
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
568 #ifdef CONFIG_SMP
569 return rq->cpu;
570 #else
571 return 0;
572 #endif
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct cgroup_subsys_state *css;
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
634 return NULL;
637 #endif /* CONFIG_CGROUP_SCHED */
639 static u64 irq_time_cpu(int cpu);
640 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
642 inline void update_rq_clock(struct rq *rq)
644 if (!rq->skip_clock_update) {
645 int cpu = cpu_of(rq);
646 u64 irq_time;
648 rq->clock = sched_clock_cpu(cpu);
649 irq_time = irq_time_cpu(cpu);
650 if (rq->clock - irq_time > rq->clock_task)
651 rq->clock_task = rq->clock - irq_time;
653 sched_irq_time_avg_update(rq, irq_time);
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
662 #else
663 # define const_debug static const
664 #endif
667 * runqueue_is_locked
668 * @cpu: the processor in question.
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
674 int runqueue_is_locked(int cpu)
676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
680 * Debugging: various feature bits
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
686 enum {
687 #include "sched_features.h"
690 #undef SCHED_FEAT
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
699 #undef SCHED_FEAT
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
703 #name ,
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
707 NULL
710 #undef SCHED_FEAT
712 static int sched_feat_show(struct seq_file *m, void *v)
714 int i;
716 for (i = 0; sched_feat_names[i]; i++) {
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
721 seq_puts(m, "\n");
723 return 0;
726 static ssize_t
727 sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
730 char buf[64];
731 char *cmp;
732 int neg = 0;
733 int i;
735 if (cnt > 63)
736 cnt = 63;
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
741 buf[cnt] = 0;
742 cmp = strstrip(buf);
744 if (strncmp(buf, "NO_", 3) == 0) {
745 neg = 1;
746 cmp += 3;
749 for (i = 0; sched_feat_names[i]; i++) {
750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
759 if (!sched_feat_names[i])
760 return -EINVAL;
762 *ppos += cnt;
764 return cnt;
767 static int sched_feat_open(struct inode *inode, struct file *filp)
769 return single_open(filp, sched_feat_show, NULL);
772 static const struct file_operations sched_feat_fops = {
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
780 static __init int sched_init_debug(void)
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
785 return 0;
787 late_initcall(sched_init_debug);
789 #endif
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
797 const_debug unsigned int sysctl_sched_nr_migrate = 32;
800 * ratelimit for updating the group shares.
801 * default: 0.25ms
803 unsigned int sysctl_sched_shares_ratelimit = 250000;
804 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
809 * default: 4
811 unsigned int sysctl_sched_shares_thresh = 4;
814 * period over which we average the RT time consumption, measured
815 * in ms.
817 * default: 1s
819 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
822 * period over which we measure -rt task cpu usage in us.
823 * default: 1s
825 unsigned int sysctl_sched_rt_period = 1000000;
827 static __read_mostly int scheduler_running;
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
833 int sysctl_sched_rt_runtime = 950000;
835 static inline u64 global_rt_period(void)
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
840 static inline u64 global_rt_runtime(void)
842 if (sysctl_sched_rt_runtime < 0)
843 return RUNTIME_INF;
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
850 #endif
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
853 #endif
855 static inline int task_current(struct rq *rq, struct task_struct *p)
857 return rq->curr == p;
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline int task_running(struct rq *rq, struct task_struct *p)
863 return task_current(rq, p);
866 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
870 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
872 #ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq->lock.owner = current;
875 #endif
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
879 * prev into current:
881 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
883 raw_spin_unlock_irq(&rq->lock);
886 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
887 static inline int task_running(struct rq *rq, struct task_struct *p)
889 #ifdef CONFIG_SMP
890 return p->oncpu;
891 #else
892 return task_current(rq, p);
893 #endif
896 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
898 #ifdef CONFIG_SMP
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
904 next->oncpu = 1;
905 #endif
906 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 raw_spin_unlock_irq(&rq->lock);
908 #else
909 raw_spin_unlock(&rq->lock);
910 #endif
913 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 #ifdef CONFIG_SMP
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
919 * finished.
921 smp_wmb();
922 prev->oncpu = 0;
923 #endif
924 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
925 local_irq_enable();
926 #endif
928 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
931 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
932 * against ttwu().
934 static inline int task_is_waking(struct task_struct *p)
936 return unlikely(p->state == TASK_WAKING);
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 __acquires(rq->lock)
946 struct rq *rq;
948 for (;;) {
949 rq = task_rq(p);
950 raw_spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
953 raw_spin_unlock(&rq->lock);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 __acquires(rq->lock)
965 struct rq *rq;
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 raw_spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
973 raw_spin_unlock_irqrestore(&rq->lock, *flags);
977 static void __task_rq_unlock(struct rq *rq)
978 __releases(rq->lock)
980 raw_spin_unlock(&rq->lock);
983 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
984 __releases(rq->lock)
986 raw_spin_unlock_irqrestore(&rq->lock, *flags);
990 * this_rq_lock - lock this runqueue and disable interrupts.
992 static struct rq *this_rq_lock(void)
993 __acquires(rq->lock)
995 struct rq *rq;
997 local_irq_disable();
998 rq = this_rq();
999 raw_spin_lock(&rq->lock);
1001 return rq;
1004 #ifdef CONFIG_SCHED_HRTICK
1006 * Use HR-timers to deliver accurate preemption points.
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * reschedule event.
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * rq->lock.
1017 * Use hrtick when:
1018 * - enabled by features
1019 * - hrtimer is actually high res
1021 static inline int hrtick_enabled(struct rq *rq)
1023 if (!sched_feat(HRTICK))
1024 return 0;
1025 if (!cpu_active(cpu_of(rq)))
1026 return 0;
1027 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 static void hrtick_clear(struct rq *rq)
1032 if (hrtimer_active(&rq->hrtick_timer))
1033 hrtimer_cancel(&rq->hrtick_timer);
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1040 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1042 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1044 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1046 raw_spin_lock(&rq->lock);
1047 update_rq_clock(rq);
1048 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1049 raw_spin_unlock(&rq->lock);
1051 return HRTIMER_NORESTART;
1054 #ifdef CONFIG_SMP
1056 * called from hardirq (IPI) context
1058 static void __hrtick_start(void *arg)
1060 struct rq *rq = arg;
1062 raw_spin_lock(&rq->lock);
1063 hrtimer_restart(&rq->hrtick_timer);
1064 rq->hrtick_csd_pending = 0;
1065 raw_spin_unlock(&rq->lock);
1069 * Called to set the hrtick timer state.
1071 * called with rq->lock held and irqs disabled
1073 static void hrtick_start(struct rq *rq, u64 delay)
1075 struct hrtimer *timer = &rq->hrtick_timer;
1076 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1078 hrtimer_set_expires(timer, time);
1080 if (rq == this_rq()) {
1081 hrtimer_restart(timer);
1082 } else if (!rq->hrtick_csd_pending) {
1083 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1084 rq->hrtick_csd_pending = 1;
1088 static int
1089 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1091 int cpu = (int)(long)hcpu;
1093 switch (action) {
1094 case CPU_UP_CANCELED:
1095 case CPU_UP_CANCELED_FROZEN:
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098 case CPU_DEAD:
1099 case CPU_DEAD_FROZEN:
1100 hrtick_clear(cpu_rq(cpu));
1101 return NOTIFY_OK;
1104 return NOTIFY_DONE;
1107 static __init void init_hrtick(void)
1109 hotcpu_notifier(hotplug_hrtick, 0);
1111 #else
1113 * Called to set the hrtick timer state.
1115 * called with rq->lock held and irqs disabled
1117 static void hrtick_start(struct rq *rq, u64 delay)
1119 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1120 HRTIMER_MODE_REL_PINNED, 0);
1123 static inline void init_hrtick(void)
1126 #endif /* CONFIG_SMP */
1128 static void init_rq_hrtick(struct rq *rq)
1130 #ifdef CONFIG_SMP
1131 rq->hrtick_csd_pending = 0;
1133 rq->hrtick_csd.flags = 0;
1134 rq->hrtick_csd.func = __hrtick_start;
1135 rq->hrtick_csd.info = rq;
1136 #endif
1138 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139 rq->hrtick_timer.function = hrtick;
1141 #else /* CONFIG_SCHED_HRTICK */
1142 static inline void hrtick_clear(struct rq *rq)
1146 static inline void init_rq_hrtick(struct rq *rq)
1150 static inline void init_hrtick(void)
1153 #endif /* CONFIG_SCHED_HRTICK */
1156 * resched_task - mark a task 'to be rescheduled now'.
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1160 * the target CPU.
1162 #ifdef CONFIG_SMP
1164 #ifndef tsk_is_polling
1165 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 #endif
1168 static void resched_task(struct task_struct *p)
1170 int cpu;
1172 assert_raw_spin_locked(&task_rq(p)->lock);
1174 if (test_tsk_need_resched(p))
1175 return;
1177 set_tsk_need_resched(p);
1179 cpu = task_cpu(p);
1180 if (cpu == smp_processor_id())
1181 return;
1183 /* NEED_RESCHED must be visible before we test polling */
1184 smp_mb();
1185 if (!tsk_is_polling(p))
1186 smp_send_reschedule(cpu);
1189 static void resched_cpu(int cpu)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long flags;
1194 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1195 return;
1196 resched_task(cpu_curr(cpu));
1197 raw_spin_unlock_irqrestore(&rq->lock, flags);
1200 #ifdef CONFIG_NO_HZ
1202 * In the semi idle case, use the nearest busy cpu for migrating timers
1203 * from an idle cpu. This is good for power-savings.
1205 * We don't do similar optimization for completely idle system, as
1206 * selecting an idle cpu will add more delays to the timers than intended
1207 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1209 int get_nohz_timer_target(void)
1211 int cpu = smp_processor_id();
1212 int i;
1213 struct sched_domain *sd;
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd))
1217 if (!idle_cpu(i))
1218 return i;
1220 return cpu;
1223 * When add_timer_on() enqueues a timer into the timer wheel of an
1224 * idle CPU then this timer might expire before the next timer event
1225 * which is scheduled to wake up that CPU. In case of a completely
1226 * idle system the next event might even be infinite time into the
1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1228 * leaves the inner idle loop so the newly added timer is taken into
1229 * account when the CPU goes back to idle and evaluates the timer
1230 * wheel for the next timer event.
1232 void wake_up_idle_cpu(int cpu)
1234 struct rq *rq = cpu_rq(cpu);
1236 if (cpu == smp_processor_id())
1237 return;
1240 * This is safe, as this function is called with the timer
1241 * wheel base lock of (cpu) held. When the CPU is on the way
1242 * to idle and has not yet set rq->curr to idle then it will
1243 * be serialized on the timer wheel base lock and take the new
1244 * timer into account automatically.
1246 if (rq->curr != rq->idle)
1247 return;
1250 * We can set TIF_RESCHED on the idle task of the other CPU
1251 * lockless. The worst case is that the other CPU runs the
1252 * idle task through an additional NOOP schedule()
1254 set_tsk_need_resched(rq->idle);
1256 /* NEED_RESCHED must be visible before we test polling */
1257 smp_mb();
1258 if (!tsk_is_polling(rq->idle))
1259 smp_send_reschedule(cpu);
1262 #endif /* CONFIG_NO_HZ */
1264 static u64 sched_avg_period(void)
1266 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1269 static void sched_avg_update(struct rq *rq)
1271 s64 period = sched_avg_period();
1273 while ((s64)(rq->clock - rq->age_stamp) > period) {
1275 * Inline assembly required to prevent the compiler
1276 * optimising this loop into a divmod call.
1277 * See __iter_div_u64_rem() for another example of this.
1279 asm("" : "+rm" (rq->age_stamp));
1280 rq->age_stamp += period;
1281 rq->rt_avg /= 2;
1285 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1291 #else /* !CONFIG_SMP */
1292 static void resched_task(struct task_struct *p)
1294 assert_raw_spin_locked(&task_rq(p)->lock);
1295 set_tsk_need_resched(p);
1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1302 static void sched_avg_update(struct rq *rq)
1305 #endif /* CONFIG_SMP */
1307 #if BITS_PER_LONG == 32
1308 # define WMULT_CONST (~0UL)
1309 #else
1310 # define WMULT_CONST (1UL << 32)
1311 #endif
1313 #define WMULT_SHIFT 32
1316 * Shift right and round:
1318 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1321 * delta *= weight / lw
1323 static unsigned long
1324 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1325 struct load_weight *lw)
1327 u64 tmp;
1329 if (!lw->inv_weight) {
1330 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1331 lw->inv_weight = 1;
1332 else
1333 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1334 / (lw->weight+1);
1337 tmp = (u64)delta_exec * weight;
1339 * Check whether we'd overflow the 64-bit multiplication:
1341 if (unlikely(tmp > WMULT_CONST))
1342 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1343 WMULT_SHIFT/2);
1344 else
1345 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1347 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1350 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1352 lw->weight += inc;
1353 lw->inv_weight = 0;
1356 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1358 lw->weight -= dec;
1359 lw->inv_weight = 0;
1363 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1364 * of tasks with abnormal "nice" values across CPUs the contribution that
1365 * each task makes to its run queue's load is weighted according to its
1366 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1367 * scaled version of the new time slice allocation that they receive on time
1368 * slice expiry etc.
1371 #define WEIGHT_IDLEPRIO 3
1372 #define WMULT_IDLEPRIO 1431655765
1375 * Nice levels are multiplicative, with a gentle 10% change for every
1376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1378 * that remained on nice 0.
1380 * The "10% effect" is relative and cumulative: from _any_ nice level,
1381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1383 * If a task goes up by ~10% and another task goes down by ~10% then
1384 * the relative distance between them is ~25%.)
1386 static const int prio_to_weight[40] = {
1387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1391 /* 0 */ 1024, 820, 655, 526, 423,
1392 /* 5 */ 335, 272, 215, 172, 137,
1393 /* 10 */ 110, 87, 70, 56, 45,
1394 /* 15 */ 36, 29, 23, 18, 15,
1398 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1400 * In cases where the weight does not change often, we can use the
1401 * precalculated inverse to speed up arithmetics by turning divisions
1402 * into multiplications:
1404 static const u32 prio_to_wmult[40] = {
1405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1415 /* Time spent by the tasks of the cpu accounting group executing in ... */
1416 enum cpuacct_stat_index {
1417 CPUACCT_STAT_USER, /* ... user mode */
1418 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420 CPUACCT_STAT_NSTATS,
1423 #ifdef CONFIG_CGROUP_CPUACCT
1424 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1425 static void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val);
1427 #else
1428 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1429 static inline void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val) {}
1431 #endif
1433 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435 update_load_add(&rq->load, load);
1438 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440 update_load_sub(&rq->load, load);
1443 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1444 typedef int (*tg_visitor)(struct task_group *, void *);
1447 * Iterate the full tree, calling @down when first entering a node and @up when
1448 * leaving it for the final time.
1450 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1452 struct task_group *parent, *child;
1453 int ret;
1455 rcu_read_lock();
1456 parent = &root_task_group;
1457 down:
1458 ret = (*down)(parent, data);
1459 if (ret)
1460 goto out_unlock;
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1466 continue;
1468 ret = (*up)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1472 child = parent;
1473 parent = parent->parent;
1474 if (parent)
1475 goto up;
1476 out_unlock:
1477 rcu_read_unlock();
1479 return ret;
1482 static int tg_nop(struct task_group *tg, void *data)
1484 return 0;
1486 #endif
1488 #ifdef CONFIG_SMP
1489 /* Used instead of source_load when we know the type == 0 */
1490 static unsigned long weighted_cpuload(const int cpu)
1492 return cpu_rq(cpu)->load.weight;
1496 * Return a low guess at the load of a migration-source cpu weighted
1497 * according to the scheduling class and "nice" value.
1499 * We want to under-estimate the load of migration sources, to
1500 * balance conservatively.
1502 static unsigned long source_load(int cpu, int type)
1504 struct rq *rq = cpu_rq(cpu);
1505 unsigned long total = weighted_cpuload(cpu);
1507 if (type == 0 || !sched_feat(LB_BIAS))
1508 return total;
1510 return min(rq->cpu_load[type-1], total);
1514 * Return a high guess at the load of a migration-target cpu weighted
1515 * according to the scheduling class and "nice" value.
1517 static unsigned long target_load(int cpu, int type)
1519 struct rq *rq = cpu_rq(cpu);
1520 unsigned long total = weighted_cpuload(cpu);
1522 if (type == 0 || !sched_feat(LB_BIAS))
1523 return total;
1525 return max(rq->cpu_load[type-1], total);
1528 static unsigned long power_of(int cpu)
1530 return cpu_rq(cpu)->cpu_power;
1533 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1535 static unsigned long cpu_avg_load_per_task(int cpu)
1537 struct rq *rq = cpu_rq(cpu);
1538 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1540 if (nr_running)
1541 rq->avg_load_per_task = rq->load.weight / nr_running;
1542 else
1543 rq->avg_load_per_task = 0;
1545 return rq->avg_load_per_task;
1548 #ifdef CONFIG_FAIR_GROUP_SCHED
1550 static __read_mostly unsigned long __percpu *update_shares_data;
1552 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1555 * Calculate and set the cpu's group shares.
1557 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1558 unsigned long sd_shares,
1559 unsigned long sd_rq_weight,
1560 unsigned long *usd_rq_weight)
1562 unsigned long shares, rq_weight;
1563 int boost = 0;
1565 rq_weight = usd_rq_weight[cpu];
1566 if (!rq_weight) {
1567 boost = 1;
1568 rq_weight = NICE_0_LOAD;
1572 * \Sum_j shares_j * rq_weight_i
1573 * shares_i = -----------------------------
1574 * \Sum_j rq_weight_j
1576 shares = (sd_shares * rq_weight) / sd_rq_weight;
1577 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1579 if (abs(shares - tg->se[cpu]->load.weight) >
1580 sysctl_sched_shares_thresh) {
1581 struct rq *rq = cpu_rq(cpu);
1582 unsigned long flags;
1584 raw_spin_lock_irqsave(&rq->lock, flags);
1585 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1586 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1587 __set_se_shares(tg->se[cpu], shares);
1588 raw_spin_unlock_irqrestore(&rq->lock, flags);
1593 * Re-compute the task group their per cpu shares over the given domain.
1594 * This needs to be done in a bottom-up fashion because the rq weight of a
1595 * parent group depends on the shares of its child groups.
1597 static int tg_shares_up(struct task_group *tg, void *data)
1599 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1600 unsigned long *usd_rq_weight;
1601 struct sched_domain *sd = data;
1602 unsigned long flags;
1603 int i;
1605 if (!tg->se[0])
1606 return 0;
1608 local_irq_save(flags);
1609 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1611 for_each_cpu(i, sched_domain_span(sd)) {
1612 weight = tg->cfs_rq[i]->load.weight;
1613 usd_rq_weight[i] = weight;
1615 rq_weight += weight;
1617 * If there are currently no tasks on the cpu pretend there
1618 * is one of average load so that when a new task gets to
1619 * run here it will not get delayed by group starvation.
1621 if (!weight)
1622 weight = NICE_0_LOAD;
1624 sum_weight += weight;
1625 shares += tg->cfs_rq[i]->shares;
1628 if (!rq_weight)
1629 rq_weight = sum_weight;
1631 if ((!shares && rq_weight) || shares > tg->shares)
1632 shares = tg->shares;
1634 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1635 shares = tg->shares;
1637 for_each_cpu(i, sched_domain_span(sd))
1638 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1640 local_irq_restore(flags);
1642 return 0;
1646 * Compute the cpu's hierarchical load factor for each task group.
1647 * This needs to be done in a top-down fashion because the load of a child
1648 * group is a fraction of its parents load.
1650 static int tg_load_down(struct task_group *tg, void *data)
1652 unsigned long load;
1653 long cpu = (long)data;
1655 if (!tg->parent) {
1656 load = cpu_rq(cpu)->load.weight;
1657 } else {
1658 load = tg->parent->cfs_rq[cpu]->h_load;
1659 load *= tg->cfs_rq[cpu]->shares;
1660 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1663 tg->cfs_rq[cpu]->h_load = load;
1665 return 0;
1668 static void update_shares(struct sched_domain *sd)
1670 s64 elapsed;
1671 u64 now;
1673 if (root_task_group_empty())
1674 return;
1676 now = local_clock();
1677 elapsed = now - sd->last_update;
1679 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1680 sd->last_update = now;
1681 walk_tg_tree(tg_nop, tg_shares_up, sd);
1685 static void update_h_load(long cpu)
1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1690 #else
1692 static inline void update_shares(struct sched_domain *sd)
1696 #endif
1698 #ifdef CONFIG_PREEMPT
1700 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1710 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1715 raw_spin_unlock(&this_rq->lock);
1716 double_rq_lock(this_rq, busiest);
1718 return 1;
1721 #else
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1729 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1734 int ret = 0;
1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1737 if (busiest < this_rq) {
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
1742 ret = 1;
1743 } else
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
1747 return ret;
1750 #endif /* CONFIG_PREEMPT */
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq->lock);
1760 BUG_ON(1);
1763 return _double_lock_balance(this_rq, busiest);
1766 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1769 raw_spin_unlock(&busiest->lock);
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1774 * double_rq_lock - safely lock two runqueues
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1779 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1799 * double_rq_unlock - safely unlock two runqueues
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1804 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1815 #endif
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1824 #endif
1826 static void calc_load_account_idle(struct rq *this_rq);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1829 static void update_cpu_load(struct rq *this_rq);
1831 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1833 set_task_rq(p, cpu);
1834 #ifdef CONFIG_SMP
1836 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1837 * successfuly executed on another CPU. We must ensure that updates of
1838 * per-task data have been completed by this moment.
1840 smp_wmb();
1841 task_thread_info(p)->cpu = cpu;
1842 #endif
1845 static const struct sched_class rt_sched_class;
1847 #define sched_class_highest (&stop_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1851 #include "sched_stats.h"
1853 static void inc_nr_running(struct rq *rq)
1855 rq->nr_running++;
1858 static void dec_nr_running(struct rq *rq)
1860 rq->nr_running--;
1863 static void set_load_weight(struct task_struct *p)
1866 * SCHED_IDLE tasks get minimal weight:
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1880 update_rq_clock(rq);
1881 sched_info_queued(p);
1882 p->sched_class->enqueue_task(rq, p, flags);
1883 p->se.on_rq = 1;
1886 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1888 update_rq_clock(rq);
1889 sched_info_dequeued(p);
1890 p->sched_class->dequeue_task(rq, p, flags);
1891 p->se.on_rq = 0;
1895 * activate_task - move a task to the runqueue.
1897 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1899 if (task_contributes_to_load(p))
1900 rq->nr_uninterruptible--;
1902 enqueue_task(rq, p, flags);
1903 inc_nr_running(rq);
1907 * deactivate_task - remove a task from the runqueue.
1909 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1911 if (task_contributes_to_load(p))
1912 rq->nr_uninterruptible++;
1914 dequeue_task(rq, p, flags);
1915 dec_nr_running(rq);
1918 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1921 * There are no locks covering percpu hardirq/softirq time.
1922 * They are only modified in account_system_vtime, on corresponding CPU
1923 * with interrupts disabled. So, writes are safe.
1924 * They are read and saved off onto struct rq in update_rq_clock().
1925 * This may result in other CPU reading this CPU's irq time and can
1926 * race with irq/account_system_vtime on this CPU. We would either get old
1927 * or new value (or semi updated value on 32 bit) with a side effect of
1928 * accounting a slice of irq time to wrong task when irq is in progress
1929 * while we read rq->clock. That is a worthy compromise in place of having
1930 * locks on each irq in account_system_time.
1932 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1933 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1935 static DEFINE_PER_CPU(u64, irq_start_time);
1936 static int sched_clock_irqtime;
1938 void enable_sched_clock_irqtime(void)
1940 sched_clock_irqtime = 1;
1943 void disable_sched_clock_irqtime(void)
1945 sched_clock_irqtime = 0;
1948 static u64 irq_time_cpu(int cpu)
1950 if (!sched_clock_irqtime)
1951 return 0;
1953 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1956 void account_system_vtime(struct task_struct *curr)
1958 unsigned long flags;
1959 int cpu;
1960 u64 now, delta;
1962 if (!sched_clock_irqtime)
1963 return;
1965 local_irq_save(flags);
1967 cpu = smp_processor_id();
1968 now = sched_clock_cpu(cpu);
1969 delta = now - per_cpu(irq_start_time, cpu);
1970 per_cpu(irq_start_time, cpu) = now;
1972 * We do not account for softirq time from ksoftirqd here.
1973 * We want to continue accounting softirq time to ksoftirqd thread
1974 * in that case, so as not to confuse scheduler with a special task
1975 * that do not consume any time, but still wants to run.
