4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy
)
126 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
131 static inline int task_has_rt_policy(struct task_struct
*p
)
133 return rt_policy(p
->policy
);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array
{
140 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
141 struct list_head queue
[MAX_RT_PRIO
];
144 struct rt_bandwidth
{
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock
;
149 struct hrtimer rt_period_timer
;
152 static struct rt_bandwidth def_rt_bandwidth
;
154 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
156 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
158 struct rt_bandwidth
*rt_b
=
159 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
165 now
= hrtimer_cb_get_time(timer
);
166 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
171 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
174 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
178 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
180 rt_b
->rt_period
= ns_to_ktime(period
);
181 rt_b
->rt_runtime
= runtime
;
183 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
185 hrtimer_init(&rt_b
->rt_period_timer
,
186 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
187 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime
>= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
199 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
202 if (hrtimer_active(&rt_b
->rt_period_timer
))
205 raw_spin_lock(&rt_b
->rt_runtime_lock
);
210 if (hrtimer_active(&rt_b
->rt_period_timer
))
213 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
214 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
216 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
217 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
218 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
219 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
220 HRTIMER_MODE_ABS_PINNED
, 0);
222 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
228 hrtimer_cancel(&rt_b
->rt_period_timer
);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex
);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups
);
246 /* task group related information */
248 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity
**se
;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq
**cfs_rq
;
255 unsigned long shares
;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity
**rt_se
;
260 struct rt_rq
**rt_rq
;
262 struct rt_bandwidth rt_bandwidth
;
266 struct list_head list
;
268 struct task_group
*parent
;
269 struct list_head siblings
;
270 struct list_head children
;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock
);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group
.children
);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group
;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load
;
315 unsigned long nr_running
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
;
332 unsigned int nr_spread_over
;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list
;
346 struct task_group
*tg
; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight
;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load
;
363 * this cpu's part of tg->shares
365 unsigned long shares
;
368 * load.weight at the time we set shares
370 unsigned long rq_weight
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
429 struct cpupri cpupri
;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain
;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running
;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
458 unsigned long last_load_update_tick
;
461 unsigned char nohz_balance_kick
;
463 unsigned int skip_clock_update
;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load
;
467 unsigned long nr_load_updates
;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list
;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list
;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible
;
489 struct task_struct
*curr
, *idle
, *stop
;
490 unsigned long next_balance
;
491 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update
;
528 long calc_load_active
;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending
;
533 struct call_single_data hrtick_csd
;
535 struct hrtimer hrtick_timer
;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info
;
541 unsigned long long rq_cpu_time
;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
557 unsigned int bkl_count
;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
564 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
566 static inline int cpu_of(struct rq
*rq
)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group
*task_group(struct task_struct
*p
)
608 struct cgroup_subsys_state
*css
;
610 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
611 lockdep_is_held(&task_rq(p
)->lock
));
612 return container_of(css
, struct task_group
, css
);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
620 p
->se
.parent
= task_group(p
)->se
[cpu
];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
625 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
632 static inline struct task_group
*task_group(struct task_struct
*p
)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static u64
irq_time_cpu(int cpu
);
640 static void sched_irq_time_avg_update(struct rq
*rq
, u64 irq_time
);
642 inline void update_rq_clock(struct rq
*rq
)
644 if (!rq
->skip_clock_update
) {
645 int cpu
= cpu_of(rq
);
648 rq
->clock
= sched_clock_cpu(cpu
);
649 irq_time
= irq_time_cpu(cpu
);
650 if (rq
->clock
- irq_time
> rq
->clock_task
)
651 rq
->clock_task
= rq
->clock
- irq_time
;
653 sched_irq_time_avg_update(rq
, irq_time
);
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
663 # define const_debug static const
668 * @cpu: the processor in question.
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
674 int runqueue_is_locked(int cpu
)
676 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
680 * Debugging: various feature bits
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
687 #include "sched_features.h"
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
695 const_debug
unsigned int sysctl_sched_features
=
696 #include "sched_features.h"
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
705 static __read_mostly
char *sched_feat_names
[] = {
706 #include "sched_features.h"
712 static int sched_feat_show(struct seq_file
*m
, void *v
)
716 for (i
= 0; sched_feat_names
[i
]; i
++) {
717 if (!(sysctl_sched_features
& (1UL << i
)))
719 seq_printf(m
, "%s ", sched_feat_names
[i
]);
727 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
728 size_t cnt
, loff_t
*ppos
)
738 if (copy_from_user(&buf
, ubuf
, cnt
))
744 if (strncmp(buf
, "NO_", 3) == 0) {
749 for (i
= 0; sched_feat_names
[i
]; i
++) {
750 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
752 sysctl_sched_features
&= ~(1UL << i
);
754 sysctl_sched_features
|= (1UL << i
);
759 if (!sched_feat_names
[i
])
767 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
769 return single_open(filp
, sched_feat_show
, NULL
);
772 static const struct file_operations sched_feat_fops
= {
773 .open
= sched_feat_open
,
774 .write
= sched_feat_write
,
777 .release
= single_release
,
780 static __init
int sched_init_debug(void)
782 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
787 late_initcall(sched_init_debug
);
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
797 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
800 * ratelimit for updating the group shares.
803 unsigned int sysctl_sched_shares_ratelimit
= 250000;
804 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
811 unsigned int sysctl_sched_shares_thresh
= 4;
814 * period over which we average the RT time consumption, measured
819 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
822 * period over which we measure -rt task cpu usage in us.
825 unsigned int sysctl_sched_rt_period
= 1000000;
827 static __read_mostly
int scheduler_running
;
830 * part of the period that we allow rt tasks to run in us.
833 int sysctl_sched_rt_runtime
= 950000;
835 static inline u64
global_rt_period(void)
837 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
840 static inline u64
global_rt_runtime(void)
842 if (sysctl_sched_rt_runtime
< 0)
845 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
855 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
857 return rq
->curr
== p
;
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
863 return task_current(rq
, p
);
866 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
870 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
872 #ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq
->lock
.owner
= current
;
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
881 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
883 raw_spin_unlock_irq(&rq
->lock
);
886 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
887 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
892 return task_current(rq
, p
);
896 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
906 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 raw_spin_unlock_irq(&rq
->lock
);
909 raw_spin_unlock(&rq
->lock
);
913 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
924 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
931 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
934 static inline int task_is_waking(struct task_struct
*p
)
936 return unlikely(p
->state
== TASK_WAKING
);
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
950 raw_spin_lock(&rq
->lock
);
951 if (likely(rq
== task_rq(p
)))
953 raw_spin_unlock(&rq
->lock
);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
968 local_irq_save(*flags
);
970 raw_spin_lock(&rq
->lock
);
971 if (likely(rq
== task_rq(p
)))
973 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
977 static void __task_rq_unlock(struct rq
*rq
)
980 raw_spin_unlock(&rq
->lock
);
983 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
986 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
990 * this_rq_lock - lock this runqueue and disable interrupts.
992 static struct rq
*this_rq_lock(void)
999 raw_spin_lock(&rq
->lock
);
1004 #ifdef CONFIG_SCHED_HRTICK
1006 * Use HR-timers to deliver accurate preemption points.
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * - enabled by features
1019 * - hrtimer is actually high res
1021 static inline int hrtick_enabled(struct rq
*rq
)
1023 if (!sched_feat(HRTICK
))
1025 if (!cpu_active(cpu_of(rq
)))
1027 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1030 static void hrtick_clear(struct rq
*rq
)
1032 if (hrtimer_active(&rq
->hrtick_timer
))
1033 hrtimer_cancel(&rq
->hrtick_timer
);
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1040 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1042 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1044 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1046 raw_spin_lock(&rq
->lock
);
1047 update_rq_clock(rq
);
1048 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1049 raw_spin_unlock(&rq
->lock
);
1051 return HRTIMER_NORESTART
;
1056 * called from hardirq (IPI) context
1058 static void __hrtick_start(void *arg
)
1060 struct rq
*rq
= arg
;
1062 raw_spin_lock(&rq
->lock
);
1063 hrtimer_restart(&rq
->hrtick_timer
);
1064 rq
->hrtick_csd_pending
= 0;
1065 raw_spin_unlock(&rq
->lock
);
1069 * Called to set the hrtick timer state.
1071 * called with rq->lock held and irqs disabled
1073 static void hrtick_start(struct rq
*rq
, u64 delay
)
1075 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1076 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1078 hrtimer_set_expires(timer
, time
);
1080 if (rq
== this_rq()) {
1081 hrtimer_restart(timer
);
1082 } else if (!rq
->hrtick_csd_pending
) {
1083 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1084 rq
->hrtick_csd_pending
= 1;
1089 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1091 int cpu
= (int)(long)hcpu
;
1094 case CPU_UP_CANCELED
:
1095 case CPU_UP_CANCELED_FROZEN
:
1096 case CPU_DOWN_PREPARE
:
1097 case CPU_DOWN_PREPARE_FROZEN
:
1099 case CPU_DEAD_FROZEN
:
1100 hrtick_clear(cpu_rq(cpu
));
1107 static __init
void init_hrtick(void)
1109 hotcpu_notifier(hotplug_hrtick
, 0);
1113 * Called to set the hrtick timer state.
1115 * called with rq->lock held and irqs disabled
1117 static void hrtick_start(struct rq
*rq
, u64 delay
)
1119 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1120 HRTIMER_MODE_REL_PINNED
, 0);
1123 static inline void init_hrtick(void)
1126 #endif /* CONFIG_SMP */
1128 static void init_rq_hrtick(struct rq
*rq
)
1131 rq
->hrtick_csd_pending
= 0;
1133 rq
->hrtick_csd
.flags
= 0;
1134 rq
->hrtick_csd
.func
= __hrtick_start
;
1135 rq
->hrtick_csd
.info
= rq
;
1138 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1139 rq
->hrtick_timer
.function
= hrtick
;
1141 #else /* CONFIG_SCHED_HRTICK */
1142 static inline void hrtick_clear(struct rq
*rq
)
1146 static inline void init_rq_hrtick(struct rq
*rq
)
1150 static inline void init_hrtick(void)
1153 #endif /* CONFIG_SCHED_HRTICK */
1156 * resched_task - mark a task 'to be rescheduled now'.
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1164 #ifndef tsk_is_polling
1165 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 static void resched_task(struct task_struct
*p
)
1172 assert_raw_spin_locked(&task_rq(p
)->lock
);
1174 if (test_tsk_need_resched(p
))
1177 set_tsk_need_resched(p
);
1180 if (cpu
== smp_processor_id())
1183 /* NEED_RESCHED must be visible before we test polling */
1185 if (!tsk_is_polling(p
))
1186 smp_send_reschedule(cpu
);
1189 static void resched_cpu(int cpu
)
1191 struct rq
*rq
= cpu_rq(cpu
);
1192 unsigned long flags
;
1194 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1196 resched_task(cpu_curr(cpu
));
1197 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1202 * In the semi idle case, use the nearest busy cpu for migrating timers
1203 * from an idle cpu. This is good for power-savings.
1205 * We don't do similar optimization for completely idle system, as
1206 * selecting an idle cpu will add more delays to the timers than intended
1207 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1209 int get_nohz_timer_target(void)
1211 int cpu
= smp_processor_id();
1213 struct sched_domain
*sd
;
1215 for_each_domain(cpu
, sd
) {
1216 for_each_cpu(i
, sched_domain_span(sd
))
1223 * When add_timer_on() enqueues a timer into the timer wheel of an
1224 * idle CPU then this timer might expire before the next timer event
1225 * which is scheduled to wake up that CPU. In case of a completely
1226 * idle system the next event might even be infinite time into the
1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1228 * leaves the inner idle loop so the newly added timer is taken into
1229 * account when the CPU goes back to idle and evaluates the timer
1230 * wheel for the next timer event.
1232 void wake_up_idle_cpu(int cpu
)
1234 struct rq
*rq
= cpu_rq(cpu
);
1236 if (cpu
== smp_processor_id())
1240 * This is safe, as this function is called with the timer
1241 * wheel base lock of (cpu) held. When the CPU is on the way
1242 * to idle and has not yet set rq->curr to idle then it will
1243 * be serialized on the timer wheel base lock and take the new
1244 * timer into account automatically.
1246 if (rq
->curr
!= rq
->idle
)
1250 * We can set TIF_RESCHED on the idle task of the other CPU
1251 * lockless. The worst case is that the other CPU runs the
1252 * idle task through an additional NOOP schedule()
1254 set_tsk_need_resched(rq
->idle
);
1256 /* NEED_RESCHED must be visible before we test polling */
1258 if (!tsk_is_polling(rq
->idle
))
1259 smp_send_reschedule(cpu
);
1262 #endif /* CONFIG_NO_HZ */
1264 static u64
sched_avg_period(void)
1266 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1269 static void sched_avg_update(struct rq
*rq
)
1271 s64 period
= sched_avg_period();
1273 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1275 * Inline assembly required to prevent the compiler
1276 * optimising this loop into a divmod call.
1277 * See __iter_div_u64_rem() for another example of this.
1279 asm("" : "+rm" (rq
->age_stamp
));
1280 rq
->age_stamp
+= period
;
1285 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1287 rq
->rt_avg
+= rt_delta
;
1288 sched_avg_update(rq
);
1291 #else /* !CONFIG_SMP */
1292 static void resched_task(struct task_struct
*p
)
1294 assert_raw_spin_locked(&task_rq(p
)->lock
);
1295 set_tsk_need_resched(p
);
1298 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1302 static void sched_avg_update(struct rq
*rq
)
1305 #endif /* CONFIG_SMP */
1307 #if BITS_PER_LONG == 32
1308 # define WMULT_CONST (~0UL)
1310 # define WMULT_CONST (1UL << 32)
1313 #define WMULT_SHIFT 32
1316 * Shift right and round:
1318 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1321 * delta *= weight / lw
1323 static unsigned long
1324 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1325 struct load_weight
*lw
)
1329 if (!lw
->inv_weight
) {
1330 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1333 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1337 tmp
= (u64
)delta_exec
* weight
;
1339 * Check whether we'd overflow the 64-bit multiplication:
1341 if (unlikely(tmp
> WMULT_CONST
))
1342 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1345 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1347 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1350 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1356 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1363 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1364 * of tasks with abnormal "nice" values across CPUs the contribution that
1365 * each task makes to its run queue's load is weighted according to its
1366 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1367 * scaled version of the new time slice allocation that they receive on time
1371 #define WEIGHT_IDLEPRIO 3
1372 #define WMULT_IDLEPRIO 1431655765
1375 * Nice levels are multiplicative, with a gentle 10% change for every
1376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1378 * that remained on nice 0.
1380 * The "10% effect" is relative and cumulative: from _any_ nice level,
1381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1383 * If a task goes up by ~10% and another task goes down by ~10% then
1384 * the relative distance between them is ~25%.)
1386 static const int prio_to_weight
[40] = {
1387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1391 /* 0 */ 1024, 820, 655, 526, 423,
1392 /* 5 */ 335, 272, 215, 172, 137,
1393 /* 10 */ 110, 87, 70, 56, 45,
1394 /* 15 */ 36, 29, 23, 18, 15,
1398 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1400 * In cases where the weight does not change often, we can use the
1401 * precalculated inverse to speed up arithmetics by turning divisions
1402 * into multiplications:
1404 static const u32 prio_to_wmult
[40] = {
1405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1415 /* Time spent by the tasks of the cpu accounting group executing in ... */
1416 enum cpuacct_stat_index
{
1417 CPUACCT_STAT_USER
, /* ... user mode */
1418 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1420 CPUACCT_STAT_NSTATS
,
1423 #ifdef CONFIG_CGROUP_CPUACCT
1424 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1425 static void cpuacct_update_stats(struct task_struct
*tsk
,
1426 enum cpuacct_stat_index idx
, cputime_t val
);
1428 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1429 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1430 enum cpuacct_stat_index idx
, cputime_t val
) {}
1433 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1435 update_load_add(&rq
->load
, load
);
1438 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1440 update_load_sub(&rq
->load
, load
);
1443 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1444 typedef int (*tg_visitor
)(struct task_group
*, void *);
1447 * Iterate the full tree, calling @down when first entering a node and @up when
1448 * leaving it for the final time.
1450 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1452 struct task_group
*parent
, *child
;
1456 parent
= &root_task_group
;
1458 ret
= (*down
)(parent
, data
);
1461 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1468 ret
= (*up
)(parent
, data
);
1473 parent
= parent
->parent
;
1482 static int tg_nop(struct task_group
*tg
, void *data
)
1489 /* Used instead of source_load when we know the type == 0 */
1490 static unsigned long weighted_cpuload(const int cpu
)
1492 return cpu_rq(cpu
)->load
.weight
;
1496 * Return a low guess at the load of a migration-source cpu weighted
1497 * according to the scheduling class and "nice" value.
1499 * We want to under-estimate the load of migration sources, to
1500 * balance conservatively.
1502 static unsigned long source_load(int cpu
, int type
)
1504 struct rq
*rq
= cpu_rq(cpu
);
1505 unsigned long total
= weighted_cpuload(cpu
);
1507 if (type
== 0 || !sched_feat(LB_BIAS
))
1510 return min(rq
->cpu_load
[type
-1], total
);
1514 * Return a high guess at the load of a migration-target cpu weighted
1515 * according to the scheduling class and "nice" value.
1517 static unsigned long target_load(int cpu
, int type
)
1519 struct rq
*rq
= cpu_rq(cpu
);
1520 unsigned long total
= weighted_cpuload(cpu
);
1522 if (type
== 0 || !sched_feat(LB_BIAS
))
1525 return max(rq
->cpu_load
[type
-1], total
);
1528 static unsigned long power_of(int cpu
)
1530 return cpu_rq(cpu
)->cpu_power
;
1533 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1535 static unsigned long cpu_avg_load_per_task(int cpu
)
1537 struct rq
*rq
= cpu_rq(cpu
);
1538 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1541 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1543 rq
->avg_load_per_task
= 0;
1545 return rq
->avg_load_per_task
;
1548 #ifdef CONFIG_FAIR_GROUP_SCHED
1550 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1552 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1555 * Calculate and set the cpu's group shares.
1557 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1558 unsigned long sd_shares
,
1559 unsigned long sd_rq_weight
,
1560 unsigned long *usd_rq_weight
)
1562 unsigned long shares
, rq_weight
;
1565 rq_weight
= usd_rq_weight
[cpu
];
1568 rq_weight
= NICE_0_LOAD
;
1572 * \Sum_j shares_j * rq_weight_i
1573 * shares_i = -----------------------------
1574 * \Sum_j rq_weight_j
1576 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1577 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1579 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1580 sysctl_sched_shares_thresh
) {
1581 struct rq
*rq
= cpu_rq(cpu
);
1582 unsigned long flags
;
1584 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1585 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1586 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1587 __set_se_shares(tg
->se
[cpu
], shares
);
1588 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1593 * Re-compute the task group their per cpu shares over the given domain.
1594 * This needs to be done in a bottom-up fashion because the rq weight of a
1595 * parent group depends on the shares of its child groups.
1597 static int tg_shares_up(struct task_group
*tg
, void *data
)
1599 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1600 unsigned long *usd_rq_weight
;
1601 struct sched_domain
*sd
= data
;
1602 unsigned long flags
;
1608 local_irq_save(flags
);
1609 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1611 for_each_cpu(i
, sched_domain_span(sd
)) {
1612 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1613 usd_rq_weight
[i
] = weight
;
1615 rq_weight
+= weight
;
1617 * If there are currently no tasks on the cpu pretend there
1618 * is one of average load so that when a new task gets to
1619 * run here it will not get delayed by group starvation.
1622 weight
= NICE_0_LOAD
;
1624 sum_weight
+= weight
;
1625 shares
+= tg
->cfs_rq
[i
]->shares
;
1629 rq_weight
= sum_weight
;
1631 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1632 shares
= tg
->shares
;
1634 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1635 shares
= tg
->shares
;
1637 for_each_cpu(i
, sched_domain_span(sd
))
1638 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1640 local_irq_restore(flags
);
1646 * Compute the cpu's hierarchical load factor for each task group.
1647 * This needs to be done in a top-down fashion because the load of a child
1648 * group is a fraction of its parents load.
1650 static int tg_load_down(struct task_group
*tg
, void *data
)
1653 long cpu
= (long)data
;
1656 load
= cpu_rq(cpu
)->load
.weight
;
1658 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1659 load
*= tg
->cfs_rq
[cpu
]->shares
;
1660 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1663 tg
->cfs_rq
[cpu
]->h_load
= load
;
1668 static void update_shares(struct sched_domain
*sd
)
1673 if (root_task_group_empty())
1676 now
= local_clock();
1677 elapsed
= now
- sd
->last_update
;
1679 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1680 sd
->last_update
= now
;
1681 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1685 static void update_h_load(long cpu
)
1687 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1692 static inline void update_shares(struct sched_domain
*sd
)
1698 #ifdef CONFIG_PREEMPT
1700 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1710 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1711 __releases(this_rq
->lock
)
1712 __acquires(busiest
->lock
)
1713 __acquires(this_rq
->lock
)
1715 raw_spin_unlock(&this_rq
->lock
);
1716 double_rq_lock(this_rq
, busiest
);
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1729 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1730 __releases(this_rq
->lock
)
1731 __acquires(busiest
->lock
)
1732 __acquires(this_rq
->lock
)
1736 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1737 if (busiest
< this_rq
) {
1738 raw_spin_unlock(&this_rq
->lock
);
1739 raw_spin_lock(&busiest
->lock
);
1740 raw_spin_lock_nested(&this_rq
->lock
,
1741 SINGLE_DEPTH_NESTING
);
1744 raw_spin_lock_nested(&busiest
->lock
,
1745 SINGLE_DEPTH_NESTING
);
1750 #endif /* CONFIG_PREEMPT */
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq
->lock
);
1763 return _double_lock_balance(this_rq
, busiest
);
1766 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1767 __releases(busiest
->lock
)
1769 raw_spin_unlock(&busiest
->lock
);
1770 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1774 * double_rq_lock - safely lock two runqueues
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1779 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1780 __acquires(rq1
->lock
)
1781 __acquires(rq2
->lock
)
1783 BUG_ON(!irqs_disabled());
1785 raw_spin_lock(&rq1
->lock
);
1786 __acquire(rq2
->lock
); /* Fake it out ;) */
1789 raw_spin_lock(&rq1
->lock
);
1790 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1792 raw_spin_lock(&rq2
->lock
);
1793 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1799 * double_rq_unlock - safely unlock two runqueues
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1804 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1805 __releases(rq1
->lock
)
1806 __releases(rq2
->lock
)
1808 raw_spin_unlock(&rq1
->lock
);
1810 raw_spin_unlock(&rq2
->lock
);
1812 __release(rq2
->lock
);
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1821 cfs_rq
->shares
= shares
;
1826 static void calc_load_account_idle(struct rq
*this_rq
);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1829 static void update_cpu_load(struct rq
*this_rq
);
1831 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1833 set_task_rq(p
, cpu
);
1836 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1837 * successfuly executed on another CPU. We must ensure that updates of
1838 * per-task data have been completed by this moment.
