ext4: More buffer head reference leaks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobdeb14a728791aac05cdf9e60010268ae36da05a3
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 int err;
89 might_sleep();
91 BUFFER_TRACE(bh, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 "data mode %x\n",
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
105 if (bh) {
106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle, bh);
109 return 0;
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
117 if (err)
118 ext4_abort(inode->i_sb, __func__,
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode *inode)
130 ext4_lblk_t needed;
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t *start_transaction(struct inode *inode)
163 handle_t *result;
165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 if (!IS_ERR(result))
167 return result;
169 ext4_std_error(inode->i_sb, PTR_ERR(result));
170 return result;
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 return 0;
185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 return 0;
187 return 1;
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
197 BUG_ON(EXT4_JOURNAL(inode) == NULL);
198 jbd_debug(2, "restarting handle %p\n", handle);
199 return ext4_journal_restart(handle, blocks_for_truncate(inode));
203 * Called at the last iput() if i_nlink is zero.
205 void ext4_delete_inode(struct inode *inode)
207 handle_t *handle;
208 int err;
210 if (ext4_should_order_data(inode))
211 ext4_begin_ordered_truncate(inode, 0);
212 truncate_inode_pages(&inode->i_data, 0);
214 if (is_bad_inode(inode))
215 goto no_delete;
217 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218 if (IS_ERR(handle)) {
219 ext4_std_error(inode->i_sb, PTR_ERR(handle));
221 * If we're going to skip the normal cleanup, we still need to
222 * make sure that the in-core orphan linked list is properly
223 * cleaned up.
225 ext4_orphan_del(NULL, inode);
226 goto no_delete;
229 if (IS_SYNC(inode))
230 ext4_handle_sync(handle);
231 inode->i_size = 0;
232 err = ext4_mark_inode_dirty(handle, inode);
233 if (err) {
234 ext4_warning(inode->i_sb, __func__,
235 "couldn't mark inode dirty (err %d)", err);
236 goto stop_handle;
238 if (inode->i_blocks)
239 ext4_truncate(inode);
242 * ext4_ext_truncate() doesn't reserve any slop when it
243 * restarts journal transactions; therefore there may not be
244 * enough credits left in the handle to remove the inode from
245 * the orphan list and set the dtime field.
247 if (!ext4_handle_has_enough_credits(handle, 3)) {
248 err = ext4_journal_extend(handle, 3);
249 if (err > 0)
250 err = ext4_journal_restart(handle, 3);
251 if (err != 0) {
252 ext4_warning(inode->i_sb, __func__,
253 "couldn't extend journal (err %d)", err);
254 stop_handle:
255 ext4_journal_stop(handle);
256 goto no_delete;
261 * Kill off the orphan record which ext4_truncate created.
262 * AKPM: I think this can be inside the above `if'.
263 * Note that ext4_orphan_del() has to be able to cope with the
264 * deletion of a non-existent orphan - this is because we don't
265 * know if ext4_truncate() actually created an orphan record.
266 * (Well, we could do this if we need to, but heck - it works)
268 ext4_orphan_del(handle, inode);
269 EXT4_I(inode)->i_dtime = get_seconds();
272 * One subtle ordering requirement: if anything has gone wrong
273 * (transaction abort, IO errors, whatever), then we can still
274 * do these next steps (the fs will already have been marked as
275 * having errors), but we can't free the inode if the mark_dirty
276 * fails.
278 if (ext4_mark_inode_dirty(handle, inode))
279 /* If that failed, just do the required in-core inode clear. */
280 clear_inode(inode);
281 else
282 ext4_free_inode(handle, inode);
283 ext4_journal_stop(handle);
284 return;
285 no_delete:
286 clear_inode(inode); /* We must guarantee clearing of inode... */
289 typedef struct {
290 __le32 *p;
291 __le32 key;
292 struct buffer_head *bh;
293 } Indirect;
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
297 p->key = *(p->p = v);
298 p->bh = bh;
302 * ext4_block_to_path - parse the block number into array of offsets
303 * @inode: inode in question (we are only interested in its superblock)
304 * @i_block: block number to be parsed
305 * @offsets: array to store the offsets in
306 * @boundary: set this non-zero if the referred-to block is likely to be
307 * followed (on disk) by an indirect block.