1977 if (hardirq_count())
1978 per_cpu(cpu_hardirq_time, cpu) += delta;
1979 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1980 per_cpu(cpu_softirq_time, cpu) += delta;
1982 local_irq_restore(flags);
1984 EXPORT_SYMBOL_GPL(account_system_vtime);
1986 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1988 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1989 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1990 rq->prev_irq_time = curr_irq_time;
1991 sched_rt_avg_update(rq, delta_irq);
1995 #else
1997 static u64 irq_time_cpu(int cpu)
1999 return 0;
2002 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2004 #endif
2006 #include "sched_idletask.c"
2007 #include "sched_fair.c"
2008 #include "sched_rt.c"
2009 #include "sched_stoptask.c"
2010 #ifdef CONFIG_SCHED_DEBUG
2011 # include "sched_debug.c"
2012 #endif
2014 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019 if (stop) {
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030 stop->sched_class = &stop_sched_class;
2033 cpu_rq(cpu)->stop = stop;
2035 if (old_stop) {
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2040 old_stop->sched_class = &rt_sched_class;
2045 * __normal_prio - return the priority that is based on the static prio
2047 static inline int __normal_prio(struct task_struct *p)
2049 return p->static_prio;
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2059 static inline int normal_prio(struct task_struct *p)
2061 int prio;
2063 if (task_has_rt_policy(p))
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2065 else
2066 prio = __normal_prio(p);
2067 return prio;
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2077 static int effective_prio(struct task_struct *p)
2079 p->normal_prio = normal_prio(p);
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2087 return p->prio;
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2094 inline int task_curr(const struct task_struct *p)
2096 return cpu_curr(task_cpu(p)) == p;
2099 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
2101 int oldprio, int running)
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
2105 prev_class->switched_from(rq, p, running);
2106 p->sched_class->switched_to(rq, p, running);
2107 } else
2108 p->sched_class->prio_changed(rq, p, oldprio, running);
2111 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2113 const struct sched_class *class;
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 } else {
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2120 break;
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2123 break;
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2132 if (test_tsk_need_resched(rq->curr))
2133 rq->skip_clock_update = 1;
2136 #ifdef CONFIG_SMP
2138 * Is this task likely cache-hot:
2140 static int
2141 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2143 s64 delta;
2145 if (p->sched_class != &fair_sched_class)
2146 return 0;
2148 if (unlikely(p->policy == SCHED_IDLE))
2149 return 0;
2152 * Buddy candidates are cache hot:
2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
2157 return 1;
2159 if (sysctl_sched_migration_cost == -1)
2160 return 1;
2161 if (sysctl_sched_migration_cost == 0)
2162 return 0;
2164 delta = now - p->se.exec_start;
2166 return delta < (s64)sysctl_sched_migration_cost;
2169 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2171 #ifdef CONFIG_SCHED_DEBUG
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2178 #endif
2180 trace_sched_migrate_task(p, new_cpu);
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2187 __set_task_cpu(p, new_cpu);
2190 struct migration_arg {
2191 struct task_struct *task;
2192 int dest_cpu;
2195 static int migration_cpu_stop(void *data);
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2201 static bool migrate_task(struct task_struct *p, int dest_cpu)
2203 struct rq *rq = task_rq(p);
2206 * If the task is not on a runqueue (and not running), then
2207 * the next wake-up will properly place the task.
2209 return p->se.on_rq || task_running(rq, p);
2213 * wait_task_inactive - wait for a thread to unschedule.
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2228 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2230 unsigned long flags;
2231 int running, on_rq;
2232 unsigned long ncsw;
2233 struct rq *rq;
2235 for (;;) {
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2242 rq = task_rq(p);
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
2258 cpu_relax();
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2266 rq = task_rq_lock(p, &flags);
2267 trace_sched_wait_task(p);
2268 running = task_running(rq, p);
2269 on_rq = p->se.on_rq;
2270 ncsw = 0;
2271 if (!match_state || p->state == match_state)
2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273 task_rq_unlock(rq, &flags);
2276 * If it changed from the expected state, bail out now.
2278 if (unlikely(!ncsw))
2279 break;
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2285 * Oops. Go back and try again..
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2301 if (unlikely(on_rq)) {
2302 schedule_timeout_uninterruptible(1);
2303 continue;
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2311 break;
2314 return ncsw;
2317 /***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2324 * NOTE: this function doesnt have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2330 void kick_process(struct task_struct *p)
2332 int cpu;
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2340 EXPORT_SYMBOL_GPL(kick_process);
2341 #endif /* CONFIG_SMP */
2344 * task_oncpu_function_call - call a function on the cpu on which a task runs
2345 * @p: the task to evaluate
2346 * @func: the function to be called
2347 * @info: the function call argument
2349 * Calls the function @func when the task is currently running. This might
2350 * be on the current CPU, which just calls the function directly
2352 void task_oncpu_function_call(struct task_struct *p,
2353 void (*func) (void *info), void *info)
2355 int cpu;
2357 preempt_disable();
2358 cpu = task_cpu(p);
2359 if (task_curr(p))
2360 smp_call_function_single(cpu, func, info, 1);
2361 preempt_enable();
2364 #ifdef CONFIG_SMP
2366 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2368 static int select_fallback_rq(int cpu, struct task_struct *p)
2370 int dest_cpu;
2371 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2373 /* Look for allowed, online CPU in same node. */
2374 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2375 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2376 return dest_cpu;
2378 /* Any allowed, online CPU? */
2379 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2380 if (dest_cpu < nr_cpu_ids)
2381 return dest_cpu;
2383 /* No more Mr. Nice Guy. */
2384 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2385 dest_cpu = cpuset_cpus_allowed_fallback(p);
2387 * Don't tell them about moving exiting tasks or
2388 * kernel threads (both mm NULL), since they never
2389 * leave kernel.
2391 if (p->mm && printk_ratelimit()) {
2392 printk(KERN_INFO "process %d (%s) no "
2393 "longer affine to cpu%d\n",
2394 task_pid_nr(p), p->comm, cpu);
2398 return dest_cpu;
2402 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2404 static inline
2405 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2407 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2410 * In order not to call set_task_cpu() on a blocking task we need
2411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2412 * cpu.
2414 * Since this is common to all placement strategies, this lives here.
2416 * [ this allows ->select_task() to simply return task_cpu(p) and
2417 * not worry about this generic constraint ]
2419 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2420 !cpu_online(cpu)))
2421 cpu = select_fallback_rq(task_cpu(p), p);
2423 return cpu;
2426 static void update_avg(u64 *avg, u64 sample)
2428 s64 diff = sample - *avg;
2429 *avg += diff >> 3;
2431 #endif
2433 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2434 bool is_sync, bool is_migrate, bool is_local,
2435 unsigned long en_flags)
2437 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (is_sync)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440 if (is_migrate)
2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2442 if (is_local)
2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2447 activate_task(rq, p, en_flags);
2450 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2451 int wake_flags, bool success)
2453 trace_sched_wakeup(p, success);
2454 check_preempt_curr(rq, p, wake_flags);
2456 p->state = TASK_RUNNING;
2457 #ifdef CONFIG_SMP
2458 if (p->sched_class->task_woken)
2459 p->sched_class->task_woken(rq, p);
2461 if (unlikely(rq->idle_stamp)) {
2462 u64 delta = rq->clock - rq->idle_stamp;
2463 u64 max = 2*sysctl_sched_migration_cost;
2465 if (delta > max)
2466 rq->avg_idle = max;
2467 else
2468 update_avg(&rq->avg_idle, delta);
2469 rq->idle_stamp = 0;
2471 #endif
2472 /* if a worker is waking up, notify workqueue */
2473 if ((p->flags & PF_WQ_WORKER) && success)
2474 wq_worker_waking_up(p, cpu_of(rq));
2478 * try_to_wake_up - wake up a thread
2479 * @p: the thread to be awakened
2480 * @state: the mask of task states that can be woken
2481 * @wake_flags: wake modifier flags (WF_*)
2483 * Put it on the run-queue if it's not already there. The "current"
2484 * thread is always on the run-queue (except when the actual
2485 * re-schedule is in progress), and as such you're allowed to do
2486 * the simpler "current->state = TASK_RUNNING" to mark yourself
2487 * runnable without the overhead of this.
2489 * Returns %true if @p was woken up, %false if it was already running
2490 * or @state didn't match @p's state.
2492 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2493 int wake_flags)
2495 int cpu, orig_cpu, this_cpu, success = 0;
2496 unsigned long flags;
2497 unsigned long en_flags = ENQUEUE_WAKEUP;
2498 struct rq *rq;
2500 this_cpu = get_cpu();
2502 smp_wmb();
2503 rq = task_rq_lock(p, &flags);
2504 if (!(p->state & state))
2505 goto out;
2507 if (p->se.on_rq)
2508 goto out_running;
2510 cpu = task_cpu(p);
2511 orig_cpu = cpu;
2513 #ifdef CONFIG_SMP
2514 if (unlikely(task_running(rq, p)))
2515 goto out_activate;
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
2521 * First fix up the nr_uninterruptible count:
2523 if (task_contributes_to_load(p)) {
2524 if (likely(cpu_online(orig_cpu)))
2525 rq->nr_uninterruptible--;
2526 else
2527 this_rq()->nr_uninterruptible--;
2529 p->state = TASK_WAKING;
2531 if (p->sched_class->task_waking) {
2532 p->sched_class->task_waking(rq, p);
2533 en_flags |= ENQUEUE_WAKING;
2536 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2537 if (cpu != orig_cpu)
2538 set_task_cpu(p, cpu);
2539 __task_rq_unlock(rq);
2541 rq = cpu_rq(cpu);
2542 raw_spin_lock(&rq->lock);
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2550 WARN_ON(task_cpu(p) != cpu);
2551 WARN_ON(p->state != TASK_WAKING);
2553 #ifdef CONFIG_SCHEDSTATS
2554 schedstat_inc(rq, ttwu_count);
2555 if (cpu == this_cpu)
2556 schedstat_inc(rq, ttwu_local);
2557 else {
2558 struct sched_domain *sd;
2559 for_each_domain(this_cpu, sd) {
2560 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2561 schedstat_inc(sd, ttwu_wake_remote);
2562 break;
2566 #endif /* CONFIG_SCHEDSTATS */
2568 out_activate:
2569 #endif /* CONFIG_SMP */
2570 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2571 cpu == this_cpu, en_flags);
2572 success = 1;
2573 out_running:
2574 ttwu_post_activation(p, rq, wake_flags, success);
2575 out:
2576 task_rq_unlock(rq, &flags);
2577 put_cpu();
2579 return success;
2583 * try_to_wake_up_local - try to wake up a local task with rq lock held
2584 * @p: the thread to be awakened
2586 * Put @p on the run-queue if it's not alredy there. The caller must
2587 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2588 * the current task. this_rq() stays locked over invocation.
2590 static void try_to_wake_up_local(struct task_struct *p)
2592 struct rq *rq = task_rq(p);
2593 bool success = false;
2595 BUG_ON(rq != this_rq());
2596 BUG_ON(p == current);
2597 lockdep_assert_held(&rq->lock);
2599 if (!(p->state & TASK_NORMAL))
2600 return;
2602 if (!p->se.on_rq) {
2603 if (likely(!task_running(rq, p))) {
2604 schedstat_inc(rq, ttwu_count);
2605 schedstat_inc(rq, ttwu_local);
2607 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2608 success = true;
2610 ttwu_post_activation(p, rq, 0, success);
2614 * wake_up_process - Wake up a specific process
2615 * @p: The process to be woken up.
2617 * Attempt to wake up the nominated process and move it to the set of runnable
2618 * processes. Returns 1 if the process was woken up, 0 if it was already
2619 * running.
2621 * It may be assumed that this function implies a write memory barrier before
2622 * changing the task state if and only if any tasks are woken up.
2624 int wake_up_process(struct task_struct *p)
2626 return try_to_wake_up(p, TASK_ALL, 0);
2628 EXPORT_SYMBOL(wake_up_process);
2630 int wake_up_state(struct task_struct *p, unsigned int state)
2632 return try_to_wake_up(p, state, 0);
2636 * Perform scheduler related setup for a newly forked process p.
2637 * p is forked by current.
2639 * __sched_fork() is basic setup used by init_idle() too:
2641 static void __sched_fork(struct task_struct *p)
2643 p->se.exec_start = 0;
2644 p->se.sum_exec_runtime = 0;
2645 p->se.prev_sum_exec_runtime = 0;
2646 p->se.nr_migrations = 0;
2648 #ifdef CONFIG_SCHEDSTATS
2649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2650 #endif
2652 INIT_LIST_HEAD(&p->rt.run_list);
2653 p->se.on_rq = 0;
2654 INIT_LIST_HEAD(&p->se.group_node);
2656 #ifdef CONFIG_PREEMPT_NOTIFIERS
2657 INIT_HLIST_HEAD(&p->preempt_notifiers);
2658 #endif
2662 * fork()/clone()-time setup:
2664 void sched_fork(struct task_struct *p, int clone_flags)
2666 int cpu = get_cpu();
2668 __sched_fork(p);
2670 * We mark the process as running here. This guarantees that
2671 * nobody will actually run it, and a signal or other external
2672 * event cannot wake it up and insert it on the runqueue either.
2674 p->state = TASK_RUNNING;
2677 * Revert to default priority/policy on fork if requested.
2679 if (unlikely(p->sched_reset_on_fork)) {
2680 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2681 p->policy = SCHED_NORMAL;
2682 p->normal_prio = p->static_prio;
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2687 p->normal_prio = p->static_prio;
2688 set_load_weight(p);
2692 * We don't need the reset flag anymore after the fork. It has
2693 * fulfilled its duty:
2695 p->sched_reset_on_fork = 0;
2699 * Make sure we do not leak PI boosting priority to the child.
2701 p->prio = current->normal_prio;
2703 if (!rt_prio(p->prio))
2704 p->sched_class = &fair_sched_class;
2706 if (p->sched_class->task_fork)
2707 p->sched_class->task_fork(p);
2710 * The child is not yet in the pid-hash so no cgroup attach races,
2711 * and the cgroup is pinned to this child due to cgroup_fork()
2712 * is ran before sched_fork().
2714 * Silence PROVE_RCU.
2716 rcu_read_lock();
2717 set_task_cpu(p, cpu);
2718 rcu_read_unlock();
2720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2721 if (likely(sched_info_on()))
2722 memset(&p->sched_info, 0, sizeof(p->sched_info));
2723 #endif
2724 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2725 p->oncpu = 0;
2726 #endif
2727 #ifdef CONFIG_PREEMPT
2728 /* Want to start with kernel preemption disabled. */
2729 task_thread_info(p)->preempt_count = 1;
2730 #endif
2731 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2733 put_cpu();
2737 * wake_up_new_task - wake up a newly created task for the first time.
2739 * This function will do some initial scheduler statistics housekeeping
2740 * that must be done for every newly created context, then puts the task
2741 * on the runqueue and wakes it.
2743 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2745 unsigned long flags;
2746 struct rq *rq;
2747 int cpu __maybe_unused = get_cpu();
2749 #ifdef CONFIG_SMP
2750 rq = task_rq_lock(p, &flags);
2751 p->state = TASK_WAKING;
2754 * Fork balancing, do it here and not earlier because:
2755 * - cpus_allowed can change in the fork path
2756 * - any previously selected cpu might disappear through hotplug
2758 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2759 * without people poking at ->cpus_allowed.
2761 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2762 set_task_cpu(p, cpu);
2764 p->state = TASK_RUNNING;
2765 task_rq_unlock(rq, &flags);
2766 #endif
2768 rq = task_rq_lock(p, &flags);
2769 activate_task(rq, p, 0);
2770 trace_sched_wakeup_new(p, 1);
2771 check_preempt_curr(rq, p, WF_FORK);
2772 #ifdef CONFIG_SMP
2773 if (p->sched_class->task_woken)
2774 p->sched_class->task_woken(rq, p);
2775 #endif
2776 task_rq_unlock(rq, &flags);
2777 put_cpu();
2780 #ifdef CONFIG_PREEMPT_NOTIFIERS
2783 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2784 * @notifier: notifier struct to register
2786 void preempt_notifier_register(struct preempt_notifier *notifier)
2788 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2790 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2793 * preempt_notifier_unregister - no longer interested in preemption notifications
2794 * @notifier: notifier struct to unregister
2796 * This is safe to call from within a preemption notifier.
2798 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2800 hlist_del(&notifier->link);
2802 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2804 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2813 static void
2814 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2815 struct task_struct *next)
2817 struct preempt_notifier *notifier;
2818 struct hlist_node *node;
2820 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2821 notifier->ops->sched_out(notifier, next);
2824 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2826 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2830 static void
2831 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2832 struct task_struct *next)
2836 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2839 * prepare_task_switch - prepare to switch tasks
2840 * @rq: the runqueue preparing to switch
2841 * @prev: the current task that is being switched out
2842 * @next: the task we are going to switch to.
2844 * This is called with the rq lock held and interrupts off. It must
2845 * be paired with a subsequent finish_task_switch after the context
2846 * switch.
2848 * prepare_task_switch sets up locking and calls architecture specific
2849 * hooks.
2851 static inline void
2852 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
2855 fire_sched_out_preempt_notifiers(prev, next);
2856 prepare_lock_switch(rq, next);
2857 prepare_arch_switch(next);
2861 * finish_task_switch - clean up after a task-switch
2862 * @rq: runqueue associated with task-switch
2863 * @prev: the thread we just switched away from.
2865 * finish_task_switch must be called after the context switch, paired
2866 * with a prepare_task_switch call before the context switch.
2867 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2868 * and do any other architecture-specific cleanup actions.
2870 * Note that we may have delayed dropping an mm in context_switch(). If
2871 * so, we finish that here outside of the runqueue lock. (Doing it
2872 * with the lock held can cause deadlocks; see schedule() for
2873 * details.)
2875 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2876 __releases(rq->lock)
2878 struct mm_struct *mm = rq->prev_mm;
2879 long prev_state;
2881 rq->prev_mm = NULL;
2884 * A task struct has one reference for the use as "current".
2885 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2886 * schedule one last time. The schedule call will never return, and
2887 * the scheduled task must drop that reference.
2888 * The test for TASK_DEAD must occur while the runqueue locks are
2889 * still held, otherwise prev could be scheduled on another cpu, die
2890 * there before we look at prev->state, and then the reference would
2891 * be dropped twice.
2892 * Manfred Spraul <manfred@colorfullife.com>
2894 prev_state = prev->state;
2895 finish_arch_switch(prev);
2896 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_disable();
2898 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2899 perf_event_task_sched_in(current);
2900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2901 local_irq_enable();
2902 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2903 finish_lock_switch(rq, prev);
2905 fire_sched_in_preempt_notifiers(current);
2906 if (mm)
2907 mmdrop(mm);
2908 if (unlikely(prev_state == TASK_DEAD)) {
2910 * Remove function-return probe instances associated with this
2911 * task and put them back on the free list.
2913 kprobe_flush_task(prev);
2914 put_task_struct(prev);
2918 #ifdef CONFIG_SMP
2920 /* assumes rq->lock is held */
2921 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2923 if (prev->sched_class->pre_schedule)
2924 prev->sched_class->pre_schedule(rq, prev);
2927 /* rq->lock is NOT held, but preemption is disabled */
2928 static inline void post_schedule(struct rq *rq)
2930 if (rq->post_schedule) {
2931 unsigned long flags;
2933 raw_spin_lock_irqsave(&rq->lock, flags);
2934 if (rq->curr->sched_class->post_schedule)
2935 rq->curr->sched_class->post_schedule(rq);
2936 raw_spin_unlock_irqrestore(&rq->lock, flags);
2938 rq->post_schedule = 0;
2942 #else
2944 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2948 static inline void post_schedule(struct rq *rq)
2952 #endif
2955 * schedule_tail - first thing a freshly forked thread must call.
2956 * @prev: the thread we just switched away from.
2958 asmlinkage void schedule_tail(struct task_struct *prev)
2959 __releases(rq->lock)
2961 struct rq *rq = this_rq();
2963 finish_task_switch(rq, prev);
2966 * FIXME: do we need to worry about rq being invalidated by the
2967 * task_switch?
2969 post_schedule(rq);
2971 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2972 /* In this case, finish_task_switch does not reenable preemption */
2973 preempt_enable();
2974 #endif
2975 if (current->set_child_tid)
2976 put_user(task_pid_vnr(current), current->set_child_tid);
2980 * context_switch - switch to the new MM and the new
2981 * thread's register state.
2983 static inline void
2984 context_switch(struct rq *rq, struct task_struct *prev,
2985 struct task_struct *next)
2987 struct mm_struct *mm, *oldmm;
2989 prepare_task_switch(rq, prev, next);
2990 trace_sched_switch(prev, next);
2991 mm = next->mm;
2992 oldmm = prev->active_mm;
2994 * For paravirt, this is coupled with an exit in switch_to to
2995 * combine the page table reload and the switch backend into
2996 * one hypercall.
2998 arch_start_context_switch(prev);
3000 if (!mm) {
3001 next->active_mm = oldmm;
3002 atomic_inc(&oldmm->mm_count);
3003 enter_lazy_tlb(oldmm, next);
3004 } else
3005 switch_mm(oldmm, mm, next);
3007 if (!prev->mm) {
3008 prev->active_mm = NULL;
3009 rq->prev_mm = oldmm;
3012 * Since the runqueue lock will be released by the next
3013 * task (which is an invalid locking op but in the case
3014 * of the scheduler it's an obvious special-case), so we
3015 * do an early lockdep release here:
3017 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3018 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3019 #endif
3021 /* Here we just switch the register state and the stack. */
3022 switch_to(prev, next, prev);
3024 barrier();
3026 * this_rq must be evaluated again because prev may have moved
3027 * CPUs since it called schedule(), thus the 'rq' on its stack
3028 * frame will be invalid.
3030 finish_task_switch(this_rq(), prev);
3034 * nr_running, nr_uninterruptible and nr_context_switches:
3036 * externally visible scheduler statistics: current number of runnable
3037 * threads, current number of uninterruptible-sleeping threads, total
3038 * number of context switches performed since bootup.
3040 unsigned long nr_running(void)
3042 unsigned long i, sum = 0;
3044 for_each_online_cpu(i)
3045 sum += cpu_rq(i)->nr_running;
3047 return sum;
3050 unsigned long nr_uninterruptible(void)
3052 unsigned long i, sum = 0;
3054 for_each_possible_cpu(i)
3055 sum += cpu_rq(i)->nr_uninterruptible;
3058 * Since we read the counters lockless, it might be slightly
3059 * inaccurate. Do not allow it to go below zero though:
3061 if (unlikely((long)sum < 0))
3062 sum = 0;
3064 return sum;
3067 unsigned long long nr_context_switches(void)
3069 int i;
3070 unsigned long long sum = 0;
3072 for_each_possible_cpu(i)
3073 sum += cpu_rq(i)->nr_switches;
3075 return sum;
3078 unsigned long nr_iowait(void)
3080 unsigned long i, sum = 0;
3082 for_each_possible_cpu(i)
3083 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3085 return sum;
3088 unsigned long nr_iowait_cpu(int cpu)
3090 struct rq *this = cpu_rq(cpu);
3091 return atomic_read(&this->nr_iowait);
3094 unsigned long this_cpu_load(void)
3096 struct rq *this = this_rq();
3097 return this->cpu_load[0];
3101 /* Variables and functions for calc_load */
3102 static atomic_long_t calc_load_tasks;
3103 static unsigned long calc_load_update;
3104 unsigned long avenrun[3];
3105 EXPORT_SYMBOL(avenrun);
3107 static long calc_load_fold_active(struct rq *this_rq)
3109 long nr_active, delta = 0;
3111 nr_active = this_rq->nr_running;
3112 nr_active += (long) this_rq->nr_uninterruptible;
3114 if (nr_active != this_rq->calc_load_active) {
3115 delta = nr_active - this_rq->calc_load_active;
3116 this_rq->calc_load_active = nr_active;
3119 return delta;
3122 #ifdef CONFIG_NO_HZ
3124 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3126 * When making the ILB scale, we should try to pull this in as well.
3128 static atomic_long_t calc_load_tasks_idle;
3130 static void calc_load_account_idle(struct rq *this_rq)
3132 long delta;
3134 delta = calc_load_fold_active(this_rq);
3135 if (delta)
3136 atomic_long_add(delta, &calc_load_tasks_idle);
3139 static long calc_load_fold_idle(void)
3141 long delta = 0;
3144 * Its got a race, we don't care...
3146 if (atomic_long_read(&calc_load_tasks_idle))
3147 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3149 return delta;
3151 #else
3152 static void calc_load_account_idle(struct rq *this_rq)
3156 static inline long calc_load_fold_idle(void)
3158 return 0;
3160 #endif
3163 * get_avenrun - get the load average array
3164 * @loads: pointer to dest load array
3165 * @offset: offset to add
3166 * @shift: shift count to shift the result left
3168 * These values are estimates at best, so no need for locking.
3170 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3172 loads[0] = (avenrun[0] + offset) << shift;
3173 loads[1] = (avenrun[1] + offset) << shift;
3174 loads[2] = (avenrun[2] + offset) << shift;
3177 static unsigned long
3178 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3180 load *= exp;
3181 load += active * (FIXED_1 - exp);
3182 return load >> FSHIFT;
3186 * calc_load - update the avenrun load estimates 10 ticks after the
3187 * CPUs have updated calc_load_tasks.
3189 void calc_global_load(void)
3191 unsigned long upd = calc_load_update + 10;
3192 long active;
3194 if (time_before(jiffies, upd))
3195 return;
3197 active = atomic_long_read(&calc_load_tasks);
3198 active = active > 0 ? active * FIXED_1 : 0;
3200 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3201 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3202 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3204 calc_load_update += LOAD_FREQ;
3208 * Called from update_cpu_load() to periodically update this CPU's
3209 * active count.
3211 static void calc_load_account_active(struct rq *this_rq)
3213 long delta;
3215 if (time_before(jiffies, this_rq->calc_load_update))
3216 return;
3218 delta = calc_load_fold_active(this_rq);
3219 delta += calc_load_fold_idle();
3220 if (delta)
3221 atomic_long_add(delta, &calc_load_tasks);
3223 this_rq->calc_load_update += LOAD_FREQ;
3227 * The exact cpuload at various idx values, calculated at every tick would be
3228 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3230 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3231 * on nth tick when cpu may be busy, then we have:
3232 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3233 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3235 * decay_load_missed() below does efficient calculation of
3236 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3237 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3239 * The calculation is approximated on a 128 point scale.
3240 * degrade_zero_ticks is the number of ticks after which load at any
3241 * particular idx is approximated to be zero.
3242 * degrade_factor is a precomputed table, a row for each load idx.
3243 * Each column corresponds to degradation factor for a power of two ticks,
3244 * based on 128 point scale.
3245 * Example:
3246 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3247 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3249 * With this power of 2 load factors, we can degrade the load n times
3250 * by looking at 1 bits in n and doing as many mult/shift instead of
3251 * n mult/shifts needed by the exact degradation.