1841 task_thread_info(p
)->cpu
= cpu
;
1845 static const struct sched_class rt_sched_class
;
1847 #define sched_class_highest (&stop_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1851 #include "sched_stats.h"
1853 static void inc_nr_running(struct rq
*rq
)
1858 static void dec_nr_running(struct rq
*rq
)
1863 static void set_load_weight(struct task_struct
*p
)
1866 * SCHED_IDLE tasks get minimal weight:
1868 if (p
->policy
== SCHED_IDLE
) {
1869 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1870 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1874 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1875 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1878 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1880 update_rq_clock(rq
);
1881 sched_info_queued(p
);
1882 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1886 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1888 update_rq_clock(rq
);
1889 sched_info_dequeued(p
);
1890 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1895 * activate_task - move a task to the runqueue.
1897 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1899 if (task_contributes_to_load(p
))
1900 rq
->nr_uninterruptible
--;
1902 enqueue_task(rq
, p
, flags
);
1907 * deactivate_task - remove a task from the runqueue.
1909 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1911 if (task_contributes_to_load(p
))
1912 rq
->nr_uninterruptible
++;
1914 dequeue_task(rq
, p
, flags
);
1918 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1921 * There are no locks covering percpu hardirq/softirq time.
1922 * They are only modified in account_system_vtime, on corresponding CPU
1923 * with interrupts disabled. So, writes are safe.
1924 * They are read and saved off onto struct rq in update_rq_clock().
1925 * This may result in other CPU reading this CPU's irq time and can
1926 * race with irq/account_system_vtime on this CPU. We would either get old
1927 * or new value (or semi updated value on 32 bit) with a side effect of
1928 * accounting a slice of irq time to wrong task when irq is in progress
1929 * while we read rq->clock. That is a worthy compromise in place of having
1930 * locks on each irq in account_system_time.
1932 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1933 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1935 static DEFINE_PER_CPU(u64
, irq_start_time
);
1936 static int sched_clock_irqtime
;
1938 void enable_sched_clock_irqtime(void)
1940 sched_clock_irqtime
= 1;
1943 void disable_sched_clock_irqtime(void)
1945 sched_clock_irqtime
= 0;
1948 static u64
irq_time_cpu(int cpu
)
1950 if (!sched_clock_irqtime
)
1953 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1956 void account_system_vtime(struct task_struct
*curr
)
1958 unsigned long flags
;
1962 if (!sched_clock_irqtime
)
1965 local_irq_save(flags
);
1967 cpu
= smp_processor_id();
1968 now
= sched_clock_cpu(cpu
);
1969 delta
= now
- per_cpu(irq_start_time
, cpu
);
1970 per_cpu(irq_start_time
, cpu
) = now
;
1972 * We do not account for softirq time from ksoftirqd here.
1973 * We want to continue accounting softirq time to ksoftirqd thread
1974 * in that case, so as not to confuse scheduler with a special task
1975 * that do not consume any time, but still wants to run.
1977 if (hardirq_count())
1978 per_cpu(cpu_hardirq_time
, cpu
) += delta
;
1979 else if (in_serving_softirq() && !(curr
->flags
& PF_KSOFTIRQD
))
1980 per_cpu(cpu_softirq_time
, cpu
) += delta
;
1982 local_irq_restore(flags
);
1984 EXPORT_SYMBOL_GPL(account_system_vtime
);
1986 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
)
1988 if (sched_clock_irqtime
&& sched_feat(NONIRQ_POWER
)) {
1989 u64 delta_irq
= curr_irq_time
- rq
->prev_irq_time
;
1990 rq
->prev_irq_time
= curr_irq_time
;
1991 sched_rt_avg_update(rq
, delta_irq
);
1997 static u64
irq_time_cpu(int cpu
)
2002 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
) { }
2006 #include "sched_idletask.c"
2007 #include "sched_fair.c"
2008 #include "sched_rt.c"
2009 #include "sched_stoptask.c"
2010 #ifdef CONFIG_SCHED_DEBUG
2011 # include "sched_debug.c"
2014 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2016 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2017 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2028 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2030 stop
->sched_class
= &stop_sched_class
;
2033 cpu_rq(cpu
)->stop
= stop
;
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2040 old_stop
->sched_class
= &rt_sched_class
;
2045 * __normal_prio - return the priority that is based on the static prio
2047 static inline int __normal_prio(struct task_struct
*p
)
2049 return p
->static_prio
;
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2059 static inline int normal_prio(struct task_struct
*p
)
2063 if (task_has_rt_policy(p
))
2064 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2066 prio
= __normal_prio(p
);
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2077 static int effective_prio(struct task_struct
*p
)
2079 p
->normal_prio
= normal_prio(p
);
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2085 if (!rt_prio(p
->prio
))
2086 return p
->normal_prio
;
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2094 inline int task_curr(const struct task_struct
*p
)
2096 return cpu_curr(task_cpu(p
)) == p
;
2099 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2100 const struct sched_class
*prev_class
,
2101 int oldprio
, int running
)
2103 if (prev_class
!= p
->sched_class
) {
2104 if (prev_class
->switched_from
)
2105 prev_class
->switched_from(rq
, p
, running
);
2106 p
->sched_class
->switched_to(rq
, p
, running
);
2108 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2111 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2113 const struct sched_class
*class;
2115 if (p
->sched_class
== rq
->curr
->sched_class
) {
2116 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2118 for_each_class(class) {
2119 if (class == rq
->curr
->sched_class
)
2121 if (class == p
->sched_class
) {
2122 resched_task(rq
->curr
);
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2132 if (test_tsk_need_resched(rq
->curr
))
2133 rq
->skip_clock_update
= 1;
2138 * Is this task likely cache-hot:
2141 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2145 if (p
->sched_class
!= &fair_sched_class
)
2148 if (unlikely(p
->policy
== SCHED_IDLE
))
2152 * Buddy candidates are cache hot:
2154 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2155 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2156 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2159 if (sysctl_sched_migration_cost
== -1)
2161 if (sysctl_sched_migration_cost
== 0)
2164 delta
= now
- p
->se
.exec_start
;
2166 return delta
< (s64
)sysctl_sched_migration_cost
;
2169 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2171 #ifdef CONFIG_SCHED_DEBUG
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2176 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2177 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2180 trace_sched_migrate_task(p
, new_cpu
);
2182 if (task_cpu(p
) != new_cpu
) {
2183 p
->se
.nr_migrations
++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2187 __set_task_cpu(p
, new_cpu
);
2190 struct migration_arg
{
2191 struct task_struct
*task
;
2195 static int migration_cpu_stop(void *data
);
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2201 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2203 struct rq
*rq
= task_rq(p
);
2206 * If the task is not on a runqueue (and not running), then
2207 * the next wake-up will properly place the task.
2209 return p
->se
.on_rq
|| task_running(rq
, p
);
2213 * wait_task_inactive - wait for a thread to unschedule.
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2228 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2230 unsigned long flags
;
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2255 while (task_running(rq
, p
)) {
2256 if (match_state
&& unlikely(p
->state
!= match_state
))
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2266 rq
= task_rq_lock(p
, &flags
);
2267 trace_sched_wait_task(p
);
2268 running
= task_running(rq
, p
);
2269 on_rq
= p
->se
.on_rq
;
2271 if (!match_state
|| p
->state
== match_state
)
2272 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2273 task_rq_unlock(rq
, &flags
);
2276 * If it changed from the expected state, bail out now.
2278 if (unlikely(!ncsw
))
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2285 * Oops. Go back and try again..
2287 if (unlikely(running
)) {
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2301 if (unlikely(on_rq
)) {
2302 schedule_timeout_uninterruptible(1);
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2324 * NOTE: this function doesnt have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2330 void kick_process(struct task_struct
*p
)
2336 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2337 smp_send_reschedule(cpu
);
2340 EXPORT_SYMBOL_GPL(kick_process
);
2341 #endif /* CONFIG_SMP */
2344 * task_oncpu_function_call - call a function on the cpu on which a task runs
2345 * @p: the task to evaluate
2346 * @func: the function to be called
2347 * @info: the function call argument
2349 * Calls the function @func when the task is currently running. This might
2350 * be on the current CPU, which just calls the function directly
2352 void task_oncpu_function_call(struct task_struct
*p
,
2353 void (*func
) (void *info
), void *info
)
2360 smp_call_function_single(cpu
, func
, info
, 1);
2366 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2368 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2371 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2373 /* Look for allowed, online CPU in same node. */
2374 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2375 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2378 /* Any allowed, online CPU? */
2379 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2380 if (dest_cpu
< nr_cpu_ids
)
2383 /* No more Mr. Nice Guy. */
2384 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2385 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2387 * Don't tell them about moving exiting tasks or
2388 * kernel threads (both mm NULL), since they never
2391 if (p
->mm
&& printk_ratelimit()) {
2392 printk(KERN_INFO
"process %d (%s) no "
2393 "longer affine to cpu%d\n",
2394 task_pid_nr(p
), p
->comm
, cpu
);
2402 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2405 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2407 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2410 * In order not to call set_task_cpu() on a blocking task we need
2411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2414 * Since this is common to all placement strategies, this lives here.
2416 * [ this allows ->select_task() to simply return task_cpu(p) and
2417 * not worry about this generic constraint ]
2419 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2421 cpu
= select_fallback_rq(task_cpu(p
), p
);
2426 static void update_avg(u64
*avg
, u64 sample
)
2428 s64 diff
= sample
- *avg
;
2433 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2434 bool is_sync
, bool is_migrate
, bool is_local
,
2435 unsigned long en_flags
)
2437 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2439 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2441 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2443 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2445 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2447 activate_task(rq
, p
, en_flags
);
2450 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2451 int wake_flags
, bool success
)
2453 trace_sched_wakeup(p
, success
);
2454 check_preempt_curr(rq
, p
, wake_flags
);
2456 p
->state
= TASK_RUNNING
;
2458 if (p
->sched_class
->task_woken
)
2459 p
->sched_class
->task_woken(rq
, p
);
2461 if (unlikely(rq
->idle_stamp
)) {
2462 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2463 u64 max
= 2*sysctl_sched_migration_cost
;
2468 update_avg(&rq
->avg_idle
, delta
);
2472 /* if a worker is waking up, notify workqueue */
2473 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2474 wq_worker_waking_up(p
, cpu_of(rq
));
2478 * try_to_wake_up - wake up a thread
2479 * @p: the thread to be awakened
2480 * @state: the mask of task states that can be woken
2481 * @wake_flags: wake modifier flags (WF_*)
2483 * Put it on the run-queue if it's not already there. The "current"
2484 * thread is always on the run-queue (except when the actual
2485 * re-schedule is in progress), and as such you're allowed to do
2486 * the simpler "current->state = TASK_RUNNING" to mark yourself
2487 * runnable without the overhead of this.
2489 * Returns %true if @p was woken up, %false if it was already running
2490 * or @state didn't match @p's state.
2492 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2495 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2496 unsigned long flags
;
2497 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2500 this_cpu
= get_cpu();
2503 rq
= task_rq_lock(p
, &flags
);
2504 if (!(p
->state
& state
))
2514 if (unlikely(task_running(rq
, p
)))
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
2521 * First fix up the nr_uninterruptible count:
2523 if (task_contributes_to_load(p
)) {
2524 if (likely(cpu_online(orig_cpu
)))
2525 rq
->nr_uninterruptible
--;
2527 this_rq()->nr_uninterruptible
--;
2529 p
->state
= TASK_WAKING
;
2531 if (p
->sched_class
->task_waking
) {
2532 p
->sched_class
->task_waking(rq
, p
);
2533 en_flags
|= ENQUEUE_WAKING
;
2536 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2537 if (cpu
!= orig_cpu
)
2538 set_task_cpu(p
, cpu
);
2539 __task_rq_unlock(rq
);
2542 raw_spin_lock(&rq
->lock
);
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2550 WARN_ON(task_cpu(p
) != cpu
);
2551 WARN_ON(p
->state
!= TASK_WAKING
);
2553 #ifdef CONFIG_SCHEDSTATS
2554 schedstat_inc(rq
, ttwu_count
);
2555 if (cpu
== this_cpu
)
2556 schedstat_inc(rq
, ttwu_local
);
2558 struct sched_domain
*sd
;
2559 for_each_domain(this_cpu
, sd
) {
2560 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2561 schedstat_inc(sd
, ttwu_wake_remote
);
2566 #endif /* CONFIG_SCHEDSTATS */
2569 #endif /* CONFIG_SMP */
2570 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2571 cpu
== this_cpu
, en_flags
);
2574 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2576 task_rq_unlock(rq
, &flags
);
2583 * try_to_wake_up_local - try to wake up a local task with rq lock held
2584 * @p: the thread to be awakened
2586 * Put @p on the run-queue if it's not alredy there. The caller must
2587 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2588 * the current task. this_rq() stays locked over invocation.
2590 static void try_to_wake_up_local(struct task_struct
*p
)
2592 struct rq
*rq
= task_rq(p
);
2593 bool success
= false;
2595 BUG_ON(rq
!= this_rq());
2596 BUG_ON(p
== current
);
2597 lockdep_assert_held(&rq
->lock
);
2599 if (!(p
->state
& TASK_NORMAL
))
2603 if (likely(!task_running(rq
, p
))) {
2604 schedstat_inc(rq
, ttwu_count
);
2605 schedstat_inc(rq
, ttwu_local
);
2607 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2610 ttwu_post_activation(p
, rq
, 0, success
);
2614 * wake_up_process - Wake up a specific process
2615 * @p: The process to be woken up.
2617 * Attempt to wake up the nominated process and move it to the set of runnable
2618 * processes. Returns 1 if the process was woken up, 0 if it was already
2621 * It may be assumed that this function implies a write memory barrier before
2622 * changing the task state if and only if any tasks are woken up.
2624 int wake_up_process(struct task_struct
*p
)
2626 return try_to_wake_up(p
, TASK_ALL
, 0);
2628 EXPORT_SYMBOL(wake_up_process
);
2630 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2632 return try_to_wake_up(p
, state
, 0);
2636 * Perform scheduler related setup for a newly forked process p.
2637 * p is forked by current.
2639 * __sched_fork() is basic setup used by init_idle() too:
2641 static void __sched_fork(struct task_struct
*p
)
2643 p
->se
.exec_start
= 0;
2644 p
->se
.sum_exec_runtime
= 0;
2645 p
->se
.prev_sum_exec_runtime
= 0;
2646 p
->se
.nr_migrations
= 0;
2648 #ifdef CONFIG_SCHEDSTATS
2649 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2652 INIT_LIST_HEAD(&p
->rt
.run_list
);
2654 INIT_LIST_HEAD(&p
->se
.group_node
);
2656 #ifdef CONFIG_PREEMPT_NOTIFIERS
2657 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2662 * fork()/clone()-time setup:
2664 void sched_fork(struct task_struct
*p
, int clone_flags
)
2666 int cpu
= get_cpu();
2670 * We mark the process as running here. This guarantees that
2671 * nobody will actually run it, and a signal or other external
2672 * event cannot wake it up and insert it on the runqueue either.
2674 p
->state
= TASK_RUNNING
;
2677 * Revert to default priority/policy on fork if requested.
2679 if (unlikely(p
->sched_reset_on_fork
)) {
2680 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2681 p
->policy
= SCHED_NORMAL
;
2682 p
->normal_prio
= p
->static_prio
;
2685 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2686 p
->static_prio
= NICE_TO_PRIO(0);
2687 p
->normal_prio
= p
->static_prio
;
2692 * We don't need the reset flag anymore after the fork. It has
2693 * fulfilled its duty:
2695 p
->sched_reset_on_fork
= 0;
2699 * Make sure we do not leak PI boosting priority to the child.
2701 p
->prio
= current
->normal_prio
;
2703 if (!rt_prio(p
->prio
))
2704 p
->sched_class
= &fair_sched_class
;
2706 if (p
->sched_class
->task_fork
)
2707 p
->sched_class
->task_fork(p
);
2710 * The child is not yet in the pid-hash so no cgroup attach races,
2711 * and the cgroup is pinned to this child due to cgroup_fork()
2712 * is ran before sched_fork().
2714 * Silence PROVE_RCU.
2717 set_task_cpu(p
, cpu
);
2720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2721 if (likely(sched_info_on()))
2722 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2724 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2727 #ifdef CONFIG_PREEMPT
2728 /* Want to start with kernel preemption disabled. */
2729 task_thread_info(p
)->preempt_count
= 1;
2731 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2737 * wake_up_new_task - wake up a newly created task for the first time.
2739 * This function will do some initial scheduler statistics housekeeping
2740 * that must be done for every newly created context, then puts the task
2741 * on the runqueue and wakes it.
2743 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2745 unsigned long flags
;
2747 int cpu __maybe_unused
= get_cpu();
2750 rq
= task_rq_lock(p
, &flags
);
2751 p
->state
= TASK_WAKING
;
2754 * Fork balancing, do it here and not earlier because:
2755 * - cpus_allowed can change in the fork path
2756 * - any previously selected cpu might disappear through hotplug
2758 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2759 * without people poking at ->cpus_allowed.
2761 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2762 set_task_cpu(p
, cpu
);
2764 p
->state
= TASK_RUNNING
;
2765 task_rq_unlock(rq
, &flags
);
2768 rq
= task_rq_lock(p
, &flags
);
2769 activate_task(rq
, p
, 0);
2770 trace_sched_wakeup_new(p
, 1);
2771 check_preempt_curr(rq
, p
, WF_FORK
);
2773 if (p
->sched_class
->task_woken
)
2774 p
->sched_class
->task_woken(rq
, p
);
2776 task_rq_unlock(rq
, &flags
);
2780 #ifdef CONFIG_PREEMPT_NOTIFIERS
2783 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2784 * @notifier: notifier struct to register
2786 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2788 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2790 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2793 * preempt_notifier_unregister - no longer interested in preemption notifications
2794 * @notifier: notifier struct to unregister
2796 * This is safe to call from within a preemption notifier.
2798 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2800 hlist_del(¬ifier
->link
);
2802 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2804 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2806 struct preempt_notifier
*notifier
;
2807 struct hlist_node
*node
;
2809 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2810 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2814 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2815 struct task_struct
*next
)
2817 struct preempt_notifier
*notifier
;
2818 struct hlist_node
*node
;
2820 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2821 notifier
->ops
->sched_out(notifier
, next
);
2824 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2826 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2831 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2832 struct task_struct
*next
)
2836 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2839 * prepare_task_switch - prepare to switch tasks
2840 * @rq: the runqueue preparing to switch
2841 * @prev: the current task that is being switched out
2842 * @next: the task we are going to switch to.
2844 * This is called with the rq lock held and interrupts off. It must
2845 * be paired with a subsequent finish_task_switch after the context
2848 * prepare_task_switch sets up locking and calls architecture specific
2852 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2853 struct task_struct
*next
)
2855 fire_sched_out_preempt_notifiers(prev
, next
);
2856 prepare_lock_switch(rq
, next
);
2857 prepare_arch_switch(next
);
2861 * finish_task_switch - clean up after a task-switch
2862 * @rq: runqueue associated with task-switch
2863 * @prev: the thread we just switched away from.
2865 * finish_task_switch must be called after the context switch, paired
2866 * with a prepare_task_switch call before the context switch.
2867 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2868 * and do any other architecture-specific cleanup actions.
2870 * Note that we may have delayed dropping an mm in context_switch(). If
2871 * so, we finish that here outside of the runqueue lock. (Doing it
2872 * with the lock held can cause deadlocks; see schedule() for
2875 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2876 __releases(rq
->lock
)
2878 struct mm_struct
*mm
= rq
->prev_mm
;
2884 * A task struct has one reference for the use as "current".
2885 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2886 * schedule one last time. The schedule call will never return, and
2887 * the scheduled task must drop that reference.
2888 * The test for TASK_DEAD must occur while the runqueue locks are
2889 * still held, otherwise prev could be scheduled on another cpu, die
2890 * there before we look at prev->state, and then the reference would
2892 * Manfred Spraul <manfred@colorfullife.com>
2894 prev_state
= prev
->state
;
2895 finish_arch_switch(prev
);
2896 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_disable();
2898 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2899 perf_event_task_sched_in(current
);
2900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2902 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2903 finish_lock_switch(rq
, prev
);
2905 fire_sched_in_preempt_notifiers(current
);
2908 if (unlikely(prev_state
== TASK_DEAD
)) {
2910 * Remove function-return probe instances associated with this
2911 * task and put them back on the free list.
