2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
23 ____cacheline_internodealigned_in_smp
;
25 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
26 ____cacheline_internodealigned_in_smp
;
28 EXPORT_SYMBOL(mem_section
);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 int page_to_nid(struct page
*page
)
44 return section_to_node_table
[page_to_section(page
)];
46 EXPORT_SYMBOL(page_to_nid
);
48 static void set_section_nid(unsigned long section_nr
, int nid
)
50 section_to_node_table
[section_nr
] = nid
;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr
, int nid
)
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
61 struct mem_section
*section
= NULL
;
62 unsigned long array_size
= SECTIONS_PER_ROOT
*
63 sizeof(struct mem_section
);
65 if (slab_is_available()) {
66 if (node_state(nid
, N_HIGH_MEMORY
))
67 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
69 section
= kmalloc(array_size
, GFP_KERNEL
);
71 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
74 memset(section
, 0, array_size
);
79 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
81 static DEFINE_SPINLOCK(index_init_lock
);
82 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
83 struct mem_section
*section
;
86 if (mem_section
[root
])
89 section
= sparse_index_alloc(nid
);
93 * This lock keeps two different sections from
94 * reallocating for the same index
96 spin_lock(&index_init_lock
);
98 if (mem_section
[root
]) {
103 mem_section
[root
] = section
;
105 spin_unlock(&index_init_lock
);
108 #else /* !SPARSEMEM_EXTREME */
109 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
116 * Although written for the SPARSEMEM_EXTREME case, this happens
117 * to also work for the flat array case because
118 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 int __section_nr(struct mem_section
* ms
)
122 unsigned long root_nr
;
123 struct mem_section
* root
;
125 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
126 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
130 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
134 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
143 static inline unsigned long sparse_encode_early_nid(int nid
)
145 return (nid
<< SECTION_NID_SHIFT
);
148 static inline int sparse_early_nid(struct mem_section
*section
)
150 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
153 /* Validate the physical addressing limitations of the model */
154 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
155 unsigned long *end_pfn
)
157 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
163 if (*start_pfn
> max_sparsemem_pfn
) {
164 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
168 *start_pfn
= max_sparsemem_pfn
;
169 *end_pfn
= max_sparsemem_pfn
;
170 } else if (*end_pfn
> max_sparsemem_pfn
) {
171 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
175 *end_pfn
= max_sparsemem_pfn
;
179 /* Record a memory area against a node. */
180 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
184 start
&= PAGE_SECTION_MASK
;
185 mminit_validate_memmodel_limits(&start
, &end
);
186 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
187 unsigned long section
= pfn_to_section_nr(pfn
);
188 struct mem_section
*ms
;
190 sparse_index_init(section
, nid
);
191 set_section_nid(section
, nid
);
193 ms
= __nr_to_section(section
);
194 if (!ms
->section_mem_map
)
195 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
196 SECTION_MARKED_PRESENT
;
201 * Only used by the i386 NUMA architecures, but relatively
204 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
205 unsigned long end_pfn
)
208 unsigned long nr_pages
= 0;
210 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
211 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
212 if (nid
!= early_pfn_to_nid(pfn
))
215 if (pfn_present(pfn
))
216 nr_pages
+= PAGES_PER_SECTION
;
219 return nr_pages
* sizeof(struct page
);
223 * Subtle, we encode the real pfn into the mem_map such that
224 * the identity pfn - section_mem_map will return the actual
225 * physical page frame number.
227 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
229 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
233 * Decode mem_map from the coded memmap
235 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
237 /* mask off the extra low bits of information */
238 coded_mem_map
&= SECTION_MAP_MASK
;
239 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
242 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
243 unsigned long pnum
, struct page
*mem_map
,
244 unsigned long *pageblock_bitmap
)
246 if (!present_section(ms
))
249 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
250 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
252 ms
->pageblock_flags
= pageblock_bitmap
;
257 unsigned long usemap_size(void)
259 unsigned long size_bytes
;
260 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
261 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static unsigned long *__kmalloc_section_usemap(void)
268 return kmalloc(usemap_size(), GFP_KERNEL
);
270 #endif /* CONFIG_MEMORY_HOTPLUG */
272 #ifdef CONFIG_MEMORY_HOTREMOVE
273 static unsigned long * __init
274 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
277 unsigned long section_nr
;
280 * A page may contain usemaps for other sections preventing the
281 * page being freed and making a section unremovable while
282 * other sections referencing the usemap retmain active. Similarly,
283 * a pgdat can prevent a section being removed. If section A
284 * contains a pgdat and section B contains the usemap, both
285 * sections become inter-dependent. This allocates usemaps
286 * from the same section as the pgdat where possible to avoid
289 section_nr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
290 return alloc_bootmem_section(usemap_size() * count
, section_nr
);
293 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
295 unsigned long usemap_snr
, pgdat_snr
;
296 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
297 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
298 struct pglist_data
*pgdat
= NODE_DATA(nid
);
301 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
302 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
303 if (usemap_snr
== pgdat_snr
)
306 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
307 /* skip redundant message */
310 old_usemap_snr
= usemap_snr
;
311 old_pgdat_snr
= pgdat_snr
;
313 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
314 if (usemap_nid
!= nid
) {
316 "node %d must be removed before remove section %ld\n",
321 * There is a circular dependency.