3253 #define DEGRADE_SHIFT 7
3254 static const unsigned char
3255 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3256 static const unsigned char
3257 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3258 {0, 0, 0, 0, 0, 0, 0, 0},
3259 {64, 32, 8, 0, 0, 0, 0, 0},
3260 {96, 72, 40, 12, 1, 0, 0},
3261 {112, 98, 75, 43, 15, 1, 0},
3262 {120, 112, 98, 76, 45, 16, 2} };
3265 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3266 * would be when CPU is idle and so we just decay the old load without
3267 * adding any new load.
3269 static unsigned long
3270 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3272 int j = 0;
3274 if (!missed_updates)
3275 return load;
3277 if (missed_updates >= degrade_zero_ticks[idx])
3278 return 0;
3280 if (idx == 1)
3281 return load >> missed_updates;
3283 while (missed_updates) {
3284 if (missed_updates % 2)
3285 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3287 missed_updates >>= 1;
3288 j++;
3290 return load;
3294 * Update rq->cpu_load[] statistics. This function is usually called every
3295 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3296 * every tick. We fix it up based on jiffies.
3298 static void update_cpu_load(struct rq *this_rq)
3300 unsigned long this_load = this_rq->load.weight;
3301 unsigned long curr_jiffies = jiffies;
3302 unsigned long pending_updates;
3303 int i, scale;
3305 this_rq->nr_load_updates++;
3307 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3308 if (curr_jiffies == this_rq->last_load_update_tick)
3309 return;
3311 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3312 this_rq->last_load_update_tick = curr_jiffies;
3314 /* Update our load: */
3315 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3316 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3317 unsigned long old_load, new_load;
3319 /* scale is effectively 1 << i now, and >> i divides by scale */
3321 old_load = this_rq->cpu_load[i];
3322 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3323 new_load = this_load;
3325 * Round up the averaging division if load is increasing. This
3326 * prevents us from getting stuck on 9 if the load is 10, for
3327 * example.
3329 if (new_load > old_load)
3330 new_load += scale - 1;
3332 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3335 sched_avg_update(this_rq);
3338 static void update_cpu_load_active(struct rq *this_rq)
3340 update_cpu_load(this_rq);
3342 calc_load_account_active(this_rq);
3345 #ifdef CONFIG_SMP
3348 * sched_exec - execve() is a valuable balancing opportunity, because at
3349 * this point the task has the smallest effective memory and cache footprint.
3351 void sched_exec(void)
3353 struct task_struct *p = current;
3354 unsigned long flags;
3355 struct rq *rq;
3356 int dest_cpu;
3358 rq = task_rq_lock(p, &flags);
3359 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3360 if (dest_cpu == smp_processor_id())
3361 goto unlock;
3364 * select_task_rq() can race against ->cpus_allowed
3366 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3367 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3368 struct migration_arg arg = { p, dest_cpu };
3370 task_rq_unlock(rq, &flags);
3371 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3372 return;
3374 unlock:
3375 task_rq_unlock(rq, &flags);
3378 #endif
3380 DEFINE_PER_CPU(struct kernel_stat, kstat);
3382 EXPORT_PER_CPU_SYMBOL(kstat);
3385 * Return any ns on the sched_clock that have not yet been accounted in
3386 * @p in case that task is currently running.
3388 * Called with task_rq_lock() held on @rq.
3390 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3392 u64 ns = 0;
3394 if (task_current(rq, p)) {
3395 update_rq_clock(rq);
3396 ns = rq->clock_task - p->se.exec_start;
3397 if ((s64)ns < 0)
3398 ns = 0;
3401 return ns;
3404 unsigned long long task_delta_exec(struct task_struct *p)
3406 unsigned long flags;
3407 struct rq *rq;
3408 u64 ns = 0;
3410 rq = task_rq_lock(p, &flags);
3411 ns = do_task_delta_exec(p, rq);
3412 task_rq_unlock(rq, &flags);
3414 return ns;
3418 * Return accounted runtime for the task.
3419 * In case the task is currently running, return the runtime plus current's
3420 * pending runtime that have not been accounted yet.
3422 unsigned long long task_sched_runtime(struct task_struct *p)
3424 unsigned long flags;
3425 struct rq *rq;
3426 u64 ns = 0;
3428 rq = task_rq_lock(p, &flags);
3429 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3430 task_rq_unlock(rq, &flags);
3432 return ns;
3436 * Return sum_exec_runtime for the thread group.
3437 * In case the task is currently running, return the sum plus current's
3438 * pending runtime that have not been accounted yet.
3440 * Note that the thread group might have other running tasks as well,
3441 * so the return value not includes other pending runtime that other
3442 * running tasks might have.
3444 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3446 struct task_cputime totals;
3447 unsigned long flags;
3448 struct rq *rq;
3449 u64 ns;
3451 rq = task_rq_lock(p, &flags);
3452 thread_group_cputime(p, &totals);
3453 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3454 task_rq_unlock(rq, &flags);
3456 return ns;
3460 * Account user cpu time to a process.
3461 * @p: the process that the cpu time gets accounted to
3462 * @cputime: the cpu time spent in user space since the last update
3463 * @cputime_scaled: cputime scaled by cpu frequency
3465 void account_user_time(struct task_struct *p, cputime_t cputime,
3466 cputime_t cputime_scaled)
3468 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3469 cputime64_t tmp;
3471 /* Add user time to process. */
3472 p->utime = cputime_add(p->utime, cputime);
3473 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3474 account_group_user_time(p, cputime);
3476 /* Add user time to cpustat. */
3477 tmp = cputime_to_cputime64(cputime);
3478 if (TASK_NICE(p) > 0)
3479 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3480 else
3481 cpustat->user = cputime64_add(cpustat->user, tmp);
3483 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3484 /* Account for user time used */
3485 acct_update_integrals(p);
3489 * Account guest cpu time to a process.
3490 * @p: the process that the cpu time gets accounted to
3491 * @cputime: the cpu time spent in virtual machine since the last update
3492 * @cputime_scaled: cputime scaled by cpu frequency
3494 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3495 cputime_t cputime_scaled)
3497 cputime64_t tmp;
3498 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3500 tmp = cputime_to_cputime64(cputime);
3502 /* Add guest time to process. */
3503 p->utime = cputime_add(p->utime, cputime);
3504 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3505 account_group_user_time(p, cputime);
3506 p->gtime = cputime_add(p->gtime, cputime);
3508 /* Add guest time to cpustat. */
3509 if (TASK_NICE(p) > 0) {
3510 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3511 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3512 } else {
3513 cpustat->user = cputime64_add(cpustat->user, tmp);
3514 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3519 * Account system cpu time to a process.
3520 * @p: the process that the cpu time gets accounted to
3521 * @hardirq_offset: the offset to subtract from hardirq_count()
3522 * @cputime: the cpu time spent in kernel space since the last update
3523 * @cputime_scaled: cputime scaled by cpu frequency
3525 void account_system_time(struct task_struct *p, int hardirq_offset,
3526 cputime_t cputime, cputime_t cputime_scaled)
3528 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3529 cputime64_t tmp;
3531 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3532 account_guest_time(p, cputime, cputime_scaled);
3533 return;
3536 /* Add system time to process. */
3537 p->stime = cputime_add(p->stime, cputime);
3538 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3539 account_group_system_time(p, cputime);
3541 /* Add system time to cpustat. */
3542 tmp = cputime_to_cputime64(cputime);
3543 if (hardirq_count() - hardirq_offset)
3544 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3545 else if (in_serving_softirq())
3546 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3547 else
3548 cpustat->system = cputime64_add(cpustat->system, tmp);
3550 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3552 /* Account for system time used */
3553 acct_update_integrals(p);
3557 * Account for involuntary wait time.
3558 * @steal: the cpu time spent in involuntary wait
3560 void account_steal_time(cputime_t cputime)
3562 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3563 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3565 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3569 * Account for idle time.
3570 * @cputime: the cpu time spent in idle wait
3572 void account_idle_time(cputime_t cputime)
3574 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3575 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3576 struct rq *rq = this_rq();
3578 if (atomic_read(&rq->nr_iowait) > 0)
3579 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3580 else
3581 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3584 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3587 * Account a single tick of cpu time.
3588 * @p: the process that the cpu time gets accounted to
3589 * @user_tick: indicates if the tick is a user or a system tick
3591 void account_process_tick(struct task_struct *p, int user_tick)
3593 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3594 struct rq *rq = this_rq();
3596 if (user_tick)
3597 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3598 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3599 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3600 one_jiffy_scaled);
3601 else
3602 account_idle_time(cputime_one_jiffy);
3606 * Account multiple ticks of steal time.
3607 * @p: the process from which the cpu time has been stolen
3608 * @ticks: number of stolen ticks
3610 void account_steal_ticks(unsigned long ticks)
3612 account_steal_time(jiffies_to_cputime(ticks));
3616 * Account multiple ticks of idle time.
3617 * @ticks: number of stolen ticks
3619 void account_idle_ticks(unsigned long ticks)
3621 account_idle_time(jiffies_to_cputime(ticks));
3624 #endif
3627 * Use precise platform statistics if available:
3629 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3630 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3632 *ut = p->utime;
3633 *st = p->stime;
3636 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3638 struct task_cputime cputime;
3640 thread_group_cputime(p, &cputime);
3642 *ut = cputime.utime;
3643 *st = cputime.stime;
3645 #else
3647 #ifndef nsecs_to_cputime
3648 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3649 #endif
3651 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3653 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3656 * Use CFS's precise accounting:
3658 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3660 if (total) {
3661 u64 temp = rtime;
3663 temp *= utime;
3664 do_div(temp, total);
3665 utime = (cputime_t)temp;
3666 } else
3667 utime = rtime;
3670 * Compare with previous values, to keep monotonicity:
3672 p->prev_utime = max(p->prev_utime, utime);
3673 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3675 *ut = p->prev_utime;
3676 *st = p->prev_stime;
3680 * Must be called with siglock held.
3682 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3684 struct signal_struct *sig = p->signal;
3685 struct task_cputime cputime;
3686 cputime_t rtime, utime, total;
3688 thread_group_cputime(p, &cputime);
3690 total = cputime_add(cputime.utime, cputime.stime);
3691 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3693 if (total) {
3694 u64 temp = rtime;
3696 temp *= cputime.utime;
3697 do_div(temp, total);
3698 utime = (cputime_t)temp;
3699 } else
3700 utime = rtime;
3702 sig->prev_utime = max(sig->prev_utime, utime);
3703 sig->prev_stime = max(sig->prev_stime,
3704 cputime_sub(rtime, sig->prev_utime));
3706 *ut = sig->prev_utime;
3707 *st = sig->prev_stime;
3709 #endif
3712 * This function gets called by the timer code, with HZ frequency.
3713 * We call it with interrupts disabled.
3715 * It also gets called by the fork code, when changing the parent's
3716 * timeslices.
3718 void scheduler_tick(void)
3720 int cpu = smp_processor_id();
3721 struct rq *rq = cpu_rq(cpu);
3722 struct task_struct *curr = rq->curr;
3724 sched_clock_tick();
3726 raw_spin_lock(&rq->lock);
3727 update_rq_clock(rq);
3728 update_cpu_load_active(rq);
3729 curr->sched_class->task_tick(rq, curr, 0);
3730 raw_spin_unlock(&rq->lock);
3732 perf_event_task_tick();
3734 #ifdef CONFIG_SMP
3735 rq->idle_at_tick = idle_cpu(cpu);
3736 trigger_load_balance(rq, cpu);
3737 #endif
3740 notrace unsigned long get_parent_ip(unsigned long addr)
3742 if (in_lock_functions(addr)) {
3743 addr = CALLER_ADDR2;
3744 if (in_lock_functions(addr))
3745 addr = CALLER_ADDR3;
3747 return addr;
3750 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3751 defined(CONFIG_PREEMPT_TRACER))
3753 void __kprobes add_preempt_count(int val)
3755 #ifdef CONFIG_DEBUG_PREEMPT
3757 * Underflow?
3759 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3760 return;
3761 #endif
3762 preempt_count() += val;
3763 #ifdef CONFIG_DEBUG_PREEMPT
3765 * Spinlock count overflowing soon?
3767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3768 PREEMPT_MASK - 10);
3769 #endif
3770 if (preempt_count() == val)
3771 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3773 EXPORT_SYMBOL(add_preempt_count);
3775 void __kprobes sub_preempt_count(int val)
3777 #ifdef CONFIG_DEBUG_PREEMPT
3779 * Underflow?
3781 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3782 return;
3784 * Is the spinlock portion underflowing?
3786 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3787 !(preempt_count() & PREEMPT_MASK)))
3788 return;
3789 #endif
3791 if (preempt_count() == val)
3792 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3793 preempt_count() -= val;
3795 EXPORT_SYMBOL(sub_preempt_count);
3797 #endif
3800 * Print scheduling while atomic bug:
3802 static noinline void __schedule_bug(struct task_struct *prev)
3804 struct pt_regs *regs = get_irq_regs();
3806 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3807 prev->comm, prev->pid, preempt_count());
3809 debug_show_held_locks(prev);
3810 print_modules();
3811 if (irqs_disabled())
3812 print_irqtrace_events(prev);
3814 if (regs)
3815 show_regs(regs);
3816 else
3817 dump_stack();
3821 * Various schedule()-time debugging checks and statistics:
3823 static inline void schedule_debug(struct task_struct *prev)
3826 * Test if we are atomic. Since do_exit() needs to call into
3827 * schedule() atomically, we ignore that path for now.
3828 * Otherwise, whine if we are scheduling when we should not be.
3830 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3831 __schedule_bug(prev);
3833 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3835 schedstat_inc(this_rq(), sched_count);
3836 #ifdef CONFIG_SCHEDSTATS
3837 if (unlikely(prev->lock_depth >= 0)) {
3838 schedstat_inc(this_rq(), bkl_count);
3839 schedstat_inc(prev, sched_info.bkl_count);
3841 #endif
3844 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3846 if (prev->se.on_rq)
3847 update_rq_clock(rq);
3848 rq->skip_clock_update = 0;
3849 prev->sched_class->put_prev_task(rq, prev);
3853 * Pick up the highest-prio task:
3855 static inline struct task_struct *
3856 pick_next_task(struct rq *rq)
3858 const struct sched_class *class;
3859 struct task_struct *p;
3862 * Optimization: we know that if all tasks are in
3863 * the fair class we can call that function directly:
3865 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3866 p = fair_sched_class.pick_next_task(rq);
3867 if (likely(p))
3868 return p;
3871 for_each_class(class) {
3872 p = class->pick_next_task(rq);
3873 if (p)
3874 return p;
3877 BUG(); /* the idle class will always have a runnable task */
3881 * schedule() is the main scheduler function.
3883 asmlinkage void __sched schedule(void)
3885 struct task_struct *prev, *next;
3886 unsigned long *switch_count;
3887 struct rq *rq;
3888 int cpu;
3890 need_resched:
3891 preempt_disable();
3892 cpu = smp_processor_id();
3893 rq = cpu_rq(cpu);
3894 rcu_note_context_switch(cpu);
3895 prev = rq->curr;
3897 release_kernel_lock(prev);
3898 need_resched_nonpreemptible:
3900 schedule_debug(prev);
3902 if (sched_feat(HRTICK))
3903 hrtick_clear(rq);
3905 raw_spin_lock_irq(&rq->lock);
3906 clear_tsk_need_resched(prev);
3908 switch_count = &prev->nivcsw;
3909 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3910 if (unlikely(signal_pending_state(prev->state, prev))) {
3911 prev->state = TASK_RUNNING;
3912 } else {
3914 * If a worker is going to sleep, notify and
3915 * ask workqueue whether it wants to wake up a
3916 * task to maintain concurrency. If so, wake
3917 * up the task.
3919 if (prev->flags & PF_WQ_WORKER) {
3920 struct task_struct *to_wakeup;
3922 to_wakeup = wq_worker_sleeping(prev, cpu);
3923 if (to_wakeup)
3924 try_to_wake_up_local(to_wakeup);
3926 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3928 switch_count = &prev->nvcsw;
3931 pre_schedule(rq, prev);
3933 if (unlikely(!rq->nr_running))
3934 idle_balance(cpu, rq);
3936 put_prev_task(rq, prev);
3937 next = pick_next_task(rq);
3939 if (likely(prev != next)) {
3940 sched_info_switch(prev, next);
3941 perf_event_task_sched_out(prev, next);
3943 rq->nr_switches++;
3944 rq->curr = next;
3945 ++*switch_count;
3947 context_switch(rq, prev, next); /* unlocks the rq */
3949 * The context switch have flipped the stack from under us
3950 * and restored the local variables which were saved when
3951 * this task called schedule() in the past. prev == current
3952 * is still correct, but it can be moved to another cpu/rq.
3954 cpu = smp_processor_id();
3955 rq = cpu_rq(cpu);
3956 } else
3957 raw_spin_unlock_irq(&rq->lock);
3959 post_schedule(rq);
3961 if (unlikely(reacquire_kernel_lock(prev)))
3962 goto need_resched_nonpreemptible;
3964 preempt_enable_no_resched();
3965 if (need_resched())
3966 goto need_resched;
3968 EXPORT_SYMBOL(schedule);
3970 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3972 * Look out! "owner" is an entirely speculative pointer
3973 * access and not reliable.
3975 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3977 unsigned int cpu;
3978 struct rq *rq;
3980 if (!sched_feat(OWNER_SPIN))
3981 return 0;
3983 #ifdef CONFIG_DEBUG_PAGEALLOC
3985 * Need to access the cpu field knowing that
3986 * DEBUG_PAGEALLOC could have unmapped it if
3987 * the mutex owner just released it and exited.
3989 if (probe_kernel_address(&owner->cpu, cpu))
3990 return 0;
3991 #else
3992 cpu = owner->cpu;
3993 #endif
3996 * Even if the access succeeded (likely case),
3997 * the cpu field may no longer be valid.
3999 if (cpu >= nr_cpumask_bits)
4000 return 0;
4003 * We need to validate that we can do a
4004 * get_cpu() and that we have the percpu area.
4006 if (!cpu_online(cpu))
4007 return 0;
4009 rq = cpu_rq(cpu);
4011 for (;;) {
4013 * Owner changed, break to re-assess state.
4015 if (lock->owner != owner) {
4017 * If the lock has switched to a different owner,
4018 * we likely have heavy contention. Return 0 to quit
4019 * optimistic spinning and not contend further:
4021 if (lock->owner)
4022 return 0;
4023 break;
4027 * Is that owner really running on that cpu?
4029 if (task_thread_info(rq->curr) != owner || need_resched())
4030 return 0;
4032 cpu_relax();
4035 return 1;
4037 #endif
4039 #ifdef CONFIG_PREEMPT
4041 * this is the entry point to schedule() from in-kernel preemption
4042 * off of preempt_enable. Kernel preemptions off return from interrupt
4043 * occur there and call schedule directly.
4045 asmlinkage void __sched notrace preempt_schedule(void)
4047 struct thread_info *ti = current_thread_info();
4050 * If there is a non-zero preempt_count or interrupts are disabled,
4051 * we do not want to preempt the current task. Just return..
4053 if (likely(ti->preempt_count || irqs_disabled()))
4054 return;
4056 do {
4057 add_preempt_count_notrace(PREEMPT_ACTIVE);
4058 schedule();
4059 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4062 * Check again in case we missed a preemption opportunity
4063 * between schedule and now.
4065 barrier();
4066 } while (need_resched());
4068 EXPORT_SYMBOL(preempt_schedule);
4071 * this is the entry point to schedule() from kernel preemption
4072 * off of irq context.
4073 * Note, that this is called and return with irqs disabled. This will
4074 * protect us against recursive calling from irq.
4076 asmlinkage void __sched preempt_schedule_irq(void)
4078 struct thread_info *ti = current_thread_info();
4080 /* Catch callers which need to be fixed */
4081 BUG_ON(ti->preempt_count || !irqs_disabled());
4083 do {
4084 add_preempt_count(PREEMPT_ACTIVE);
4085 local_irq_enable();
4086 schedule();
4087 local_irq_disable();
4088 sub_preempt_count(PREEMPT_ACTIVE);
4091 * Check again in case we missed a preemption opportunity
4092 * between schedule and now.
4094 barrier();
4095 } while (need_resched());
4098 #endif /* CONFIG_PREEMPT */
4100 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4101 void *key)
4103 return try_to_wake_up(curr->private, mode, wake_flags);
4105 EXPORT_SYMBOL(default_wake_function);
4108 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4109 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4110 * number) then we wake all the non-exclusive tasks and one exclusive task.
4112 * There are circumstances in which we can try to wake a task which has already
4113 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4114 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4116 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4117 int nr_exclusive, int wake_flags, void *key)
4119 wait_queue_t *curr, *next;
4121 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4122 unsigned flags = curr->flags;
4124 if (curr->func(curr, mode, wake_flags, key) &&
4125 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4126 break;
4131 * __wake_up - wake up threads blocked on a waitqueue.
4132 * @q: the waitqueue
4133 * @mode: which threads
4134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4135 * @key: is directly passed to the wakeup function
4137 * It may be assumed that this function implies a write memory barrier before
4138 * changing the task state if and only if any tasks are woken up.
4140 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4141 int nr_exclusive, void *key)
4143 unsigned long flags;
4145 spin_lock_irqsave(&q->lock, flags);
4146 __wake_up_common(q, mode, nr_exclusive, 0, key);
4147 spin_unlock_irqrestore(&q->lock, flags);
4149 EXPORT_SYMBOL(__wake_up);
4152 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4154 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4156 __wake_up_common(q, mode, 1, 0, NULL);
4158 EXPORT_SYMBOL_GPL(__wake_up_locked);
4160 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4162 __wake_up_common(q, mode, 1, 0, key);
4166 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4167 * @q: the waitqueue
4168 * @mode: which threads
4169 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4170 * @key: opaque value to be passed to wakeup targets
4172 * The sync wakeup differs that the waker knows that it will schedule
4173 * away soon, so while the target thread will be woken up, it will not
4174 * be migrated to another CPU - ie. the two threads are 'synchronized'
4175 * with each other. This can prevent needless bouncing between CPUs.
4177 * On UP it can prevent extra preemption.
4179 * It may be assumed that this function implies a write memory barrier before
4180 * changing the task state if and only if any tasks are woken up.
4182 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4183 int nr_exclusive, void *key)
4185 unsigned long flags;
4186 int wake_flags = WF_SYNC;
4188 if (unlikely(!q))
4189 return;
4191 if (unlikely(!nr_exclusive))
4192 wake_flags = 0;
4194 spin_lock_irqsave(&q->lock, flags);
4195 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4196 spin_unlock_irqrestore(&q->lock, flags);
4198 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4201 * __wake_up_sync - see __wake_up_sync_key()
4203 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4205 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4207 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4210 * complete: - signals a single thread waiting on this completion
4211 * @x: holds the state of this particular completion
4213 * This will wake up a single thread waiting on this completion. Threads will be
4214 * awakened in the same order in which they were queued.
4216 * See also complete_all(), wait_for_completion() and related routines.
4218 * It may be assumed that this function implies a write memory barrier before
4219 * changing the task state if and only if any tasks are woken up.
4221 void complete(struct completion *x)
4223 unsigned long flags;
4225 spin_lock_irqsave(&x->wait.lock, flags);
4226 x->done++;
4227 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4228 spin_unlock_irqrestore(&x->wait.lock, flags);
4230 EXPORT_SYMBOL(complete);
4233 * complete_all: - signals all threads waiting on this completion
4234 * @x: holds the state of this particular completion
4236 * This will wake up all threads waiting on this particular completion event.
4238 * It may be assumed that this function implies a write memory barrier before
4239 * changing the task state if and only if any tasks are woken up.
4241 void complete_all(struct completion *x)
4243 unsigned long flags;
4245 spin_lock_irqsave(&x->wait.lock, flags);
4246 x->done += UINT_MAX/2;
4247 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4248 spin_unlock_irqrestore(&x->wait.lock, flags);
4250 EXPORT_SYMBOL(complete_all);
4252 static inline long __sched
4253 do_wait_for_common(struct completion *x, long timeout, int state)
4255 if (!x->done) {
4256 DECLARE_WAITQUEUE(wait, current);
4258 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4259 do {
4260 if (signal_pending_state(state, current)) {
4261 timeout = -ERESTARTSYS;
4262 break;
4264 __set_current_state(state);
4265 spin_unlock_irq(&x->wait.lock);
4266 timeout = schedule_timeout(timeout);
4267 spin_lock_irq(&x->wait.lock);
4268 } while (!x->done && timeout);
4269 __remove_wait_queue(&x->wait, &wait);
4270 if (!x->done)
4271 return timeout;
4273 x->done--;
4274 return timeout ?: 1;
4277 static long __sched
4278 wait_for_common(struct completion *x, long timeout, int state)
4280 might_sleep();
4282 spin_lock_irq(&x->wait.lock);
4283 timeout = do_wait_for_common(x, timeout, state);
4284 spin_unlock_irq(&x->wait.lock);
4285 return timeout;
4289 * wait_for_completion: - waits for completion of a task
4290 * @x: holds the state of this particular completion
4292 * This waits to be signaled for completion of a specific task. It is NOT
4293 * interruptible and there is no timeout.
4295 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4296 * and interrupt capability. Also see complete().
4298 void __sched wait_for_completion(struct completion *x)
4300 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4302 EXPORT_SYMBOL(wait_for_completion);
4305 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4306 * @x: holds the state of this particular completion
4307 * @timeout: timeout value in jiffies
4309 * This waits for either a completion of a specific task to be signaled or for a
4310 * specified timeout to expire. The timeout is in jiffies. It is not
4311 * interruptible.
4313 unsigned long __sched
4314 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4316 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4318 EXPORT_SYMBOL(wait_for_completion_timeout);
4321 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4322 * @x: holds the state of this particular completion
4324 * This waits for completion of a specific task to be signaled. It is
4325 * interruptible.