2913 kprobe_flush_task(prev
);
2914 put_task_struct(prev
);
2920 /* assumes rq->lock is held */
2921 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2923 if (prev
->sched_class
->pre_schedule
)
2924 prev
->sched_class
->pre_schedule(rq
, prev
);
2927 /* rq->lock is NOT held, but preemption is disabled */
2928 static inline void post_schedule(struct rq
*rq
)
2930 if (rq
->post_schedule
) {
2931 unsigned long flags
;
2933 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2934 if (rq
->curr
->sched_class
->post_schedule
)
2935 rq
->curr
->sched_class
->post_schedule(rq
);
2936 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2938 rq
->post_schedule
= 0;
2944 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2948 static inline void post_schedule(struct rq
*rq
)
2955 * schedule_tail - first thing a freshly forked thread must call.
2956 * @prev: the thread we just switched away from.
2958 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2959 __releases(rq
->lock
)
2961 struct rq
*rq
= this_rq();
2963 finish_task_switch(rq
, prev
);
2966 * FIXME: do we need to worry about rq being invalidated by the
2971 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2972 /* In this case, finish_task_switch does not reenable preemption */
2975 if (current
->set_child_tid
)
2976 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2980 * context_switch - switch to the new MM and the new
2981 * thread's register state.
2984 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2985 struct task_struct
*next
)
2987 struct mm_struct
*mm
, *oldmm
;
2989 prepare_task_switch(rq
, prev
, next
);
2990 trace_sched_switch(prev
, next
);
2992 oldmm
= prev
->active_mm
;
2994 * For paravirt, this is coupled with an exit in switch_to to
2995 * combine the page table reload and the switch backend into
2998 arch_start_context_switch(prev
);
3001 next
->active_mm
= oldmm
;
3002 atomic_inc(&oldmm
->mm_count
);
3003 enter_lazy_tlb(oldmm
, next
);
3005 switch_mm(oldmm
, mm
, next
);
3008 prev
->active_mm
= NULL
;
3009 rq
->prev_mm
= oldmm
;
3012 * Since the runqueue lock will be released by the next
3013 * task (which is an invalid locking op but in the case
3014 * of the scheduler it's an obvious special-case), so we
3015 * do an early lockdep release here:
3017 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3018 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3021 /* Here we just switch the register state and the stack. */
3022 switch_to(prev
, next
, prev
);
3026 * this_rq must be evaluated again because prev may have moved
3027 * CPUs since it called schedule(), thus the 'rq' on its stack
3028 * frame will be invalid.
3030 finish_task_switch(this_rq(), prev
);
3034 * nr_running, nr_uninterruptible and nr_context_switches:
3036 * externally visible scheduler statistics: current number of runnable
3037 * threads, current number of uninterruptible-sleeping threads, total
3038 * number of context switches performed since bootup.
3040 unsigned long nr_running(void)
3042 unsigned long i
, sum
= 0;
3044 for_each_online_cpu(i
)
3045 sum
+= cpu_rq(i
)->nr_running
;
3050 unsigned long nr_uninterruptible(void)
3052 unsigned long i
, sum
= 0;
3054 for_each_possible_cpu(i
)
3055 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3058 * Since we read the counters lockless, it might be slightly
3059 * inaccurate. Do not allow it to go below zero though:
3061 if (unlikely((long)sum
< 0))
3067 unsigned long long nr_context_switches(void)
3070 unsigned long long sum
= 0;
3072 for_each_possible_cpu(i
)
3073 sum
+= cpu_rq(i
)->nr_switches
;
3078 unsigned long nr_iowait(void)
3080 unsigned long i
, sum
= 0;
3082 for_each_possible_cpu(i
)
3083 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3088 unsigned long nr_iowait_cpu(int cpu
)
3090 struct rq
*this = cpu_rq(cpu
);
3091 return atomic_read(&this->nr_iowait
);
3094 unsigned long this_cpu_load(void)
3096 struct rq
*this = this_rq();
3097 return this->cpu_load
[0];
3101 /* Variables and functions for calc_load */
3102 static atomic_long_t calc_load_tasks
;
3103 static unsigned long calc_load_update
;
3104 unsigned long avenrun
[3];
3105 EXPORT_SYMBOL(avenrun
);
3107 static long calc_load_fold_active(struct rq
*this_rq
)
3109 long nr_active
, delta
= 0;
3111 nr_active
= this_rq
->nr_running
;
3112 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3114 if (nr_active
!= this_rq
->calc_load_active
) {
3115 delta
= nr_active
- this_rq
->calc_load_active
;
3116 this_rq
->calc_load_active
= nr_active
;
3124 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3126 * When making the ILB scale, we should try to pull this in as well.
3128 static atomic_long_t calc_load_tasks_idle
;
3130 static void calc_load_account_idle(struct rq
*this_rq
)
3134 delta
= calc_load_fold_active(this_rq
);
3136 atomic_long_add(delta
, &calc_load_tasks_idle
);
3139 static long calc_load_fold_idle(void)
3144 * Its got a race, we don't care...
3146 if (atomic_long_read(&calc_load_tasks_idle
))
3147 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3152 static void calc_load_account_idle(struct rq
*this_rq
)
3156 static inline long calc_load_fold_idle(void)
3163 * get_avenrun - get the load average array
3164 * @loads: pointer to dest load array
3165 * @offset: offset to add
3166 * @shift: shift count to shift the result left
3168 * These values are estimates at best, so no need for locking.
3170 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3172 loads
[0] = (avenrun
[0] + offset
) << shift
;
3173 loads
[1] = (avenrun
[1] + offset
) << shift
;
3174 loads
[2] = (avenrun
[2] + offset
) << shift
;
3177 static unsigned long
3178 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3181 load
+= active
* (FIXED_1
- exp
);
3182 return load
>> FSHIFT
;
3186 * calc_load - update the avenrun load estimates 10 ticks after the
3187 * CPUs have updated calc_load_tasks.
3189 void calc_global_load(void)
3191 unsigned long upd
= calc_load_update
+ 10;
3194 if (time_before(jiffies
, upd
))
3197 active
= atomic_long_read(&calc_load_tasks
);
3198 active
= active
> 0 ? active
* FIXED_1
: 0;
3200 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3201 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3202 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3204 calc_load_update
+= LOAD_FREQ
;
3208 * Called from update_cpu_load() to periodically update this CPU's
3211 static void calc_load_account_active(struct rq
*this_rq
)
3215 if (time_before(jiffies
, this_rq
->calc_load_update
))
3218 delta
= calc_load_fold_active(this_rq
);
3219 delta
+= calc_load_fold_idle();
3221 atomic_long_add(delta
, &calc_load_tasks
);
3223 this_rq
->calc_load_update
+= LOAD_FREQ
;
3227 * The exact cpuload at various idx values, calculated at every tick would be
3228 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3230 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3231 * on nth tick when cpu may be busy, then we have:
3232 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3233 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3235 * decay_load_missed() below does efficient calculation of
3236 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3237 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3239 * The calculation is approximated on a 128 point scale.
3240 * degrade_zero_ticks is the number of ticks after which load at any
3241 * particular idx is approximated to be zero.
3242 * degrade_factor is a precomputed table, a row for each load idx.
3243 * Each column corresponds to degradation factor for a power of two ticks,
3244 * based on 128 point scale.
3246 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3247 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3249 * With this power of 2 load factors, we can degrade the load n times
3250 * by looking at 1 bits in n and doing as many mult/shift instead of
3251 * n mult/shifts needed by the exact degradation.
3253 #define DEGRADE_SHIFT 7
3254 static const unsigned char
3255 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3256 static const unsigned char
3257 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3258 {0, 0, 0, 0, 0, 0, 0, 0},
3259 {64, 32, 8, 0, 0, 0, 0, 0},
3260 {96, 72, 40, 12, 1, 0, 0},
3261 {112, 98, 75, 43, 15, 1, 0},
3262 {120, 112, 98, 76, 45, 16, 2} };
3265 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3266 * would be when CPU is idle and so we just decay the old load without
3267 * adding any new load.
3269 static unsigned long
3270 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3274 if (!missed_updates
)
3277 if (missed_updates
>= degrade_zero_ticks
[idx
])
3281 return load
>> missed_updates
;
3283 while (missed_updates
) {
3284 if (missed_updates
% 2)
3285 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3287 missed_updates
>>= 1;
3294 * Update rq->cpu_load[] statistics. This function is usually called every
3295 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3296 * every tick. We fix it up based on jiffies.
3298 static void update_cpu_load(struct rq
*this_rq
)
3300 unsigned long this_load
= this_rq
->load
.weight
;
3301 unsigned long curr_jiffies
= jiffies
;
3302 unsigned long pending_updates
;
3305 this_rq
->nr_load_updates
++;
3307 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3308 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3311 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3312 this_rq
->last_load_update_tick
= curr_jiffies
;
3314 /* Update our load: */
3315 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3316 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3317 unsigned long old_load
, new_load
;
3319 /* scale is effectively 1 << i now, and >> i divides by scale */
3321 old_load
= this_rq
->cpu_load
[i
];
3322 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3323 new_load
= this_load
;
3325 * Round up the averaging division if load is increasing. This
3326 * prevents us from getting stuck on 9 if the load is 10, for
3329 if (new_load
> old_load
)
3330 new_load
+= scale
- 1;
3332 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3335 sched_avg_update(this_rq
);
3338 static void update_cpu_load_active(struct rq
*this_rq
)
3340 update_cpu_load(this_rq
);
3342 calc_load_account_active(this_rq
);
3348 * sched_exec - execve() is a valuable balancing opportunity, because at
3349 * this point the task has the smallest effective memory and cache footprint.
3351 void sched_exec(void)
3353 struct task_struct
*p
= current
;
3354 unsigned long flags
;
3358 rq
= task_rq_lock(p
, &flags
);
3359 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3360 if (dest_cpu
== smp_processor_id())
3364 * select_task_rq() can race against ->cpus_allowed
3366 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3367 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3368 struct migration_arg arg
= { p
, dest_cpu
};
3370 task_rq_unlock(rq
, &flags
);
3371 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3375 task_rq_unlock(rq
, &flags
);
3380 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3382 EXPORT_PER_CPU_SYMBOL(kstat
);
3385 * Return any ns on the sched_clock that have not yet been accounted in
3386 * @p in case that task is currently running.
3388 * Called with task_rq_lock() held on @rq.
3390 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3394 if (task_current(rq
, p
)) {
3395 update_rq_clock(rq
);
3396 ns
= rq
->clock_task
- p
->se
.exec_start
;
3404 unsigned long long task_delta_exec(struct task_struct
*p
)
3406 unsigned long flags
;
3410 rq
= task_rq_lock(p
, &flags
);
3411 ns
= do_task_delta_exec(p
, rq
);
3412 task_rq_unlock(rq
, &flags
);
3418 * Return accounted runtime for the task.
3419 * In case the task is currently running, return the runtime plus current's
3420 * pending runtime that have not been accounted yet.
3422 unsigned long long task_sched_runtime(struct task_struct
*p
)
3424 unsigned long flags
;
3428 rq
= task_rq_lock(p
, &flags
);
3429 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3430 task_rq_unlock(rq
, &flags
);
3436 * Return sum_exec_runtime for the thread group.
3437 * In case the task is currently running, return the sum plus current's
3438 * pending runtime that have not been accounted yet.
3440 * Note that the thread group might have other running tasks as well,
3441 * so the return value not includes other pending runtime that other
3442 * running tasks might have.
3444 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3446 struct task_cputime totals
;
3447 unsigned long flags
;
3451 rq
= task_rq_lock(p
, &flags
);
3452 thread_group_cputime(p
, &totals
);
3453 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3454 task_rq_unlock(rq
, &flags
);
3460 * Account user cpu time to a process.
3461 * @p: the process that the cpu time gets accounted to
3462 * @cputime: the cpu time spent in user space since the last update
3463 * @cputime_scaled: cputime scaled by cpu frequency
3465 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3466 cputime_t cputime_scaled
)
3468 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3471 /* Add user time to process. */
3472 p
->utime
= cputime_add(p
->utime
, cputime
);
3473 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3474 account_group_user_time(p
, cputime
);
3476 /* Add user time to cpustat. */
3477 tmp
= cputime_to_cputime64(cputime
);
3478 if (TASK_NICE(p
) > 0)
3479 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3481 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3483 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3484 /* Account for user time used */
3485 acct_update_integrals(p
);
3489 * Account guest cpu time to a process.
3490 * @p: the process that the cpu time gets accounted to
3491 * @cputime: the cpu time spent in virtual machine since the last update
3492 * @cputime_scaled: cputime scaled by cpu frequency
3494 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3495 cputime_t cputime_scaled
)
3498 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3500 tmp
= cputime_to_cputime64(cputime
);
3502 /* Add guest time to process. */
3503 p
->utime
= cputime_add(p
->utime
, cputime
);
3504 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3505 account_group_user_time(p
, cputime
);
3506 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3508 /* Add guest time to cpustat. */
3509 if (TASK_NICE(p
) > 0) {
3510 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3511 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3513 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3514 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3519 * Account system cpu time to a process.
3520 * @p: the process that the cpu time gets accounted to
3521 * @hardirq_offset: the offset to subtract from hardirq_count()
3522 * @cputime: the cpu time spent in kernel space since the last update
3523 * @cputime_scaled: cputime scaled by cpu frequency
3525 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3526 cputime_t cputime
, cputime_t cputime_scaled
)
3528 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3531 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3532 account_guest_time(p
, cputime
, cputime_scaled
);
3536 /* Add system time to process. */
3537 p
->stime
= cputime_add(p
->stime
, cputime
);
3538 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3539 account_group_system_time(p
, cputime
);
3541 /* Add system time to cpustat. */
3542 tmp
= cputime_to_cputime64(cputime
);
3543 if (hardirq_count() - hardirq_offset
)
3544 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3545 else if (in_serving_softirq())
3546 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3548 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3550 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3552 /* Account for system time used */
3553 acct_update_integrals(p
);
3557 * Account for involuntary wait time.
3558 * @steal: the cpu time spent in involuntary wait
3560 void account_steal_time(cputime_t cputime
)
3562 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3563 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3565 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3569 * Account for idle time.
3570 * @cputime: the cpu time spent in idle wait
3572 void account_idle_time(cputime_t cputime
)
3574 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3575 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3576 struct rq
*rq
= this_rq();
3578 if (atomic_read(&rq
->nr_iowait
) > 0)
3579 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3581 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3584 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3587 * Account a single tick of cpu time.
3588 * @p: the process that the cpu time gets accounted to
3589 * @user_tick: indicates if the tick is a user or a system tick
3591 void account_process_tick(struct task_struct
*p
, int user_tick
)
3593 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3594 struct rq
*rq
= this_rq();
3597 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3598 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3599 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3602 account_idle_time(cputime_one_jiffy
);
3606 * Account multiple ticks of steal time.
3607 * @p: the process from which the cpu time has been stolen
3608 * @ticks: number of stolen ticks
3610 void account_steal_ticks(unsigned long ticks
)
3612 account_steal_time(jiffies_to_cputime(ticks
));
3616 * Account multiple ticks of idle time.
3617 * @ticks: number of stolen ticks
3619 void account_idle_ticks(unsigned long ticks
)
3621 account_idle_time(jiffies_to_cputime(ticks
));
3627 * Use precise platform statistics if available:
3629 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3630 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3636 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3638 struct task_cputime cputime
;
3640 thread_group_cputime(p
, &cputime
);
3642 *ut
= cputime
.utime
;
3643 *st
= cputime
.stime
;
3647 #ifndef nsecs_to_cputime
3648 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3651 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3653 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3656 * Use CFS's precise accounting:
3658 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3664 do_div(temp
, total
);
3665 utime
= (cputime_t
)temp
;
3670 * Compare with previous values, to keep monotonicity:
3672 p
->prev_utime
= max(p
->prev_utime
, utime
);
3673 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3675 *ut
= p
->prev_utime
;
3676 *st
= p
->prev_stime
;
3680 * Must be called with siglock held.
3682 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3684 struct signal_struct
*sig
= p
->signal
;
3685 struct task_cputime cputime
;
3686 cputime_t rtime
, utime
, total
;
3688 thread_group_cputime(p
, &cputime
);
3690 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3691 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3696 temp
*= cputime
.utime
;
3697 do_div(temp
, total
);
3698 utime
= (cputime_t
)temp
;
3702 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3703 sig
->prev_stime
= max(sig
->prev_stime
,
3704 cputime_sub(rtime
, sig
->prev_utime
));
3706 *ut
= sig
->prev_utime
;
3707 *st
= sig
->prev_stime
;
3712 * This function gets called by the timer code, with HZ frequency.
3713 * We call it with interrupts disabled.
3715 * It also gets called by the fork code, when changing the parent's
3718 void scheduler_tick(void)
3720 int cpu
= smp_processor_id();
3721 struct rq
*rq
= cpu_rq(cpu
);
3722 struct task_struct
*curr
= rq
->curr
;
3726 raw_spin_lock(&rq
->lock
);
3727 update_rq_clock(rq
);
3728 update_cpu_load_active(rq
);
3729 curr
->sched_class
->task_tick(rq
, curr
, 0);
3730 raw_spin_unlock(&rq
->lock
);
3732 perf_event_task_tick();
3735 rq
->idle_at_tick
= idle_cpu(cpu
);
3736 trigger_load_balance(rq
, cpu
);
3740 notrace
unsigned long get_parent_ip(unsigned long addr
)
3742 if (in_lock_functions(addr
)) {
3743 addr
= CALLER_ADDR2
;
3744 if (in_lock_functions(addr
))
3745 addr
= CALLER_ADDR3
;
3750 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3751 defined(CONFIG_PREEMPT_TRACER))
3753 void __kprobes
add_preempt_count(int val
)
3755 #ifdef CONFIG_DEBUG_PREEMPT
3759 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3762 preempt_count() += val
;
3763 #ifdef CONFIG_DEBUG_PREEMPT
3765 * Spinlock count overflowing soon?
3767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3770 if (preempt_count() == val
)
3771 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3773 EXPORT_SYMBOL(add_preempt_count
);
3775 void __kprobes
sub_preempt_count(int val
)
3777 #ifdef CONFIG_DEBUG_PREEMPT
3781 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3784 * Is the spinlock portion underflowing?
3786 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3787 !(preempt_count() & PREEMPT_MASK
)))
3791 if (preempt_count() == val
)
3792 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3793 preempt_count() -= val
;
3795 EXPORT_SYMBOL(sub_preempt_count
);
3800 * Print scheduling while atomic bug:
3802 static noinline
void __schedule_bug(struct task_struct
*prev
)
3804 struct pt_regs
*regs
= get_irq_regs();
3806 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3807 prev
->comm
, prev
->pid
, preempt_count());
3809 debug_show_held_locks(prev
);
3811 if (irqs_disabled())
3812 print_irqtrace_events(prev
);
3821 * Various schedule()-time debugging checks and statistics:
3823 static inline void schedule_debug(struct task_struct
*prev
)
3826 * Test if we are atomic. Since do_exit() needs to call into
3827 * schedule() atomically, we ignore that path for now.
3828 * Otherwise, whine if we are scheduling when we should not be.
3830 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3831 __schedule_bug(prev
);
3833 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3835 schedstat_inc(this_rq(), sched_count
);
3836 #ifdef CONFIG_SCHEDSTATS
3837 if (unlikely(prev
->lock_depth
>= 0)) {
3838 schedstat_inc(this_rq(), bkl_count
);
3839 schedstat_inc(prev
, sched_info
.bkl_count
);
3844 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3847 update_rq_clock(rq
);
3848 rq
->skip_clock_update
= 0;
3849 prev
->sched_class
->put_prev_task(rq
, prev
);
3853 * Pick up the highest-prio task:
3855 static inline struct task_struct
*
3856 pick_next_task(struct rq
*rq
)
3858 const struct sched_class
*class;
3859 struct task_struct
*p
;
3862 * Optimization: we know that if all tasks are in
3863 * the fair class we can call that function directly:
3865 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3866 p
= fair_sched_class
.pick_next_task(rq
);
3871 for_each_class(class) {
3872 p
= class->pick_next_task(rq
);
3877 BUG(); /* the idle class will always have a runnable task */
3881 * schedule() is the main scheduler function.
3883 asmlinkage
void __sched
schedule(void)
3885 struct task_struct
*prev
, *next
;
3886 unsigned long *switch_count
;
3892 cpu
= smp_processor_id();
3894 rcu_note_context_switch(cpu
);
3897 release_kernel_lock(prev
);
3898 need_resched_nonpreemptible
:
3900 schedule_debug(prev
);
3902 if (sched_feat(HRTICK
))
3905 raw_spin_lock_irq(&rq
->lock
);
3906 clear_tsk_need_resched(prev
);
3908 switch_count
= &prev
->nivcsw
;
3909 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3910 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3911 prev
->state
= TASK_RUNNING
;
3914 * If a worker is going to sleep, notify and
3915 * ask workqueue whether it wants to wake up a
3916 * task to maintain concurrency. If so, wake
3919 if (prev
->flags
& PF_WQ_WORKER
) {
3920 struct task_struct
*to_wakeup
;
3922 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3924 try_to_wake_up_local(to_wakeup
);
3926 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3928 switch_count
= &prev
->nvcsw
;
3931 pre_schedule(rq
, prev
);
3933 if (unlikely(!rq
->nr_running
))
3934 idle_balance(cpu
, rq
);
3936 put_prev_task(rq
, prev
);
3937 next
= pick_next_task(rq
);
3939 if (likely(prev
!= next
)) {
3940 sched_info_switch(prev
, next
);
3941 perf_event_task_sched_out(prev
, next
);
3947 context_switch(rq
, prev
, next
); /* unlocks the rq */
3949 * The context switch have flipped the stack from under us
3950 * and restored the local variables which were saved when
3951 * this task called schedule() in the past. prev == current
3952 * is still correct, but it can be moved to another cpu/rq.