322 * Some platforms allow un-removable section because they will just
323 * gather other removable sections for dynamic partitioning.
324 * Just notify un-removable section's number here.
326 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
329 " have a circular dependency on usemap and pgdat allocations\n");
332 static unsigned long * __init
333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
339 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
342 #endif /* CONFIG_MEMORY_HOTREMOVE */
344 static void __init
sparse_early_usemaps_alloc_node(unsigned long**usemap_map
,
345 unsigned long pnum_begin
,
346 unsigned long pnum_end
,
347 unsigned long usemap_count
, int nodeid
)
351 int size
= usemap_size();
353 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
356 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
357 if (!present_section_nr(pnum
))
359 usemap_map
[pnum
] = usemap
;
365 usemap
= alloc_bootmem_node(NODE_DATA(nodeid
), size
* usemap_count
);
367 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
368 if (!present_section_nr(pnum
))
370 usemap_map
[pnum
] = usemap
;
372 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
377 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
380 #ifndef CONFIG_SPARSEMEM_VMEMMAP
381 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
385 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
389 map
= alloc_bootmem_pages_node(NODE_DATA(nid
),
390 PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
));
393 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
394 unsigned long pnum_begin
,
395 unsigned long pnum_end
,
396 unsigned long map_count
, int nodeid
)
400 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
402 map
= alloc_remap(nodeid
, size
* map_count
);
404 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
405 if (!present_section_nr(pnum
))
413 size
= PAGE_ALIGN(size
);
414 map
= alloc_bootmem_pages_node(NODE_DATA(nodeid
), size
* map_count
);
416 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
417 if (!present_section_nr(pnum
))
426 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
427 struct mem_section
*ms
;
429 if (!present_section_nr(pnum
))
431 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
434 ms
= __nr_to_section(pnum
);
435 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
436 "some memory will not be available.\n", __func__
);
437 ms
->section_mem_map
= 0;
440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
442 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
443 static void __init
sparse_early_mem_maps_alloc_node(struct page
**map_map
,
444 unsigned long pnum_begin
,
445 unsigned long pnum_end
,
446 unsigned long map_count
, int nodeid
)
448 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
452 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
455 struct mem_section
*ms
= __nr_to_section(pnum
);
456 int nid
= sparse_early_nid(ms
);
458 map
= sparse_mem_map_populate(pnum
, nid
);
462 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
463 "some memory will not be available.\n", __func__
);
464 ms
->section_mem_map
= 0;
469 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
474 * Allocate the accumulated non-linear sections, allocate a mem_map
475 * for each and record the physical to section mapping.
477 void __init
sparse_init(void)
481 unsigned long *usemap
;
482 unsigned long **usemap_map
;
484 int nodeid_begin
= 0;
485 unsigned long pnum_begin
= 0;
486 unsigned long usemap_count
;
487 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
488 unsigned long map_count
;
490 struct page
**map_map
;
494 * map is using big page (aka 2M in x86 64 bit)
495 * usemap is less one page (aka 24 bytes)
496 * so alloc 2M (with 2M align) and 24 bytes in turn will
497 * make next 2M slip to one more 2M later.
498 * then in big system, the memory will have a lot of holes...
499 * here try to allocate 2M pages continously.