4327 int __sched wait_for_completion_interruptible(struct completion *x)
4329 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4330 if (t == -ERESTARTSYS)
4331 return t;
4332 return 0;
4334 EXPORT_SYMBOL(wait_for_completion_interruptible);
4337 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4338 * @x: holds the state of this particular completion
4339 * @timeout: timeout value in jiffies
4341 * This waits for either a completion of a specific task to be signaled or for a
4342 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4344 unsigned long __sched
4345 wait_for_completion_interruptible_timeout(struct completion *x,
4346 unsigned long timeout)
4348 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4350 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4353 * wait_for_completion_killable: - waits for completion of a task (killable)
4354 * @x: holds the state of this particular completion
4356 * This waits to be signaled for completion of a specific task. It can be
4357 * interrupted by a kill signal.
4359 int __sched wait_for_completion_killable(struct completion *x)
4361 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4362 if (t == -ERESTARTSYS)
4363 return t;
4364 return 0;
4366 EXPORT_SYMBOL(wait_for_completion_killable);
4369 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4370 * @x: holds the state of this particular completion
4371 * @timeout: timeout value in jiffies
4373 * This waits for either a completion of a specific task to be
4374 * signaled or for a specified timeout to expire. It can be
4375 * interrupted by a kill signal. The timeout is in jiffies.
4377 unsigned long __sched
4378 wait_for_completion_killable_timeout(struct completion *x,
4379 unsigned long timeout)
4381 return wait_for_common(x, timeout, TASK_KILLABLE);
4383 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4386 * try_wait_for_completion - try to decrement a completion without blocking
4387 * @x: completion structure
4389 * Returns: 0 if a decrement cannot be done without blocking
4390 * 1 if a decrement succeeded.
4392 * If a completion is being used as a counting completion,
4393 * attempt to decrement the counter without blocking. This
4394 * enables us to avoid waiting if the resource the completion
4395 * is protecting is not available.
4397 bool try_wait_for_completion(struct completion *x)
4399 unsigned long flags;
4400 int ret = 1;
4402 spin_lock_irqsave(&x->wait.lock, flags);
4403 if (!x->done)
4404 ret = 0;
4405 else
4406 x->done--;
4407 spin_unlock_irqrestore(&x->wait.lock, flags);
4408 return ret;
4410 EXPORT_SYMBOL(try_wait_for_completion);
4413 * completion_done - Test to see if a completion has any waiters
4414 * @x: completion structure
4416 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4417 * 1 if there are no waiters.
4420 bool completion_done(struct completion *x)
4422 unsigned long flags;
4423 int ret = 1;
4425 spin_lock_irqsave(&x->wait.lock, flags);
4426 if (!x->done)
4427 ret = 0;
4428 spin_unlock_irqrestore(&x->wait.lock, flags);
4429 return ret;
4431 EXPORT_SYMBOL(completion_done);
4433 static long __sched
4434 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4436 unsigned long flags;
4437 wait_queue_t wait;
4439 init_waitqueue_entry(&wait, current);
4441 __set_current_state(state);
4443 spin_lock_irqsave(&q->lock, flags);
4444 __add_wait_queue(q, &wait);
4445 spin_unlock(&q->lock);
4446 timeout = schedule_timeout(timeout);
4447 spin_lock_irq(&q->lock);
4448 __remove_wait_queue(q, &wait);
4449 spin_unlock_irqrestore(&q->lock, flags);
4451 return timeout;
4454 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4456 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4458 EXPORT_SYMBOL(interruptible_sleep_on);
4460 long __sched
4461 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4463 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4465 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4467 void __sched sleep_on(wait_queue_head_t *q)
4469 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4471 EXPORT_SYMBOL(sleep_on);
4473 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4475 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4477 EXPORT_SYMBOL(sleep_on_timeout);
4479 #ifdef CONFIG_RT_MUTEXES
4482 * rt_mutex_setprio - set the current priority of a task
4483 * @p: task
4484 * @prio: prio value (kernel-internal form)
4486 * This function changes the 'effective' priority of a task. It does
4487 * not touch ->normal_prio like __setscheduler().
4489 * Used by the rt_mutex code to implement priority inheritance logic.
4491 void rt_mutex_setprio(struct task_struct *p, int prio)
4493 unsigned long flags;
4494 int oldprio, on_rq, running;
4495 struct rq *rq;
4496 const struct sched_class *prev_class;
4498 BUG_ON(prio < 0 || prio > MAX_PRIO);
4500 rq = task_rq_lock(p, &flags);
4502 trace_sched_pi_setprio(p, prio);
4503 oldprio = p->prio;
4504 prev_class = p->sched_class;
4505 on_rq = p->se.on_rq;
4506 running = task_current(rq, p);
4507 if (on_rq)
4508 dequeue_task(rq, p, 0);
4509 if (running)
4510 p->sched_class->put_prev_task(rq, p);
4512 if (rt_prio(prio))
4513 p->sched_class = &rt_sched_class;
4514 else
4515 p->sched_class = &fair_sched_class;
4517 p->prio = prio;
4519 if (running)
4520 p->sched_class->set_curr_task(rq);
4521 if (on_rq) {
4522 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4524 check_class_changed(rq, p, prev_class, oldprio, running);
4526 task_rq_unlock(rq, &flags);
4529 #endif
4531 void set_user_nice(struct task_struct *p, long nice)
4533 int old_prio, delta, on_rq;
4534 unsigned long flags;
4535 struct rq *rq;
4537 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4538 return;
4540 * We have to be careful, if called from sys_setpriority(),
4541 * the task might be in the middle of scheduling on another CPU.
4543 rq = task_rq_lock(p, &flags);
4545 * The RT priorities are set via sched_setscheduler(), but we still
4546 * allow the 'normal' nice value to be set - but as expected
4547 * it wont have any effect on scheduling until the task is
4548 * SCHED_FIFO/SCHED_RR:
4550 if (task_has_rt_policy(p)) {
4551 p->static_prio = NICE_TO_PRIO(nice);
4552 goto out_unlock;
4554 on_rq = p->se.on_rq;
4555 if (on_rq)
4556 dequeue_task(rq, p, 0);
4558 p->static_prio = NICE_TO_PRIO(nice);
4559 set_load_weight(p);
4560 old_prio = p->prio;
4561 p->prio = effective_prio(p);
4562 delta = p->prio - old_prio;
4564 if (on_rq) {
4565 enqueue_task(rq, p, 0);
4567 * If the task increased its priority or is running and
4568 * lowered its priority, then reschedule its CPU:
4570 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4571 resched_task(rq->curr);
4573 out_unlock:
4574 task_rq_unlock(rq, &flags);
4576 EXPORT_SYMBOL(set_user_nice);
4579 * can_nice - check if a task can reduce its nice value
4580 * @p: task
4581 * @nice: nice value
4583 int can_nice(const struct task_struct *p, const int nice)
4585 /* convert nice value [19,-20] to rlimit style value [1,40] */
4586 int nice_rlim = 20 - nice;
4588 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4589 capable(CAP_SYS_NICE));
4592 #ifdef __ARCH_WANT_SYS_NICE
4595 * sys_nice - change the priority of the current process.
4596 * @increment: priority increment
4598 * sys_setpriority is a more generic, but much slower function that
4599 * does similar things.
4601 SYSCALL_DEFINE1(nice, int, increment)
4603 long nice, retval;
4606 * Setpriority might change our priority at the same moment.
4607 * We don't have to worry. Conceptually one call occurs first
4608 * and we have a single winner.
4610 if (increment < -40)
4611 increment = -40;
4612 if (increment > 40)
4613 increment = 40;
4615 nice = TASK_NICE(current) + increment;
4616 if (nice < -20)
4617 nice = -20;
4618 if (nice > 19)
4619 nice = 19;
4621 if (increment < 0 && !can_nice(current, nice))
4622 return -EPERM;
4624 retval = security_task_setnice(current, nice);
4625 if (retval)
4626 return retval;
4628 set_user_nice(current, nice);
4629 return 0;
4632 #endif
4635 * task_prio - return the priority value of a given task.
4636 * @p: the task in question.
4638 * This is the priority value as seen by users in /proc.
4639 * RT tasks are offset by -200. Normal tasks are centered
4640 * around 0, value goes from -16 to +15.
4642 int task_prio(const struct task_struct *p)
4644 return p->prio - MAX_RT_PRIO;
4648 * task_nice - return the nice value of a given task.
4649 * @p: the task in question.
4651 int task_nice(const struct task_struct *p)
4653 return TASK_NICE(p);
4655 EXPORT_SYMBOL(task_nice);
4658 * idle_cpu - is a given cpu idle currently?
4659 * @cpu: the processor in question.
4661 int idle_cpu(int cpu)
4663 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4667 * idle_task - return the idle task for a given cpu.
4668 * @cpu: the processor in question.
4670 struct task_struct *idle_task(int cpu)
4672 return cpu_rq(cpu)->idle;
4676 * find_process_by_pid - find a process with a matching PID value.
4677 * @pid: the pid in question.
4679 static struct task_struct *find_process_by_pid(pid_t pid)
4681 return pid ? find_task_by_vpid(pid) : current;
4684 /* Actually do priority change: must hold rq lock. */
4685 static void
4686 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4688 BUG_ON(p->se.on_rq);
4690 p->policy = policy;
4691 p->rt_priority = prio;
4692 p->normal_prio = normal_prio(p);
4693 /* we are holding p->pi_lock already */
4694 p->prio = rt_mutex_getprio(p);
4695 if (rt_prio(p->prio))
4696 p->sched_class = &rt_sched_class;
4697 else
4698 p->sched_class = &fair_sched_class;
4699 set_load_weight(p);
4703 * check the target process has a UID that matches the current process's
4705 static bool check_same_owner(struct task_struct *p)
4707 const struct cred *cred = current_cred(), *pcred;
4708 bool match;
4710 rcu_read_lock();
4711 pcred = __task_cred(p);
4712 match = (cred->euid == pcred->euid ||
4713 cred->euid == pcred->uid);
4714 rcu_read_unlock();
4715 return match;
4718 static int __sched_setscheduler(struct task_struct *p, int policy,
4719 struct sched_param *param, bool user)
4721 int retval, oldprio, oldpolicy = -1, on_rq, running;
4722 unsigned long flags;
4723 const struct sched_class *prev_class;
4724 struct rq *rq;
4725 int reset_on_fork;
4727 /* may grab non-irq protected spin_locks */
4728 BUG_ON(in_interrupt());
4729 recheck:
4730 /* double check policy once rq lock held */
4731 if (policy < 0) {
4732 reset_on_fork = p->sched_reset_on_fork;
4733 policy = oldpolicy = p->policy;
4734 } else {
4735 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4736 policy &= ~SCHED_RESET_ON_FORK;
4738 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4739 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4740 policy != SCHED_IDLE)
4741 return -EINVAL;
4745 * Valid priorities for SCHED_FIFO and SCHED_RR are
4746 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4747 * SCHED_BATCH and SCHED_IDLE is 0.
4749 if (param->sched_priority < 0 ||
4750 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4751 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4752 return -EINVAL;
4753 if (rt_policy(policy) != (param->sched_priority != 0))
4754 return -EINVAL;
4757 * Allow unprivileged RT tasks to decrease priority:
4759 if (user && !capable(CAP_SYS_NICE)) {
4760 if (rt_policy(policy)) {
4761 unsigned long rlim_rtprio =
4762 task_rlimit(p, RLIMIT_RTPRIO);
4764 /* can't set/change the rt policy */
4765 if (policy != p->policy && !rlim_rtprio)
4766 return -EPERM;
4768 /* can't increase priority */
4769 if (param->sched_priority > p->rt_priority &&
4770 param->sched_priority > rlim_rtprio)
4771 return -EPERM;
4774 * Like positive nice levels, dont allow tasks to
4775 * move out of SCHED_IDLE either:
4777 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4778 return -EPERM;
4780 /* can't change other user's priorities */
4781 if (!check_same_owner(p))
4782 return -EPERM;
4784 /* Normal users shall not reset the sched_reset_on_fork flag */
4785 if (p->sched_reset_on_fork && !reset_on_fork)
4786 return -EPERM;
4789 if (user) {
4790 retval = security_task_setscheduler(p);
4791 if (retval)
4792 return retval;
4796 * make sure no PI-waiters arrive (or leave) while we are
4797 * changing the priority of the task:
4799 raw_spin_lock_irqsave(&p->pi_lock, flags);
4801 * To be able to change p->policy safely, the apropriate
4802 * runqueue lock must be held.
4804 rq = __task_rq_lock(p);
4807 * Changing the policy of the stop threads its a very bad idea
4809 if (p == rq->stop) {
4810 __task_rq_unlock(rq);
4811 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4812 return -EINVAL;
4815 #ifdef CONFIG_RT_GROUP_SCHED
4816 if (user) {
4818 * Do not allow realtime tasks into groups that have no runtime
4819 * assigned.
4821 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4822 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4823 __task_rq_unlock(rq);
4824 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4825 return -EPERM;
4828 #endif
4830 /* recheck policy now with rq lock held */
4831 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4832 policy = oldpolicy = -1;
4833 __task_rq_unlock(rq);
4834 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4835 goto recheck;
4837 on_rq = p->se.on_rq;
4838 running = task_current(rq, p);
4839 if (on_rq)
4840 deactivate_task(rq, p, 0);
4841 if (running)
4842 p->sched_class->put_prev_task(rq, p);
4844 p->sched_reset_on_fork = reset_on_fork;
4846 oldprio = p->prio;
4847 prev_class = p->sched_class;
4848 __setscheduler(rq, p, policy, param->sched_priority);
4850 if (running)
4851 p->sched_class->set_curr_task(rq);
4852 if (on_rq) {
4853 activate_task(rq, p, 0);
4855 check_class_changed(rq, p, prev_class, oldprio, running);
4857 __task_rq_unlock(rq);
4858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4860 rt_mutex_adjust_pi(p);
4862 return 0;
4866 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4867 * @p: the task in question.
4868 * @policy: new policy.
4869 * @param: structure containing the new RT priority.
4871 * NOTE that the task may be already dead.
4873 int sched_setscheduler(struct task_struct *p, int policy,
4874 struct sched_param *param)
4876 return __sched_setscheduler(p, policy, param, true);
4878 EXPORT_SYMBOL_GPL(sched_setscheduler);
4881 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4882 * @p: the task in question.
4883 * @policy: new policy.
4884 * @param: structure containing the new RT priority.
4886 * Just like sched_setscheduler, only don't bother checking if the
4887 * current context has permission. For example, this is needed in
4888 * stop_machine(): we create temporary high priority worker threads,
4889 * but our caller might not have that capability.
4891 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4892 struct sched_param *param)
4894 return __sched_setscheduler(p, policy, param, false);
4897 static int
4898 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4900 struct sched_param lparam;
4901 struct task_struct *p;
4902 int retval;
4904 if (!param || pid < 0)
4905 return -EINVAL;
4906 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4907 return -EFAULT;
4909 rcu_read_lock();
4910 retval = -ESRCH;
4911 p = find_process_by_pid(pid);
4912 if (p != NULL)
4913 retval = sched_setscheduler(p, policy, &lparam);
4914 rcu_read_unlock();
4916 return retval;
4920 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4921 * @pid: the pid in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4925 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4926 struct sched_param __user *, param)
4928 /* negative values for policy are not valid */
4929 if (policy < 0)
4930 return -EINVAL;
4932 return do_sched_setscheduler(pid, policy, param);
4936 * sys_sched_setparam - set/change the RT priority of a thread
4937 * @pid: the pid in question.
4938 * @param: structure containing the new RT priority.
4940 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4942 return do_sched_setscheduler(pid, -1, param);
4946 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4947 * @pid: the pid in question.
4949 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4951 struct task_struct *p;
4952 int retval;
4954 if (pid < 0)
4955 return -EINVAL;
4957 retval = -ESRCH;
4958 rcu_read_lock();
4959 p = find_process_by_pid(pid);
4960 if (p) {
4961 retval = security_task_getscheduler(p);
4962 if (!retval)
4963 retval = p->policy
4964 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4966 rcu_read_unlock();
4967 return retval;
4971 * sys_sched_getparam - get the RT priority of a thread
4972 * @pid: the pid in question.
4973 * @param: structure containing the RT priority.
4975 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4977 struct sched_param lp;
4978 struct task_struct *p;
4979 int retval;
4981 if (!param || pid < 0)
4982 return -EINVAL;
4984 rcu_read_lock();
4985 p = find_process_by_pid(pid);
4986 retval = -ESRCH;
4987 if (!p)
4988 goto out_unlock;
4990 retval = security_task_getscheduler(p);
4991 if (retval)
4992 goto out_unlock;
4994 lp.sched_priority = p->rt_priority;
4995 rcu_read_unlock();
4998 * This one might sleep, we cannot do it with a spinlock held ...
5000 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5002 return retval;
5004 out_unlock:
5005 rcu_read_unlock();
5006 return retval;
5009 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5011 cpumask_var_t cpus_allowed, new_mask;
5012 struct task_struct *p;
5013 int retval;
5015 get_online_cpus();
5016 rcu_read_lock();
5018 p = find_process_by_pid(pid);
5019 if (!p) {
5020 rcu_read_unlock();
5021 put_online_cpus();
5022 return -ESRCH;
5025 /* Prevent p going away */
5026 get_task_struct(p);
5027 rcu_read_unlock();
5029 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5030 retval = -ENOMEM;
5031 goto out_put_task;
5033 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5034 retval = -ENOMEM;
5035 goto out_free_cpus_allowed;
5037 retval = -EPERM;
5038 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5039 goto out_unlock;
5041 retval = security_task_setscheduler(p);
5042 if (retval)
5043 goto out_unlock;
5045 cpuset_cpus_allowed(p, cpus_allowed);
5046 cpumask_and(new_mask, in_mask, cpus_allowed);
5047 again:
5048 retval = set_cpus_allowed_ptr(p, new_mask);
5050 if (!retval) {
5051 cpuset_cpus_allowed(p, cpus_allowed);
5052 if (!cpumask_subset(new_mask, cpus_allowed)) {
5054 * We must have raced with a concurrent cpuset
5055 * update. Just reset the cpus_allowed to the
5056 * cpuset's cpus_allowed
5058 cpumask_copy(new_mask, cpus_allowed);
5059 goto again;
5062 out_unlock:
5063 free_cpumask_var(new_mask);
5064 out_free_cpus_allowed:
5065 free_cpumask_var(cpus_allowed);
5066 out_put_task:
5067 put_task_struct(p);
5068 put_online_cpus();
5069 return retval;
5072 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5073 struct cpumask *new_mask)
5075 if (len < cpumask_size())
5076 cpumask_clear(new_mask);
5077 else if (len > cpumask_size())
5078 len = cpumask_size();
5080 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5084 * sys_sched_setaffinity - set the cpu affinity of a process
5085 * @pid: pid of the process
5086 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5087 * @user_mask_ptr: user-space pointer to the new cpu mask
5089 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5090 unsigned long __user *, user_mask_ptr)
5092 cpumask_var_t new_mask;
5093 int retval;
5095 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5096 return -ENOMEM;
5098 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5099 if (retval == 0)
5100 retval = sched_setaffinity(pid, new_mask);
5101 free_cpumask_var(new_mask);
5102 return retval;
5105 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5107 struct task_struct *p;
5108 unsigned long flags;
5109 struct rq *rq;
5110 int retval;
5112 get_online_cpus();
5113 rcu_read_lock();
5115 retval = -ESRCH;
5116 p = find_process_by_pid(pid);
5117 if (!p)
5118 goto out_unlock;
5120 retval = security_task_getscheduler(p);
5121 if (retval)
5122 goto out_unlock;
5124 rq = task_rq_lock(p, &flags);
5125 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5126 task_rq_unlock(rq, &flags);
5128 out_unlock:
5129 rcu_read_unlock();
5130 put_online_cpus();
5132 return retval;
5136 * sys_sched_getaffinity - get the cpu affinity of a process
5137 * @pid: pid of the process
5138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5139 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5141 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5142 unsigned long __user *, user_mask_ptr)
5144 int ret;
5145 cpumask_var_t mask;
5147 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5148 return -EINVAL;
5149 if (len & (sizeof(unsigned long)-1))
5150 return -EINVAL;
5152 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5153 return -ENOMEM;
5155 ret = sched_getaffinity(pid, mask);
5156 if (ret == 0) {
5157 size_t retlen = min_t(size_t, len, cpumask_size());
5159 if (copy_to_user(user_mask_ptr, mask, retlen))
5160 ret = -EFAULT;
5161 else
5162 ret = retlen;
5164 free_cpumask_var(mask);
5166 return ret;
5170 * sys_sched_yield - yield the current processor to other threads.
5172 * This function yields the current CPU to other tasks. If there are no
5173 * other threads running on this CPU then this function will return.
5175 SYSCALL_DEFINE0(sched_yield)
5177 struct rq *rq = this_rq_lock();
5179 schedstat_inc(rq, yld_count);
5180 current->sched_class->yield_task(rq);
5183 * Since we are going to call schedule() anyway, there's
5184 * no need to preempt or enable interrupts:
5186 __release(rq->lock);
5187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5188 do_raw_spin_unlock(&rq->lock);
5189 preempt_enable_no_resched();
5191 schedule();
5193 return 0;
5196 static inline int should_resched(void)
5198 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5201 static void __cond_resched(void)
5203 add_preempt_count(PREEMPT_ACTIVE);
5204 schedule();
5205 sub_preempt_count(PREEMPT_ACTIVE);
5208 int __sched _cond_resched(void)
5210 if (should_resched()) {
5211 __cond_resched();
5212 return 1;
5214 return 0;
5216 EXPORT_SYMBOL(_cond_resched);
5219 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5220 * call schedule, and on return reacquire the lock.
5222 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5223 * operations here to prevent schedule() from being called twice (once via
5224 * spin_unlock(), once by hand).
5226 int __cond_resched_lock(spinlock_t *lock)
5228 int resched = should_resched();
5229 int ret = 0;
5231 lockdep_assert_held(lock);
5233 if (spin_needbreak(lock) || resched) {
5234 spin_unlock(lock);
5235 if (resched)
5236 __cond_resched();
5237 else
5238 cpu_relax();
5239 ret = 1;
5240 spin_lock(lock);
5242 return ret;
5244 EXPORT_SYMBOL(__cond_resched_lock);
5246 int __sched __cond_resched_softirq(void)
5248 BUG_ON(!in_softirq());
5250 if (should_resched()) {
5251 local_bh_enable();
5252 __cond_resched();
5253 local_bh_disable();
5254 return 1;
5256 return 0;
5258 EXPORT_SYMBOL(__cond_resched_softirq);
5261 * yield - yield the current processor to other threads.
5263 * This is a shortcut for kernel-space yielding - it marks the
5264 * thread runnable and calls sys_sched_yield().
5266 void __sched yield(void)
5268 set_current_state(TASK_RUNNING);
5269 sys_sched_yield();
5271 EXPORT_SYMBOL(yield);
5274 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5275 * that process accounting knows that this is a task in IO wait state.
5277 void __sched io_schedule(void)
5279 struct rq *rq = raw_rq();
5281 delayacct_blkio_start();
5282 atomic_inc(&rq->nr_iowait);
5283 current->in_iowait = 1;
5284 schedule();
5285 current->in_iowait = 0;
5286 atomic_dec(&rq->nr_iowait);
5287 delayacct_blkio_end();
5289 EXPORT_SYMBOL(io_schedule);
5291 long __sched io_schedule_timeout(long timeout)
5293 struct rq *rq = raw_rq();
5294 long ret;
5296 delayacct_blkio_start();
5297 atomic_inc(&rq->nr_iowait);
5298 current->in_iowait = 1;
5299 ret = schedule_timeout(timeout);
5300 current->in_iowait = 0;
5301 atomic_dec(&rq->nr_iowait);
5302 delayacct_blkio_end();
5303 return ret;
5307 * sys_sched_get_priority_max - return maximum RT priority.
5308 * @policy: scheduling class.
5310 * this syscall returns the maximum rt_priority that can be used
5311 * by a given scheduling class.
5313 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5315 int ret = -EINVAL;
5317 switch (policy) {
5318 case SCHED_FIFO:
5319 case SCHED_RR:
5320 ret = MAX_USER_RT_PRIO-1;
5321 break;
5322 case SCHED_NORMAL:
5323 case SCHED_BATCH:
5324 case SCHED_IDLE:
5325 ret = 0;
5326 break;
5328 return ret;
5332 * sys_sched_get_priority_min - return minimum RT priority.
5333 * @policy: scheduling class.
5335 * this syscall returns the minimum rt_priority that can be used
5336 * by a given scheduling class.
5338 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5340 int ret = -EINVAL;
5342 switch (policy) {
5343 case SCHED_FIFO:
5344 case SCHED_RR:
5345 ret = 1;
5346 break;
5347 case SCHED_NORMAL:
5348 case SCHED_BATCH:
5349 case SCHED_IDLE:
5350 ret = 0;
5352 return ret;
5356 * sys_sched_rr_get_interval - return the default timeslice of a process.
5357 * @pid: pid of the process.
5358 * @interval: userspace pointer to the timeslice value.
5360 * this syscall writes the default timeslice value of a given process
5361 * into the user-space timespec buffer. A value of '0' means infinity.