3954 cpu
= smp_processor_id();
3957 raw_spin_unlock_irq(&rq
->lock
);
3961 if (unlikely(reacquire_kernel_lock(prev
)))
3962 goto need_resched_nonpreemptible
;
3964 preempt_enable_no_resched();
3968 EXPORT_SYMBOL(schedule
);
3970 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3972 * Look out! "owner" is an entirely speculative pointer
3973 * access and not reliable.
3975 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3980 if (!sched_feat(OWNER_SPIN
))
3983 #ifdef CONFIG_DEBUG_PAGEALLOC
3985 * Need to access the cpu field knowing that
3986 * DEBUG_PAGEALLOC could have unmapped it if
3987 * the mutex owner just released it and exited.
3989 if (probe_kernel_address(&owner
->cpu
, cpu
))
3996 * Even if the access succeeded (likely case),
3997 * the cpu field may no longer be valid.
3999 if (cpu
>= nr_cpumask_bits
)
4003 * We need to validate that we can do a
4004 * get_cpu() and that we have the percpu area.
4006 if (!cpu_online(cpu
))
4013 * Owner changed, break to re-assess state.
4015 if (lock
->owner
!= owner
) {
4017 * If the lock has switched to a different owner,
4018 * we likely have heavy contention. Return 0 to quit
4019 * optimistic spinning and not contend further:
4027 * Is that owner really running on that cpu?
4029 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4039 #ifdef CONFIG_PREEMPT
4041 * this is the entry point to schedule() from in-kernel preemption
4042 * off of preempt_enable. Kernel preemptions off return from interrupt
4043 * occur there and call schedule directly.
4045 asmlinkage
void __sched notrace
preempt_schedule(void)
4047 struct thread_info
*ti
= current_thread_info();
4050 * If there is a non-zero preempt_count or interrupts are disabled,
4051 * we do not want to preempt the current task. Just return..
4053 if (likely(ti
->preempt_count
|| irqs_disabled()))
4057 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4059 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4062 * Check again in case we missed a preemption opportunity
4063 * between schedule and now.
4066 } while (need_resched());
4068 EXPORT_SYMBOL(preempt_schedule
);
4071 * this is the entry point to schedule() from kernel preemption
4072 * off of irq context.
4073 * Note, that this is called and return with irqs disabled. This will
4074 * protect us against recursive calling from irq.
4076 asmlinkage
void __sched
preempt_schedule_irq(void)
4078 struct thread_info
*ti
= current_thread_info();
4080 /* Catch callers which need to be fixed */
4081 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4084 add_preempt_count(PREEMPT_ACTIVE
);
4087 local_irq_disable();
4088 sub_preempt_count(PREEMPT_ACTIVE
);
4091 * Check again in case we missed a preemption opportunity
4092 * between schedule and now.
4095 } while (need_resched());
4098 #endif /* CONFIG_PREEMPT */
4100 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4103 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4105 EXPORT_SYMBOL(default_wake_function
);
4108 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4109 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4110 * number) then we wake all the non-exclusive tasks and one exclusive task.
4112 * There are circumstances in which we can try to wake a task which has already
4113 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4114 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4116 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4117 int nr_exclusive
, int wake_flags
, void *key
)
4119 wait_queue_t
*curr
, *next
;
4121 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4122 unsigned flags
= curr
->flags
;
4124 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4125 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4131 * __wake_up - wake up threads blocked on a waitqueue.
4133 * @mode: which threads
4134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4135 * @key: is directly passed to the wakeup function
4137 * It may be assumed that this function implies a write memory barrier before
4138 * changing the task state if and only if any tasks are woken up.
4140 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4141 int nr_exclusive
, void *key
)
4143 unsigned long flags
;
4145 spin_lock_irqsave(&q
->lock
, flags
);
4146 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4147 spin_unlock_irqrestore(&q
->lock
, flags
);
4149 EXPORT_SYMBOL(__wake_up
);
4152 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4154 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4156 __wake_up_common(q
, mode
, 1, 0, NULL
);
4158 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4160 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4162 __wake_up_common(q
, mode
, 1, 0, key
);
4166 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4168 * @mode: which threads
4169 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4170 * @key: opaque value to be passed to wakeup targets
4172 * The sync wakeup differs that the waker knows that it will schedule
4173 * away soon, so while the target thread will be woken up, it will not
4174 * be migrated to another CPU - ie. the two threads are 'synchronized'
4175 * with each other. This can prevent needless bouncing between CPUs.
4177 * On UP it can prevent extra preemption.
4179 * It may be assumed that this function implies a write memory barrier before
4180 * changing the task state if and only if any tasks are woken up.
4182 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4183 int nr_exclusive
, void *key
)
4185 unsigned long flags
;
4186 int wake_flags
= WF_SYNC
;
4191 if (unlikely(!nr_exclusive
))
4194 spin_lock_irqsave(&q
->lock
, flags
);
4195 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4196 spin_unlock_irqrestore(&q
->lock
, flags
);
4198 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4201 * __wake_up_sync - see __wake_up_sync_key()
4203 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4205 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4207 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4210 * complete: - signals a single thread waiting on this completion
4211 * @x: holds the state of this particular completion
4213 * This will wake up a single thread waiting on this completion. Threads will be
4214 * awakened in the same order in which they were queued.
4216 * See also complete_all(), wait_for_completion() and related routines.
4218 * It may be assumed that this function implies a write memory barrier before
4219 * changing the task state if and only if any tasks are woken up.
4221 void complete(struct completion
*x
)
4223 unsigned long flags
;
4225 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4227 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4228 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4230 EXPORT_SYMBOL(complete
);
4233 * complete_all: - signals all threads waiting on this completion
4234 * @x: holds the state of this particular completion
4236 * This will wake up all threads waiting on this particular completion event.
4238 * It may be assumed that this function implies a write memory barrier before
4239 * changing the task state if and only if any tasks are woken up.
4241 void complete_all(struct completion
*x
)
4243 unsigned long flags
;
4245 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4246 x
->done
+= UINT_MAX
/2;
4247 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4248 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4250 EXPORT_SYMBOL(complete_all
);
4252 static inline long __sched
4253 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4256 DECLARE_WAITQUEUE(wait
, current
);
4258 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4260 if (signal_pending_state(state
, current
)) {
4261 timeout
= -ERESTARTSYS
;
4264 __set_current_state(state
);
4265 spin_unlock_irq(&x
->wait
.lock
);
4266 timeout
= schedule_timeout(timeout
);
4267 spin_lock_irq(&x
->wait
.lock
);
4268 } while (!x
->done
&& timeout
);
4269 __remove_wait_queue(&x
->wait
, &wait
);
4274 return timeout
?: 1;
4278 wait_for_common(struct completion
*x
, long timeout
, int state
)
4282 spin_lock_irq(&x
->wait
.lock
);
4283 timeout
= do_wait_for_common(x
, timeout
, state
);
4284 spin_unlock_irq(&x
->wait
.lock
);
4289 * wait_for_completion: - waits for completion of a task
4290 * @x: holds the state of this particular completion
4292 * This waits to be signaled for completion of a specific task. It is NOT
4293 * interruptible and there is no timeout.
4295 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4296 * and interrupt capability. Also see complete().
4298 void __sched
wait_for_completion(struct completion
*x
)
4300 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4302 EXPORT_SYMBOL(wait_for_completion
);
4305 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4306 * @x: holds the state of this particular completion
4307 * @timeout: timeout value in jiffies
4309 * This waits for either a completion of a specific task to be signaled or for a
4310 * specified timeout to expire. The timeout is in jiffies. It is not
4313 unsigned long __sched
4314 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4316 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4318 EXPORT_SYMBOL(wait_for_completion_timeout
);
4321 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4322 * @x: holds the state of this particular completion
4324 * This waits for completion of a specific task to be signaled. It is
4327 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4329 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4330 if (t
== -ERESTARTSYS
)
4334 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4337 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4338 * @x: holds the state of this particular completion
4339 * @timeout: timeout value in jiffies
4341 * This waits for either a completion of a specific task to be signaled or for a
4342 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4344 unsigned long __sched
4345 wait_for_completion_interruptible_timeout(struct completion
*x
,
4346 unsigned long timeout
)
4348 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4350 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4353 * wait_for_completion_killable: - waits for completion of a task (killable)
4354 * @x: holds the state of this particular completion
4356 * This waits to be signaled for completion of a specific task. It can be
4357 * interrupted by a kill signal.
4359 int __sched
wait_for_completion_killable(struct completion
*x
)
4361 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4362 if (t
== -ERESTARTSYS
)
4366 EXPORT_SYMBOL(wait_for_completion_killable
);
4369 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4370 * @x: holds the state of this particular completion
4371 * @timeout: timeout value in jiffies
4373 * This waits for either a completion of a specific task to be
4374 * signaled or for a specified timeout to expire. It can be
4375 * interrupted by a kill signal. The timeout is in jiffies.
4377 unsigned long __sched
4378 wait_for_completion_killable_timeout(struct completion
*x
,
4379 unsigned long timeout
)
4381 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4383 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4386 * try_wait_for_completion - try to decrement a completion without blocking
4387 * @x: completion structure
4389 * Returns: 0 if a decrement cannot be done without blocking
4390 * 1 if a decrement succeeded.
4392 * If a completion is being used as a counting completion,
4393 * attempt to decrement the counter without blocking. This
4394 * enables us to avoid waiting if the resource the completion
4395 * is protecting is not available.
4397 bool try_wait_for_completion(struct completion
*x
)
4399 unsigned long flags
;
4402 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4407 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4410 EXPORT_SYMBOL(try_wait_for_completion
);
4413 * completion_done - Test to see if a completion has any waiters
4414 * @x: completion structure
4416 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4417 * 1 if there are no waiters.
4420 bool completion_done(struct completion
*x
)
4422 unsigned long flags
;
4425 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4428 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4431 EXPORT_SYMBOL(completion_done
);
4434 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4436 unsigned long flags
;
4439 init_waitqueue_entry(&wait
, current
);
4441 __set_current_state(state
);
4443 spin_lock_irqsave(&q
->lock
, flags
);
4444 __add_wait_queue(q
, &wait
);
4445 spin_unlock(&q
->lock
);
4446 timeout
= schedule_timeout(timeout
);
4447 spin_lock_irq(&q
->lock
);
4448 __remove_wait_queue(q
, &wait
);
4449 spin_unlock_irqrestore(&q
->lock
, flags
);
4454 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4456 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4458 EXPORT_SYMBOL(interruptible_sleep_on
);
4461 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4463 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4465 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4467 void __sched
sleep_on(wait_queue_head_t
*q
)
4469 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4471 EXPORT_SYMBOL(sleep_on
);
4473 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4475 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4477 EXPORT_SYMBOL(sleep_on_timeout
);
4479 #ifdef CONFIG_RT_MUTEXES
4482 * rt_mutex_setprio - set the current priority of a task
4484 * @prio: prio value (kernel-internal form)
4486 * This function changes the 'effective' priority of a task. It does
4487 * not touch ->normal_prio like __setscheduler().
4489 * Used by the rt_mutex code to implement priority inheritance logic.
4491 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4493 unsigned long flags
;
4494 int oldprio
, on_rq
, running
;
4496 const struct sched_class
*prev_class
;
4498 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4500 rq
= task_rq_lock(p
, &flags
);
4502 trace_sched_pi_setprio(p
, prio
);
4504 prev_class
= p
->sched_class
;
4505 on_rq
= p
->se
.on_rq
;
4506 running
= task_current(rq
, p
);
4508 dequeue_task(rq
, p
, 0);
4510 p
->sched_class
->put_prev_task(rq
, p
);
4513 p
->sched_class
= &rt_sched_class
;
4515 p
->sched_class
= &fair_sched_class
;
4520 p
->sched_class
->set_curr_task(rq
);
4522 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4524 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4526 task_rq_unlock(rq
, &flags
);
4531 void set_user_nice(struct task_struct
*p
, long nice
)
4533 int old_prio
, delta
, on_rq
;
4534 unsigned long flags
;
4537 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4540 * We have to be careful, if called from sys_setpriority(),
4541 * the task might be in the middle of scheduling on another CPU.
4543 rq
= task_rq_lock(p
, &flags
);
4545 * The RT priorities are set via sched_setscheduler(), but we still
4546 * allow the 'normal' nice value to be set - but as expected
4547 * it wont have any effect on scheduling until the task is
4548 * SCHED_FIFO/SCHED_RR:
4550 if (task_has_rt_policy(p
)) {
4551 p
->static_prio
= NICE_TO_PRIO(nice
);
4554 on_rq
= p
->se
.on_rq
;
4556 dequeue_task(rq
, p
, 0);
4558 p
->static_prio
= NICE_TO_PRIO(nice
);
4561 p
->prio
= effective_prio(p
);
4562 delta
= p
->prio
- old_prio
;
4565 enqueue_task(rq
, p
, 0);
4567 * If the task increased its priority or is running and
4568 * lowered its priority, then reschedule its CPU:
4570 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4571 resched_task(rq
->curr
);
4574 task_rq_unlock(rq
, &flags
);
4576 EXPORT_SYMBOL(set_user_nice
);
4579 * can_nice - check if a task can reduce its nice value
4583 int can_nice(const struct task_struct
*p
, const int nice
)
4585 /* convert nice value [19,-20] to rlimit style value [1,40] */
4586 int nice_rlim
= 20 - nice
;
4588 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4589 capable(CAP_SYS_NICE
));
4592 #ifdef __ARCH_WANT_SYS_NICE
4595 * sys_nice - change the priority of the current process.
4596 * @increment: priority increment
4598 * sys_setpriority is a more generic, but much slower function that
4599 * does similar things.
4601 SYSCALL_DEFINE1(nice
, int, increment
)
4606 * Setpriority might change our priority at the same moment.
4607 * We don't have to worry. Conceptually one call occurs first
4608 * and we have a single winner.
4610 if (increment
< -40)
4615 nice
= TASK_NICE(current
) + increment
;
4621 if (increment
< 0 && !can_nice(current
, nice
))
4624 retval
= security_task_setnice(current
, nice
);
4628 set_user_nice(current
, nice
);
4635 * task_prio - return the priority value of a given task.
4636 * @p: the task in question.
4638 * This is the priority value as seen by users in /proc.
4639 * RT tasks are offset by -200. Normal tasks are centered
4640 * around 0, value goes from -16 to +15.
4642 int task_prio(const struct task_struct
*p
)
4644 return p
->prio
- MAX_RT_PRIO
;
4648 * task_nice - return the nice value of a given task.
4649 * @p: the task in question.
4651 int task_nice(const struct task_struct
*p
)
4653 return TASK_NICE(p
);
4655 EXPORT_SYMBOL(task_nice
);
4658 * idle_cpu - is a given cpu idle currently?
4659 * @cpu: the processor in question.
4661 int idle_cpu(int cpu
)
4663 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4667 * idle_task - return the idle task for a given cpu.
4668 * @cpu: the processor in question.
4670 struct task_struct
*idle_task(int cpu
)
4672 return cpu_rq(cpu
)->idle
;
4676 * find_process_by_pid - find a process with a matching PID value.
4677 * @pid: the pid in question.
4679 static struct task_struct
*find_process_by_pid(pid_t pid
)
4681 return pid
? find_task_by_vpid(pid
) : current
;
4684 /* Actually do priority change: must hold rq lock. */
4686 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4688 BUG_ON(p
->se
.on_rq
);
4691 p
->rt_priority
= prio
;
4692 p
->normal_prio
= normal_prio(p
);
4693 /* we are holding p->pi_lock already */
4694 p
->prio
= rt_mutex_getprio(p
);
4695 if (rt_prio(p
->prio
))
4696 p
->sched_class
= &rt_sched_class
;
4698 p
->sched_class
= &fair_sched_class
;
4703 * check the target process has a UID that matches the current process's
4705 static bool check_same_owner(struct task_struct
*p
)
4707 const struct cred
*cred
= current_cred(), *pcred
;
4711 pcred
= __task_cred(p
);
4712 match
= (cred
->euid
== pcred
->euid
||
4713 cred
->euid
== pcred
->uid
);
4718 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4719 struct sched_param
*param
, bool user
)
4721 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4722 unsigned long flags
;
4723 const struct sched_class
*prev_class
;
4727 /* may grab non-irq protected spin_locks */
4728 BUG_ON(in_interrupt());
4730 /* double check policy once rq lock held */
4732 reset_on_fork
= p
->sched_reset_on_fork
;
4733 policy
= oldpolicy
= p
->policy
;
4735 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4736 policy
&= ~SCHED_RESET_ON_FORK
;
4738 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4739 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4740 policy
!= SCHED_IDLE
)
4745 * Valid priorities for SCHED_FIFO and SCHED_RR are
4746 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4747 * SCHED_BATCH and SCHED_IDLE is 0.
4749 if (param
->sched_priority
< 0 ||
4750 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4751 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4753 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4757 * Allow unprivileged RT tasks to decrease priority:
4759 if (user
&& !capable(CAP_SYS_NICE
)) {
4760 if (rt_policy(policy
)) {
4761 unsigned long rlim_rtprio
=
4762 task_rlimit(p
, RLIMIT_RTPRIO
);
4764 /* can't set/change the rt policy */
4765 if (policy
!= p
->policy
&& !rlim_rtprio
)
4768 /* can't increase priority */
4769 if (param
->sched_priority
> p
->rt_priority
&&
4770 param
->sched_priority
> rlim_rtprio
)
4774 * Like positive nice levels, dont allow tasks to
4775 * move out of SCHED_IDLE either:
4777 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4780 /* can't change other user's priorities */
4781 if (!check_same_owner(p
))
4784 /* Normal users shall not reset the sched_reset_on_fork flag */
4785 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4790 retval
= security_task_setscheduler(p
);
4796 * make sure no PI-waiters arrive (or leave) while we are
4797 * changing the priority of the task:
4799 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4801 * To be able to change p->policy safely, the apropriate
4802 * runqueue lock must be held.
4804 rq
= __task_rq_lock(p
);
4807 * Changing the policy of the stop threads its a very bad idea
4809 if (p
== rq
->stop
) {
4810 __task_rq_unlock(rq
);
4811 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4815 #ifdef CONFIG_RT_GROUP_SCHED
4818 * Do not allow realtime tasks into groups that have no runtime
4821 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4822 task_group(p
)->rt_bandwidth
.rt_runtime
== 0) {
4823 __task_rq_unlock(rq
);
4824 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4830 /* recheck policy now with rq lock held */
4831 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4832 policy
= oldpolicy
= -1;
4833 __task_rq_unlock(rq
);
4834 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4837 on_rq
= p
->se
.on_rq
;
4838 running
= task_current(rq
, p
);
4840 deactivate_task(rq
, p
, 0);
4842 p
->sched_class
->put_prev_task(rq
, p
);
4844 p
->sched_reset_on_fork
= reset_on_fork
;
4847 prev_class
= p
->sched_class
;
4848 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4851 p
->sched_class
->set_curr_task(rq
);
4853 activate_task(rq
, p
, 0);
4855 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4857 __task_rq_unlock(rq
);
4858 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4860 rt_mutex_adjust_pi(p
);
4866 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4867 * @p: the task in question.
4868 * @policy: new policy.
4869 * @param: structure containing the new RT priority.
4871 * NOTE that the task may be already dead.
4873 int sched_setscheduler(struct task_struct
*p
, int policy
,
4874 struct sched_param
*param
)
4876 return __sched_setscheduler(p
, policy
, param
, true);
4878 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4881 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4882 * @p: the task in question.
4883 * @policy: new policy.
4884 * @param: structure containing the new RT priority.
4886 * Just like sched_setscheduler, only don't bother checking if the
4887 * current context has permission. For example, this is needed in
4888 * stop_machine(): we create temporary high priority worker threads,
4889 * but our caller might not have that capability.
4891 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4892 struct sched_param
*param
)
4894 return __sched_setscheduler(p
, policy
, param
, false);
4898 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4900 struct sched_param lparam
;
4901 struct task_struct
*p
;
4904 if (!param
|| pid
< 0)
4906 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4911 p
= find_process_by_pid(pid
);
4913 retval
= sched_setscheduler(p
, policy
, &lparam
);
4920 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4921 * @pid: the pid in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4925 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4926 struct sched_param __user
*, param
)
4928 /* negative values for policy are not valid */
4932 return do_sched_setscheduler(pid
, policy
, param
);
4936 * sys_sched_setparam - set/change the RT priority of a thread
4937 * @pid: the pid in question.
4938 * @param: structure containing the new RT priority.
4940 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4942 return do_sched_setscheduler(pid
, -1, param
);
4946 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4947 * @pid: the pid in question.
4949 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4951 struct task_struct
*p
;
4959 p
= find_process_by_pid(pid
);
4961 retval
= security_task_getscheduler(p
);
4964 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4971 * sys_sched_getparam - get the RT priority of a thread
4972 * @pid: the pid in question.
4973 * @param: structure containing the RT priority.
4975 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4977 struct sched_param lp
;
4978 struct task_struct
*p
;
4981 if (!param
|| pid
< 0)
4985 p
= find_process_by_pid(pid
);
4990 retval
= security_task_getscheduler(p
);
4994 lp
.sched_priority
= p
->rt_priority
;
4998 * This one might sleep, we cannot do it with a spinlock held ...