501 * powerpc need to call sparse_init_one_section right after each
502 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
504 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
505 usemap_map
= alloc_bootmem(size
);
507 panic("can not allocate usemap_map\n");
509 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
510 struct mem_section
*ms
;
512 if (!present_section_nr(pnum
))
514 ms
= __nr_to_section(pnum
);
515 nodeid_begin
= sparse_early_nid(ms
);
520 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
521 struct mem_section
*ms
;
524 if (!present_section_nr(pnum
))
526 ms
= __nr_to_section(pnum
);
527 nodeid
= sparse_early_nid(ms
);
528 if (nodeid
== nodeid_begin
) {
532 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
533 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, pnum
,
534 usemap_count
, nodeid_begin
);
535 /* new start, update count etc*/
536 nodeid_begin
= nodeid
;
541 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, NR_MEM_SECTIONS
,
542 usemap_count
, nodeid_begin
);
544 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
545 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
546 map_map
= alloc_bootmem(size2
);
548 panic("can not allocate map_map\n");
550 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
551 struct mem_section
*ms
;
553 if (!present_section_nr(pnum
))
555 ms
= __nr_to_section(pnum
);
556 nodeid_begin
= sparse_early_nid(ms
);
561 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
562 struct mem_section
*ms
;
565 if (!present_section_nr(pnum
))
567 ms
= __nr_to_section(pnum
);
568 nodeid
= sparse_early_nid(ms
);
569 if (nodeid
== nodeid_begin
) {
573 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
574 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, pnum
,
575 map_count
, nodeid_begin
);
576 /* new start, update count etc*/
577 nodeid_begin
= nodeid
;
582 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, NR_MEM_SECTIONS
,
583 map_count
, nodeid_begin
);
586 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
587 if (!present_section_nr(pnum
))
590 usemap
= usemap_map
[pnum
];
594 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
597 map
= sparse_early_mem_map_alloc(pnum
);
602 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
606 vmemmap_populate_print_last();
608 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
609 free_bootmem(__pa(map_map
), size2
);
611 free_bootmem(__pa(usemap_map
), size
);
614 #ifdef CONFIG_MEMORY_HOTPLUG
615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
616 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
617 unsigned long nr_pages
)
619 /* This will make the necessary allocations eventually. */
620 return sparse_mem_map_populate(pnum
, nid
);
622 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
624 return; /* XXX: Not implemented yet */
626 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
630 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
632 struct page
*page
, *ret
;
633 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
635 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
639 ret
= vmalloc(memmap_size
);
645 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
647 memset(ret
, 0, memmap_size
);
652 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
653 unsigned long nr_pages
)
655 return __kmalloc_section_memmap(nr_pages
);
658 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
660 if (is_vmalloc_addr(memmap
))
663 free_pages((unsigned long)memmap
,
664 get_order(sizeof(struct page
) * nr_pages
));
667 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
669 unsigned long maps_section_nr
, removing_section_nr
, i
;
672 for (i
= 0; i
< nr_pages
; i
++, page
++) {
673 magic
= atomic_read(&page
->_mapcount
);
675 BUG_ON(magic
== NODE_INFO
);
677 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
678 removing_section_nr
= page
->private;
681 * When this function is called, the removing section is
682 * logical offlined state. This means all pages are isolated
683 * from page allocator. If removing section's memmap is placed
684 * on the same section, it must not be freed.
685 * If it is freed, page allocator may allocate it which will
686 * be removed physically soon.
688 if (maps_section_nr
!= removing_section_nr
)
689 put_page_bootmem(page
);
692 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
694 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
696 struct page
*usemap_page
;
697 unsigned long nr_pages
;
702 usemap_page
= virt_to_page(usemap
);
704 * Check to see if allocation came from hot-plug-add
706 if (PageSlab(usemap_page
)) {
709 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
714 * The usemap came from bootmem. This is packed with other usemaps
715 * on the section which has pgdat at boot time. Just keep it as is now.
719 struct page
*memmap_page
;
720 memmap_page
= virt_to_page(memmap
);
722 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
725 free_map_bootmem(memmap_page
, nr_pages
);
730 * returns the number of sections whose mem_maps were properly
731 * set. If this is <=0, then that means that the passed-in
732 * map was not consumed and must be freed.
734 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
737 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
738 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
739 struct mem_section
*ms
;
741 unsigned long *usemap
;
746 * no locking for this, because it does its own
747 * plus, it does a kmalloc
749 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
750 if (ret
< 0 && ret
!= -EEXIST
)
752 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
755 usemap
= __kmalloc_section_usemap();
757 __kfree_section_memmap(memmap
, nr_pages
);
761 pgdat_resize_lock(pgdat
, &flags
);
763 ms
= __pfn_to_section(start_pfn
);
764 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
769 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
771 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
774 pgdat_resize_unlock(pgdat
, &flags
);
777 __kfree_section_memmap(memmap
, nr_pages
);
782 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
784 struct page
*memmap
= NULL
;
785 unsigned long *usemap
= NULL
;
787 if (ms
->section_mem_map
) {
788 usemap
= ms
->pageblock_flags
;
789 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
791 ms
->section_mem_map
= 0;
792 ms
->pageblock_flags
= NULL
;
795 free_section_usemap(memmap
, usemap
);