5363 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5364 struct timespec __user *, interval)
5366 struct task_struct *p;
5367 unsigned int time_slice;
5368 unsigned long flags;
5369 struct rq *rq;
5370 int retval;
5371 struct timespec t;
5373 if (pid < 0)
5374 return -EINVAL;
5376 retval = -ESRCH;
5377 rcu_read_lock();
5378 p = find_process_by_pid(pid);
5379 if (!p)
5380 goto out_unlock;
5382 retval = security_task_getscheduler(p);
5383 if (retval)
5384 goto out_unlock;
5386 rq = task_rq_lock(p, &flags);
5387 time_slice = p->sched_class->get_rr_interval(rq, p);
5388 task_rq_unlock(rq, &flags);
5390 rcu_read_unlock();
5391 jiffies_to_timespec(time_slice, &t);
5392 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5393 return retval;
5395 out_unlock:
5396 rcu_read_unlock();
5397 return retval;
5400 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5402 void sched_show_task(struct task_struct *p)
5404 unsigned long free = 0;
5405 unsigned state;
5407 state = p->state ? __ffs(p->state) + 1 : 0;
5408 printk(KERN_INFO "%-13.13s %c", p->comm,
5409 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5410 #if BITS_PER_LONG == 32
5411 if (state == TASK_RUNNING)
5412 printk(KERN_CONT " running ");
5413 else
5414 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5415 #else
5416 if (state == TASK_RUNNING)
5417 printk(KERN_CONT " running task ");
5418 else
5419 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5420 #endif
5421 #ifdef CONFIG_DEBUG_STACK_USAGE
5422 free = stack_not_used(p);
5423 #endif
5424 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5425 task_pid_nr(p), task_pid_nr(p->real_parent),
5426 (unsigned long)task_thread_info(p)->flags);
5428 show_stack(p, NULL);
5431 void show_state_filter(unsigned long state_filter)
5433 struct task_struct *g, *p;
5435 #if BITS_PER_LONG == 32
5436 printk(KERN_INFO
5437 " task PC stack pid father\n");
5438 #else
5439 printk(KERN_INFO
5440 " task PC stack pid father\n");
5441 #endif
5442 read_lock(&tasklist_lock);
5443 do_each_thread(g, p) {
5445 * reset the NMI-timeout, listing all files on a slow
5446 * console might take alot of time:
5448 touch_nmi_watchdog();
5449 if (!state_filter || (p->state & state_filter))
5450 sched_show_task(p);
5451 } while_each_thread(g, p);
5453 touch_all_softlockup_watchdogs();
5455 #ifdef CONFIG_SCHED_DEBUG
5456 sysrq_sched_debug_show();
5457 #endif
5458 read_unlock(&tasklist_lock);
5460 * Only show locks if all tasks are dumped:
5462 if (!state_filter)
5463 debug_show_all_locks();
5466 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5468 idle->sched_class = &idle_sched_class;
5472 * init_idle - set up an idle thread for a given CPU
5473 * @idle: task in question
5474 * @cpu: cpu the idle task belongs to
5476 * NOTE: this function does not set the idle thread's NEED_RESCHED
5477 * flag, to make booting more robust.
5479 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5481 struct rq *rq = cpu_rq(cpu);
5482 unsigned long flags;
5484 raw_spin_lock_irqsave(&rq->lock, flags);
5486 __sched_fork(idle);
5487 idle->state = TASK_RUNNING;
5488 idle->se.exec_start = sched_clock();
5490 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5492 * We're having a chicken and egg problem, even though we are
5493 * holding rq->lock, the cpu isn't yet set to this cpu so the
5494 * lockdep check in task_group() will fail.
5496 * Similar case to sched_fork(). / Alternatively we could
5497 * use task_rq_lock() here and obtain the other rq->lock.
5499 * Silence PROVE_RCU
5501 rcu_read_lock();
5502 __set_task_cpu(idle, cpu);
5503 rcu_read_unlock();
5505 rq->curr = rq->idle = idle;
5506 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5507 idle->oncpu = 1;
5508 #endif
5509 raw_spin_unlock_irqrestore(&rq->lock, flags);
5511 /* Set the preempt count _outside_ the spinlocks! */
5512 #if defined(CONFIG_PREEMPT)
5513 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5514 #else
5515 task_thread_info(idle)->preempt_count = 0;
5516 #endif
5518 * The idle tasks have their own, simple scheduling class:
5520 idle->sched_class = &idle_sched_class;
5521 ftrace_graph_init_task(idle);
5525 * In a system that switches off the HZ timer nohz_cpu_mask
5526 * indicates which cpus entered this state. This is used
5527 * in the rcu update to wait only for active cpus. For system
5528 * which do not switch off the HZ timer nohz_cpu_mask should
5529 * always be CPU_BITS_NONE.
5531 cpumask_var_t nohz_cpu_mask;
5534 * Increase the granularity value when there are more CPUs,
5535 * because with more CPUs the 'effective latency' as visible
5536 * to users decreases. But the relationship is not linear,
5537 * so pick a second-best guess by going with the log2 of the
5538 * number of CPUs.
5540 * This idea comes from the SD scheduler of Con Kolivas:
5542 static int get_update_sysctl_factor(void)
5544 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5545 unsigned int factor;
5547 switch (sysctl_sched_tunable_scaling) {
5548 case SCHED_TUNABLESCALING_NONE:
5549 factor = 1;
5550 break;
5551 case SCHED_TUNABLESCALING_LINEAR:
5552 factor = cpus;
5553 break;
5554 case SCHED_TUNABLESCALING_LOG:
5555 default:
5556 factor = 1 + ilog2(cpus);
5557 break;
5560 return factor;
5563 static void update_sysctl(void)
5565 unsigned int factor = get_update_sysctl_factor();
5567 #define SET_SYSCTL(name) \
5568 (sysctl_##name = (factor) * normalized_sysctl_##name)
5569 SET_SYSCTL(sched_min_granularity);
5570 SET_SYSCTL(sched_latency);
5571 SET_SYSCTL(sched_wakeup_granularity);
5572 SET_SYSCTL(sched_shares_ratelimit);
5573 #undef SET_SYSCTL
5576 static inline void sched_init_granularity(void)
5578 update_sysctl();
5581 #ifdef CONFIG_SMP
5583 * This is how migration works:
5585 * 1) we invoke migration_cpu_stop() on the target CPU using
5586 * stop_one_cpu().
5587 * 2) stopper starts to run (implicitly forcing the migrated thread
5588 * off the CPU)
5589 * 3) it checks whether the migrated task is still in the wrong runqueue.
5590 * 4) if it's in the wrong runqueue then the migration thread removes
5591 * it and puts it into the right queue.
5592 * 5) stopper completes and stop_one_cpu() returns and the migration
5593 * is done.
5597 * Change a given task's CPU affinity. Migrate the thread to a
5598 * proper CPU and schedule it away if the CPU it's executing on
5599 * is removed from the allowed bitmask.
5601 * NOTE: the caller must have a valid reference to the task, the
5602 * task must not exit() & deallocate itself prematurely. The
5603 * call is not atomic; no spinlocks may be held.
5605 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5607 unsigned long flags;
5608 struct rq *rq;
5609 unsigned int dest_cpu;
5610 int ret = 0;
5613 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5614 * drop the rq->lock and still rely on ->cpus_allowed.
5616 again:
5617 while (task_is_waking(p))
5618 cpu_relax();
5619 rq = task_rq_lock(p, &flags);
5620 if (task_is_waking(p)) {
5621 task_rq_unlock(rq, &flags);
5622 goto again;
5625 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5626 ret = -EINVAL;
5627 goto out;
5630 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5631 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5632 ret = -EINVAL;
5633 goto out;
5636 if (p->sched_class->set_cpus_allowed)
5637 p->sched_class->set_cpus_allowed(p, new_mask);
5638 else {
5639 cpumask_copy(&p->cpus_allowed, new_mask);
5640 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5643 /* Can the task run on the task's current CPU? If so, we're done */
5644 if (cpumask_test_cpu(task_cpu(p), new_mask))
5645 goto out;
5647 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5648 if (migrate_task(p, dest_cpu)) {
5649 struct migration_arg arg = { p, dest_cpu };
5650 /* Need help from migration thread: drop lock and wait. */
5651 task_rq_unlock(rq, &flags);
5652 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5653 tlb_migrate_finish(p->mm);
5654 return 0;
5656 out:
5657 task_rq_unlock(rq, &flags);
5659 return ret;
5661 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5664 * Move (not current) task off this cpu, onto dest cpu. We're doing
5665 * this because either it can't run here any more (set_cpus_allowed()
5666 * away from this CPU, or CPU going down), or because we're
5667 * attempting to rebalance this task on exec (sched_exec).
5669 * So we race with normal scheduler movements, but that's OK, as long
5670 * as the task is no longer on this CPU.
5672 * Returns non-zero if task was successfully migrated.
5674 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5676 struct rq *rq_dest, *rq_src;
5677 int ret = 0;
5679 if (unlikely(!cpu_active(dest_cpu)))
5680 return ret;
5682 rq_src = cpu_rq(src_cpu);
5683 rq_dest = cpu_rq(dest_cpu);
5685 double_rq_lock(rq_src, rq_dest);
5686 /* Already moved. */
5687 if (task_cpu(p) != src_cpu)
5688 goto done;
5689 /* Affinity changed (again). */
5690 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5691 goto fail;
5694 * If we're not on a rq, the next wake-up will ensure we're
5695 * placed properly.
5697 if (p->se.on_rq) {
5698 deactivate_task(rq_src, p, 0);
5699 set_task_cpu(p, dest_cpu);
5700 activate_task(rq_dest, p, 0);
5701 check_preempt_curr(rq_dest, p, 0);
5703 done:
5704 ret = 1;
5705 fail:
5706 double_rq_unlock(rq_src, rq_dest);
5707 return ret;
5711 * migration_cpu_stop - this will be executed by a highprio stopper thread
5712 * and performs thread migration by bumping thread off CPU then
5713 * 'pushing' onto another runqueue.
5715 static int migration_cpu_stop(void *data)
5717 struct migration_arg *arg = data;
5720 * The original target cpu might have gone down and we might
5721 * be on another cpu but it doesn't matter.
5723 local_irq_disable();
5724 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5725 local_irq_enable();
5726 return 0;
5729 #ifdef CONFIG_HOTPLUG_CPU
5731 * Figure out where task on dead CPU should go, use force if necessary.
5733 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5735 struct rq *rq = cpu_rq(dead_cpu);
5736 int needs_cpu, uninitialized_var(dest_cpu);
5737 unsigned long flags;
5739 local_irq_save(flags);
5741 raw_spin_lock(&rq->lock);
5742 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5743 if (needs_cpu)
5744 dest_cpu = select_fallback_rq(dead_cpu, p);
5745 raw_spin_unlock(&rq->lock);
5747 * It can only fail if we race with set_cpus_allowed(),
5748 * in the racer should migrate the task anyway.
5750 if (needs_cpu)
5751 __migrate_task(p, dead_cpu, dest_cpu);
5752 local_irq_restore(flags);
5756 * While a dead CPU has no uninterruptible tasks queued at this point,
5757 * it might still have a nonzero ->nr_uninterruptible counter, because
5758 * for performance reasons the counter is not stricly tracking tasks to
5759 * their home CPUs. So we just add the counter to another CPU's counter,
5760 * to keep the global sum constant after CPU-down:
5762 static void migrate_nr_uninterruptible(struct rq *rq_src)
5764 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5765 unsigned long flags;
5767 local_irq_save(flags);
5768 double_rq_lock(rq_src, rq_dest);
5769 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5770 rq_src->nr_uninterruptible = 0;
5771 double_rq_unlock(rq_src, rq_dest);
5772 local_irq_restore(flags);
5775 /* Run through task list and migrate tasks from the dead cpu. */
5776 static void migrate_live_tasks(int src_cpu)
5778 struct task_struct *p, *t;
5780 read_lock(&tasklist_lock);
5782 do_each_thread(t, p) {
5783 if (p == current)
5784 continue;
5786 if (task_cpu(p) == src_cpu)
5787 move_task_off_dead_cpu(src_cpu, p);
5788 } while_each_thread(t, p);
5790 read_unlock(&tasklist_lock);
5794 * Schedules idle task to be the next runnable task on current CPU.
5795 * It does so by boosting its priority to highest possible.
5796 * Used by CPU offline code.
5798 void sched_idle_next(void)
5800 int this_cpu = smp_processor_id();
5801 struct rq *rq = cpu_rq(this_cpu);
5802 struct task_struct *p = rq->idle;
5803 unsigned long flags;
5805 /* cpu has to be offline */
5806 BUG_ON(cpu_online(this_cpu));
5809 * Strictly not necessary since rest of the CPUs are stopped by now
5810 * and interrupts disabled on the current cpu.
5812 raw_spin_lock_irqsave(&rq->lock, flags);
5814 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5816 activate_task(rq, p, 0);
5818 raw_spin_unlock_irqrestore(&rq->lock, flags);
5822 * Ensures that the idle task is using init_mm right before its cpu goes
5823 * offline.
5825 void idle_task_exit(void)
5827 struct mm_struct *mm = current->active_mm;
5829 BUG_ON(cpu_online(smp_processor_id()));
5831 if (mm != &init_mm)
5832 switch_mm(mm, &init_mm, current);
5833 mmdrop(mm);
5836 /* called under rq->lock with disabled interrupts */
5837 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5839 struct rq *rq = cpu_rq(dead_cpu);
5841 /* Must be exiting, otherwise would be on tasklist. */
5842 BUG_ON(!p->exit_state);
5844 /* Cannot have done final schedule yet: would have vanished. */
5845 BUG_ON(p->state == TASK_DEAD);
5847 get_task_struct(p);
5850 * Drop lock around migration; if someone else moves it,
5851 * that's OK. No task can be added to this CPU, so iteration is
5852 * fine.
5854 raw_spin_unlock_irq(&rq->lock);
5855 move_task_off_dead_cpu(dead_cpu, p);
5856 raw_spin_lock_irq(&rq->lock);
5858 put_task_struct(p);
5861 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5862 static void migrate_dead_tasks(unsigned int dead_cpu)
5864 struct rq *rq = cpu_rq(dead_cpu);
5865 struct task_struct *next;
5867 for ( ; ; ) {
5868 if (!rq->nr_running)
5869 break;
5870 next = pick_next_task(rq);
5871 if (!next)
5872 break;
5873 next->sched_class->put_prev_task(rq, next);
5874 migrate_dead(dead_cpu, next);
5880 * remove the tasks which were accounted by rq from calc_load_tasks.
5882 static void calc_global_load_remove(struct rq *rq)
5884 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5885 rq->calc_load_active = 0;
5887 #endif /* CONFIG_HOTPLUG_CPU */
5889 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5891 static struct ctl_table sd_ctl_dir[] = {
5893 .procname = "sched_domain",
5894 .mode = 0555,
5899 static struct ctl_table sd_ctl_root[] = {
5901 .procname = "kernel",
5902 .mode = 0555,
5903 .child = sd_ctl_dir,
5908 static struct ctl_table *sd_alloc_ctl_entry(int n)
5910 struct ctl_table *entry =
5911 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5913 return entry;
5916 static void sd_free_ctl_entry(struct ctl_table **tablep)
5918 struct ctl_table *entry;
5921 * In the intermediate directories, both the child directory and
5922 * procname are dynamically allocated and could fail but the mode
5923 * will always be set. In the lowest directory the names are
5924 * static strings and all have proc handlers.
5926 for (entry = *tablep; entry->mode; entry++) {
5927 if (entry->child)
5928 sd_free_ctl_entry(&entry->child);
5929 if (entry->proc_handler == NULL)
5930 kfree(entry->procname);
5933 kfree(*tablep);
5934 *tablep = NULL;
5937 static void
5938 set_table_entry(struct ctl_table *entry,
5939 const char *procname, void *data, int maxlen,
5940 mode_t mode, proc_handler *proc_handler)
5942 entry->procname = procname;
5943 entry->data = data;
5944 entry->maxlen = maxlen;
5945 entry->mode = mode;
5946 entry->proc_handler = proc_handler;
5949 static struct ctl_table *
5950 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5952 struct ctl_table *table = sd_alloc_ctl_entry(13);
5954 if (table == NULL)
5955 return NULL;
5957 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5958 sizeof(long), 0644, proc_doulongvec_minmax);
5959 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5960 sizeof(long), 0644, proc_doulongvec_minmax);
5961 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5962 sizeof(int), 0644, proc_dointvec_minmax);
5963 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5964 sizeof(int), 0644, proc_dointvec_minmax);
5965 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5966 sizeof(int), 0644, proc_dointvec_minmax);
5967 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5968 sizeof(int), 0644, proc_dointvec_minmax);
5969 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5970 sizeof(int), 0644, proc_dointvec_minmax);
5971 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5972 sizeof(int), 0644, proc_dointvec_minmax);
5973 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[9], "cache_nice_tries",
5976 &sd->cache_nice_tries,
5977 sizeof(int), 0644, proc_dointvec_minmax);
5978 set_table_entry(&table[10], "flags", &sd->flags,
5979 sizeof(int), 0644, proc_dointvec_minmax);
5980 set_table_entry(&table[11], "name", sd->name,
5981 CORENAME_MAX_SIZE, 0444, proc_dostring);
5982 /* &table[12] is terminator */
5984 return table;
5987 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5989 struct ctl_table *entry, *table;
5990 struct sched_domain *sd;
5991 int domain_num = 0, i;
5992 char buf[32];
5994 for_each_domain(cpu, sd)
5995 domain_num++;
5996 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5997 if (table == NULL)
5998 return NULL;
6000 i = 0;
6001 for_each_domain(cpu, sd) {
6002 snprintf(buf, 32, "domain%d", i);
6003 entry->procname = kstrdup(buf, GFP_KERNEL);
6004 entry->mode = 0555;
6005 entry->child = sd_alloc_ctl_domain_table(sd);
6006 entry++;
6007 i++;
6009 return table;
6012 static struct ctl_table_header *sd_sysctl_header;
6013 static void register_sched_domain_sysctl(void)
6015 int i, cpu_num = num_possible_cpus();
6016 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6017 char buf[32];
6019 WARN_ON(sd_ctl_dir[0].child);
6020 sd_ctl_dir[0].child = entry;
6022 if (entry == NULL)
6023 return;
6025 for_each_possible_cpu(i) {
6026 snprintf(buf, 32, "cpu%d", i);
6027 entry->procname = kstrdup(buf, GFP_KERNEL);
6028 entry->mode = 0555;
6029 entry->child = sd_alloc_ctl_cpu_table(i);
6030 entry++;
6033 WARN_ON(sd_sysctl_header);
6034 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6037 /* may be called multiple times per register */
6038 static void unregister_sched_domain_sysctl(void)
6040 if (sd_sysctl_header)
6041 unregister_sysctl_table(sd_sysctl_header);
6042 sd_sysctl_header = NULL;
6043 if (sd_ctl_dir[0].child)
6044 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6046 #else
6047 static void register_sched_domain_sysctl(void)
6050 static void unregister_sched_domain_sysctl(void)
6053 #endif
6055 static void set_rq_online(struct rq *rq)
6057 if (!rq->online) {
6058 const struct sched_class *class;
6060 cpumask_set_cpu(rq->cpu, rq->rd->online);
6061 rq->online = 1;
6063 for_each_class(class) {
6064 if (class->rq_online)
6065 class->rq_online(rq);
6070 static void set_rq_offline(struct rq *rq)
6072 if (rq->online) {
6073 const struct sched_class *class;
6075 for_each_class(class) {
6076 if (class->rq_offline)
6077 class->rq_offline(rq);
6080 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6081 rq->online = 0;
6086 * migration_call - callback that gets triggered when a CPU is added.
6087 * Here we can start up the necessary migration thread for the new CPU.
6089 static int __cpuinit
6090 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6092 int cpu = (long)hcpu;
6093 unsigned long flags;
6094 struct rq *rq = cpu_rq(cpu);
6096 switch (action) {
6098 case CPU_UP_PREPARE:
6099 case CPU_UP_PREPARE_FROZEN:
6100 rq->calc_load_update = calc_load_update;
6101 break;
6103 case CPU_ONLINE:
6104 case CPU_ONLINE_FROZEN:
6105 /* Update our root-domain */
6106 raw_spin_lock_irqsave(&rq->lock, flags);
6107 if (rq->rd) {
6108 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6110 set_rq_online(rq);
6112 raw_spin_unlock_irqrestore(&rq->lock, flags);
6113 break;
6115 #ifdef CONFIG_HOTPLUG_CPU
6116 case CPU_DEAD:
6117 case CPU_DEAD_FROZEN:
6118 migrate_live_tasks(cpu);
6119 /* Idle task back to normal (off runqueue, low prio) */
6120 raw_spin_lock_irq(&rq->lock);
6121 deactivate_task(rq, rq->idle, 0);
6122 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6123 rq->idle->sched_class = &idle_sched_class;
6124 migrate_dead_tasks(cpu);
6125 raw_spin_unlock_irq(&rq->lock);
6126 migrate_nr_uninterruptible(rq);
6127 BUG_ON(rq->nr_running != 0);
6128 calc_global_load_remove(rq);
6129 break;
6131 case CPU_DYING:
6132 case CPU_DYING_FROZEN:
6133 /* Update our root-domain */
6134 raw_spin_lock_irqsave(&rq->lock, flags);
6135 if (rq->rd) {
6136 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6137 set_rq_offline(rq);
6139 raw_spin_unlock_irqrestore(&rq->lock, flags);
6140 break;
6141 #endif
6143 return NOTIFY_OK;
6147 * Register at high priority so that task migration (migrate_all_tasks)
6148 * happens before everything else. This has to be lower priority than
6149 * the notifier in the perf_event subsystem, though.
6151 static struct notifier_block __cpuinitdata migration_notifier = {
6152 .notifier_call = migration_call,
6153 .priority = CPU_PRI_MIGRATION,
6156 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6157 unsigned long action, void *hcpu)
6159 switch (action & ~CPU_TASKS_FROZEN) {
6160 case CPU_ONLINE:
6161 case CPU_DOWN_FAILED:
6162 set_cpu_active((long)hcpu, true);
6163 return NOTIFY_OK;
6164 default:
6165 return NOTIFY_DONE;
6169 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6170 unsigned long action, void *hcpu)
6172 switch (action & ~CPU_TASKS_FROZEN) {
6173 case CPU_DOWN_PREPARE:
6174 set_cpu_active((long)hcpu, false);
6175 return NOTIFY_OK;
6176 default:
6177 return NOTIFY_DONE;
6181 static int __init migration_init(void)
6183 void *cpu = (void *)(long)smp_processor_id();
6184 int err;
6186 /* Initialize migration for the boot CPU */
6187 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6188 BUG_ON(err == NOTIFY_BAD);
6189 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6190 register_cpu_notifier(&migration_notifier);
6192 /* Register cpu active notifiers */
6193 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6194 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6196 return 0;
6198 early_initcall(migration_init);
6199 #endif
6201 #ifdef CONFIG_SMP
6203 #ifdef CONFIG_SCHED_DEBUG
6205 static __read_mostly int sched_domain_debug_enabled;
6207 static int __init sched_domain_debug_setup(char *str)
6209 sched_domain_debug_enabled = 1;
6211 return 0;
6213 early_param("sched_debug", sched_domain_debug_setup);
6215 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6216 struct cpumask *groupmask)
6218 struct sched_group *group = sd->groups;
6219 char str[256];
6221 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6222 cpumask_clear(groupmask);
6224 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6226 if (!(sd->flags & SD_LOAD_BALANCE)) {
6227 printk("does not load-balance\n");
6228 if (sd->parent)
6229 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6230 " has parent");
6231 return -1;
6234 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6236 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6237 printk(KERN_ERR "ERROR: domain->span does not contain "
6238 "CPU%d\n", cpu);
6240 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6241 printk(KERN_ERR "ERROR: domain->groups does not contain"
6242 " CPU%d\n", cpu);
6245 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6246 do {
6247 if (!group) {
6248 printk("\n");
6249 printk(KERN_ERR "ERROR: group is NULL\n");
6250 break;
6253 if (!group->cpu_power) {
6254 printk(KERN_CONT "\n");
6255 printk(KERN_ERR "ERROR: domain->cpu_power not "
6256 "set\n");
6257 break;
6260 if (!cpumask_weight(sched_group_cpus(group))) {
6261 printk(KERN_CONT "\n");
6262 printk(KERN_ERR "ERROR: empty group\n");
6263 break;
6266 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6267 printk(KERN_CONT "\n");
6268 printk(KERN_ERR "ERROR: repeated CPUs\n");
6269 break;
6272 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6274 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6276 printk(KERN_CONT " %s", str);
6277 if (group->cpu_power != SCHED_LOAD_SCALE) {
6278 printk(KERN_CONT " (cpu_power = %d)",
6279 group->cpu_power);
6282 group = group->next;
6283 } while (group != sd->groups);
6284 printk(KERN_CONT "\n");
6286 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6287 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6289 if (sd->parent &&
6290 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6291 printk(KERN_ERR "ERROR: parent span is not a superset "
6292 "of domain->span\n");
6293 return 0;
6296 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6298 cpumask_var_t groupmask;
6299 int level = 0;
6301 if (!sched_domain_debug_enabled)
6302 return;
6304 if (!sd) {
6305 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6306 return;
6309 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6311 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6312 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6313 return;
6316 for (;;) {
6317 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6318 break;
6319 level++;
6320 sd = sd->parent;
6321 if (!sd)
6322 break;
6324 free_cpumask_var(groupmask);
6326 #else /* !CONFIG_SCHED_DEBUG */
6327 # define sched_domain_debug(sd, cpu) do { } while (0)
6328 #endif /* CONFIG_SCHED_DEBUG */
6330 static int sd_degenerate(struct sched_domain *sd)
6332 if (cpumask_weight(sched_domain_span(sd)) == 1)
6333 return 1;
6335 /* Following flags need at least 2 groups */
6336 if (sd->flags & (SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES)) {
6342 if (sd->groups != sd->groups->next)
6343 return 0;
6346 /* Following flags don't use groups */
6347 if (sd->flags & (SD_WAKE_AFFINE))
6348 return 0;
6350 return 1;
6353 static int
6354 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6356 unsigned long cflags = sd->flags, pflags = parent->flags;
6358 if (sd_degenerate(parent))
6359 return 1;
6361 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6362 return 0;
6364 /* Flags needing groups don't count if only 1 group in parent */
6365 if (parent->groups == parent->groups->next) {
6366 pflags &= ~(SD_LOAD_BALANCE |
6367 SD_BALANCE_NEWIDLE |
6368 SD_BALANCE_FORK |
6369 SD_BALANCE_EXEC |
6370 SD_SHARE_CPUPOWER |
6371 SD_SHARE_PKG_RESOURCES);
6372 if (nr_node_ids == 1)
6373 pflags &= ~SD_SERIALIZE;
6375 if (~cflags & pflags)
6376 return 0;
6378 return 1;
6381 static void free_rootdomain(struct root_domain *rd)
6383 synchronize_sched();
6385 cpupri_cleanup(&rd->cpupri);
6387 free_cpumask_var(rd->rto_mask);
6388 free_cpumask_var(rd->online);
6389 free_cpumask_var(rd->span);
6390 kfree(rd);
6393 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6395 struct root_domain *old_rd = NULL;
6396 unsigned long flags;
6398 raw_spin_lock_irqsave(&rq->lock, flags);
6400 if (rq->rd) {
6401 old_rd = rq->rd;
6403 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6404 set_rq_offline(rq);
6406 cpumask_clear_cpu(rq->cpu, old_rd->span);
6409 * If we dont want to free the old_rt yet then
6410 * set old_rd to NULL to skip the freeing later
6411 * in this function:
6413 if (!atomic_dec_and_test(&old_rd->refcount))
6414 old_rd = NULL;
6417 atomic_inc(&rd->refcount);
6418 rq->rd = rd;
6420 cpumask_set_cpu(rq->cpu, rd->span);
6421 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6422 set_rq_online(rq);
6424 raw_spin_unlock_irqrestore(&rq->lock, flags);
6426 if (old_rd)
6427 free_rootdomain(old_rd);
6430 static int init_rootdomain(struct root_domain *rd)
6432 memset(rd, 0, sizeof(*rd));
6434 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6435 goto out;
6436 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6437 goto free_span;
6438 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6439 goto free_online;
6441 if (cpupri_init(&rd->cpupri) != 0)
6442 goto free_rto_mask;
6443 return 0;
6445 free_rto_mask:
6446 free_cpumask_var(rd->rto_mask);
6447 free_online:
6448 free_cpumask_var(rd->online);
6449 free_span:
6450 free_cpumask_var(rd->span);
6451 out:
6452 return -ENOMEM;
6455 static void init_defrootdomain(void)
6457 init_rootdomain(&def_root_domain);
6459 atomic_set(&def_root_domain.refcount, 1);
6462 static struct root_domain *alloc_rootdomain(void)
6464 struct root_domain *rd;
6466 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6467 if (!rd)
6468 return NULL;
6470 if (init_rootdomain(rd) != 0) {
6471 kfree(rd);
6472 return NULL;
6475 return rd;
6479 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6480 * hold the hotplug lock.