5000 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5009 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5011 cpumask_var_t cpus_allowed
, new_mask
;
5012 struct task_struct
*p
;
5018 p
= find_process_by_pid(pid
);
5025 /* Prevent p going away */
5029 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5033 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5035 goto out_free_cpus_allowed
;
5038 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5041 retval
= security_task_setscheduler(p
);
5045 cpuset_cpus_allowed(p
, cpus_allowed
);
5046 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5048 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5051 cpuset_cpus_allowed(p
, cpus_allowed
);
5052 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5054 * We must have raced with a concurrent cpuset
5055 * update. Just reset the cpus_allowed to the
5056 * cpuset's cpus_allowed
5058 cpumask_copy(new_mask
, cpus_allowed
);
5063 free_cpumask_var(new_mask
);
5064 out_free_cpus_allowed
:
5065 free_cpumask_var(cpus_allowed
);
5072 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5073 struct cpumask
*new_mask
)
5075 if (len
< cpumask_size())
5076 cpumask_clear(new_mask
);
5077 else if (len
> cpumask_size())
5078 len
= cpumask_size();
5080 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5084 * sys_sched_setaffinity - set the cpu affinity of a process
5085 * @pid: pid of the process
5086 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5087 * @user_mask_ptr: user-space pointer to the new cpu mask
5089 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5090 unsigned long __user
*, user_mask_ptr
)
5092 cpumask_var_t new_mask
;
5095 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5098 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5100 retval
= sched_setaffinity(pid
, new_mask
);
5101 free_cpumask_var(new_mask
);
5105 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5107 struct task_struct
*p
;
5108 unsigned long flags
;
5116 p
= find_process_by_pid(pid
);
5120 retval
= security_task_getscheduler(p
);
5124 rq
= task_rq_lock(p
, &flags
);
5125 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5126 task_rq_unlock(rq
, &flags
);
5136 * sys_sched_getaffinity - get the cpu affinity of a process
5137 * @pid: pid of the process
5138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5139 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5141 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5142 unsigned long __user
*, user_mask_ptr
)
5147 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5149 if (len
& (sizeof(unsigned long)-1))
5152 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5155 ret
= sched_getaffinity(pid
, mask
);
5157 size_t retlen
= min_t(size_t, len
, cpumask_size());
5159 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5164 free_cpumask_var(mask
);
5170 * sys_sched_yield - yield the current processor to other threads.
5172 * This function yields the current CPU to other tasks. If there are no
5173 * other threads running on this CPU then this function will return.
5175 SYSCALL_DEFINE0(sched_yield
)
5177 struct rq
*rq
= this_rq_lock();
5179 schedstat_inc(rq
, yld_count
);
5180 current
->sched_class
->yield_task(rq
);
5183 * Since we are going to call schedule() anyway, there's
5184 * no need to preempt or enable interrupts:
5186 __release(rq
->lock
);
5187 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5188 do_raw_spin_unlock(&rq
->lock
);
5189 preempt_enable_no_resched();
5196 static inline int should_resched(void)
5198 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5201 static void __cond_resched(void)
5203 add_preempt_count(PREEMPT_ACTIVE
);
5205 sub_preempt_count(PREEMPT_ACTIVE
);
5208 int __sched
_cond_resched(void)
5210 if (should_resched()) {
5216 EXPORT_SYMBOL(_cond_resched
);
5219 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5220 * call schedule, and on return reacquire the lock.
5222 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5223 * operations here to prevent schedule() from being called twice (once via
5224 * spin_unlock(), once by hand).
5226 int __cond_resched_lock(spinlock_t
*lock
)
5228 int resched
= should_resched();
5231 lockdep_assert_held(lock
);
5233 if (spin_needbreak(lock
) || resched
) {
5244 EXPORT_SYMBOL(__cond_resched_lock
);
5246 int __sched
__cond_resched_softirq(void)
5248 BUG_ON(!in_softirq());
5250 if (should_resched()) {
5258 EXPORT_SYMBOL(__cond_resched_softirq
);
5261 * yield - yield the current processor to other threads.
5263 * This is a shortcut for kernel-space yielding - it marks the
5264 * thread runnable and calls sys_sched_yield().
5266 void __sched
yield(void)
5268 set_current_state(TASK_RUNNING
);
5271 EXPORT_SYMBOL(yield
);
5274 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5275 * that process accounting knows that this is a task in IO wait state.
5277 void __sched
io_schedule(void)
5279 struct rq
*rq
= raw_rq();
5281 delayacct_blkio_start();
5282 atomic_inc(&rq
->nr_iowait
);
5283 current
->in_iowait
= 1;
5285 current
->in_iowait
= 0;
5286 atomic_dec(&rq
->nr_iowait
);
5287 delayacct_blkio_end();
5289 EXPORT_SYMBOL(io_schedule
);
5291 long __sched
io_schedule_timeout(long timeout
)
5293 struct rq
*rq
= raw_rq();
5296 delayacct_blkio_start();
5297 atomic_inc(&rq
->nr_iowait
);
5298 current
->in_iowait
= 1;
5299 ret
= schedule_timeout(timeout
);
5300 current
->in_iowait
= 0;
5301 atomic_dec(&rq
->nr_iowait
);
5302 delayacct_blkio_end();
5307 * sys_sched_get_priority_max - return maximum RT priority.
5308 * @policy: scheduling class.
5310 * this syscall returns the maximum rt_priority that can be used
5311 * by a given scheduling class.
5313 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5320 ret
= MAX_USER_RT_PRIO
-1;
5332 * sys_sched_get_priority_min - return minimum RT priority.
5333 * @policy: scheduling class.
5335 * this syscall returns the minimum rt_priority that can be used
5336 * by a given scheduling class.
5338 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5356 * sys_sched_rr_get_interval - return the default timeslice of a process.
5357 * @pid: pid of the process.
5358 * @interval: userspace pointer to the timeslice value.
5360 * this syscall writes the default timeslice value of a given process
5361 * into the user-space timespec buffer. A value of '0' means infinity.
5363 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5364 struct timespec __user
*, interval
)
5366 struct task_struct
*p
;
5367 unsigned int time_slice
;
5368 unsigned long flags
;
5378 p
= find_process_by_pid(pid
);
5382 retval
= security_task_getscheduler(p
);
5386 rq
= task_rq_lock(p
, &flags
);
5387 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5388 task_rq_unlock(rq
, &flags
);
5391 jiffies_to_timespec(time_slice
, &t
);
5392 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5400 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5402 void sched_show_task(struct task_struct
*p
)
5404 unsigned long free
= 0;
5407 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5408 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5409 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5410 #if BITS_PER_LONG == 32
5411 if (state
== TASK_RUNNING
)
5412 printk(KERN_CONT
" running ");
5414 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5416 if (state
== TASK_RUNNING
)
5417 printk(KERN_CONT
" running task ");
5419 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5421 #ifdef CONFIG_DEBUG_STACK_USAGE
5422 free
= stack_not_used(p
);
5424 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5425 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5426 (unsigned long)task_thread_info(p
)->flags
);
5428 show_stack(p
, NULL
);
5431 void show_state_filter(unsigned long state_filter
)
5433 struct task_struct
*g
, *p
;
5435 #if BITS_PER_LONG == 32
5437 " task PC stack pid father\n");
5440 " task PC stack pid father\n");
5442 read_lock(&tasklist_lock
);
5443 do_each_thread(g
, p
) {
5445 * reset the NMI-timeout, listing all files on a slow
5446 * console might take alot of time:
5448 touch_nmi_watchdog();
5449 if (!state_filter
|| (p
->state
& state_filter
))
5451 } while_each_thread(g
, p
);
5453 touch_all_softlockup_watchdogs();
5455 #ifdef CONFIG_SCHED_DEBUG
5456 sysrq_sched_debug_show();
5458 read_unlock(&tasklist_lock
);
5460 * Only show locks if all tasks are dumped:
5463 debug_show_all_locks();
5466 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5468 idle
->sched_class
= &idle_sched_class
;
5472 * init_idle - set up an idle thread for a given CPU
5473 * @idle: task in question
5474 * @cpu: cpu the idle task belongs to
5476 * NOTE: this function does not set the idle thread's NEED_RESCHED
5477 * flag, to make booting more robust.
5479 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5481 struct rq
*rq
= cpu_rq(cpu
);
5482 unsigned long flags
;
5484 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5487 idle
->state
= TASK_RUNNING
;
5488 idle
->se
.exec_start
= sched_clock();
5490 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5492 * We're having a chicken and egg problem, even though we are
5493 * holding rq->lock, the cpu isn't yet set to this cpu so the
5494 * lockdep check in task_group() will fail.
5496 * Similar case to sched_fork(). / Alternatively we could
5497 * use task_rq_lock() here and obtain the other rq->lock.
5502 __set_task_cpu(idle
, cpu
);
5505 rq
->curr
= rq
->idle
= idle
;
5506 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5509 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5511 /* Set the preempt count _outside_ the spinlocks! */
5512 #if defined(CONFIG_PREEMPT)
5513 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5515 task_thread_info(idle
)->preempt_count
= 0;
5518 * The idle tasks have their own, simple scheduling class:
5520 idle
->sched_class
= &idle_sched_class
;
5521 ftrace_graph_init_task(idle
);
5525 * In a system that switches off the HZ timer nohz_cpu_mask
5526 * indicates which cpus entered this state. This is used
5527 * in the rcu update to wait only for active cpus. For system
5528 * which do not switch off the HZ timer nohz_cpu_mask should
5529 * always be CPU_BITS_NONE.
5531 cpumask_var_t nohz_cpu_mask
;
5534 * Increase the granularity value when there are more CPUs,
5535 * because with more CPUs the 'effective latency' as visible
5536 * to users decreases. But the relationship is not linear,
5537 * so pick a second-best guess by going with the log2 of the
5540 * This idea comes from the SD scheduler of Con Kolivas:
5542 static int get_update_sysctl_factor(void)
5544 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5545 unsigned int factor
;
5547 switch (sysctl_sched_tunable_scaling
) {
5548 case SCHED_TUNABLESCALING_NONE
:
5551 case SCHED_TUNABLESCALING_LINEAR
:
5554 case SCHED_TUNABLESCALING_LOG
:
5556 factor
= 1 + ilog2(cpus
);
5563 static void update_sysctl(void)
5565 unsigned int factor
= get_update_sysctl_factor();
5567 #define SET_SYSCTL(name) \
5568 (sysctl_##name = (factor) * normalized_sysctl_##name)
5569 SET_SYSCTL(sched_min_granularity
);
5570 SET_SYSCTL(sched_latency
);
5571 SET_SYSCTL(sched_wakeup_granularity
);
5572 SET_SYSCTL(sched_shares_ratelimit
);
5576 static inline void sched_init_granularity(void)
5583 * This is how migration works:
5585 * 1) we invoke migration_cpu_stop() on the target CPU using
5587 * 2) stopper starts to run (implicitly forcing the migrated thread
5589 * 3) it checks whether the migrated task is still in the wrong runqueue.
5590 * 4) if it's in the wrong runqueue then the migration thread removes
5591 * it and puts it into the right queue.
5592 * 5) stopper completes and stop_one_cpu() returns and the migration
5597 * Change a given task's CPU affinity. Migrate the thread to a
5598 * proper CPU and schedule it away if the CPU it's executing on
5599 * is removed from the allowed bitmask.
5601 * NOTE: the caller must have a valid reference to the task, the
5602 * task must not exit() & deallocate itself prematurely. The
5603 * call is not atomic; no spinlocks may be held.
5605 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5607 unsigned long flags
;
5609 unsigned int dest_cpu
;
5613 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5614 * drop the rq->lock and still rely on ->cpus_allowed.
5617 while (task_is_waking(p
))
5619 rq
= task_rq_lock(p
, &flags
);
5620 if (task_is_waking(p
)) {
5621 task_rq_unlock(rq
, &flags
);
5625 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5630 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5631 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5636 if (p
->sched_class
->set_cpus_allowed
)
5637 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5639 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5640 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5643 /* Can the task run on the task's current CPU? If so, we're done */
5644 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5647 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5648 if (migrate_task(p
, dest_cpu
)) {
5649 struct migration_arg arg
= { p
, dest_cpu
};
5650 /* Need help from migration thread: drop lock and wait. */
5651 task_rq_unlock(rq
, &flags
);
5652 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5653 tlb_migrate_finish(p
->mm
);
5657 task_rq_unlock(rq
, &flags
);
5661 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5664 * Move (not current) task off this cpu, onto dest cpu. We're doing
5665 * this because either it can't run here any more (set_cpus_allowed()
5666 * away from this CPU, or CPU going down), or because we're
5667 * attempting to rebalance this task on exec (sched_exec).
5669 * So we race with normal scheduler movements, but that's OK, as long
5670 * as the task is no longer on this CPU.
5672 * Returns non-zero if task was successfully migrated.
5674 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5676 struct rq
*rq_dest
, *rq_src
;
5679 if (unlikely(!cpu_active(dest_cpu
)))
5682 rq_src
= cpu_rq(src_cpu
);
5683 rq_dest
= cpu_rq(dest_cpu
);
5685 double_rq_lock(rq_src
, rq_dest
);
5686 /* Already moved. */
5687 if (task_cpu(p
) != src_cpu
)
5689 /* Affinity changed (again). */
5690 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5694 * If we're not on a rq, the next wake-up will ensure we're
5698 deactivate_task(rq_src
, p
, 0);
5699 set_task_cpu(p
, dest_cpu
);
5700 activate_task(rq_dest
, p
, 0);
5701 check_preempt_curr(rq_dest
, p
, 0);
5706 double_rq_unlock(rq_src
, rq_dest
);
5711 * migration_cpu_stop - this will be executed by a highprio stopper thread
5712 * and performs thread migration by bumping thread off CPU then
5713 * 'pushing' onto another runqueue.
5715 static int migration_cpu_stop(void *data
)
5717 struct migration_arg
*arg
= data
;
5720 * The original target cpu might have gone down and we might
5721 * be on another cpu but it doesn't matter.
5723 local_irq_disable();
5724 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5729 #ifdef CONFIG_HOTPLUG_CPU
5731 * Figure out where task on dead CPU should go, use force if necessary.
5733 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5735 struct rq
*rq
= cpu_rq(dead_cpu
);
5736 int needs_cpu
, uninitialized_var(dest_cpu
);
5737 unsigned long flags
;
5739 local_irq_save(flags
);
5741 raw_spin_lock(&rq
->lock
);
5742 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5744 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5745 raw_spin_unlock(&rq
->lock
);
5747 * It can only fail if we race with set_cpus_allowed(),
5748 * in the racer should migrate the task anyway.
5751 __migrate_task(p
, dead_cpu
, dest_cpu
);
5752 local_irq_restore(flags
);
5756 * While a dead CPU has no uninterruptible tasks queued at this point,
5757 * it might still have a nonzero ->nr_uninterruptible counter, because
5758 * for performance reasons the counter is not stricly tracking tasks to
5759 * their home CPUs. So we just add the counter to another CPU's counter,
5760 * to keep the global sum constant after CPU-down:
5762 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5764 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5765 unsigned long flags
;
5767 local_irq_save(flags
);
5768 double_rq_lock(rq_src
, rq_dest
);
5769 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5770 rq_src
->nr_uninterruptible
= 0;
5771 double_rq_unlock(rq_src
, rq_dest
);
5772 local_irq_restore(flags
);
5775 /* Run through task list and migrate tasks from the dead cpu. */
5776 static void migrate_live_tasks(int src_cpu
)
5778 struct task_struct
*p
, *t
;
5780 read_lock(&tasklist_lock
);
5782 do_each_thread(t
, p
) {
5786 if (task_cpu(p
) == src_cpu
)
5787 move_task_off_dead_cpu(src_cpu
, p
);
5788 } while_each_thread(t
, p
);
5790 read_unlock(&tasklist_lock
);
5794 * Schedules idle task to be the next runnable task on current CPU.
5795 * It does so by boosting its priority to highest possible.
5796 * Used by CPU offline code.
5798 void sched_idle_next(void)
5800 int this_cpu
= smp_processor_id();
5801 struct rq
*rq
= cpu_rq(this_cpu
);
5802 struct task_struct
*p
= rq
->idle
;
5803 unsigned long flags
;
5805 /* cpu has to be offline */
5806 BUG_ON(cpu_online(this_cpu
));
5809 * Strictly not necessary since rest of the CPUs are stopped by now
5810 * and interrupts disabled on the current cpu.
5812 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5814 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5816 activate_task(rq
, p
, 0);
5818 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5822 * Ensures that the idle task is using init_mm right before its cpu goes
5825 void idle_task_exit(void)
5827 struct mm_struct
*mm
= current
->active_mm
;
5829 BUG_ON(cpu_online(smp_processor_id()));
5832 switch_mm(mm
, &init_mm
, current
);
5836 /* called under rq->lock with disabled interrupts */
5837 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5839 struct rq
*rq
= cpu_rq(dead_cpu
);
5841 /* Must be exiting, otherwise would be on tasklist. */
5842 BUG_ON(!p
->exit_state
);
5844 /* Cannot have done final schedule yet: would have vanished. */
5845 BUG_ON(p
->state
== TASK_DEAD
);
5850 * Drop lock around migration; if someone else moves it,
5851 * that's OK. No task can be added to this CPU, so iteration is
5854 raw_spin_unlock_irq(&rq
->lock
);
5855 move_task_off_dead_cpu(dead_cpu
, p
);
5856 raw_spin_lock_irq(&rq
->lock
);
5861 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5862 static void migrate_dead_tasks(unsigned int dead_cpu
)
5864 struct rq
*rq
= cpu_rq(dead_cpu
);
5865 struct task_struct
*next
;
5868 if (!rq
->nr_running
)
5870 next
= pick_next_task(rq
);
5873 next
->sched_class
->put_prev_task(rq
, next
);
5874 migrate_dead(dead_cpu
, next
);
5880 * remove the tasks which were accounted by rq from calc_load_tasks.
5882 static void calc_global_load_remove(struct rq
*rq
)
5884 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5885 rq
->calc_load_active
= 0;
5887 #endif /* CONFIG_HOTPLUG_CPU */
5889 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5891 static struct ctl_table sd_ctl_dir
[] = {
5893 .procname
= "sched_domain",
5899 static struct ctl_table sd_ctl_root
[] = {
5901 .procname
= "kernel",
5903 .child
= sd_ctl_dir
,
5908 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5910 struct ctl_table
*entry
=
5911 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5916 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5918 struct ctl_table
*entry
;
5921 * In the intermediate directories, both the child directory and
5922 * procname are dynamically allocated and could fail but the mode
5923 * will always be set. In the lowest directory the names are
5924 * static strings and all have proc handlers.
5926 for (entry
= *tablep
; entry
->mode
; entry
++) {
5928 sd_free_ctl_entry(&entry
->child
);
5929 if (entry
->proc_handler
== NULL
)
5930 kfree(entry
->procname
);
5938 set_table_entry(struct ctl_table
*entry
,
5939 const char *procname
, void *data
, int maxlen
,
5940 mode_t mode
, proc_handler
*proc_handler
)
5942 entry
->procname
= procname
;
5944 entry
->maxlen
= maxlen
;
5946 entry
->proc_handler
= proc_handler
;
5949 static struct ctl_table
*
5950 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5952 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5957 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5958 sizeof(long), 0644, proc_doulongvec_minmax
);
5959 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5960 sizeof(long), 0644, proc_doulongvec_minmax
);
5961 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5962 sizeof(int), 0644, proc_dointvec_minmax
);
5963 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5964 sizeof(int), 0644, proc_dointvec_minmax
);
5965 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5966 sizeof(int), 0644, proc_dointvec_minmax
);
5967 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5968 sizeof(int), 0644, proc_dointvec_minmax
);
5969 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5970 sizeof(int), 0644, proc_dointvec_minmax
);
5971 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5972 sizeof(int), 0644, proc_dointvec_minmax
);
5973 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5974 sizeof(int), 0644, proc_dointvec_minmax
);
5975 set_table_entry(&table
[9], "cache_nice_tries",
5976 &sd
->cache_nice_tries
,
5977 sizeof(int), 0644, proc_dointvec_minmax
);
5978 set_table_entry(&table
[10], "flags", &sd
->flags
,
5979 sizeof(int), 0644, proc_dointvec_minmax
);
5980 set_table_entry(&table
[11], "name", sd
->name
,
5981 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5982 /* &table[12] is terminator */
5987 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5989 struct ctl_table
*entry
, *table
;
5990 struct sched_domain
*sd
;
5991 int domain_num
= 0, i
;
5994 for_each_domain(cpu
, sd
)
5996 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6001 for_each_domain(cpu
, sd
) {
6002 snprintf(buf
, 32, "domain%d", i
);
6003 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6005 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6012 static struct ctl_table_header
*sd_sysctl_header
;
6013 static void register_sched_domain_sysctl(void)
6015 int i
, cpu_num
= num_possible_cpus();
6016 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6019 WARN_ON(sd_ctl_dir
[0].child
);
6020 sd_ctl_dir
[0].child
= entry
;
6025 for_each_possible_cpu(i
) {
6026 snprintf(buf
, 32, "cpu%d", i
);
6027 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6029 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6033 WARN_ON(sd_sysctl_header
);
6034 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6037 /* may be called multiple times per register */
6038 static void unregister_sched_domain_sysctl(void)
6040 if (sd_sysctl_header
)
6041 unregister_sysctl_table(sd_sysctl_header
);
6042 sd_sysctl_header
= NULL
;
6043 if (sd_ctl_dir
[0].child
)
6044 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6047 static void register_sched_domain_sysctl(void)
6050 static void unregister_sched_domain_sysctl(void)
6055 static void set_rq_online(struct rq
*rq
)
6058 const struct sched_class
*class;
6060 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6063 for_each_class(class) {
6064 if (class->rq_online
)
6065 class->rq_online(rq
);
6070 static void set_rq_offline(struct rq
*rq
)
6073 const struct sched_class
*class;
6075 for_each_class(class) {
6076 if (class->rq_offline
)
6077 class->rq_offline(rq
);
6080 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6086 * migration_call - callback that gets triggered when a CPU is added.
6087 * Here we can start up the necessary migration thread for the new CPU.