309 * To store the locations of file's data ext4 uses a data structure common
310 * for UNIX filesystems - tree of pointers anchored in the inode, with
311 * data blocks at leaves and indirect blocks in intermediate nodes.
312 * This function translates the block number into path in that tree -
313 * return value is the path length and @offsets[n] is the offset of
314 * pointer to (n+1)th node in the nth one. If @block is out of range
315 * (negative or too large) warning is printed and zero returned.
317 * Note: function doesn't find node addresses, so no IO is needed. All
318 * we need to know is the capacity of indirect blocks (taken from the
319 * inode->i_sb).
323 * Portability note: the last comparison (check that we fit into triple
324 * indirect block) is spelled differently, because otherwise on an
325 * architecture with 32-bit longs and 8Kb pages we might get into trouble
326 * if our filesystem had 8Kb blocks. We might use long long, but that would
327 * kill us on x86. Oh, well, at least the sign propagation does not matter -
328 * i_block would have to be negative in the very beginning, so we would not
329 * get there at all.
332 static int ext4_block_to_path(struct inode *inode,
333 ext4_lblk_t i_block,
334 ext4_lblk_t offsets[4], int *boundary)
336 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338 const long direct_blocks = EXT4_NDIR_BLOCKS,
339 indirect_blocks = ptrs,
340 double_blocks = (1 << (ptrs_bits * 2));
341 int n = 0;
342 int final = 0;
344 if (i_block < 0) {
345 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
346 } else if (i_block < direct_blocks) {
347 offsets[n++] = i_block;
348 final = direct_blocks;
349 } else if ((i_block -= direct_blocks) < indirect_blocks) {
350 offsets[n++] = EXT4_IND_BLOCK;
351 offsets[n++] = i_block;
352 final = ptrs;
353 } else if ((i_block -= indirect_blocks) < double_blocks) {
354 offsets[n++] = EXT4_DIND_BLOCK;
355 offsets[n++] = i_block >> ptrs_bits;
356 offsets[n++] = i_block & (ptrs - 1);
357 final = ptrs;
358 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
359 offsets[n++] = EXT4_TIND_BLOCK;
360 offsets[n++] = i_block >> (ptrs_bits * 2);
361 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
362 offsets[n++] = i_block & (ptrs - 1);
363 final = ptrs;
364 } else {
365 ext4_warning(inode->i_sb, "ext4_block_to_path",
366 "block %lu > max in inode %lu",
367 i_block + direct_blocks +
368 indirect_blocks + double_blocks, inode->i_ino);
370 if (boundary)
371 *boundary = final - 1 - (i_block & (ptrs - 1));
372 return n;
375 static int __ext4_check_blockref(const char *function, struct inode *inode,
376 __le32 *p, unsigned int max)
378 __le32 *bref = p;
379 unsigned int blk;
381 while (bref < p+max) {
382 blk = le32_to_cpu(*bref++);
383 if (blk &&
384 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385 blk, 1))) {
386 ext4_error(inode->i_sb, function,
387 "invalid block reference %u "
388 "in inode #%lu", blk, inode->i_ino);
389 return -EIO;
392 return 0;
396 #define ext4_check_indirect_blockref(inode, bh) \
397 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
398 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
400 #define ext4_check_inode_blockref(inode) \
401 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
402 EXT4_NDIR_BLOCKS)
405 * ext4_get_branch - read the chain of indirect blocks leading to data
406 * @inode: inode in question
407 * @depth: depth of the chain (1 - direct pointer, etc.)
408 * @offsets: offsets of pointers in inode/indirect blocks
409 * @chain: place to store the result
410 * @err: here we store the error value
412 * Function fills the array of triples <key, p, bh> and returns %NULL
413 * if everything went OK or the pointer to the last filled triple
414 * (incomplete one) otherwise. Upon the return chain[i].key contains
415 * the number of (i+1)-th block in the chain (as it is stored in memory,
416 * i.e. little-endian 32-bit), chain[i].p contains the address of that
417 * number (it points into struct inode for i==0 and into the bh->b_data
418 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419 * block for i>0 and NULL for i==0. In other words, it holds the block
420 * numbers of the chain, addresses they were taken from (and where we can
421 * verify that chain did not change) and buffer_heads hosting these
422 * numbers.