6482 static void
6483 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6485 struct rq *rq = cpu_rq(cpu);
6486 struct sched_domain *tmp;
6488 for (tmp = sd; tmp; tmp = tmp->parent)
6489 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6491 /* Remove the sched domains which do not contribute to scheduling. */
6492 for (tmp = sd; tmp; ) {
6493 struct sched_domain *parent = tmp->parent;
6494 if (!parent)
6495 break;
6497 if (sd_parent_degenerate(tmp, parent)) {
6498 tmp->parent = parent->parent;
6499 if (parent->parent)
6500 parent->parent->child = tmp;
6501 } else
6502 tmp = tmp->parent;
6505 if (sd && sd_degenerate(sd)) {
6506 sd = sd->parent;
6507 if (sd)
6508 sd->child = NULL;
6511 sched_domain_debug(sd, cpu);
6513 rq_attach_root(rq, rd);
6514 rcu_assign_pointer(rq->sd, sd);
6517 /* cpus with isolated domains */
6518 static cpumask_var_t cpu_isolated_map;
6520 /* Setup the mask of cpus configured for isolated domains */
6521 static int __init isolated_cpu_setup(char *str)
6523 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6524 cpulist_parse(str, cpu_isolated_map);
6525 return 1;
6528 __setup("isolcpus=", isolated_cpu_setup);
6531 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6532 * to a function which identifies what group(along with sched group) a CPU
6533 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6534 * (due to the fact that we keep track of groups covered with a struct cpumask).
6536 * init_sched_build_groups will build a circular linked list of the groups
6537 * covered by the given span, and will set each group's ->cpumask correctly,
6538 * and ->cpu_power to 0.
6540 static void
6541 init_sched_build_groups(const struct cpumask *span,
6542 const struct cpumask *cpu_map,
6543 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6544 struct sched_group **sg,
6545 struct cpumask *tmpmask),
6546 struct cpumask *covered, struct cpumask *tmpmask)
6548 struct sched_group *first = NULL, *last = NULL;
6549 int i;
6551 cpumask_clear(covered);
6553 for_each_cpu(i, span) {
6554 struct sched_group *sg;
6555 int group = group_fn(i, cpu_map, &sg, tmpmask);
6556 int j;
6558 if (cpumask_test_cpu(i, covered))
6559 continue;
6561 cpumask_clear(sched_group_cpus(sg));
6562 sg->cpu_power = 0;
6564 for_each_cpu(j, span) {
6565 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6566 continue;
6568 cpumask_set_cpu(j, covered);
6569 cpumask_set_cpu(j, sched_group_cpus(sg));
6571 if (!first)
6572 first = sg;
6573 if (last)
6574 last->next = sg;
6575 last = sg;
6577 last->next = first;
6580 #define SD_NODES_PER_DOMAIN 16
6582 #ifdef CONFIG_NUMA
6585 * find_next_best_node - find the next node to include in a sched_domain
6586 * @node: node whose sched_domain we're building
6587 * @used_nodes: nodes already in the sched_domain
6589 * Find the next node to include in a given scheduling domain. Simply
6590 * finds the closest node not already in the @used_nodes map.
6592 * Should use nodemask_t.
6594 static int find_next_best_node(int node, nodemask_t *used_nodes)
6596 int i, n, val, min_val, best_node = 0;
6598 min_val = INT_MAX;
6600 for (i = 0; i < nr_node_ids; i++) {
6601 /* Start at @node */
6602 n = (node + i) % nr_node_ids;
6604 if (!nr_cpus_node(n))
6605 continue;
6607 /* Skip already used nodes */
6608 if (node_isset(n, *used_nodes))
6609 continue;
6611 /* Simple min distance search */
6612 val = node_distance(node, n);
6614 if (val < min_val) {
6615 min_val = val;
6616 best_node = n;
6620 node_set(best_node, *used_nodes);
6621 return best_node;
6625 * sched_domain_node_span - get a cpumask for a node's sched_domain
6626 * @node: node whose cpumask we're constructing
6627 * @span: resulting cpumask
6629 * Given a node, construct a good cpumask for its sched_domain to span. It
6630 * should be one that prevents unnecessary balancing, but also spreads tasks
6631 * out optimally.
6633 static void sched_domain_node_span(int node, struct cpumask *span)
6635 nodemask_t used_nodes;
6636 int i;
6638 cpumask_clear(span);
6639 nodes_clear(used_nodes);
6641 cpumask_or(span, span, cpumask_of_node(node));
6642 node_set(node, used_nodes);
6644 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6645 int next_node = find_next_best_node(node, &used_nodes);
6647 cpumask_or(span, span, cpumask_of_node(next_node));
6650 #endif /* CONFIG_NUMA */
6652 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6655 * The cpus mask in sched_group and sched_domain hangs off the end.
6657 * ( See the the comments in include/linux/sched.h:struct sched_group
6658 * and struct sched_domain. )
6660 struct static_sched_group {
6661 struct sched_group sg;
6662 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6665 struct static_sched_domain {
6666 struct sched_domain sd;
6667 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6670 struct s_data {
6671 #ifdef CONFIG_NUMA
6672 int sd_allnodes;
6673 cpumask_var_t domainspan;
6674 cpumask_var_t covered;
6675 cpumask_var_t notcovered;
6676 #endif
6677 cpumask_var_t nodemask;
6678 cpumask_var_t this_sibling_map;
6679 cpumask_var_t this_core_map;
6680 cpumask_var_t this_book_map;
6681 cpumask_var_t send_covered;
6682 cpumask_var_t tmpmask;
6683 struct sched_group **sched_group_nodes;
6684 struct root_domain *rd;
6687 enum s_alloc {
6688 sa_sched_groups = 0,
6689 sa_rootdomain,
6690 sa_tmpmask,
6691 sa_send_covered,
6692 sa_this_book_map,
6693 sa_this_core_map,
6694 sa_this_sibling_map,
6695 sa_nodemask,
6696 sa_sched_group_nodes,
6697 #ifdef CONFIG_NUMA
6698 sa_notcovered,
6699 sa_covered,
6700 sa_domainspan,
6701 #endif
6702 sa_none,
6706 * SMT sched-domains:
6708 #ifdef CONFIG_SCHED_SMT
6709 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6710 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6712 static int
6713 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6714 struct sched_group **sg, struct cpumask *unused)
6716 if (sg)
6717 *sg = &per_cpu(sched_groups, cpu).sg;
6718 return cpu;
6720 #endif /* CONFIG_SCHED_SMT */
6723 * multi-core sched-domains:
6725 #ifdef CONFIG_SCHED_MC
6726 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6727 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6729 static int
6730 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6731 struct sched_group **sg, struct cpumask *mask)
6733 int group;
6734 #ifdef CONFIG_SCHED_SMT
6735 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6736 group = cpumask_first(mask);
6737 #else
6738 group = cpu;
6739 #endif
6740 if (sg)
6741 *sg = &per_cpu(sched_group_core, group).sg;
6742 return group;
6744 #endif /* CONFIG_SCHED_MC */
6747 * book sched-domains:
6749 #ifdef CONFIG_SCHED_BOOK
6750 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6751 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6753 static int
6754 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6755 struct sched_group **sg, struct cpumask *mask)
6757 int group = cpu;
6758 #ifdef CONFIG_SCHED_MC
6759 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6760 group = cpumask_first(mask);
6761 #elif defined(CONFIG_SCHED_SMT)
6762 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6763 group = cpumask_first(mask);
6764 #endif
6765 if (sg)
6766 *sg = &per_cpu(sched_group_book, group).sg;
6767 return group;
6769 #endif /* CONFIG_SCHED_BOOK */
6771 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6772 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6774 static int
6775 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6776 struct sched_group **sg, struct cpumask *mask)
6778 int group;
6779 #ifdef CONFIG_SCHED_BOOK
6780 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6781 group = cpumask_first(mask);
6782 #elif defined(CONFIG_SCHED_MC)
6783 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6784 group = cpumask_first(mask);
6785 #elif defined(CONFIG_SCHED_SMT)
6786 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6787 group = cpumask_first(mask);
6788 #else
6789 group = cpu;
6790 #endif
6791 if (sg)
6792 *sg = &per_cpu(sched_group_phys, group).sg;
6793 return group;
6796 #ifdef CONFIG_NUMA
6798 * The init_sched_build_groups can't handle what we want to do with node
6799 * groups, so roll our own. Now each node has its own list of groups which
6800 * gets dynamically allocated.
6802 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6803 static struct sched_group ***sched_group_nodes_bycpu;
6805 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6806 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6808 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6809 struct sched_group **sg,
6810 struct cpumask *nodemask)
6812 int group;
6814 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6815 group = cpumask_first(nodemask);
6817 if (sg)
6818 *sg = &per_cpu(sched_group_allnodes, group).sg;
6819 return group;
6822 static void init_numa_sched_groups_power(struct sched_group *group_head)
6824 struct sched_group *sg = group_head;
6825 int j;
6827 if (!sg)
6828 return;
6829 do {
6830 for_each_cpu(j, sched_group_cpus(sg)) {
6831 struct sched_domain *sd;
6833 sd = &per_cpu(phys_domains, j).sd;
6834 if (j != group_first_cpu(sd->groups)) {
6836 * Only add "power" once for each
6837 * physical package.
6839 continue;
6842 sg->cpu_power += sd->groups->cpu_power;
6844 sg = sg->next;
6845 } while (sg != group_head);
6848 static int build_numa_sched_groups(struct s_data *d,
6849 const struct cpumask *cpu_map, int num)
6851 struct sched_domain *sd;
6852 struct sched_group *sg, *prev;
6853 int n, j;
6855 cpumask_clear(d->covered);
6856 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6857 if (cpumask_empty(d->nodemask)) {
6858 d->sched_group_nodes[num] = NULL;
6859 goto out;
6862 sched_domain_node_span(num, d->domainspan);
6863 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6865 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6866 GFP_KERNEL, num);
6867 if (!sg) {
6868 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6869 num);
6870 return -ENOMEM;
6872 d->sched_group_nodes[num] = sg;
6874 for_each_cpu(j, d->nodemask) {
6875 sd = &per_cpu(node_domains, j).sd;
6876 sd->groups = sg;
6879 sg->cpu_power = 0;
6880 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6881 sg->next = sg;
6882 cpumask_or(d->covered, d->covered, d->nodemask);
6884 prev = sg;
6885 for (j = 0; j < nr_node_ids; j++) {
6886 n = (num + j) % nr_node_ids;
6887 cpumask_complement(d->notcovered, d->covered);
6888 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6889 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6890 if (cpumask_empty(d->tmpmask))
6891 break;
6892 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6893 if (cpumask_empty(d->tmpmask))
6894 continue;
6895 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6896 GFP_KERNEL, num);
6897 if (!sg) {
6898 printk(KERN_WARNING
6899 "Can not alloc domain group for node %d\n", j);
6900 return -ENOMEM;
6902 sg->cpu_power = 0;
6903 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6904 sg->next = prev->next;
6905 cpumask_or(d->covered, d->covered, d->tmpmask);
6906 prev->next = sg;
6907 prev = sg;
6909 out:
6910 return 0;
6912 #endif /* CONFIG_NUMA */
6914 #ifdef CONFIG_NUMA
6915 /* Free memory allocated for various sched_group structures */
6916 static void free_sched_groups(const struct cpumask *cpu_map,
6917 struct cpumask *nodemask)
6919 int cpu, i;
6921 for_each_cpu(cpu, cpu_map) {
6922 struct sched_group **sched_group_nodes
6923 = sched_group_nodes_bycpu[cpu];
6925 if (!sched_group_nodes)
6926 continue;
6928 for (i = 0; i < nr_node_ids; i++) {
6929 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6931 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6932 if (cpumask_empty(nodemask))
6933 continue;
6935 if (sg == NULL)
6936 continue;
6937 sg = sg->next;
6938 next_sg:
6939 oldsg = sg;
6940 sg = sg->next;
6941 kfree(oldsg);
6942 if (oldsg != sched_group_nodes[i])
6943 goto next_sg;
6945 kfree(sched_group_nodes);
6946 sched_group_nodes_bycpu[cpu] = NULL;
6949 #else /* !CONFIG_NUMA */
6950 static void free_sched_groups(const struct cpumask *cpu_map,
6951 struct cpumask *nodemask)
6954 #endif /* CONFIG_NUMA */
6957 * Initialize sched groups cpu_power.
6959 * cpu_power indicates the capacity of sched group, which is used while
6960 * distributing the load between different sched groups in a sched domain.
6961 * Typically cpu_power for all the groups in a sched domain will be same unless
6962 * there are asymmetries in the topology. If there are asymmetries, group
6963 * having more cpu_power will pickup more load compared to the group having
6964 * less cpu_power.
6966 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6968 struct sched_domain *child;
6969 struct sched_group *group;
6970 long power;
6971 int weight;
6973 WARN_ON(!sd || !sd->groups);
6975 if (cpu != group_first_cpu(sd->groups))
6976 return;
6978 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6980 child = sd->child;
6982 sd->groups->cpu_power = 0;
6984 if (!child) {
6985 power = SCHED_LOAD_SCALE;
6986 weight = cpumask_weight(sched_domain_span(sd));
6988 * SMT siblings share the power of a single core.
6989 * Usually multiple threads get a better yield out of
6990 * that one core than a single thread would have,
6991 * reflect that in sd->smt_gain.
6993 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6994 power *= sd->smt_gain;
6995 power /= weight;
6996 power >>= SCHED_LOAD_SHIFT;
6998 sd->groups->cpu_power += power;
6999 return;
7003 * Add cpu_power of each child group to this groups cpu_power.
7005 group = child->groups;
7006 do {
7007 sd->groups->cpu_power += group->cpu_power;
7008 group = group->next;
7009 } while (group != child->groups);
7013 * Initializers for schedule domains
7014 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7017 #ifdef CONFIG_SCHED_DEBUG
7018 # define SD_INIT_NAME(sd, type) sd->name = #type
7019 #else
7020 # define SD_INIT_NAME(sd, type) do { } while (0)
7021 #endif
7023 #define SD_INIT(sd, type) sd_init_##type(sd)
7025 #define SD_INIT_FUNC(type) \
7026 static noinline void sd_init_##type(struct sched_domain *sd) \
7028 memset(sd, 0, sizeof(*sd)); \
7029 *sd = SD_##type##_INIT; \
7030 sd->level = SD_LV_##type; \
7031 SD_INIT_NAME(sd, type); \
7034 SD_INIT_FUNC(CPU)
7035 #ifdef CONFIG_NUMA
7036 SD_INIT_FUNC(ALLNODES)
7037 SD_INIT_FUNC(NODE)
7038 #endif
7039 #ifdef CONFIG_SCHED_SMT
7040 SD_INIT_FUNC(SIBLING)
7041 #endif
7042 #ifdef CONFIG_SCHED_MC
7043 SD_INIT_FUNC(MC)
7044 #endif
7045 #ifdef CONFIG_SCHED_BOOK
7046 SD_INIT_FUNC(BOOK)
7047 #endif
7049 static int default_relax_domain_level = -1;
7051 static int __init setup_relax_domain_level(char *str)
7053 unsigned long val;
7055 val = simple_strtoul(str, NULL, 0);
7056 if (val < SD_LV_MAX)
7057 default_relax_domain_level = val;
7059 return 1;
7061 __setup("relax_domain_level=", setup_relax_domain_level);
7063 static void set_domain_attribute(struct sched_domain *sd,
7064 struct sched_domain_attr *attr)
7066 int request;
7068 if (!attr || attr->relax_domain_level < 0) {
7069 if (default_relax_domain_level < 0)
7070 return;
7071 else
7072 request = default_relax_domain_level;
7073 } else
7074 request = attr->relax_domain_level;
7075 if (request < sd->level) {
7076 /* turn off idle balance on this domain */
7077 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7078 } else {
7079 /* turn on idle balance on this domain */
7080 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7084 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7085 const struct cpumask *cpu_map)
7087 switch (what) {
7088 case sa_sched_groups:
7089 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7090 d->sched_group_nodes = NULL;
7091 case sa_rootdomain:
7092 free_rootdomain(d->rd); /* fall through */
7093 case sa_tmpmask:
7094 free_cpumask_var(d->tmpmask); /* fall through */
7095 case sa_send_covered:
7096 free_cpumask_var(d->send_covered); /* fall through */
7097 case sa_this_book_map:
7098 free_cpumask_var(d->this_book_map); /* fall through */
7099 case sa_this_core_map:
7100 free_cpumask_var(d->this_core_map); /* fall through */
7101 case sa_this_sibling_map:
7102 free_cpumask_var(d->this_sibling_map); /* fall through */
7103 case sa_nodemask:
7104 free_cpumask_var(d->nodemask); /* fall through */
7105 case sa_sched_group_nodes:
7106 #ifdef CONFIG_NUMA
7107 kfree(d->sched_group_nodes); /* fall through */
7108 case sa_notcovered:
7109 free_cpumask_var(d->notcovered); /* fall through */
7110 case sa_covered:
7111 free_cpumask_var(d->covered); /* fall through */
7112 case sa_domainspan:
7113 free_cpumask_var(d->domainspan); /* fall through */
7114 #endif
7115 case sa_none:
7116 break;
7120 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7121 const struct cpumask *cpu_map)
7123 #ifdef CONFIG_NUMA
7124 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7125 return sa_none;
7126 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7127 return sa_domainspan;
7128 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7129 return sa_covered;
7130 /* Allocate the per-node list of sched groups */
7131 d->sched_group_nodes = kcalloc(nr_node_ids,
7132 sizeof(struct sched_group *), GFP_KERNEL);
7133 if (!d->sched_group_nodes) {
7134 printk(KERN_WARNING "Can not alloc sched group node list\n");
7135 return sa_notcovered;
7137 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7138 #endif
7139 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7140 return sa_sched_group_nodes;
7141 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7142 return sa_nodemask;
7143 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7144 return sa_this_sibling_map;
7145 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7146 return sa_this_core_map;
7147 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7148 return sa_this_book_map;
7149 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7150 return sa_send_covered;
7151 d->rd = alloc_rootdomain();
7152 if (!d->rd) {
7153 printk(KERN_WARNING "Cannot alloc root domain\n");
7154 return sa_tmpmask;
7156 return sa_rootdomain;
7159 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7160 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7162 struct sched_domain *sd = NULL;
7163 #ifdef CONFIG_NUMA
7164 struct sched_domain *parent;
7166 d->sd_allnodes = 0;
7167 if (cpumask_weight(cpu_map) >
7168 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7169 sd = &per_cpu(allnodes_domains, i).sd;
7170 SD_INIT(sd, ALLNODES);
7171 set_domain_attribute(sd, attr);
7172 cpumask_copy(sched_domain_span(sd), cpu_map);
7173 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7174 d->sd_allnodes = 1;
7176 parent = sd;
7178 sd = &per_cpu(node_domains, i).sd;
7179 SD_INIT(sd, NODE);
7180 set_domain_attribute(sd, attr);
7181 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7182 sd->parent = parent;
7183 if (parent)
7184 parent->child = sd;
7185 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7186 #endif
7187 return sd;
7190 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7191 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7192 struct sched_domain *parent, int i)
7194 struct sched_domain *sd;
7195 sd = &per_cpu(phys_domains, i).sd;
7196 SD_INIT(sd, CPU);
7197 set_domain_attribute(sd, attr);
7198 cpumask_copy(sched_domain_span(sd), d->nodemask);
7199 sd->parent = parent;
7200 if (parent)
7201 parent->child = sd;
7202 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7203 return sd;
7206 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7207 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7208 struct sched_domain *parent, int i)
7210 struct sched_domain *sd = parent;
7211 #ifdef CONFIG_SCHED_BOOK
7212 sd = &per_cpu(book_domains, i).sd;
7213 SD_INIT(sd, BOOK);
7214 set_domain_attribute(sd, attr);
7215 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7216 sd->parent = parent;
7217 parent->child = sd;
7218 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7219 #endif
7220 return sd;
7223 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7224 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7225 struct sched_domain *parent, int i)
7227 struct sched_domain *sd = parent;
7228 #ifdef CONFIG_SCHED_MC
7229 sd = &per_cpu(core_domains, i).sd;
7230 SD_INIT(sd, MC);
7231 set_domain_attribute(sd, attr);
7232 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7233 sd->parent = parent;
7234 parent->child = sd;
7235 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7236 #endif
7237 return sd;
7240 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7241 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7242 struct sched_domain *parent, int i)
7244 struct sched_domain *sd = parent;
7245 #ifdef CONFIG_SCHED_SMT
7246 sd = &per_cpu(cpu_domains, i).sd;
7247 SD_INIT(sd, SIBLING);
7248 set_domain_attribute(sd, attr);
7249 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7250 sd->parent = parent;
7251 parent->child = sd;
7252 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7253 #endif
7254 return sd;
7257 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7258 const struct cpumask *cpu_map, int cpu)
7260 switch (l) {
7261 #ifdef CONFIG_SCHED_SMT
7262 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7263 cpumask_and(d->this_sibling_map, cpu_map,
7264 topology_thread_cpumask(cpu));
7265 if (cpu == cpumask_first(d->this_sibling_map))
7266 init_sched_build_groups(d->this_sibling_map, cpu_map,
7267 &cpu_to_cpu_group,
7268 d->send_covered, d->tmpmask);
7269 break;
7270 #endif
7271 #ifdef CONFIG_SCHED_MC
7272 case SD_LV_MC: /* set up multi-core groups */
7273 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7274 if (cpu == cpumask_first(d->this_core_map))
7275 init_sched_build_groups(d->this_core_map, cpu_map,
7276 &cpu_to_core_group,
7277 d->send_covered, d->tmpmask);
7278 break;
7279 #endif
7280 #ifdef CONFIG_SCHED_BOOK
7281 case SD_LV_BOOK: /* set up book groups */
7282 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7283 if (cpu == cpumask_first(d->this_book_map))
7284 init_sched_build_groups(d->this_book_map, cpu_map,
7285 &cpu_to_book_group,
7286 d->send_covered, d->tmpmask);
7287 break;
7288 #endif
7289 case SD_LV_CPU: /* set up physical groups */
7290 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7291 if (!cpumask_empty(d->nodemask))
7292 init_sched_build_groups(d->nodemask, cpu_map,
7293 &cpu_to_phys_group,
7294 d->send_covered, d->tmpmask);
7295 break;
7296 #ifdef CONFIG_NUMA
7297 case SD_LV_ALLNODES:
7298 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7299 d->send_covered, d->tmpmask);
7300 break;
7301 #endif
7302 default:
7303 break;
7308 * Build sched domains for a given set of cpus and attach the sched domains
7309 * to the individual cpus
7311 static int __build_sched_domains(const struct cpumask *cpu_map,
7312 struct sched_domain_attr *attr)
7314 enum s_alloc alloc_state = sa_none;
7315 struct s_data d;
7316 struct sched_domain *sd;
7317 int i;
7318 #ifdef CONFIG_NUMA
7319 d.sd_allnodes = 0;
7320 #endif
7322 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7323 if (alloc_state != sa_rootdomain)
7324 goto error;
7325 alloc_state = sa_sched_groups;
7328 * Set up domains for cpus specified by the cpu_map.