6089 static int __cpuinit
6090 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6092 int cpu
= (long)hcpu
;
6093 unsigned long flags
;
6094 struct rq
*rq
= cpu_rq(cpu
);
6098 case CPU_UP_PREPARE
:
6099 case CPU_UP_PREPARE_FROZEN
:
6100 rq
->calc_load_update
= calc_load_update
;
6104 case CPU_ONLINE_FROZEN
:
6105 /* Update our root-domain */
6106 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6108 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6112 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6115 #ifdef CONFIG_HOTPLUG_CPU
6117 case CPU_DEAD_FROZEN
:
6118 migrate_live_tasks(cpu
);
6119 /* Idle task back to normal (off runqueue, low prio) */
6120 raw_spin_lock_irq(&rq
->lock
);
6121 deactivate_task(rq
, rq
->idle
, 0);
6122 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6123 rq
->idle
->sched_class
= &idle_sched_class
;
6124 migrate_dead_tasks(cpu
);
6125 raw_spin_unlock_irq(&rq
->lock
);
6126 migrate_nr_uninterruptible(rq
);
6127 BUG_ON(rq
->nr_running
!= 0);
6128 calc_global_load_remove(rq
);
6132 case CPU_DYING_FROZEN
:
6133 /* Update our root-domain */
6134 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6136 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6139 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6147 * Register at high priority so that task migration (migrate_all_tasks)
6148 * happens before everything else. This has to be lower priority than
6149 * the notifier in the perf_event subsystem, though.
6151 static struct notifier_block __cpuinitdata migration_notifier
= {
6152 .notifier_call
= migration_call
,
6153 .priority
= CPU_PRI_MIGRATION
,
6156 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6157 unsigned long action
, void *hcpu
)
6159 switch (action
& ~CPU_TASKS_FROZEN
) {
6161 case CPU_DOWN_FAILED
:
6162 set_cpu_active((long)hcpu
, true);
6169 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6170 unsigned long action
, void *hcpu
)
6172 switch (action
& ~CPU_TASKS_FROZEN
) {
6173 case CPU_DOWN_PREPARE
:
6174 set_cpu_active((long)hcpu
, false);
6181 static int __init
migration_init(void)
6183 void *cpu
= (void *)(long)smp_processor_id();
6186 /* Initialize migration for the boot CPU */
6187 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6188 BUG_ON(err
== NOTIFY_BAD
);
6189 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6190 register_cpu_notifier(&migration_notifier
);
6192 /* Register cpu active notifiers */
6193 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6194 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6198 early_initcall(migration_init
);
6203 #ifdef CONFIG_SCHED_DEBUG
6205 static __read_mostly
int sched_domain_debug_enabled
;
6207 static int __init
sched_domain_debug_setup(char *str
)
6209 sched_domain_debug_enabled
= 1;
6213 early_param("sched_debug", sched_domain_debug_setup
);
6215 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6216 struct cpumask
*groupmask
)
6218 struct sched_group
*group
= sd
->groups
;
6221 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6222 cpumask_clear(groupmask
);
6224 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6226 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6227 printk("does not load-balance\n");
6229 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6234 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6236 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6237 printk(KERN_ERR
"ERROR: domain->span does not contain "
6240 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6241 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6245 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6249 printk(KERN_ERR
"ERROR: group is NULL\n");
6253 if (!group
->cpu_power
) {
6254 printk(KERN_CONT
"\n");
6255 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6260 if (!cpumask_weight(sched_group_cpus(group
))) {
6261 printk(KERN_CONT
"\n");
6262 printk(KERN_ERR
"ERROR: empty group\n");
6266 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6267 printk(KERN_CONT
"\n");
6268 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6272 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6274 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6276 printk(KERN_CONT
" %s", str
);
6277 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6278 printk(KERN_CONT
" (cpu_power = %d)",
6282 group
= group
->next
;
6283 } while (group
!= sd
->groups
);
6284 printk(KERN_CONT
"\n");
6286 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6287 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6290 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6291 printk(KERN_ERR
"ERROR: parent span is not a superset "
6292 "of domain->span\n");
6296 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6298 cpumask_var_t groupmask
;
6301 if (!sched_domain_debug_enabled
)
6305 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6309 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6311 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6312 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6317 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6324 free_cpumask_var(groupmask
);
6326 #else /* !CONFIG_SCHED_DEBUG */
6327 # define sched_domain_debug(sd, cpu) do { } while (0)
6328 #endif /* CONFIG_SCHED_DEBUG */
6330 static int sd_degenerate(struct sched_domain
*sd
)
6332 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6335 /* Following flags need at least 2 groups */
6336 if (sd
->flags
& (SD_LOAD_BALANCE
|
6337 SD_BALANCE_NEWIDLE
|
6341 SD_SHARE_PKG_RESOURCES
)) {
6342 if (sd
->groups
!= sd
->groups
->next
)
6346 /* Following flags don't use groups */
6347 if (sd
->flags
& (SD_WAKE_AFFINE
))
6354 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6356 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6358 if (sd_degenerate(parent
))
6361 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6364 /* Flags needing groups don't count if only 1 group in parent */
6365 if (parent
->groups
== parent
->groups
->next
) {
6366 pflags
&= ~(SD_LOAD_BALANCE
|
6367 SD_BALANCE_NEWIDLE
|
6371 SD_SHARE_PKG_RESOURCES
);
6372 if (nr_node_ids
== 1)
6373 pflags
&= ~SD_SERIALIZE
;
6375 if (~cflags
& pflags
)
6381 static void free_rootdomain(struct root_domain
*rd
)
6383 synchronize_sched();
6385 cpupri_cleanup(&rd
->cpupri
);
6387 free_cpumask_var(rd
->rto_mask
);
6388 free_cpumask_var(rd
->online
);
6389 free_cpumask_var(rd
->span
);
6393 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6395 struct root_domain
*old_rd
= NULL
;
6396 unsigned long flags
;
6398 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6403 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6406 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6409 * If we dont want to free the old_rt yet then
6410 * set old_rd to NULL to skip the freeing later
6413 if (!atomic_dec_and_test(&old_rd
->refcount
))
6417 atomic_inc(&rd
->refcount
);
6420 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6421 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6424 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6427 free_rootdomain(old_rd
);
6430 static int init_rootdomain(struct root_domain
*rd
)
6432 memset(rd
, 0, sizeof(*rd
));
6434 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6436 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6438 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6441 if (cpupri_init(&rd
->cpupri
) != 0)
6446 free_cpumask_var(rd
->rto_mask
);
6448 free_cpumask_var(rd
->online
);
6450 free_cpumask_var(rd
->span
);
6455 static void init_defrootdomain(void)
6457 init_rootdomain(&def_root_domain
);
6459 atomic_set(&def_root_domain
.refcount
, 1);
6462 static struct root_domain
*alloc_rootdomain(void)
6464 struct root_domain
*rd
;
6466 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6470 if (init_rootdomain(rd
) != 0) {
6479 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6480 * hold the hotplug lock.
6483 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6485 struct rq
*rq
= cpu_rq(cpu
);
6486 struct sched_domain
*tmp
;
6488 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6489 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6491 /* Remove the sched domains which do not contribute to scheduling. */
6492 for (tmp
= sd
; tmp
; ) {
6493 struct sched_domain
*parent
= tmp
->parent
;
6497 if (sd_parent_degenerate(tmp
, parent
)) {
6498 tmp
->parent
= parent
->parent
;
6500 parent
->parent
->child
= tmp
;
6505 if (sd
&& sd_degenerate(sd
)) {
6511 sched_domain_debug(sd
, cpu
);
6513 rq_attach_root(rq
, rd
);
6514 rcu_assign_pointer(rq
->sd
, sd
);
6517 /* cpus with isolated domains */
6518 static cpumask_var_t cpu_isolated_map
;
6520 /* Setup the mask of cpus configured for isolated domains */
6521 static int __init
isolated_cpu_setup(char *str
)
6523 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6524 cpulist_parse(str
, cpu_isolated_map
);
6528 __setup("isolcpus=", isolated_cpu_setup
);
6531 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6532 * to a function which identifies what group(along with sched group) a CPU
6533 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6534 * (due to the fact that we keep track of groups covered with a struct cpumask).
6536 * init_sched_build_groups will build a circular linked list of the groups
6537 * covered by the given span, and will set each group's ->cpumask correctly,
6538 * and ->cpu_power to 0.
6541 init_sched_build_groups(const struct cpumask
*span
,
6542 const struct cpumask
*cpu_map
,
6543 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6544 struct sched_group
**sg
,
6545 struct cpumask
*tmpmask
),
6546 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6548 struct sched_group
*first
= NULL
, *last
= NULL
;
6551 cpumask_clear(covered
);
6553 for_each_cpu(i
, span
) {
6554 struct sched_group
*sg
;
6555 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6558 if (cpumask_test_cpu(i
, covered
))
6561 cpumask_clear(sched_group_cpus(sg
));
6564 for_each_cpu(j
, span
) {
6565 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6568 cpumask_set_cpu(j
, covered
);
6569 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6580 #define SD_NODES_PER_DOMAIN 16
6585 * find_next_best_node - find the next node to include in a sched_domain
6586 * @node: node whose sched_domain we're building
6587 * @used_nodes: nodes already in the sched_domain
6589 * Find the next node to include in a given scheduling domain. Simply
6590 * finds the closest node not already in the @used_nodes map.
6592 * Should use nodemask_t.
6594 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6596 int i
, n
, val
, min_val
, best_node
= 0;
6600 for (i
= 0; i
< nr_node_ids
; i
++) {
6601 /* Start at @node */
6602 n
= (node
+ i
) % nr_node_ids
;
6604 if (!nr_cpus_node(n
))
6607 /* Skip already used nodes */
6608 if (node_isset(n
, *used_nodes
))
6611 /* Simple min distance search */
6612 val
= node_distance(node
, n
);
6614 if (val
< min_val
) {
6620 node_set(best_node
, *used_nodes
);
6625 * sched_domain_node_span - get a cpumask for a node's sched_domain
6626 * @node: node whose cpumask we're constructing
6627 * @span: resulting cpumask
6629 * Given a node, construct a good cpumask for its sched_domain to span. It
6630 * should be one that prevents unnecessary balancing, but also spreads tasks
6633 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6635 nodemask_t used_nodes
;
6638 cpumask_clear(span
);
6639 nodes_clear(used_nodes
);
6641 cpumask_or(span
, span
, cpumask_of_node(node
));
6642 node_set(node
, used_nodes
);
6644 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6645 int next_node
= find_next_best_node(node
, &used_nodes
);
6647 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6650 #endif /* CONFIG_NUMA */
6652 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6655 * The cpus mask in sched_group and sched_domain hangs off the end.
6657 * ( See the the comments in include/linux/sched.h:struct sched_group
6658 * and struct sched_domain. )
6660 struct static_sched_group
{
6661 struct sched_group sg
;
6662 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6665 struct static_sched_domain
{
6666 struct sched_domain sd
;
6667 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6673 cpumask_var_t domainspan
;
6674 cpumask_var_t covered
;
6675 cpumask_var_t notcovered
;
6677 cpumask_var_t nodemask
;
6678 cpumask_var_t this_sibling_map
;
6679 cpumask_var_t this_core_map
;
6680 cpumask_var_t this_book_map
;
6681 cpumask_var_t send_covered
;
6682 cpumask_var_t tmpmask
;
6683 struct sched_group
**sched_group_nodes
;
6684 struct root_domain
*rd
;
6688 sa_sched_groups
= 0,
6694 sa_this_sibling_map
,
6696 sa_sched_group_nodes
,
6706 * SMT sched-domains:
6708 #ifdef CONFIG_SCHED_SMT
6709 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6710 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6713 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6714 struct sched_group
**sg
, struct cpumask
*unused
)
6717 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6720 #endif /* CONFIG_SCHED_SMT */
6723 * multi-core sched-domains:
6725 #ifdef CONFIG_SCHED_MC
6726 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6727 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6730 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6731 struct sched_group
**sg
, struct cpumask
*mask
)
6734 #ifdef CONFIG_SCHED_SMT
6735 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6736 group
= cpumask_first(mask
);
6741 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6744 #endif /* CONFIG_SCHED_MC */
6747 * book sched-domains:
6749 #ifdef CONFIG_SCHED_BOOK
6750 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6751 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6754 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6755 struct sched_group
**sg
, struct cpumask
*mask
)
6758 #ifdef CONFIG_SCHED_MC
6759 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6760 group
= cpumask_first(mask
);
6761 #elif defined(CONFIG_SCHED_SMT)
6762 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6763 group
= cpumask_first(mask
);
6766 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6769 #endif /* CONFIG_SCHED_BOOK */
6771 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6772 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6775 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6776 struct sched_group
**sg
, struct cpumask
*mask
)
6779 #ifdef CONFIG_SCHED_BOOK
6780 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6781 group
= cpumask_first(mask
);
6782 #elif defined(CONFIG_SCHED_MC)
6783 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6784 group
= cpumask_first(mask
);
6785 #elif defined(CONFIG_SCHED_SMT)
6786 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6787 group
= cpumask_first(mask
);
6792 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6798 * The init_sched_build_groups can't handle what we want to do with node
6799 * groups, so roll our own. Now each node has its own list of groups which
6800 * gets dynamically allocated.
6802 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6803 static struct sched_group
***sched_group_nodes_bycpu
;
6805 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6806 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6808 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6809 struct sched_group
**sg
,
6810 struct cpumask
*nodemask
)
6814 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6815 group
= cpumask_first(nodemask
);
6818 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6822 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6824 struct sched_group
*sg
= group_head
;
6830 for_each_cpu(j
, sched_group_cpus(sg
)) {
6831 struct sched_domain
*sd
;
6833 sd
= &per_cpu(phys_domains
, j
).sd
;
6834 if (j
!= group_first_cpu(sd
->groups
)) {
6836 * Only add "power" once for each
6842 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6845 } while (sg
!= group_head
);
6848 static int build_numa_sched_groups(struct s_data
*d
,
6849 const struct cpumask
*cpu_map
, int num
)
6851 struct sched_domain
*sd
;
6852 struct sched_group
*sg
, *prev
;
6855 cpumask_clear(d
->covered
);
6856 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6857 if (cpumask_empty(d
->nodemask
)) {
6858 d
->sched_group_nodes
[num
] = NULL
;
6862 sched_domain_node_span(num
, d
->domainspan
);
6863 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6865 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6868 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6872 d
->sched_group_nodes
[num
] = sg
;
6874 for_each_cpu(j
, d
->nodemask
) {
6875 sd
= &per_cpu(node_domains
, j
).sd
;
6880 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6882 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6885 for (j
= 0; j
< nr_node_ids
; j
++) {
6886 n
= (num
+ j
) % nr_node_ids
;
6887 cpumask_complement(d
->notcovered
, d
->covered
);
6888 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6889 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6890 if (cpumask_empty(d
->tmpmask
))
6892 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6893 if (cpumask_empty(d
->tmpmask
))
6895 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6899 "Can not alloc domain group for node %d\n", j
);
6903 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6904 sg
->next
= prev
->next
;
6905 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6912 #endif /* CONFIG_NUMA */
6915 /* Free memory allocated for various sched_group structures */
6916 static void free_sched_groups(const struct cpumask
*cpu_map
,
6917 struct cpumask
*nodemask
)
6921 for_each_cpu(cpu
, cpu_map
) {
6922 struct sched_group
**sched_group_nodes
6923 = sched_group_nodes_bycpu
[cpu
];
6925 if (!sched_group_nodes
)
6928 for (i
= 0; i
< nr_node_ids
; i
++) {
6929 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6931 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6932 if (cpumask_empty(nodemask
))
6942 if (oldsg
!= sched_group_nodes
[i
])
6945 kfree(sched_group_nodes
);
6946 sched_group_nodes_bycpu
[cpu
] = NULL
;
6949 #else /* !CONFIG_NUMA */
6950 static void free_sched_groups(const struct cpumask
*cpu_map
,
6951 struct cpumask
*nodemask
)
6954 #endif /* CONFIG_NUMA */
6957 * Initialize sched groups cpu_power.
6959 * cpu_power indicates the capacity of sched group, which is used while
6960 * distributing the load between different sched groups in a sched domain.
6961 * Typically cpu_power for all the groups in a sched domain will be same unless
6962 * there are asymmetries in the topology. If there are asymmetries, group
6963 * having more cpu_power will pickup more load compared to the group having
6966 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6968 struct sched_domain
*child
;
6969 struct sched_group
*group
;
6973 WARN_ON(!sd
|| !sd
->groups
);
6975 if (cpu
!= group_first_cpu(sd
->groups
))
6978 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
6982 sd
->groups
->cpu_power
= 0;
6985 power
= SCHED_LOAD_SCALE
;
6986 weight
= cpumask_weight(sched_domain_span(sd
));
6988 * SMT siblings share the power of a single core.
6989 * Usually multiple threads get a better yield out of
6990 * that one core than a single thread would have,
6991 * reflect that in sd->smt_gain.
6993 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6994 power
*= sd
->smt_gain
;
6996 power
>>= SCHED_LOAD_SHIFT
;
6998 sd
->groups
->cpu_power
+= power
;
7003 * Add cpu_power of each child group to this groups cpu_power.
7005 group
= child
->groups
;
7007 sd
->groups
->cpu_power
+= group
->cpu_power
;
7008 group
= group
->next
;
7009 } while (group
!= child
->groups
);
7013 * Initializers for schedule domains
7014 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7017 #ifdef CONFIG_SCHED_DEBUG
7018 # define SD_INIT_NAME(sd, type) sd->name = #type
7020 # define SD_INIT_NAME(sd, type) do { } while (0)
7023 #define SD_INIT(sd, type) sd_init_##type(sd)
7025 #define SD_INIT_FUNC(type) \
7026 static noinline void sd_init_##type(struct sched_domain *sd) \
7028 memset(sd, 0, sizeof(*sd)); \
7029 *sd = SD_##type##_INIT; \
7030 sd->level = SD_LV_##type; \
7031 SD_INIT_NAME(sd, type); \
7036 SD_INIT_FUNC(ALLNODES
)
7039 #ifdef CONFIG_SCHED_SMT
7040 SD_INIT_FUNC(SIBLING
)
7042 #ifdef CONFIG_SCHED_MC
7045 #ifdef CONFIG_SCHED_BOOK
7049 static int default_relax_domain_level
= -1;
7051 static int __init
setup_relax_domain_level(char *str
)
7055 val
= simple_strtoul(str
, NULL
, 0);
7056 if (val
< SD_LV_MAX
)
7057 default_relax_domain_level
= val
;
7061 __setup("relax_domain_level=", setup_relax_domain_level
);
7063 static void set_domain_attribute(struct sched_domain
*sd
,
7064 struct sched_domain_attr
*attr
)
7068 if (!attr
|| attr
->relax_domain_level
< 0) {
7069 if (default_relax_domain_level
< 0)
7072 request
= default_relax_domain_level
;
7074 request
= attr
->relax_domain_level
;
7075 if (request
< sd
->level
) {
7076 /* turn off idle balance on this domain */
7077 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7079 /* turn on idle balance on this domain */
7080 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7084 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7085 const struct cpumask
*cpu_map
)
7088 case sa_sched_groups
:
7089 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7090 d
->sched_group_nodes
= NULL
;
7092 free_rootdomain(d
->rd
); /* fall through */
7094 free_cpumask_var(d
->tmpmask
); /* fall through */
7095 case sa_send_covered
:
7096 free_cpumask_var(d
->send_covered
); /* fall through */
7097 case sa_this_book_map
:
7098 free_cpumask_var(d
->this_book_map
); /* fall through */
7099 case sa_this_core_map
:
7100 free_cpumask_var(d
->this_core_map
); /* fall through */
7101 case sa_this_sibling_map
:
7102 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7104 free_cpumask_var(d
->nodemask
); /* fall through */
7105 case sa_sched_group_nodes
:
7107 kfree(d
->sched_group_nodes
); /* fall through */
7109 free_cpumask_var(d
->notcovered
); /* fall through */
7111 free_cpumask_var(d
->covered
); /* fall through */
7113 free_cpumask_var(d
->domainspan
); /* fall through */
7120 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7121 const struct cpumask
*cpu_map
)
7124 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7126 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7127 return sa_domainspan
;
7128 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7130 /* Allocate the per-node list of sched groups */
7131 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7132 sizeof(struct sched_group
*), GFP_KERNEL
);
7133 if (!d
->sched_group_nodes
) {
7134 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7135 return sa_notcovered
;
7137 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7139 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7140 return sa_sched_group_nodes
;
7141 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7143 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7144 return sa_this_sibling_map
;
7145 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7146 return sa_this_core_map
;
7147 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7148 return sa_this_book_map
;
7149 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7150 return sa_send_covered
;
7151 d
->rd
= alloc_rootdomain();
7153 printk(KERN_WARNING
"Cannot alloc root domain\n");
7156 return sa_rootdomain
;
7159 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7160 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7162 struct sched_domain
*sd
= NULL
;
7164 struct sched_domain
*parent
;
7167 if (cpumask_weight(cpu_map
) >
7168 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7169 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7170 SD_INIT(sd
, ALLNODES
);
7171 set_domain_attribute(sd
, attr
);
7172 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7173 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7178 sd
= &per_cpu(node_domains
, i
).sd
;
7180 set_domain_attribute(sd
, attr
);
7181 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7182 sd
->parent
= parent
;
7185 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7190 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7191 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7192 struct sched_domain
*parent
, int i
)
7194 struct sched_domain
*sd
;
7195 sd
= &per_cpu(phys_domains
, i
).sd
;
7197 set_domain_attribute(sd
, attr
);
7198 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7199 sd
->parent
= parent
;
7202 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7206 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7207 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7208 struct sched_domain
*parent
, int i
)
7210 struct sched_domain
*sd
= parent
;
7211 #ifdef CONFIG_SCHED_BOOK
7212 sd
= &per_cpu(book_domains
, i
).sd
;
7214 set_domain_attribute(sd
, attr
);
7215 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7216 sd
->parent
= parent
;
7218 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7223 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7224 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7225 struct sched_domain
*parent
, int i
)
7227 struct sched_domain
*sd
= parent
;
7228 #ifdef CONFIG_SCHED_MC
7229 sd
= &per_cpu(core_domains
, i
).sd
;
7231 set_domain_attribute(sd
, attr
);
7232 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7233 sd
->parent
= parent
;
7235 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7240 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7241 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7242 struct sched_domain
*parent
, int i
)
7244 struct sched_domain
*sd
= parent
;
7245 #ifdef CONFIG_SCHED_SMT
7246 sd
= &per_cpu(cpu_domains
, i
).sd
;
7247 SD_INIT(sd
, SIBLING
);
7248 set_domain_attribute(sd
, attr
);
7249 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7250 sd
->parent
= parent
;
7252 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7257 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7258 const struct cpumask
*cpu_map
, int cpu
)
7261 #ifdef CONFIG_SCHED_SMT
7262 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7263 cpumask_and(d
->this_sibling_map
, cpu_map
,
7264 topology_thread_cpumask(cpu
));
7265 if (cpu
== cpumask_first(d
->this_sibling_map
))
7266 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7268 d
->send_covered
, d
->tmpmask
);
7271 #ifdef CONFIG_SCHED_MC
7272 case SD_LV_MC
: /* set up multi-core groups */
7273 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7274 if (cpu
== cpumask_first(d
->this_core_map
))
7275 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7277 d
->send_covered
, d
->tmpmask
);
7280 #ifdef CONFIG_SCHED_BOOK
7281 case SD_LV_BOOK
: /* set up book groups */
7282 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7283 if (cpu
== cpumask_first(d
->this_book_map
))
7284 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7286 d
->send_covered
, d
->tmpmask
);
7289 case SD_LV_CPU
: /* set up physical groups */
7290 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7291 if (!cpumask_empty(d
->nodemask
))
7292 init_sched_build_groups(d
->nodemask
, cpu_map
,
7294 d
->send_covered
, d
->tmpmask
);
7297 case SD_LV_ALLNODES
:
7298 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7299 d
->send_covered
, d
->tmpmask
);
7308 * Build sched domains for a given set of cpus and attach the sched domains
7309 * to the individual cpus
7311 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7312 struct sched_domain_attr
*attr
)
7314 enum s_alloc alloc_state
= sa_none
;
7316 struct sched_domain
*sd
;
7322 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7323 if (alloc_state
!= sa_rootdomain
)
7325 alloc_state
= sa_sched_groups
;
7328 * Set up domains for cpus specified by the cpu_map.