424 * Function stops when it stumbles upon zero pointer (absent block)
425 * (pointer to last triple returned, *@err == 0)
426 * or when it gets an IO error reading an indirect block
427 * (ditto, *@err == -EIO)
428 * or when it reads all @depth-1 indirect blocks successfully and finds
429 * the whole chain, all way to the data (returns %NULL, *err == 0).
431 * Need to be called with
432 * down_read(&EXT4_I(inode)->i_data_sem)
434 static Indirect *ext4_get_branch(struct inode *inode, int depth,
435 ext4_lblk_t *offsets,
436 Indirect chain[4], int *err)
438 struct super_block *sb = inode->i_sb;
439 Indirect *p = chain;
440 struct buffer_head *bh;
442 *err = 0;
443 /* i_data is not going away, no lock needed */
444 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
445 if (!p->key)
446 goto no_block;
447 while (--depth) {
448 bh = sb_getblk(sb, le32_to_cpu(p->key));
449 if (unlikely(!bh))
450 goto failure;
452 if (!bh_uptodate_or_lock(bh)) {
453 if (bh_submit_read(bh) < 0) {
454 put_bh(bh);
455 goto failure;
457 /* validate block references */
458 if (ext4_check_indirect_blockref(inode, bh)) {
459 put_bh(bh);
460 goto failure;
464 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
465 /* Reader: end */
466 if (!p->key)
467 goto no_block;
469 return NULL;
471 failure:
472 *err = -EIO;
473 no_block:
474 return p;
478 * ext4_find_near - find a place for allocation with sufficient locality
479 * @inode: owner
480 * @ind: descriptor of indirect block.
482 * This function returns the preferred place for block allocation.
483 * It is used when heuristic for sequential allocation fails.
484 * Rules are:
485 * + if there is a block to the left of our position - allocate near it.
486 * + if pointer will live in indirect block - allocate near that block.
487 * + if pointer will live in inode - allocate in the same
488 * cylinder group.
490 * In the latter case we colour the starting block by the callers PID to
491 * prevent it from clashing with concurrent allocations for a different inode
492 * in the same block group. The PID is used here so that functionally related
493 * files will be close-by on-disk.
495 * Caller must make sure that @ind is valid and will stay that way.
497 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
499 struct ext4_inode_info *ei = EXT4_I(inode);
500 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501 __le32 *p;
502 ext4_fsblk_t bg_start;
503 ext4_fsblk_t last_block;
504 ext4_grpblk_t colour;
505 ext4_group_t block_group;
506 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
508 /* Try to find previous block */
509 for (p = ind->p - 1; p >= start; p--) {
510 if (*p)
511 return le32_to_cpu(*p);
514 /* No such thing, so let's try location of indirect block */
515 if (ind->bh)
516 return ind->bh->b_blocknr;
519 * It is going to be referred to from the inode itself? OK, just put it
520 * into the same cylinder group then.
522 block_group = ei->i_block_group;
523 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
524 block_group &= ~(flex_size-1);
525 if (S_ISREG(inode->i_mode))
526 block_group++;
528 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
529 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
532 * If we are doing delayed allocation, we don't need take
533 * colour into account.
535 if (test_opt(inode->i_sb, DELALLOC))
536 return bg_start;
538 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
539 colour = (current->pid % 16) *
540 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541 else
542 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
543 return bg_start + colour;
547 * ext4_find_goal - find a preferred place for allocation.
548 * @inode: owner
549 * @block: block we want
550 * @partial: pointer to the last triple within a chain
552 * Normally this function find the preferred place for block allocation,
553 * returns it.
555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556 Indirect *partial)
559 * XXX need to get goal block from mballoc's data structures
562 return ext4_find_near(inode, partial);
566 * ext4_blks_to_allocate: Look up the block map and count the number
567 * of direct blocks need to be allocated for the given branch.
569 * @branch: chain of indirect blocks
570 * @k: number of blocks need for indirect blocks
571 * @blks: number of data blocks to be mapped.
572 * @blocks_to_boundary: the offset in the indirect block
574 * return the total number of blocks to be allocate, including the
575 * direct and indirect blocks.