7330 for_each_cpu(i, cpu_map) {
7331 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7332 cpu_map);
7334 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7335 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7336 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7337 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7338 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7341 for_each_cpu(i, cpu_map) {
7342 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7343 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7344 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7347 /* Set up physical groups */
7348 for (i = 0; i < nr_node_ids; i++)
7349 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7351 #ifdef CONFIG_NUMA
7352 /* Set up node groups */
7353 if (d.sd_allnodes)
7354 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7356 for (i = 0; i < nr_node_ids; i++)
7357 if (build_numa_sched_groups(&d, cpu_map, i))
7358 goto error;
7359 #endif
7361 /* Calculate CPU power for physical packages and nodes */
7362 #ifdef CONFIG_SCHED_SMT
7363 for_each_cpu(i, cpu_map) {
7364 sd = &per_cpu(cpu_domains, i).sd;
7365 init_sched_groups_power(i, sd);
7367 #endif
7368 #ifdef CONFIG_SCHED_MC
7369 for_each_cpu(i, cpu_map) {
7370 sd = &per_cpu(core_domains, i).sd;
7371 init_sched_groups_power(i, sd);
7373 #endif
7374 #ifdef CONFIG_SCHED_BOOK
7375 for_each_cpu(i, cpu_map) {
7376 sd = &per_cpu(book_domains, i).sd;
7377 init_sched_groups_power(i, sd);
7379 #endif
7381 for_each_cpu(i, cpu_map) {
7382 sd = &per_cpu(phys_domains, i).sd;
7383 init_sched_groups_power(i, sd);
7386 #ifdef CONFIG_NUMA
7387 for (i = 0; i < nr_node_ids; i++)
7388 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7390 if (d.sd_allnodes) {
7391 struct sched_group *sg;
7393 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7394 d.tmpmask);
7395 init_numa_sched_groups_power(sg);
7397 #endif
7399 /* Attach the domains */
7400 for_each_cpu(i, cpu_map) {
7401 #ifdef CONFIG_SCHED_SMT
7402 sd = &per_cpu(cpu_domains, i).sd;
7403 #elif defined(CONFIG_SCHED_MC)
7404 sd = &per_cpu(core_domains, i).sd;
7405 #elif defined(CONFIG_SCHED_BOOK)
7406 sd = &per_cpu(book_domains, i).sd;
7407 #else
7408 sd = &per_cpu(phys_domains, i).sd;
7409 #endif
7410 cpu_attach_domain(sd, d.rd, i);
7413 d.sched_group_nodes = NULL; /* don't free this we still need it */
7414 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7415 return 0;
7417 error:
7418 __free_domain_allocs(&d, alloc_state, cpu_map);
7419 return -ENOMEM;
7422 static int build_sched_domains(const struct cpumask *cpu_map)
7424 return __build_sched_domains(cpu_map, NULL);
7427 static cpumask_var_t *doms_cur; /* current sched domains */
7428 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7429 static struct sched_domain_attr *dattr_cur;
7430 /* attribues of custom domains in 'doms_cur' */
7433 * Special case: If a kmalloc of a doms_cur partition (array of
7434 * cpumask) fails, then fallback to a single sched domain,
7435 * as determined by the single cpumask fallback_doms.
7437 static cpumask_var_t fallback_doms;
7440 * arch_update_cpu_topology lets virtualized architectures update the
7441 * cpu core maps. It is supposed to return 1 if the topology changed
7442 * or 0 if it stayed the same.
7444 int __attribute__((weak)) arch_update_cpu_topology(void)
7446 return 0;
7449 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7451 int i;
7452 cpumask_var_t *doms;
7454 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7455 if (!doms)
7456 return NULL;
7457 for (i = 0; i < ndoms; i++) {
7458 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7459 free_sched_domains(doms, i);
7460 return NULL;
7463 return doms;
7466 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7468 unsigned int i;
7469 for (i = 0; i < ndoms; i++)
7470 free_cpumask_var(doms[i]);
7471 kfree(doms);
7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
7479 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7481 int err;
7483 arch_update_cpu_topology();
7484 ndoms_cur = 1;
7485 doms_cur = alloc_sched_domains(ndoms_cur);
7486 if (!doms_cur)
7487 doms_cur = &fallback_doms;
7488 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7489 dattr_cur = NULL;
7490 err = build_sched_domains(doms_cur[0]);
7491 register_sched_domain_sysctl();
7493 return err;
7496 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7497 struct cpumask *tmpmask)
7499 free_sched_groups(cpu_map, tmpmask);
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7506 static void detach_destroy_domains(const struct cpumask *cpu_map)
7508 /* Save because hotplug lock held. */
7509 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7510 int i;
7512 for_each_cpu(i, cpu_map)
7513 cpu_attach_domain(NULL, &def_root_domain, i);
7514 synchronize_sched();
7515 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7518 /* handle null as "default" */
7519 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7520 struct sched_domain_attr *new, int idx_new)
7522 struct sched_domain_attr tmp;
7524 /* fast path */
7525 if (!new && !cur)
7526 return 1;
7528 tmp = SD_ATTR_INIT;
7529 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7530 new ? (new + idx_new) : &tmp,
7531 sizeof(struct sched_domain_attr));
7535 * Partition sched domains as specified by the 'ndoms_new'
7536 * cpumasks in the array doms_new[] of cpumasks. This compares
7537 * doms_new[] to the current sched domain partitioning, doms_cur[].
7538 * It destroys each deleted domain and builds each new domain.
7540 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7541 * The masks don't intersect (don't overlap.) We should setup one
7542 * sched domain for each mask. CPUs not in any of the cpumasks will
7543 * not be load balanced. If the same cpumask appears both in the
7544 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7545 * it as it is.
7547 * The passed in 'doms_new' should be allocated using
7548 * alloc_sched_domains. This routine takes ownership of it and will
7549 * free_sched_domains it when done with it. If the caller failed the
7550 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7551 * and partition_sched_domains() will fallback to the single partition
7552 * 'fallback_doms', it also forces the domains to be rebuilt.
7554 * If doms_new == NULL it will be replaced with cpu_online_mask.
7555 * ndoms_new == 0 is a special case for destroying existing domains,
7556 * and it will not create the default domain.
7558 * Call with hotplug lock held
7560 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7561 struct sched_domain_attr *dattr_new)
7563 int i, j, n;
7564 int new_topology;
7566 mutex_lock(&sched_domains_mutex);
7568 /* always unregister in case we don't destroy any domains */
7569 unregister_sched_domain_sysctl();
7571 /* Let architecture update cpu core mappings. */
7572 new_topology = arch_update_cpu_topology();
7574 n = doms_new ? ndoms_new : 0;
7576 /* Destroy deleted domains */
7577 for (i = 0; i < ndoms_cur; i++) {
7578 for (j = 0; j < n && !new_topology; j++) {
7579 if (cpumask_equal(doms_cur[i], doms_new[j])
7580 && dattrs_equal(dattr_cur, i, dattr_new, j))
7581 goto match1;
7583 /* no match - a current sched domain not in new doms_new[] */
7584 detach_destroy_domains(doms_cur[i]);
7585 match1:
7589 if (doms_new == NULL) {
7590 ndoms_cur = 0;
7591 doms_new = &fallback_doms;
7592 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7593 WARN_ON_ONCE(dattr_new);
7596 /* Build new domains */
7597 for (i = 0; i < ndoms_new; i++) {
7598 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7599 if (cpumask_equal(doms_new[i], doms_cur[j])
7600 && dattrs_equal(dattr_new, i, dattr_cur, j))
7601 goto match2;
7603 /* no match - add a new doms_new */
7604 __build_sched_domains(doms_new[i],
7605 dattr_new ? dattr_new + i : NULL);
7606 match2:
7610 /* Remember the new sched domains */
7611 if (doms_cur != &fallback_doms)
7612 free_sched_domains(doms_cur, ndoms_cur);
7613 kfree(dattr_cur); /* kfree(NULL) is safe */
7614 doms_cur = doms_new;
7615 dattr_cur = dattr_new;
7616 ndoms_cur = ndoms_new;
7618 register_sched_domain_sysctl();
7620 mutex_unlock(&sched_domains_mutex);
7623 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7624 static void arch_reinit_sched_domains(void)
7626 get_online_cpus();
7628 /* Destroy domains first to force the rebuild */
7629 partition_sched_domains(0, NULL, NULL);
7631 rebuild_sched_domains();
7632 put_online_cpus();
7635 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7637 unsigned int level = 0;
7639 if (sscanf(buf, "%u", &level) != 1)
7640 return -EINVAL;
7643 * level is always be positive so don't check for
7644 * level < POWERSAVINGS_BALANCE_NONE which is 0
7645 * What happens on 0 or 1 byte write,
7646 * need to check for count as well?
7649 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7650 return -EINVAL;
7652 if (smt)
7653 sched_smt_power_savings = level;
7654 else
7655 sched_mc_power_savings = level;
7657 arch_reinit_sched_domains();
7659 return count;
7662 #ifdef CONFIG_SCHED_MC
7663 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7664 struct sysdev_class_attribute *attr,
7665 char *page)
7667 return sprintf(page, "%u\n", sched_mc_power_savings);
7669 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7670 struct sysdev_class_attribute *attr,
7671 const char *buf, size_t count)
7673 return sched_power_savings_store(buf, count, 0);
7675 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7676 sched_mc_power_savings_show,
7677 sched_mc_power_savings_store);
7678 #endif
7680 #ifdef CONFIG_SCHED_SMT
7681 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7682 struct sysdev_class_attribute *attr,
7683 char *page)
7685 return sprintf(page, "%u\n", sched_smt_power_savings);
7687 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7688 struct sysdev_class_attribute *attr,
7689 const char *buf, size_t count)
7691 return sched_power_savings_store(buf, count, 1);
7693 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7694 sched_smt_power_savings_show,
7695 sched_smt_power_savings_store);
7696 #endif
7698 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7700 int err = 0;
7702 #ifdef CONFIG_SCHED_SMT
7703 if (smt_capable())
7704 err = sysfs_create_file(&cls->kset.kobj,
7705 &attr_sched_smt_power_savings.attr);
7706 #endif
7707 #ifdef CONFIG_SCHED_MC
7708 if (!err && mc_capable())
7709 err = sysfs_create_file(&cls->kset.kobj,
7710 &attr_sched_mc_power_savings.attr);
7711 #endif
7712 return err;
7714 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7717 * Update cpusets according to cpu_active mask. If cpusets are
7718 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7719 * around partition_sched_domains().
7721 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7722 void *hcpu)
7724 switch (action & ~CPU_TASKS_FROZEN) {
7725 case CPU_ONLINE:
7726 case CPU_DOWN_FAILED:
7727 cpuset_update_active_cpus();
7728 return NOTIFY_OK;
7729 default:
7730 return NOTIFY_DONE;
7734 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7735 void *hcpu)
7737 switch (action & ~CPU_TASKS_FROZEN) {
7738 case CPU_DOWN_PREPARE:
7739 cpuset_update_active_cpus();
7740 return NOTIFY_OK;
7741 default:
7742 return NOTIFY_DONE;
7746 static int update_runtime(struct notifier_block *nfb,
7747 unsigned long action, void *hcpu)
7749 int cpu = (int)(long)hcpu;
7751 switch (action) {
7752 case CPU_DOWN_PREPARE:
7753 case CPU_DOWN_PREPARE_FROZEN:
7754 disable_runtime(cpu_rq(cpu));
7755 return NOTIFY_OK;
7757 case CPU_DOWN_FAILED:
7758 case CPU_DOWN_FAILED_FROZEN:
7759 case CPU_ONLINE:
7760 case CPU_ONLINE_FROZEN:
7761 enable_runtime(cpu_rq(cpu));
7762 return NOTIFY_OK;
7764 default:
7765 return NOTIFY_DONE;
7769 void __init sched_init_smp(void)
7771 cpumask_var_t non_isolated_cpus;
7773 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7774 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7776 #if defined(CONFIG_NUMA)
7777 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7778 GFP_KERNEL);
7779 BUG_ON(sched_group_nodes_bycpu == NULL);
7780 #endif
7781 get_online_cpus();
7782 mutex_lock(&sched_domains_mutex);
7783 arch_init_sched_domains(cpu_active_mask);
7784 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7785 if (cpumask_empty(non_isolated_cpus))
7786 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7787 mutex_unlock(&sched_domains_mutex);
7788 put_online_cpus();
7790 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7791 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7793 /* RT runtime code needs to handle some hotplug events */
7794 hotcpu_notifier(update_runtime, 0);
7796 init_hrtick();
7798 /* Move init over to a non-isolated CPU */
7799 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7800 BUG();
7801 sched_init_granularity();
7802 free_cpumask_var(non_isolated_cpus);
7804 init_sched_rt_class();
7806 #else
7807 void __init sched_init_smp(void)
7809 sched_init_granularity();
7811 #endif /* CONFIG_SMP */
7813 const_debug unsigned int sysctl_timer_migration = 1;
7815 int in_sched_functions(unsigned long addr)
7817 return in_lock_functions(addr) ||
7818 (addr >= (unsigned long)__sched_text_start
7819 && addr < (unsigned long)__sched_text_end);
7822 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7824 cfs_rq->tasks_timeline = RB_ROOT;
7825 INIT_LIST_HEAD(&cfs_rq->tasks);
7826 #ifdef CONFIG_FAIR_GROUP_SCHED
7827 cfs_rq->rq = rq;
7828 #endif
7829 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7832 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7834 struct rt_prio_array *array;
7835 int i;
7837 array = &rt_rq->active;
7838 for (i = 0; i < MAX_RT_PRIO; i++) {
7839 INIT_LIST_HEAD(array->queue + i);
7840 __clear_bit(i, array->bitmap);
7842 /* delimiter for bitsearch: */
7843 __set_bit(MAX_RT_PRIO, array->bitmap);
7845 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7846 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7847 #ifdef CONFIG_SMP
7848 rt_rq->highest_prio.next = MAX_RT_PRIO;
7849 #endif
7850 #endif
7851 #ifdef CONFIG_SMP
7852 rt_rq->rt_nr_migratory = 0;
7853 rt_rq->overloaded = 0;
7854 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7855 #endif
7857 rt_rq->rt_time = 0;
7858 rt_rq->rt_throttled = 0;
7859 rt_rq->rt_runtime = 0;
7860 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7862 #ifdef CONFIG_RT_GROUP_SCHED
7863 rt_rq->rt_nr_boosted = 0;
7864 rt_rq->rq = rq;
7865 #endif
7868 #ifdef CONFIG_FAIR_GROUP_SCHED
7869 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7870 struct sched_entity *se, int cpu, int add,
7871 struct sched_entity *parent)
7873 struct rq *rq = cpu_rq(cpu);
7874 tg->cfs_rq[cpu] = cfs_rq;
7875 init_cfs_rq(cfs_rq, rq);
7876 cfs_rq->tg = tg;
7877 if (add)
7878 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7880 tg->se[cpu] = se;
7881 /* se could be NULL for init_task_group */
7882 if (!se)
7883 return;
7885 if (!parent)
7886 se->cfs_rq = &rq->cfs;
7887 else
7888 se->cfs_rq = parent->my_q;
7890 se->my_q = cfs_rq;
7891 se->load.weight = tg->shares;
7892 se->load.inv_weight = 0;
7893 se->parent = parent;
7895 #endif
7897 #ifdef CONFIG_RT_GROUP_SCHED
7898 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7899 struct sched_rt_entity *rt_se, int cpu, int add,
7900 struct sched_rt_entity *parent)
7902 struct rq *rq = cpu_rq(cpu);
7904 tg->rt_rq[cpu] = rt_rq;
7905 init_rt_rq(rt_rq, rq);
7906 rt_rq->tg = tg;
7907 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7908 if (add)
7909 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7911 tg->rt_se[cpu] = rt_se;
7912 if (!rt_se)
7913 return;
7915 if (!parent)
7916 rt_se->rt_rq = &rq->rt;
7917 else
7918 rt_se->rt_rq = parent->my_q;
7920 rt_se->my_q = rt_rq;
7921 rt_se->parent = parent;
7922 INIT_LIST_HEAD(&rt_se->run_list);
7924 #endif
7926 void __init sched_init(void)
7928 int i, j;
7929 unsigned long alloc_size = 0, ptr;
7931 #ifdef CONFIG_FAIR_GROUP_SCHED
7932 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7933 #endif
7934 #ifdef CONFIG_RT_GROUP_SCHED
7935 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7936 #endif
7937 #ifdef CONFIG_CPUMASK_OFFSTACK
7938 alloc_size += num_possible_cpus() * cpumask_size();
7939 #endif
7940 if (alloc_size) {
7941 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 init_task_group.se = (struct sched_entity **)ptr;
7945 ptr += nr_cpu_ids * sizeof(void **);
7947 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7948 ptr += nr_cpu_ids * sizeof(void **);
7950 #endif /* CONFIG_FAIR_GROUP_SCHED */
7951 #ifdef CONFIG_RT_GROUP_SCHED
7952 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7953 ptr += nr_cpu_ids * sizeof(void **);
7955 init_task_group.rt_rq = (struct rt_rq **)ptr;
7956 ptr += nr_cpu_ids * sizeof(void **);
7958 #endif /* CONFIG_RT_GROUP_SCHED */
7959 #ifdef CONFIG_CPUMASK_OFFSTACK
7960 for_each_possible_cpu(i) {
7961 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7962 ptr += cpumask_size();
7964 #endif /* CONFIG_CPUMASK_OFFSTACK */
7967 #ifdef CONFIG_SMP
7968 init_defrootdomain();
7969 #endif
7971 init_rt_bandwidth(&def_rt_bandwidth,
7972 global_rt_period(), global_rt_runtime());
7974 #ifdef CONFIG_RT_GROUP_SCHED
7975 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7976 global_rt_period(), global_rt_runtime());
7977 #endif /* CONFIG_RT_GROUP_SCHED */
7979 #ifdef CONFIG_CGROUP_SCHED
7980 list_add(&init_task_group.list, &task_groups);
7981 INIT_LIST_HEAD(&init_task_group.children);
7983 #endif /* CONFIG_CGROUP_SCHED */
7985 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7986 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7987 __alignof__(unsigned long));
7988 #endif
7989 for_each_possible_cpu(i) {
7990 struct rq *rq;
7992 rq = cpu_rq(i);
7993 raw_spin_lock_init(&rq->lock);
7994 rq->nr_running = 0;
7995 rq->calc_load_active = 0;
7996 rq->calc_load_update = jiffies + LOAD_FREQ;
7997 init_cfs_rq(&rq->cfs, rq);
7998 init_rt_rq(&rq->rt, rq);
7999 #ifdef CONFIG_FAIR_GROUP_SCHED
8000 init_task_group.shares = init_task_group_load;
8001 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8002 #ifdef CONFIG_CGROUP_SCHED
8004 * How much cpu bandwidth does init_task_group get?
8006 * In case of task-groups formed thr' the cgroup filesystem, it
8007 * gets 100% of the cpu resources in the system. This overall
8008 * system cpu resource is divided among the tasks of
8009 * init_task_group and its child task-groups in a fair manner,
8010 * based on each entity's (task or task-group's) weight
8011 * (se->load.weight).
8013 * In other words, if init_task_group has 10 tasks of weight
8014 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8015 * then A0's share of the cpu resource is:
8017 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8019 * We achieve this by letting init_task_group's tasks sit
8020 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8022 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8023 #endif
8024 #endif /* CONFIG_FAIR_GROUP_SCHED */
8026 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8027 #ifdef CONFIG_RT_GROUP_SCHED
8028 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8029 #ifdef CONFIG_CGROUP_SCHED
8030 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8031 #endif
8032 #endif
8034 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8035 rq->cpu_load[j] = 0;
8037 rq->last_load_update_tick = jiffies;
8039 #ifdef CONFIG_SMP
8040 rq->sd = NULL;
8041 rq->rd = NULL;
8042 rq->cpu_power = SCHED_LOAD_SCALE;
8043 rq->post_schedule = 0;
8044 rq->active_balance = 0;
8045 rq->next_balance = jiffies;
8046 rq->push_cpu = 0;
8047 rq->cpu = i;
8048 rq->online = 0;
8049 rq->idle_stamp = 0;
8050 rq->avg_idle = 2*sysctl_sched_migration_cost;
8051 rq_attach_root(rq, &def_root_domain);
8052 #ifdef CONFIG_NO_HZ
8053 rq->nohz_balance_kick = 0;
8054 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8055 #endif
8056 #endif
8057 init_rq_hrtick(rq);
8058 atomic_set(&rq->nr_iowait, 0);
8061 set_load_weight(&init_task);
8063 #ifdef CONFIG_PREEMPT_NOTIFIERS
8064 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8065 #endif
8067 #ifdef CONFIG_SMP
8068 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8069 #endif
8071 #ifdef CONFIG_RT_MUTEXES
8072 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8073 #endif
8076 * The boot idle thread does lazy MMU switching as well:
8078 atomic_inc(&init_mm.mm_count);
8079 enter_lazy_tlb(&init_mm, current);
8082 * Make us the idle thread. Technically, schedule() should not be
8083 * called from this thread, however somewhere below it might be,
8084 * but because we are the idle thread, we just pick up running again
8085 * when this runqueue becomes "idle".
8087 init_idle(current, smp_processor_id());
8089 calc_load_update = jiffies + LOAD_FREQ;
8092 * During early bootup we pretend to be a normal task:
8094 current->sched_class = &fair_sched_class;
8096 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8097 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8098 #ifdef CONFIG_SMP
8099 #ifdef CONFIG_NO_HZ
8100 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8101 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8102 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8103 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8104 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8105 #endif
8106 /* May be allocated at isolcpus cmdline parse time */
8107 if (cpu_isolated_map == NULL)
8108 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8109 #endif /* SMP */
8111 perf_event_init();
8113 scheduler_running = 1;
8116 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8117 static inline int preempt_count_equals(int preempt_offset)
8119 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8121 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8124 void __might_sleep(const char *file, int line, int preempt_offset)
8126 #ifdef in_atomic
8127 static unsigned long prev_jiffy; /* ratelimiting */
8129 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8130 system_state != SYSTEM_RUNNING || oops_in_progress)
8131 return;
8132 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8133 return;
8134 prev_jiffy = jiffies;
8136 printk(KERN_ERR
8137 "BUG: sleeping function called from invalid context at %s:%d\n",
8138 file, line);
8139 printk(KERN_ERR
8140 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8141 in_atomic(), irqs_disabled(),
8142 current->pid, current->comm);
8144 debug_show_held_locks(current);
8145 if (irqs_disabled())
8146 print_irqtrace_events(current);
8147 dump_stack();
8148 #endif
8150 EXPORT_SYMBOL(__might_sleep);
8151 #endif
8153 #ifdef CONFIG_MAGIC_SYSRQ
8154 static void normalize_task(struct rq *rq, struct task_struct *p)
8156 int on_rq;
8158 on_rq = p->se.on_rq;
8159 if (on_rq)
8160 deactivate_task(rq, p, 0);
8161 __setscheduler(rq, p, SCHED_NORMAL, 0);
8162 if (on_rq) {
8163 activate_task(rq, p, 0);
8164 resched_task(rq->curr);
8168 void normalize_rt_tasks(void)
8170 struct task_struct *g, *p;
8171 unsigned long flags;
8172 struct rq *rq;
8174 read_lock_irqsave(&tasklist_lock, flags);
8175 do_each_thread(g, p) {
8177 * Only normalize user tasks:
8179 if (!p->mm)
8180 continue;
8182 p->se.exec_start = 0;
8183 #ifdef CONFIG_SCHEDSTATS
8184 p->se.statistics.wait_start = 0;
8185 p->se.statistics.sleep_start = 0;
8186 p->se.statistics.block_start = 0;
8187 #endif
8189 if (!rt_task(p)) {
8191 * Renice negative nice level userspace
8192 * tasks back to 0:
8194 if (TASK_NICE(p) < 0 && p->mm)
8195 set_user_nice(p, 0);
8196 continue;
8199 raw_spin_lock(&p->pi_lock);
8200 rq = __task_rq_lock(p);
8202 normalize_task(rq, p);
8204 __task_rq_unlock(rq);
8205 raw_spin_unlock(&p->pi_lock);
8206 } while_each_thread(g, p);
8208 read_unlock_irqrestore(&tasklist_lock, flags);
8211 #endif /* CONFIG_MAGIC_SYSRQ */
8213 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8215 * These functions are only useful for the IA64 MCA handling, or kdb.
8217 * They can only be called when the whole system has been
8218 * stopped - every CPU needs to be quiescent, and no scheduling
8219 * activity can take place. Using them for anything else would
8220 * be a serious bug, and as a result, they aren't even visible
8221 * under any other configuration.
8225 * curr_task - return the current task for a given cpu.
8226 * @cpu: the processor in question.
8228 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8230 struct task_struct *curr_task(int cpu)
8232 return cpu_curr(cpu);
8235 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8237 #ifdef CONFIG_IA64
8239 * set_curr_task - set the current task for a given cpu.
8240 * @cpu: the processor in question.
8241 * @p: the task pointer to set.
8243 * Description: This function must only be used when non-maskable interrupts
8244 * are serviced on a separate stack. It allows the architecture to switch the
8245 * notion of the current task on a cpu in a non-blocking manner. This function
8246 * must be called with all CPU's synchronized, and interrupts disabled, the
8247 * and caller must save the original value of the current task (see
8248 * curr_task() above) and restore that value before reenabling interrupts and
8249 * re-starting the system.