7330 for_each_cpu(i
, cpu_map
) {
7331 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7334 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7335 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7336 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7337 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7338 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7341 for_each_cpu(i
, cpu_map
) {
7342 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7343 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7344 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7347 /* Set up physical groups */
7348 for (i
= 0; i
< nr_node_ids
; i
++)
7349 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7352 /* Set up node groups */
7354 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7356 for (i
= 0; i
< nr_node_ids
; i
++)
7357 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7361 /* Calculate CPU power for physical packages and nodes */
7362 #ifdef CONFIG_SCHED_SMT
7363 for_each_cpu(i
, cpu_map
) {
7364 sd
= &per_cpu(cpu_domains
, i
).sd
;
7365 init_sched_groups_power(i
, sd
);
7368 #ifdef CONFIG_SCHED_MC
7369 for_each_cpu(i
, cpu_map
) {
7370 sd
= &per_cpu(core_domains
, i
).sd
;
7371 init_sched_groups_power(i
, sd
);
7374 #ifdef CONFIG_SCHED_BOOK
7375 for_each_cpu(i
, cpu_map
) {
7376 sd
= &per_cpu(book_domains
, i
).sd
;
7377 init_sched_groups_power(i
, sd
);
7381 for_each_cpu(i
, cpu_map
) {
7382 sd
= &per_cpu(phys_domains
, i
).sd
;
7383 init_sched_groups_power(i
, sd
);
7387 for (i
= 0; i
< nr_node_ids
; i
++)
7388 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7390 if (d
.sd_allnodes
) {
7391 struct sched_group
*sg
;
7393 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7395 init_numa_sched_groups_power(sg
);
7399 /* Attach the domains */
7400 for_each_cpu(i
, cpu_map
) {
7401 #ifdef CONFIG_SCHED_SMT
7402 sd
= &per_cpu(cpu_domains
, i
).sd
;
7403 #elif defined(CONFIG_SCHED_MC)
7404 sd
= &per_cpu(core_domains
, i
).sd
;
7405 #elif defined(CONFIG_SCHED_BOOK)
7406 sd
= &per_cpu(book_domains
, i
).sd
;
7408 sd
= &per_cpu(phys_domains
, i
).sd
;
7410 cpu_attach_domain(sd
, d
.rd
, i
);
7413 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7414 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7418 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7422 static int build_sched_domains(const struct cpumask
*cpu_map
)
7424 return __build_sched_domains(cpu_map
, NULL
);
7427 static cpumask_var_t
*doms_cur
; /* current sched domains */
7428 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7429 static struct sched_domain_attr
*dattr_cur
;
7430 /* attribues of custom domains in 'doms_cur' */
7433 * Special case: If a kmalloc of a doms_cur partition (array of
7434 * cpumask) fails, then fallback to a single sched domain,
7435 * as determined by the single cpumask fallback_doms.
7437 static cpumask_var_t fallback_doms
;
7440 * arch_update_cpu_topology lets virtualized architectures update the
7441 * cpu core maps. It is supposed to return 1 if the topology changed
7442 * or 0 if it stayed the same.
7444 int __attribute__((weak
)) arch_update_cpu_topology(void)
7449 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7452 cpumask_var_t
*doms
;
7454 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7457 for (i
= 0; i
< ndoms
; i
++) {
7458 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7459 free_sched_domains(doms
, i
);
7466 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7469 for (i
= 0; i
< ndoms
; i
++)
7470 free_cpumask_var(doms
[i
]);
7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
7479 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7483 arch_update_cpu_topology();
7485 doms_cur
= alloc_sched_domains(ndoms_cur
);
7487 doms_cur
= &fallback_doms
;
7488 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7490 err
= build_sched_domains(doms_cur
[0]);
7491 register_sched_domain_sysctl();
7496 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7497 struct cpumask
*tmpmask
)
7499 free_sched_groups(cpu_map
, tmpmask
);
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7506 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7508 /* Save because hotplug lock held. */
7509 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7512 for_each_cpu(i
, cpu_map
)
7513 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7514 synchronize_sched();
7515 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7518 /* handle null as "default" */
7519 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7520 struct sched_domain_attr
*new, int idx_new
)
7522 struct sched_domain_attr tmp
;
7529 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7530 new ? (new + idx_new
) : &tmp
,
7531 sizeof(struct sched_domain_attr
));
7535 * Partition sched domains as specified by the 'ndoms_new'
7536 * cpumasks in the array doms_new[] of cpumasks. This compares
7537 * doms_new[] to the current sched domain partitioning, doms_cur[].
7538 * It destroys each deleted domain and builds each new domain.
7540 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7541 * The masks don't intersect (don't overlap.) We should setup one
7542 * sched domain for each mask. CPUs not in any of the cpumasks will
7543 * not be load balanced. If the same cpumask appears both in the
7544 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7547 * The passed in 'doms_new' should be allocated using
7548 * alloc_sched_domains. This routine takes ownership of it and will
7549 * free_sched_domains it when done with it. If the caller failed the
7550 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7551 * and partition_sched_domains() will fallback to the single partition
7552 * 'fallback_doms', it also forces the domains to be rebuilt.
7554 * If doms_new == NULL it will be replaced with cpu_online_mask.
7555 * ndoms_new == 0 is a special case for destroying existing domains,
7556 * and it will not create the default domain.
7558 * Call with hotplug lock held
7560 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7561 struct sched_domain_attr
*dattr_new
)
7566 mutex_lock(&sched_domains_mutex
);
7568 /* always unregister in case we don't destroy any domains */
7569 unregister_sched_domain_sysctl();
7571 /* Let architecture update cpu core mappings. */
7572 new_topology
= arch_update_cpu_topology();
7574 n
= doms_new
? ndoms_new
: 0;
7576 /* Destroy deleted domains */
7577 for (i
= 0; i
< ndoms_cur
; i
++) {
7578 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7579 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7580 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7583 /* no match - a current sched domain not in new doms_new[] */
7584 detach_destroy_domains(doms_cur
[i
]);
7589 if (doms_new
== NULL
) {
7591 doms_new
= &fallback_doms
;
7592 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7593 WARN_ON_ONCE(dattr_new
);
7596 /* Build new domains */
7597 for (i
= 0; i
< ndoms_new
; i
++) {
7598 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7599 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7600 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7603 /* no match - add a new doms_new */
7604 __build_sched_domains(doms_new
[i
],
7605 dattr_new
? dattr_new
+ i
: NULL
);
7610 /* Remember the new sched domains */
7611 if (doms_cur
!= &fallback_doms
)
7612 free_sched_domains(doms_cur
, ndoms_cur
);
7613 kfree(dattr_cur
); /* kfree(NULL) is safe */
7614 doms_cur
= doms_new
;
7615 dattr_cur
= dattr_new
;
7616 ndoms_cur
= ndoms_new
;
7618 register_sched_domain_sysctl();
7620 mutex_unlock(&sched_domains_mutex
);
7623 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7624 static void arch_reinit_sched_domains(void)
7628 /* Destroy domains first to force the rebuild */
7629 partition_sched_domains(0, NULL
, NULL
);
7631 rebuild_sched_domains();
7635 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7637 unsigned int level
= 0;
7639 if (sscanf(buf
, "%u", &level
) != 1)
7643 * level is always be positive so don't check for
7644 * level < POWERSAVINGS_BALANCE_NONE which is 0
7645 * What happens on 0 or 1 byte write,
7646 * need to check for count as well?
7649 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7653 sched_smt_power_savings
= level
;
7655 sched_mc_power_savings
= level
;
7657 arch_reinit_sched_domains();
7662 #ifdef CONFIG_SCHED_MC
7663 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7664 struct sysdev_class_attribute
*attr
,
7667 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7669 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7670 struct sysdev_class_attribute
*attr
,
7671 const char *buf
, size_t count
)
7673 return sched_power_savings_store(buf
, count
, 0);
7675 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7676 sched_mc_power_savings_show
,
7677 sched_mc_power_savings_store
);
7680 #ifdef CONFIG_SCHED_SMT
7681 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7682 struct sysdev_class_attribute
*attr
,
7685 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7687 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7688 struct sysdev_class_attribute
*attr
,
7689 const char *buf
, size_t count
)
7691 return sched_power_savings_store(buf
, count
, 1);
7693 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7694 sched_smt_power_savings_show
,
7695 sched_smt_power_savings_store
);
7698 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7702 #ifdef CONFIG_SCHED_SMT
7704 err
= sysfs_create_file(&cls
->kset
.kobj
,
7705 &attr_sched_smt_power_savings
.attr
);
7707 #ifdef CONFIG_SCHED_MC
7708 if (!err
&& mc_capable())
7709 err
= sysfs_create_file(&cls
->kset
.kobj
,
7710 &attr_sched_mc_power_savings
.attr
);
7714 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7717 * Update cpusets according to cpu_active mask. If cpusets are
7718 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7719 * around partition_sched_domains().
7721 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7724 switch (action
& ~CPU_TASKS_FROZEN
) {
7726 case CPU_DOWN_FAILED
:
7727 cpuset_update_active_cpus();
7734 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7737 switch (action
& ~CPU_TASKS_FROZEN
) {
7738 case CPU_DOWN_PREPARE
:
7739 cpuset_update_active_cpus();
7746 static int update_runtime(struct notifier_block
*nfb
,
7747 unsigned long action
, void *hcpu
)
7749 int cpu
= (int)(long)hcpu
;
7752 case CPU_DOWN_PREPARE
:
7753 case CPU_DOWN_PREPARE_FROZEN
:
7754 disable_runtime(cpu_rq(cpu
));
7757 case CPU_DOWN_FAILED
:
7758 case CPU_DOWN_FAILED_FROZEN
:
7760 case CPU_ONLINE_FROZEN
:
7761 enable_runtime(cpu_rq(cpu
));
7769 void __init
sched_init_smp(void)
7771 cpumask_var_t non_isolated_cpus
;
7773 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7774 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7776 #if defined(CONFIG_NUMA)
7777 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7779 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7782 mutex_lock(&sched_domains_mutex
);
7783 arch_init_sched_domains(cpu_active_mask
);
7784 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7785 if (cpumask_empty(non_isolated_cpus
))
7786 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7787 mutex_unlock(&sched_domains_mutex
);
7790 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7791 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7793 /* RT runtime code needs to handle some hotplug events */
7794 hotcpu_notifier(update_runtime
, 0);
7798 /* Move init over to a non-isolated CPU */
7799 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7801 sched_init_granularity();
7802 free_cpumask_var(non_isolated_cpus
);
7804 init_sched_rt_class();
7807 void __init
sched_init_smp(void)
7809 sched_init_granularity();
7811 #endif /* CONFIG_SMP */
7813 const_debug
unsigned int sysctl_timer_migration
= 1;
7815 int in_sched_functions(unsigned long addr
)
7817 return in_lock_functions(addr
) ||
7818 (addr
>= (unsigned long)__sched_text_start
7819 && addr
< (unsigned long)__sched_text_end
);
7822 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7824 cfs_rq
->tasks_timeline
= RB_ROOT
;
7825 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7826 #ifdef CONFIG_FAIR_GROUP_SCHED
7829 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7832 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7834 struct rt_prio_array
*array
;
7837 array
= &rt_rq
->active
;
7838 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7839 INIT_LIST_HEAD(array
->queue
+ i
);
7840 __clear_bit(i
, array
->bitmap
);
7842 /* delimiter for bitsearch: */
7843 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7845 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7846 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7848 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7852 rt_rq
->rt_nr_migratory
= 0;
7853 rt_rq
->overloaded
= 0;
7854 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7858 rt_rq
->rt_throttled
= 0;
7859 rt_rq
->rt_runtime
= 0;
7860 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7862 #ifdef CONFIG_RT_GROUP_SCHED
7863 rt_rq
->rt_nr_boosted
= 0;
7868 #ifdef CONFIG_FAIR_GROUP_SCHED
7869 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7870 struct sched_entity
*se
, int cpu
, int add
,
7871 struct sched_entity
*parent
)
7873 struct rq
*rq
= cpu_rq(cpu
);
7874 tg
->cfs_rq
[cpu
] = cfs_rq
;
7875 init_cfs_rq(cfs_rq
, rq
);
7878 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7881 /* se could be NULL for init_task_group */
7886 se
->cfs_rq
= &rq
->cfs
;
7888 se
->cfs_rq
= parent
->my_q
;
7891 se
->load
.weight
= tg
->shares
;
7892 se
->load
.inv_weight
= 0;
7893 se
->parent
= parent
;
7897 #ifdef CONFIG_RT_GROUP_SCHED
7898 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7899 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7900 struct sched_rt_entity
*parent
)
7902 struct rq
*rq
= cpu_rq(cpu
);
7904 tg
->rt_rq
[cpu
] = rt_rq
;
7905 init_rt_rq(rt_rq
, rq
);
7907 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7909 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7911 tg
->rt_se
[cpu
] = rt_se
;
7916 rt_se
->rt_rq
= &rq
->rt
;
7918 rt_se
->rt_rq
= parent
->my_q
;
7920 rt_se
->my_q
= rt_rq
;
7921 rt_se
->parent
= parent
;
7922 INIT_LIST_HEAD(&rt_se
->run_list
);
7926 void __init
sched_init(void)
7929 unsigned long alloc_size
= 0, ptr
;
7931 #ifdef CONFIG_FAIR_GROUP_SCHED
7932 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7934 #ifdef CONFIG_RT_GROUP_SCHED
7935 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7937 #ifdef CONFIG_CPUMASK_OFFSTACK
7938 alloc_size
+= num_possible_cpus() * cpumask_size();
7941 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 init_task_group
.se
= (struct sched_entity
**)ptr
;
7945 ptr
+= nr_cpu_ids
* sizeof(void **);
7947 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7948 ptr
+= nr_cpu_ids
* sizeof(void **);
7950 #endif /* CONFIG_FAIR_GROUP_SCHED */
7951 #ifdef CONFIG_RT_GROUP_SCHED
7952 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7953 ptr
+= nr_cpu_ids
* sizeof(void **);
7955 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7956 ptr
+= nr_cpu_ids
* sizeof(void **);
7958 #endif /* CONFIG_RT_GROUP_SCHED */
7959 #ifdef CONFIG_CPUMASK_OFFSTACK
7960 for_each_possible_cpu(i
) {
7961 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7962 ptr
+= cpumask_size();
7964 #endif /* CONFIG_CPUMASK_OFFSTACK */
7968 init_defrootdomain();
7971 init_rt_bandwidth(&def_rt_bandwidth
,
7972 global_rt_period(), global_rt_runtime());
7974 #ifdef CONFIG_RT_GROUP_SCHED
7975 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7976 global_rt_period(), global_rt_runtime());
7977 #endif /* CONFIG_RT_GROUP_SCHED */
7979 #ifdef CONFIG_CGROUP_SCHED
7980 list_add(&init_task_group
.list
, &task_groups
);
7981 INIT_LIST_HEAD(&init_task_group
.children
);
7983 #endif /* CONFIG_CGROUP_SCHED */
7985 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7986 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7987 __alignof__(unsigned long));
7989 for_each_possible_cpu(i
) {
7993 raw_spin_lock_init(&rq
->lock
);
7995 rq
->calc_load_active
= 0;
7996 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7997 init_cfs_rq(&rq
->cfs
, rq
);
7998 init_rt_rq(&rq
->rt
, rq
);
7999 #ifdef CONFIG_FAIR_GROUP_SCHED
8000 init_task_group
.shares
= init_task_group_load
;
8001 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8002 #ifdef CONFIG_CGROUP_SCHED
8004 * How much cpu bandwidth does init_task_group get?
8006 * In case of task-groups formed thr' the cgroup filesystem, it
8007 * gets 100% of the cpu resources in the system. This overall
8008 * system cpu resource is divided among the tasks of
8009 * init_task_group and its child task-groups in a fair manner,
8010 * based on each entity's (task or task-group's) weight
8011 * (se->load.weight).
8013 * In other words, if init_task_group has 10 tasks of weight
8014 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8015 * then A0's share of the cpu resource is:
8017 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8019 * We achieve this by letting init_task_group's tasks sit
8020 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8022 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8024 #endif /* CONFIG_FAIR_GROUP_SCHED */
8026 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8027 #ifdef CONFIG_RT_GROUP_SCHED
8028 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8029 #ifdef CONFIG_CGROUP_SCHED
8030 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8034 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8035 rq
->cpu_load
[j
] = 0;
8037 rq
->last_load_update_tick
= jiffies
;
8042 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8043 rq
->post_schedule
= 0;
8044 rq
->active_balance
= 0;
8045 rq
->next_balance
= jiffies
;
8050 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8051 rq_attach_root(rq
, &def_root_domain
);
8053 rq
->nohz_balance_kick
= 0;
8054 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8058 atomic_set(&rq
->nr_iowait
, 0);
8061 set_load_weight(&init_task
);
8063 #ifdef CONFIG_PREEMPT_NOTIFIERS
8064 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8068 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8071 #ifdef CONFIG_RT_MUTEXES
8072 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8076 * The boot idle thread does lazy MMU switching as well:
8078 atomic_inc(&init_mm
.mm_count
);
8079 enter_lazy_tlb(&init_mm
, current
);
8082 * Make us the idle thread. Technically, schedule() should not be
8083 * called from this thread, however somewhere below it might be,
8084 * but because we are the idle thread, we just pick up running again
8085 * when this runqueue becomes "idle".
8087 init_idle(current
, smp_processor_id());
8089 calc_load_update
= jiffies
+ LOAD_FREQ
;
8092 * During early bootup we pretend to be a normal task:
8094 current
->sched_class
= &fair_sched_class
;
8096 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8097 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8100 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8101 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8102 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8103 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8104 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8106 /* May be allocated at isolcpus cmdline parse time */
8107 if (cpu_isolated_map
== NULL
)
8108 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8113 scheduler_running
= 1;
8116 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8117 static inline int preempt_count_equals(int preempt_offset
)
8119 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8121 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
8124 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8127 static unsigned long prev_jiffy
; /* ratelimiting */
8129 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8130 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8132 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8134 prev_jiffy
= jiffies
;
8137 "BUG: sleeping function called from invalid context at %s:%d\n",
8140 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8141 in_atomic(), irqs_disabled(),
8142 current
->pid
, current
->comm
);
8144 debug_show_held_locks(current
);
8145 if (irqs_disabled())
8146 print_irqtrace_events(current
);
8150 EXPORT_SYMBOL(__might_sleep
);
8153 #ifdef CONFIG_MAGIC_SYSRQ
8154 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8158 on_rq
= p
->se
.on_rq
;
8160 deactivate_task(rq
, p
, 0);
8161 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8163 activate_task(rq
, p
, 0);
8164 resched_task(rq
->curr
);
8168 void normalize_rt_tasks(void)
8170 struct task_struct
*g
, *p
;
8171 unsigned long flags
;
8174 read_lock_irqsave(&tasklist_lock
, flags
);
8175 do_each_thread(g
, p
) {
8177 * Only normalize user tasks:
8182 p
->se
.exec_start
= 0;
8183 #ifdef CONFIG_SCHEDSTATS
8184 p
->se
.statistics
.wait_start
= 0;
8185 p
->se
.statistics
.sleep_start
= 0;
8186 p
->se
.statistics
.block_start
= 0;
8191 * Renice negative nice level userspace
8194 if (TASK_NICE(p
) < 0 && p
->mm
)
8195 set_user_nice(p
, 0);
8199 raw_spin_lock(&p
->pi_lock
);
8200 rq
= __task_rq_lock(p
);
8202 normalize_task(rq
, p
);
8204 __task_rq_unlock(rq
);
8205 raw_spin_unlock(&p
->pi_lock
);
8206 } while_each_thread(g
, p
);
8208 read_unlock_irqrestore(&tasklist_lock
, flags
);
8211 #endif /* CONFIG_MAGIC_SYSRQ */
8213 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8215 * These functions are only useful for the IA64 MCA handling, or kdb.
8217 * They can only be called when the whole system has been
8218 * stopped - every CPU needs to be quiescent, and no scheduling
8219 * activity can take place. Using them for anything else would
8220 * be a serious bug, and as a result, they aren't even visible
8221 * under any other configuration.
8225 * curr_task - return the current task for a given cpu.
8226 * @cpu: the processor in question.
8228 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8230 struct task_struct
*curr_task(int cpu
)
8232 return cpu_curr(cpu
);
8235 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8239 * set_curr_task - set the current task for a given cpu.
8240 * @cpu: the processor in question.
8241 * @p: the task pointer to set.
8243 * Description: This function must only be used when non-maskable interrupts
8244 * are serviced on a separate stack. It allows the architecture to switch the
8245 * notion of the current task on a cpu in a non-blocking manner. This function
8246 * must be called with all CPU's synchronized, and interrupts disabled, the
8247 * and caller must save the original value of the current task (see
8248 * curr_task() above) and restore that value before reenabling interrupts and
8249 * re-starting the system.
8251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8253 void set_curr_task(int cpu
, struct task_struct
*p
)
8260 #ifdef CONFIG_FAIR_GROUP_SCHED
8261 static void free_fair_sched_group(struct task_group
*tg
)
8265 for_each_possible_cpu(i
) {
8267 kfree(tg
->cfs_rq
[i
]);
8277 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8279 struct cfs_rq
*cfs_rq
;
8280 struct sched_entity
*se
;
8284 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8287 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8291 tg
->shares
= NICE_0_LOAD
;
8293 for_each_possible_cpu(i
) {
8296 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8297 GFP_KERNEL
, cpu_to_node(i
));
8301 se
= kzalloc_node(sizeof(struct sched_entity
),
8302 GFP_KERNEL
, cpu_to_node(i
));
8306 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8317 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8319 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8320 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8323 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8325 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8327 #else /* !CONFG_FAIR_GROUP_SCHED */
8328 static inline void free_fair_sched_group(struct task_group
*tg
)
8333 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8338 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8342 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8345 #endif /* CONFIG_FAIR_GROUP_SCHED */
8347 #ifdef CONFIG_RT_GROUP_SCHED
8348 static void free_rt_sched_group(struct task_group
*tg
)
8352 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8354 for_each_possible_cpu(i
) {
8356 kfree(tg
->rt_rq
[i
]);
8358 kfree(tg
->rt_se
[i
]);
8366 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8368 struct rt_rq
*rt_rq
;
8369 struct sched_rt_entity
*rt_se
;
8373 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8376 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8380 init_rt_bandwidth(&tg
->rt_bandwidth
,
8381 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8383 for_each_possible_cpu(i
) {
8386 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8387 GFP_KERNEL
, cpu_to_node(i
));
8391 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8392 GFP_KERNEL
, cpu_to_node(i
));
8396 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8407 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8409 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8410 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8413 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8415 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8417 #else /* !CONFIG_RT_GROUP_SCHED */
8418 static inline void free_rt_sched_group(struct task_group
*tg
)
8423 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8428 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8432 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8435 #endif /* CONFIG_RT_GROUP_SCHED */
8437 #ifdef CONFIG_CGROUP_SCHED
8438 static void free_sched_group(struct task_group
*tg
)
8440 free_fair_sched_group(tg
);
8441 free_rt_sched_group(tg
);
8445 /* allocate runqueue etc for a new task group */
8446 struct task_group
*sched_create_group(struct task_group
*parent
)
8448 struct task_group
*tg
;
8449 unsigned long flags
;
8452 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8454 return ERR_PTR(-ENOMEM
);
8456 if (!alloc_fair_sched_group(tg
, parent
))
8459 if (!alloc_rt_sched_group(tg
, parent
))
8462 spin_lock_irqsave(&task_group_lock
, flags
);
8463 for_each_possible_cpu(i
) {
8464 register_fair_sched_group(tg
, i
);
8465 register_rt_sched_group(tg
, i
);
8467 list_add_rcu(&tg
->list
, &task_groups
);
8469 WARN_ON(!parent
); /* root should already exist */
8471 tg
->parent
= parent
;
8472 INIT_LIST_HEAD(&tg
->children
);
8473 list_add_rcu(&tg
->siblings
, &parent
->children
);
8474 spin_unlock_irqrestore(&task_group_lock
, flags
);
8479 free_sched_group(tg
);
8480 return ERR_PTR(-ENOMEM
);
8483 /* rcu callback to free various structures associated with a task group */
8484 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8486 /* now it should be safe to free those cfs_rqs */
8487 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8490 /* Destroy runqueue etc associated with a task group */
8491 void sched_destroy_group(struct task_group
*tg
)
8493 unsigned long flags
;
8496 spin_lock_irqsave(&task_group_lock
, flags
);
8497 for_each_possible_cpu(i
) {
8498 unregister_fair_sched_group(tg
, i
);
8499 unregister_rt_sched_group(tg
, i
);
8501 list_del_rcu(&tg
->list
);
8502 list_del_rcu(&tg
->siblings
);
8503 spin_unlock_irqrestore(&task_group_lock
, flags
);
8505 /* wait for possible concurrent references to cfs_rqs complete */
8506 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8509 /* change task's runqueue when it moves between groups.
8510 * The caller of this function should have put the task in its new group
8511 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8512 * reflect its new group.
8514 void sched_move_task(struct task_struct
*tsk
)
8517 unsigned long flags
;
8520 rq
= task_rq_lock(tsk
, &flags
);
8522 running
= task_current(rq
, tsk
);
8523 on_rq
= tsk
->se
.on_rq
;
8526 dequeue_task(rq
, tsk
, 0);
8527 if (unlikely(running
))
8528 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8530 #ifdef CONFIG_FAIR_GROUP_SCHED
8531 if (tsk
->sched_class
->task_move_group
)
8532 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8535 set_task_rq(tsk
, task_cpu(tsk
));
8537 if (unlikely(running
))
8538 tsk
->sched_class
->set_curr_task(rq
);
8540 enqueue_task(rq
, tsk
, 0);
8542 task_rq_unlock(rq
, &flags
);
8544 #endif /* CONFIG_CGROUP_SCHED */
8546 #ifdef CONFIG_FAIR_GROUP_SCHED
8547 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8549 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8554 dequeue_entity(cfs_rq
, se
, 0);
8556 se
->load
.weight
= shares
;
8557 se
->load
.inv_weight
= 0;
8560 enqueue_entity(cfs_rq
, se
, 0);
8563 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8565 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8566 struct rq
*rq
= cfs_rq
->rq
;
8567 unsigned long flags
;
8569 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8570 __set_se_shares(se
, shares
);
8571 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8574 static DEFINE_MUTEX(shares_mutex
);
8576 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8579 unsigned long flags
;
8582 * We can't change the weight of the root cgroup.
8587 if (shares
< MIN_SHARES
)
8588 shares
= MIN_SHARES
;
8589 else if (shares
> MAX_SHARES
)
8590 shares
= MAX_SHARES
;
8592 mutex_lock(&shares_mutex
);
8593 if (tg
->shares
== shares
)
8596 spin_lock_irqsave(&task_group_lock
, flags
);
8597 for_each_possible_cpu(i
)
8598 unregister_fair_sched_group(tg
, i
);
8599 list_del_rcu(&tg
->siblings
);
8600 spin_unlock_irqrestore(&task_group_lock
, flags
);
8602 /* wait for any ongoing reference to this group to finish */
8603 synchronize_sched();
8606 * Now we are free to modify the group's share on each cpu
8607 * w/o tripping rebalance_share or load_balance_fair.
8609 tg
->shares
= shares
;
8610 for_each_possible_cpu(i
) {
8614 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8615 set_se_shares(tg
->se
[i
], shares
);
8619 * Enable load balance activity on this group, by inserting it back on
8620 * each cpu's rq->leaf_cfs_rq_list.
8622 spin_lock_irqsave(&task_group_lock
, flags
);
8623 for_each_possible_cpu(i
)
8624 register_fair_sched_group(tg
, i
);
8625 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8626 spin_unlock_irqrestore(&task_group_lock
, flags
);
8628 mutex_unlock(&shares_mutex
);
8632 unsigned long sched_group_shares(struct task_group
*tg
)
8638 #ifdef CONFIG_RT_GROUP_SCHED
8640 * Ensure that the real time constraints are schedulable.
8642 static DEFINE_MUTEX(rt_constraints_mutex
);
8644 static unsigned long to_ratio(u64 period
, u64 runtime
)
8646 if (runtime
== RUNTIME_INF
)
8649 return div64_u64(runtime
<< 20, period
);
8652 /* Must be called with tasklist_lock held */
8653 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8655 struct task_struct
*g
, *p
;
8657 do_each_thread(g
, p
) {
8658 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8660 } while_each_thread(g
, p
);
8665 struct rt_schedulable_data
{
8666 struct task_group
*tg
;
8671 static int tg_schedulable(struct task_group
*tg
, void *data
)
8673 struct rt_schedulable_data
*d
= data
;
8674 struct task_group
*child
;
8675 unsigned long total
, sum
= 0;
8676 u64 period
, runtime
;
8678 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8679 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8682 period
= d
->rt_period
;
8683 runtime
= d
->rt_runtime
;
8687 * Cannot have more runtime than the period.
8689 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8693 * Ensure we don't starve existing RT tasks.
8695 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8698 total
= to_ratio(period
, runtime
);
8701 * Nobody can have more than the global setting allows.
8703 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8707 * The sum of our children's runtime should not exceed our own.
8709 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8710 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8711 runtime
= child
->rt_bandwidth
.rt_runtime
;
8713 if (child
== d
->tg
) {
8714 period
= d
->rt_period
;
8715 runtime
= d
->rt_runtime
;
8718 sum
+= to_ratio(period
, runtime
);
8727 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8729 struct rt_schedulable_data data
= {
8731 .rt_period
= period
,
8732 .rt_runtime
= runtime
,
8735 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8738 static int tg_set_bandwidth(struct task_group
*tg
,
8739 u64 rt_period
, u64 rt_runtime
)
8743 mutex_lock(&rt_constraints_mutex
);
8744 read_lock(&tasklist_lock
);
8745 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8749 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8750 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8751 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8753 for_each_possible_cpu(i
) {
8754 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8756 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8757 rt_rq
->rt_runtime
= rt_runtime
;
8758 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8760 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8762 read_unlock(&tasklist_lock
);
8763 mutex_unlock(&rt_constraints_mutex
);
8768 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8770 u64 rt_runtime
, rt_period
;
8772 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8773 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8774 if (rt_runtime_us
< 0)
8775 rt_runtime
= RUNTIME_INF
;
8777 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8780 long sched_group_rt_runtime(struct task_group
*tg
)
8784 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8787 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8788 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8789 return rt_runtime_us
;
8792 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8794 u64 rt_runtime
, rt_period
;
8796 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8797 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8802 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8805 long sched_group_rt_period(struct task_group
*tg
)
8809 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8810 do_div(rt_period_us
, NSEC_PER_USEC
);
8811 return rt_period_us
;
8814 static int sched_rt_global_constraints(void)
8816 u64 runtime
, period
;
8819 if (sysctl_sched_rt_period
<= 0)
8822 runtime
= global_rt_runtime();
8823 period
= global_rt_period();
8826 * Sanity check on the sysctl variables.
8828 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8831 mutex_lock(&rt_constraints_mutex
);
8832 read_lock(&tasklist_lock
);
8833 ret
= __rt_schedulable(NULL
, 0, 0);
8834 read_unlock(&tasklist_lock
);
8835 mutex_unlock(&rt_constraints_mutex
);
8840 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8842 /* Don't accept realtime tasks when there is no way for them to run */
8843 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8849 #else /* !CONFIG_RT_GROUP_SCHED */
8850 static int sched_rt_global_constraints(void)
8852 unsigned long flags
;
8855 if (sysctl_sched_rt_period
<= 0)
8859 * There's always some RT tasks in the root group
8860 * -- migration, kstopmachine etc..
8862 if (sysctl_sched_rt_runtime
== 0)
8865 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8866 for_each_possible_cpu(i
) {
8867 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8869 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8870 rt_rq
->rt_runtime
= global_rt_runtime();
8871 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8873 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8877 #endif /* CONFIG_RT_GROUP_SCHED */
8879 int sched_rt_handler(struct ctl_table
*table
, int write
,
8880 void __user
*buffer
, size_t *lenp
,
8884 int old_period
, old_runtime
;
8885 static DEFINE_MUTEX(mutex
);
8888 old_period
= sysctl_sched_rt_period
;
8889 old_runtime
= sysctl_sched_rt_runtime
;
8891 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8893 if (!ret
&& write
) {
8894 ret
= sched_rt_global_constraints();
8896 sysctl_sched_rt_period
= old_period
;
8897 sysctl_sched_rt_runtime
= old_runtime
;
8899 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8900 def_rt_bandwidth
.rt_period
=
8901 ns_to_ktime(global_rt_period());
8904 mutex_unlock(&mutex
);
8909 #ifdef CONFIG_CGROUP_SCHED
8911 /* return corresponding task_group object of a cgroup */
8912 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8914 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8915 struct task_group
, css
);
8918 static struct cgroup_subsys_state
*
8919 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8921 struct task_group
*tg
, *parent
;
8923 if (!cgrp
->parent
) {
8924 /* This is early initialization for the top cgroup */
8925 return &init_task_group
.css
;
8928 parent
= cgroup_tg(cgrp
->parent
);
8929 tg
= sched_create_group(parent
);
8931 return ERR_PTR(-ENOMEM
);
8937 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8939 struct task_group
*tg
= cgroup_tg(cgrp
);
8941 sched_destroy_group(tg
);
8945 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8947 #ifdef CONFIG_RT_GROUP_SCHED
8948 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8951 /* We don't support RT-tasks being in separate groups */
8952 if (tsk
->sched_class
!= &fair_sched_class
)
8959 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8960 struct task_struct
*tsk
, bool threadgroup
)
8962 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8966 struct task_struct
*c
;
8968 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8969 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8981 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8982 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8985 sched_move_task(tsk
);
8987 struct task_struct
*c
;
8989 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8996 #ifdef CONFIG_FAIR_GROUP_SCHED
8997 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9000 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9003 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9005 struct task_group
*tg
= cgroup_tg(cgrp
);
9007 return (u64
) tg
->shares
;
9009 #endif /* CONFIG_FAIR_GROUP_SCHED */
9011 #ifdef CONFIG_RT_GROUP_SCHED
9012 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9015 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9018 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9020 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9023 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9026 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9029 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9031 return sched_group_rt_period(cgroup_tg(cgrp
));
9033 #endif /* CONFIG_RT_GROUP_SCHED */
9035 static struct cftype cpu_files
[] = {
9036 #ifdef CONFIG_FAIR_GROUP_SCHED
9039 .read_u64
= cpu_shares_read_u64
,
9040 .write_u64
= cpu_shares_write_u64
,
9043 #ifdef CONFIG_RT_GROUP_SCHED
9045 .name
= "rt_runtime_us",
9046 .read_s64
= cpu_rt_runtime_read
,
9047 .write_s64
= cpu_rt_runtime_write
,
9050 .name
= "rt_period_us",
9051 .read_u64
= cpu_rt_period_read_uint
,
9052 .write_u64
= cpu_rt_period_write_uint
,
9057 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9059 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9062 struct cgroup_subsys cpu_cgroup_subsys
= {
9064 .create
= cpu_cgroup_create
,
9065 .destroy
= cpu_cgroup_destroy
,
9066 .can_attach
= cpu_cgroup_can_attach
,
9067 .attach
= cpu_cgroup_attach
,
9068 .populate
= cpu_cgroup_populate
,
9069 .subsys_id
= cpu_cgroup_subsys_id
,
9073 #endif /* CONFIG_CGROUP_SCHED */
9075 #ifdef CONFIG_CGROUP_CPUACCT
9078 * CPU accounting code for task groups.
9080 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9081 * (balbir@in.ibm.com).
9084 /* track cpu usage of a group of tasks and its child groups */
9086 struct cgroup_subsys_state css
;
9087 /* cpuusage holds pointer to a u64-type object on every cpu */
9088 u64 __percpu
*cpuusage
;
9089 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9090 struct cpuacct
*parent
;
9093 struct cgroup_subsys cpuacct_subsys
;
9095 /* return cpu accounting group corresponding to this container */
9096 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9098 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9099 struct cpuacct
, css
);
9102 /* return cpu accounting group to which this task belongs */
9103 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9105 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9106 struct cpuacct
, css
);
9109 /* create a new cpu accounting group */
9110 static struct cgroup_subsys_state
*cpuacct_create(
9111 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9113 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9119 ca
->cpuusage
= alloc_percpu(u64
);
9123 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9124 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9125 goto out_free_counters
;
9128 ca
->parent
= cgroup_ca(cgrp
->parent
);
9134 percpu_counter_destroy(&ca
->cpustat
[i
]);
9135 free_percpu(ca
->cpuusage
);
9139 return ERR_PTR(-ENOMEM
);
9142 /* destroy an existing cpu accounting group */
9144 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9146 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9149 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9150 percpu_counter_destroy(&ca
->cpustat
[i
]);
9151 free_percpu(ca
->cpuusage
);
9155 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9157 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9160 #ifndef CONFIG_64BIT
9162 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9164 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9166 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9174 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9176 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9178 #ifndef CONFIG_64BIT
9180 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9182 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9184 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9190 /* return total cpu usage (in nanoseconds) of a group */
9191 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9193 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9194 u64 totalcpuusage
= 0;
9197 for_each_present_cpu(i
)
9198 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9200 return totalcpuusage
;
9203 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9206 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9215 for_each_present_cpu(i
)
9216 cpuacct_cpuusage_write(ca
, i
, 0);
9222 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9225 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9229 for_each_present_cpu(i
) {
9230 percpu
= cpuacct_cpuusage_read(ca
, i
);
9231 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9233 seq_printf(m
, "\n");
9237 static const char *cpuacct_stat_desc
[] = {
9238 [CPUACCT_STAT_USER
] = "user",
9239 [CPUACCT_STAT_SYSTEM
] = "system",
9242 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9243 struct cgroup_map_cb
*cb
)
9245 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9248 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9249 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9250 val
= cputime64_to_clock_t(val
);
9251 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9256 static struct cftype files
[] = {
9259 .read_u64
= cpuusage_read
,
9260 .write_u64
= cpuusage_write
,
9263 .name
= "usage_percpu",
9264 .read_seq_string
= cpuacct_percpu_seq_read
,
9268 .read_map
= cpuacct_stats_show
,
9272 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9274 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9278 * charge this task's execution time to its accounting group.
9280 * called with rq->lock held.
9282 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9287 if (unlikely(!cpuacct_subsys
.active
))
9290 cpu
= task_cpu(tsk
);
9296 for (; ca
; ca
= ca
->parent
) {
9297 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9298 *cpuusage
+= cputime
;
9305 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9306 * in cputime_t units. As a result, cpuacct_update_stats calls
9307 * percpu_counter_add with values large enough to always overflow the
9308 * per cpu batch limit causing bad SMP scalability.
9310 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9311 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9312 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9315 #define CPUACCT_BATCH \
9316 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9318 #define CPUACCT_BATCH 0
9322 * Charge the system/user time to the task's accounting group.
9324 static void cpuacct_update_stats(struct task_struct
*tsk
,
9325 enum cpuacct_stat_index idx
, cputime_t val
)
9328 int batch
= CPUACCT_BATCH
;
9330 if (unlikely(!cpuacct_subsys
.active
))
9337 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9343 struct cgroup_subsys cpuacct_subsys
= {
9345 .create
= cpuacct_create
,
9346 .destroy
= cpuacct_destroy
,
9347 .populate
= cpuacct_populate
,
9348 .subsys_id
= cpuacct_subsys_id
,
9350 #endif /* CONFIG_CGROUP_CPUACCT */
9354 void synchronize_sched_expedited(void)
9358 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9360 #else /* #ifndef CONFIG_SMP */
9362 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
9364 static int synchronize_sched_expedited_cpu_stop(void *data
)
9367 * There must be a full memory barrier on each affected CPU
9368 * between the time that try_stop_cpus() is called and the
9369 * time that it returns.
9371 * In the current initial implementation of cpu_stop, the
9372 * above condition is already met when the control reaches
9373 * this point and the following smp_mb() is not strictly
9374 * necessary. Do smp_mb() anyway for documentation and
9375 * robustness against future implementation changes.
9377 smp_mb(); /* See above comment block. */
9382 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9383 * approach to force grace period to end quickly. This consumes
9384 * significant time on all CPUs, and is thus not recommended for
9385 * any sort of common-case code.
9387 * Note that it is illegal to call this function while holding any
9388 * lock that is acquired by a CPU-hotplug notifier. Failing to
9389 * observe this restriction will result in deadlock.
9391 void synchronize_sched_expedited(void)
9393 int snap
, trycount
= 0;
9395 smp_mb(); /* ensure prior mod happens before capturing snap. */
9396 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
9398 while (try_stop_cpus(cpu_online_mask
,
9399 synchronize_sched_expedited_cpu_stop
,
9402 if (trycount
++ < 10)
9403 udelay(trycount
* num_online_cpus());
9405 synchronize_sched();
9408 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
9409 smp_mb(); /* ensure test happens before caller kfree */
9414 atomic_inc(&synchronize_sched_expedited_count
);
9415 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9418 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9420 #endif /* #else #ifndef CONFIG_SMP */