8251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8253 void set_curr_task(int cpu, struct task_struct *p)
8255 cpu_curr(cpu) = p;
8258 #endif
8260 #ifdef CONFIG_FAIR_GROUP_SCHED
8261 static void free_fair_sched_group(struct task_group *tg)
8263 int i;
8265 for_each_possible_cpu(i) {
8266 if (tg->cfs_rq)
8267 kfree(tg->cfs_rq[i]);
8268 if (tg->se)
8269 kfree(tg->se[i]);
8272 kfree(tg->cfs_rq);
8273 kfree(tg->se);
8276 static
8277 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8279 struct cfs_rq *cfs_rq;
8280 struct sched_entity *se;
8281 struct rq *rq;
8282 int i;
8284 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8285 if (!tg->cfs_rq)
8286 goto err;
8287 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8288 if (!tg->se)
8289 goto err;
8291 tg->shares = NICE_0_LOAD;
8293 for_each_possible_cpu(i) {
8294 rq = cpu_rq(i);
8296 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8297 GFP_KERNEL, cpu_to_node(i));
8298 if (!cfs_rq)
8299 goto err;
8301 se = kzalloc_node(sizeof(struct sched_entity),
8302 GFP_KERNEL, cpu_to_node(i));
8303 if (!se)
8304 goto err_free_rq;
8306 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8309 return 1;
8311 err_free_rq:
8312 kfree(cfs_rq);
8313 err:
8314 return 0;
8317 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8319 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8320 &cpu_rq(cpu)->leaf_cfs_rq_list);
8323 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8325 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8327 #else /* !CONFG_FAIR_GROUP_SCHED */
8328 static inline void free_fair_sched_group(struct task_group *tg)
8332 static inline
8333 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8335 return 1;
8338 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8342 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8345 #endif /* CONFIG_FAIR_GROUP_SCHED */
8347 #ifdef CONFIG_RT_GROUP_SCHED
8348 static void free_rt_sched_group(struct task_group *tg)
8350 int i;
8352 destroy_rt_bandwidth(&tg->rt_bandwidth);
8354 for_each_possible_cpu(i) {
8355 if (tg->rt_rq)
8356 kfree(tg->rt_rq[i]);
8357 if (tg->rt_se)
8358 kfree(tg->rt_se[i]);
8361 kfree(tg->rt_rq);
8362 kfree(tg->rt_se);
8365 static
8366 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8368 struct rt_rq *rt_rq;
8369 struct sched_rt_entity *rt_se;
8370 struct rq *rq;
8371 int i;
8373 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8374 if (!tg->rt_rq)
8375 goto err;
8376 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8377 if (!tg->rt_se)
8378 goto err;
8380 init_rt_bandwidth(&tg->rt_bandwidth,
8381 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8383 for_each_possible_cpu(i) {
8384 rq = cpu_rq(i);
8386 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8387 GFP_KERNEL, cpu_to_node(i));
8388 if (!rt_rq)
8389 goto err;
8391 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8392 GFP_KERNEL, cpu_to_node(i));
8393 if (!rt_se)
8394 goto err_free_rq;
8396 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8399 return 1;
8401 err_free_rq:
8402 kfree(rt_rq);
8403 err:
8404 return 0;
8407 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8409 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8410 &cpu_rq(cpu)->leaf_rt_rq_list);
8413 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8415 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8417 #else /* !CONFIG_RT_GROUP_SCHED */
8418 static inline void free_rt_sched_group(struct task_group *tg)
8422 static inline
8423 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8425 return 1;
8428 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8432 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8435 #endif /* CONFIG_RT_GROUP_SCHED */
8437 #ifdef CONFIG_CGROUP_SCHED
8438 static void free_sched_group(struct task_group *tg)
8440 free_fair_sched_group(tg);
8441 free_rt_sched_group(tg);
8442 kfree(tg);
8445 /* allocate runqueue etc for a new task group */
8446 struct task_group *sched_create_group(struct task_group *parent)
8448 struct task_group *tg;
8449 unsigned long flags;
8450 int i;
8452 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8453 if (!tg)
8454 return ERR_PTR(-ENOMEM);
8456 if (!alloc_fair_sched_group(tg, parent))
8457 goto err;
8459 if (!alloc_rt_sched_group(tg, parent))
8460 goto err;
8462 spin_lock_irqsave(&task_group_lock, flags);
8463 for_each_possible_cpu(i) {
8464 register_fair_sched_group(tg, i);
8465 register_rt_sched_group(tg, i);
8467 list_add_rcu(&tg->list, &task_groups);
8469 WARN_ON(!parent); /* root should already exist */
8471 tg->parent = parent;
8472 INIT_LIST_HEAD(&tg->children);
8473 list_add_rcu(&tg->siblings, &parent->children);
8474 spin_unlock_irqrestore(&task_group_lock, flags);
8476 return tg;
8478 err:
8479 free_sched_group(tg);
8480 return ERR_PTR(-ENOMEM);
8483 /* rcu callback to free various structures associated with a task group */
8484 static void free_sched_group_rcu(struct rcu_head *rhp)
8486 /* now it should be safe to free those cfs_rqs */
8487 free_sched_group(container_of(rhp, struct task_group, rcu));
8490 /* Destroy runqueue etc associated with a task group */
8491 void sched_destroy_group(struct task_group *tg)
8493 unsigned long flags;
8494 int i;
8496 spin_lock_irqsave(&task_group_lock, flags);
8497 for_each_possible_cpu(i) {
8498 unregister_fair_sched_group(tg, i);
8499 unregister_rt_sched_group(tg, i);
8501 list_del_rcu(&tg->list);
8502 list_del_rcu(&tg->siblings);
8503 spin_unlock_irqrestore(&task_group_lock, flags);
8505 /* wait for possible concurrent references to cfs_rqs complete */
8506 call_rcu(&tg->rcu, free_sched_group_rcu);
8509 /* change task's runqueue when it moves between groups.
8510 * The caller of this function should have put the task in its new group
8511 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8512 * reflect its new group.
8514 void sched_move_task(struct task_struct *tsk)
8516 int on_rq, running;
8517 unsigned long flags;
8518 struct rq *rq;
8520 rq = task_rq_lock(tsk, &flags);
8522 running = task_current(rq, tsk);
8523 on_rq = tsk->se.on_rq;
8525 if (on_rq)
8526 dequeue_task(rq, tsk, 0);
8527 if (unlikely(running))
8528 tsk->sched_class->put_prev_task(rq, tsk);
8530 #ifdef CONFIG_FAIR_GROUP_SCHED
8531 if (tsk->sched_class->task_move_group)
8532 tsk->sched_class->task_move_group(tsk, on_rq);
8533 else
8534 #endif
8535 set_task_rq(tsk, task_cpu(tsk));
8537 if (unlikely(running))
8538 tsk->sched_class->set_curr_task(rq);
8539 if (on_rq)
8540 enqueue_task(rq, tsk, 0);
8542 task_rq_unlock(rq, &flags);
8544 #endif /* CONFIG_CGROUP_SCHED */
8546 #ifdef CONFIG_FAIR_GROUP_SCHED
8547 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8549 struct cfs_rq *cfs_rq = se->cfs_rq;
8550 int on_rq;
8552 on_rq = se->on_rq;
8553 if (on_rq)
8554 dequeue_entity(cfs_rq, se, 0);
8556 se->load.weight = shares;
8557 se->load.inv_weight = 0;
8559 if (on_rq)
8560 enqueue_entity(cfs_rq, se, 0);
8563 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8565 struct cfs_rq *cfs_rq = se->cfs_rq;
8566 struct rq *rq = cfs_rq->rq;
8567 unsigned long flags;
8569 raw_spin_lock_irqsave(&rq->lock, flags);
8570 __set_se_shares(se, shares);
8571 raw_spin_unlock_irqrestore(&rq->lock, flags);
8574 static DEFINE_MUTEX(shares_mutex);
8576 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8578 int i;
8579 unsigned long flags;
8582 * We can't change the weight of the root cgroup.
8584 if (!tg->se[0])
8585 return -EINVAL;
8587 if (shares < MIN_SHARES)
8588 shares = MIN_SHARES;
8589 else if (shares > MAX_SHARES)
8590 shares = MAX_SHARES;
8592 mutex_lock(&shares_mutex);
8593 if (tg->shares == shares)
8594 goto done;
8596 spin_lock_irqsave(&task_group_lock, flags);
8597 for_each_possible_cpu(i)
8598 unregister_fair_sched_group(tg, i);
8599 list_del_rcu(&tg->siblings);
8600 spin_unlock_irqrestore(&task_group_lock, flags);
8602 /* wait for any ongoing reference to this group to finish */
8603 synchronize_sched();
8606 * Now we are free to modify the group's share on each cpu
8607 * w/o tripping rebalance_share or load_balance_fair.
8609 tg->shares = shares;
8610 for_each_possible_cpu(i) {
8612 * force a rebalance
8614 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8615 set_se_shares(tg->se[i], shares);
8619 * Enable load balance activity on this group, by inserting it back on
8620 * each cpu's rq->leaf_cfs_rq_list.
8622 spin_lock_irqsave(&task_group_lock, flags);
8623 for_each_possible_cpu(i)
8624 register_fair_sched_group(tg, i);
8625 list_add_rcu(&tg->siblings, &tg->parent->children);
8626 spin_unlock_irqrestore(&task_group_lock, flags);
8627 done:
8628 mutex_unlock(&shares_mutex);
8629 return 0;
8632 unsigned long sched_group_shares(struct task_group *tg)
8634 return tg->shares;
8636 #endif
8638 #ifdef CONFIG_RT_GROUP_SCHED
8640 * Ensure that the real time constraints are schedulable.
8642 static DEFINE_MUTEX(rt_constraints_mutex);
8644 static unsigned long to_ratio(u64 period, u64 runtime)
8646 if (runtime == RUNTIME_INF)
8647 return 1ULL << 20;
8649 return div64_u64(runtime << 20, period);
8652 /* Must be called with tasklist_lock held */
8653 static inline int tg_has_rt_tasks(struct task_group *tg)
8655 struct task_struct *g, *p;
8657 do_each_thread(g, p) {
8658 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8659 return 1;
8660 } while_each_thread(g, p);
8662 return 0;
8665 struct rt_schedulable_data {
8666 struct task_group *tg;
8667 u64 rt_period;
8668 u64 rt_runtime;
8671 static int tg_schedulable(struct task_group *tg, void *data)
8673 struct rt_schedulable_data *d = data;
8674 struct task_group *child;
8675 unsigned long total, sum = 0;
8676 u64 period, runtime;
8678 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8679 runtime = tg->rt_bandwidth.rt_runtime;
8681 if (tg == d->tg) {
8682 period = d->rt_period;
8683 runtime = d->rt_runtime;
8687 * Cannot have more runtime than the period.
8689 if (runtime > period && runtime != RUNTIME_INF)
8690 return -EINVAL;
8693 * Ensure we don't starve existing RT tasks.
8695 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8696 return -EBUSY;
8698 total = to_ratio(period, runtime);
8701 * Nobody can have more than the global setting allows.
8703 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8704 return -EINVAL;
8707 * The sum of our children's runtime should not exceed our own.
8709 list_for_each_entry_rcu(child, &tg->children, siblings) {
8710 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8711 runtime = child->rt_bandwidth.rt_runtime;
8713 if (child == d->tg) {
8714 period = d->rt_period;
8715 runtime = d->rt_runtime;
8718 sum += to_ratio(period, runtime);
8721 if (sum > total)
8722 return -EINVAL;
8724 return 0;
8727 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8729 struct rt_schedulable_data data = {
8730 .tg = tg,
8731 .rt_period = period,
8732 .rt_runtime = runtime,
8735 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8738 static int tg_set_bandwidth(struct task_group *tg,
8739 u64 rt_period, u64 rt_runtime)
8741 int i, err = 0;
8743 mutex_lock(&rt_constraints_mutex);
8744 read_lock(&tasklist_lock);
8745 err = __rt_schedulable(tg, rt_period, rt_runtime);
8746 if (err)
8747 goto unlock;
8749 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8750 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8751 tg->rt_bandwidth.rt_runtime = rt_runtime;
8753 for_each_possible_cpu(i) {
8754 struct rt_rq *rt_rq = tg->rt_rq[i];
8756 raw_spin_lock(&rt_rq->rt_runtime_lock);
8757 rt_rq->rt_runtime = rt_runtime;
8758 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8760 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8761 unlock:
8762 read_unlock(&tasklist_lock);
8763 mutex_unlock(&rt_constraints_mutex);
8765 return err;
8768 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8770 u64 rt_runtime, rt_period;
8772 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8773 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8774 if (rt_runtime_us < 0)
8775 rt_runtime = RUNTIME_INF;
8777 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8780 long sched_group_rt_runtime(struct task_group *tg)
8782 u64 rt_runtime_us;
8784 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8785 return -1;
8787 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8788 do_div(rt_runtime_us, NSEC_PER_USEC);
8789 return rt_runtime_us;
8792 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8794 u64 rt_runtime, rt_period;
8796 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8797 rt_runtime = tg->rt_bandwidth.rt_runtime;
8799 if (rt_period == 0)
8800 return -EINVAL;
8802 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8805 long sched_group_rt_period(struct task_group *tg)
8807 u64 rt_period_us;
8809 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8810 do_div(rt_period_us, NSEC_PER_USEC);
8811 return rt_period_us;
8814 static int sched_rt_global_constraints(void)
8816 u64 runtime, period;
8817 int ret = 0;
8819 if (sysctl_sched_rt_period <= 0)
8820 return -EINVAL;
8822 runtime = global_rt_runtime();
8823 period = global_rt_period();
8826 * Sanity check on the sysctl variables.
8828 if (runtime > period && runtime != RUNTIME_INF)
8829 return -EINVAL;
8831 mutex_lock(&rt_constraints_mutex);
8832 read_lock(&tasklist_lock);
8833 ret = __rt_schedulable(NULL, 0, 0);
8834 read_unlock(&tasklist_lock);
8835 mutex_unlock(&rt_constraints_mutex);
8837 return ret;
8840 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8842 /* Don't accept realtime tasks when there is no way for them to run */
8843 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8844 return 0;
8846 return 1;
8849 #else /* !CONFIG_RT_GROUP_SCHED */
8850 static int sched_rt_global_constraints(void)
8852 unsigned long flags;
8853 int i;
8855 if (sysctl_sched_rt_period <= 0)
8856 return -EINVAL;
8859 * There's always some RT tasks in the root group
8860 * -- migration, kstopmachine etc..
8862 if (sysctl_sched_rt_runtime == 0)
8863 return -EBUSY;
8865 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8866 for_each_possible_cpu(i) {
8867 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8869 raw_spin_lock(&rt_rq->rt_runtime_lock);
8870 rt_rq->rt_runtime = global_rt_runtime();
8871 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8873 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8875 return 0;
8877 #endif /* CONFIG_RT_GROUP_SCHED */
8879 int sched_rt_handler(struct ctl_table *table, int write,
8880 void __user *buffer, size_t *lenp,
8881 loff_t *ppos)
8883 int ret;
8884 int old_period, old_runtime;
8885 static DEFINE_MUTEX(mutex);
8887 mutex_lock(&mutex);
8888 old_period = sysctl_sched_rt_period;
8889 old_runtime = sysctl_sched_rt_runtime;
8891 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8893 if (!ret && write) {
8894 ret = sched_rt_global_constraints();
8895 if (ret) {
8896 sysctl_sched_rt_period = old_period;
8897 sysctl_sched_rt_runtime = old_runtime;
8898 } else {
8899 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8900 def_rt_bandwidth.rt_period =
8901 ns_to_ktime(global_rt_period());
8904 mutex_unlock(&mutex);
8906 return ret;
8909 #ifdef CONFIG_CGROUP_SCHED
8911 /* return corresponding task_group object of a cgroup */
8912 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8914 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8915 struct task_group, css);
8918 static struct cgroup_subsys_state *
8919 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8921 struct task_group *tg, *parent;
8923 if (!cgrp->parent) {
8924 /* This is early initialization for the top cgroup */
8925 return &init_task_group.css;
8928 parent = cgroup_tg(cgrp->parent);
8929 tg = sched_create_group(parent);
8930 if (IS_ERR(tg))
8931 return ERR_PTR(-ENOMEM);
8933 return &tg->css;
8936 static void
8937 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8939 struct task_group *tg = cgroup_tg(cgrp);
8941 sched_destroy_group(tg);
8944 static int
8945 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8947 #ifdef CONFIG_RT_GROUP_SCHED
8948 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8949 return -EINVAL;
8950 #else
8951 /* We don't support RT-tasks being in separate groups */
8952 if (tsk->sched_class != &fair_sched_class)
8953 return -EINVAL;
8954 #endif
8955 return 0;
8958 static int
8959 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8960 struct task_struct *tsk, bool threadgroup)
8962 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8963 if (retval)
8964 return retval;
8965 if (threadgroup) {
8966 struct task_struct *c;
8967 rcu_read_lock();
8968 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8969 retval = cpu_cgroup_can_attach_task(cgrp, c);
8970 if (retval) {
8971 rcu_read_unlock();
8972 return retval;
8975 rcu_read_unlock();
8977 return 0;
8980 static void
8981 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8982 struct cgroup *old_cont, struct task_struct *tsk,
8983 bool threadgroup)
8985 sched_move_task(tsk);
8986 if (threadgroup) {
8987 struct task_struct *c;
8988 rcu_read_lock();
8989 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8990 sched_move_task(c);
8992 rcu_read_unlock();
8996 #ifdef CONFIG_FAIR_GROUP_SCHED
8997 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8998 u64 shareval)
9000 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9003 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9005 struct task_group *tg = cgroup_tg(cgrp);
9007 return (u64) tg->shares;
9009 #endif /* CONFIG_FAIR_GROUP_SCHED */
9011 #ifdef CONFIG_RT_GROUP_SCHED
9012 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9013 s64 val)
9015 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9018 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9020 return sched_group_rt_runtime(cgroup_tg(cgrp));
9023 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9024 u64 rt_period_us)
9026 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9029 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9031 return sched_group_rt_period(cgroup_tg(cgrp));
9033 #endif /* CONFIG_RT_GROUP_SCHED */
9035 static struct cftype cpu_files[] = {
9036 #ifdef CONFIG_FAIR_GROUP_SCHED
9038 .name = "shares",
9039 .read_u64 = cpu_shares_read_u64,
9040 .write_u64 = cpu_shares_write_u64,
9042 #endif
9043 #ifdef CONFIG_RT_GROUP_SCHED
9045 .name = "rt_runtime_us",
9046 .read_s64 = cpu_rt_runtime_read,
9047 .write_s64 = cpu_rt_runtime_write,
9050 .name = "rt_period_us",
9051 .read_u64 = cpu_rt_period_read_uint,
9052 .write_u64 = cpu_rt_period_write_uint,
9054 #endif
9057 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9059 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9062 struct cgroup_subsys cpu_cgroup_subsys = {
9063 .name = "cpu",
9064 .create = cpu_cgroup_create,
9065 .destroy = cpu_cgroup_destroy,
9066 .can_attach = cpu_cgroup_can_attach,
9067 .attach = cpu_cgroup_attach,
9068 .populate = cpu_cgroup_populate,
9069 .subsys_id = cpu_cgroup_subsys_id,
9070 .early_init = 1,
9073 #endif /* CONFIG_CGROUP_SCHED */
9075 #ifdef CONFIG_CGROUP_CPUACCT
9078 * CPU accounting code for task groups.
9080 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9081 * (balbir@in.ibm.com).
9084 /* track cpu usage of a group of tasks and its child groups */
9085 struct cpuacct {
9086 struct cgroup_subsys_state css;
9087 /* cpuusage holds pointer to a u64-type object on every cpu */
9088 u64 __percpu *cpuusage;
9089 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9090 struct cpuacct *parent;
9093 struct cgroup_subsys cpuacct_subsys;
9095 /* return cpu accounting group corresponding to this container */
9096 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9098 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9099 struct cpuacct, css);
9102 /* return cpu accounting group to which this task belongs */
9103 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9105 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9106 struct cpuacct, css);
9109 /* create a new cpu accounting group */
9110 static struct cgroup_subsys_state *cpuacct_create(
9111 struct cgroup_subsys *ss, struct cgroup *cgrp)
9113 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9114 int i;
9116 if (!ca)
9117 goto out;
9119 ca->cpuusage = alloc_percpu(u64);
9120 if (!ca->cpuusage)
9121 goto out_free_ca;
9123 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9124 if (percpu_counter_init(&ca->cpustat[i], 0))
9125 goto out_free_counters;
9127 if (cgrp->parent)
9128 ca->parent = cgroup_ca(cgrp->parent);
9130 return &ca->css;
9132 out_free_counters:
9133 while (--i >= 0)
9134 percpu_counter_destroy(&ca->cpustat[i]);
9135 free_percpu(ca->cpuusage);
9136 out_free_ca:
9137 kfree(ca);
9138 out:
9139 return ERR_PTR(-ENOMEM);
9142 /* destroy an existing cpu accounting group */
9143 static void
9144 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9146 struct cpuacct *ca = cgroup_ca(cgrp);
9147 int i;
9149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9150 percpu_counter_destroy(&ca->cpustat[i]);
9151 free_percpu(ca->cpuusage);
9152 kfree(ca);
9155 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9157 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9158 u64 data;
9160 #ifndef CONFIG_64BIT
9162 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9164 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9165 data = *cpuusage;
9166 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9167 #else
9168 data = *cpuusage;
9169 #endif
9171 return data;
9174 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9176 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9178 #ifndef CONFIG_64BIT
9180 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9182 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9183 *cpuusage = val;
9184 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9185 #else
9186 *cpuusage = val;
9187 #endif
9190 /* return total cpu usage (in nanoseconds) of a group */
9191 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9193 struct cpuacct *ca = cgroup_ca(cgrp);
9194 u64 totalcpuusage = 0;
9195 int i;
9197 for_each_present_cpu(i)
9198 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9200 return totalcpuusage;
9203 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9204 u64 reset)
9206 struct cpuacct *ca = cgroup_ca(cgrp);
9207 int err = 0;
9208 int i;
9210 if (reset) {
9211 err = -EINVAL;
9212 goto out;
9215 for_each_present_cpu(i)
9216 cpuacct_cpuusage_write(ca, i, 0);
9218 out:
9219 return err;
9222 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9223 struct seq_file *m)
9225 struct cpuacct *ca = cgroup_ca(cgroup);
9226 u64 percpu;
9227 int i;
9229 for_each_present_cpu(i) {
9230 percpu = cpuacct_cpuusage_read(ca, i);
9231 seq_printf(m, "%llu ", (unsigned long long) percpu);
9233 seq_printf(m, "\n");
9234 return 0;
9237 static const char *cpuacct_stat_desc[] = {
9238 [CPUACCT_STAT_USER] = "user",
9239 [CPUACCT_STAT_SYSTEM] = "system",
9242 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9243 struct cgroup_map_cb *cb)
9245 struct cpuacct *ca = cgroup_ca(cgrp);
9246 int i;
9248 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9249 s64 val = percpu_counter_read(&ca->cpustat[i]);
9250 val = cputime64_to_clock_t(val);
9251 cb->fill(cb, cpuacct_stat_desc[i], val);
9253 return 0;
9256 static struct cftype files[] = {
9258 .name = "usage",
9259 .read_u64 = cpuusage_read,
9260 .write_u64 = cpuusage_write,
9263 .name = "usage_percpu",
9264 .read_seq_string = cpuacct_percpu_seq_read,
9267 .name = "stat",
9268 .read_map = cpuacct_stats_show,
9272 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9274 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9278 * charge this task's execution time to its accounting group.
9280 * called with rq->lock held.
9282 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9284 struct cpuacct *ca;
9285 int cpu;
9287 if (unlikely(!cpuacct_subsys.active))
9288 return;
9290 cpu = task_cpu(tsk);
9292 rcu_read_lock();
9294 ca = task_ca(tsk);
9296 for (; ca; ca = ca->parent) {
9297 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9298 *cpuusage += cputime;
9301 rcu_read_unlock();
9305 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9306 * in cputime_t units. As a result, cpuacct_update_stats calls
9307 * percpu_counter_add with values large enough to always overflow the
9308 * per cpu batch limit causing bad SMP scalability.
9310 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9311 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9312 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9314 #ifdef CONFIG_SMP
9315 #define CPUACCT_BATCH \
9316 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9317 #else
9318 #define CPUACCT_BATCH 0
9319 #endif
9322 * Charge the system/user time to the task's accounting group.
9324 static void cpuacct_update_stats(struct task_struct *tsk,
9325 enum cpuacct_stat_index idx, cputime_t val)
9327 struct cpuacct *ca;
9328 int batch = CPUACCT_BATCH;
9330 if (unlikely(!cpuacct_subsys.active))
9331 return;
9333 rcu_read_lock();
9334 ca = task_ca(tsk);
9336 do {
9337 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9338 ca = ca->parent;
9339 } while (ca);
9340 rcu_read_unlock();
9343 struct cgroup_subsys cpuacct_subsys = {
9344 .name = "cpuacct",
9345 .create = cpuacct_create,
9346 .destroy = cpuacct_destroy,
9347 .populate = cpuacct_populate,
9348 .subsys_id = cpuacct_subsys_id,
9350 #endif /* CONFIG_CGROUP_CPUACCT */
9352 #ifndef CONFIG_SMP
9354 void synchronize_sched_expedited(void)
9356 barrier();
9358 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9360 #else /* #ifndef CONFIG_SMP */
9362 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9364 static int synchronize_sched_expedited_cpu_stop(void *data)
9367 * There must be a full memory barrier on each affected CPU
9368 * between the time that try_stop_cpus() is called and the
9369 * time that it returns.
9371 * In the current initial implementation of cpu_stop, the
9372 * above condition is already met when the control reaches
9373 * this point and the following smp_mb() is not strictly
9374 * necessary. Do smp_mb() anyway for documentation and
9375 * robustness against future implementation changes.
9377 smp_mb(); /* See above comment block. */
9378 return 0;
9382 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9383 * approach to force grace period to end quickly. This consumes
9384 * significant time on all CPUs, and is thus not recommended for
9385 * any sort of common-case code.
9387 * Note that it is illegal to call this function while holding any
9388 * lock that is acquired by a CPU-hotplug notifier. Failing to
9389 * observe this restriction will result in deadlock.
9391 void synchronize_sched_expedited(void)
9393 int snap, trycount = 0;
9395 smp_mb(); /* ensure prior mod happens before capturing snap. */
9396 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9397 get_online_cpus();
9398 while (try_stop_cpus(cpu_online_mask,
9399 synchronize_sched_expedited_cpu_stop,
9400 NULL) == -EAGAIN) {
9401 put_online_cpus();
9402 if (trycount++ < 10)
9403 udelay(trycount * num_online_cpus());
9404 else {
9405 synchronize_sched();
9406 return;
9408 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9409 smp_mb(); /* ensure test happens before caller kfree */
9410 return;
9412 get_online_cpus();
9414 atomic_inc(&synchronize_sched_expedited_count);
9415 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9416 put_online_cpus();
9418 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9420 #endif /* #else #ifndef CONFIG_SMP */