577 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
578 int blocks_to_boundary)
580 unsigned int count = 0;
583 * Simple case, [t,d]Indirect block(s) has not allocated yet
584 * then it's clear blocks on that path have not allocated
586 if (k > 0) {
587 /* right now we don't handle cross boundary allocation */
588 if (blks < blocks_to_boundary + 1)
589 count += blks;
590 else
591 count += blocks_to_boundary + 1;
592 return count;
595 count++;
596 while (count < blks && count <= blocks_to_boundary &&
597 le32_to_cpu(*(branch[0].p + count)) == 0) {
598 count++;
600 return count;
604 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
605 * @indirect_blks: the number of blocks need to allocate for indirect
606 * blocks
608 * @new_blocks: on return it will store the new block numbers for
609 * the indirect blocks(if needed) and the first direct block,
610 * @blks: on return it will store the total number of allocated
611 * direct blocks
613 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
614 ext4_lblk_t iblock, ext4_fsblk_t goal,
615 int indirect_blks, int blks,
616 ext4_fsblk_t new_blocks[4], int *err)
618 struct ext4_allocation_request ar;
619 int target, i;
620 unsigned long count = 0, blk_allocated = 0;
621 int index = 0;
622 ext4_fsblk_t current_block = 0;
623 int ret = 0;
626 * Here we try to allocate the requested multiple blocks at once,
627 * on a best-effort basis.
628 * To build a branch, we should allocate blocks for
629 * the indirect blocks(if not allocated yet), and at least
630 * the first direct block of this branch. That's the
631 * minimum number of blocks need to allocate(required)
633 /* first we try to allocate the indirect blocks */
634 target = indirect_blks;
635 while (target > 0) {
636 count = target;
637 /* allocating blocks for indirect blocks and direct blocks */
638 current_block = ext4_new_meta_blocks(handle, inode,
639 goal, &count, err);
640 if (*err)
641 goto failed_out;
643 target -= count;
644 /* allocate blocks for indirect blocks */
645 while (index < indirect_blks && count) {
646 new_blocks[index++] = current_block++;
647 count--;
649 if (count > 0) {
651 * save the new block number
652 * for the first direct block
654 new_blocks[index] = current_block;
655 printk(KERN_INFO "%s returned more blocks than "
656 "requested\n", __func__);
657 WARN_ON(1);
658 break;
662 target = blks - count ;
663 blk_allocated = count;
664 if (!target)
665 goto allocated;
666 /* Now allocate data blocks */
667 memset(&ar, 0, sizeof(ar));
668 ar.inode = inode;
669 ar.goal = goal;
670 ar.len = target;
671 ar.logical = iblock;
672 if (S_ISREG(inode->i_mode))
673 /* enable in-core preallocation only for regular files */
674 ar.flags = EXT4_MB_HINT_DATA;
676 current_block = ext4_mb_new_blocks(handle, &ar, err);
678 if (*err && (target == blks)) {
680 * if the allocation failed and we didn't allocate
681 * any blocks before
683 goto failed_out;
685 if (!*err) {
686 if (target == blks) {
688 * save the new block number
689 * for the first direct block
691 new_blocks[index] = current_block;
693 blk_allocated += ar.len;
695 allocated:
696 /* total number of blocks allocated for direct blocks */
697 ret = blk_allocated;
698 *err = 0;
699 return ret;
700 failed_out:
701 for (i = 0; i < index; i++)
702 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
703 return ret;
707 * ext4_alloc_branch - allocate and set up a chain of blocks.
708 * @inode: owner
709 * @indirect_blks: number of allocated indirect blocks
710 * @blks: number of allocated direct blocks
711 * @offsets: offsets (in the blocks) to store the pointers to next.
712 * @branch: place to store the chain in.
714 * This function allocates blocks, zeroes out all but the last one,
715 * links them into chain and (if we are synchronous) writes them to disk.
716 * In other words, it prepares a branch that can be spliced onto the
717 * inode. It stores the information about that chain in the branch[], in
718 * the same format as ext4_get_branch() would do. We are calling it after
719 * we had read the existing part of chain and partial points to the last
720 * triple of that (one with zero ->key). Upon the exit we have the same
721 * picture as after the successful ext4_get_block(), except that in one
722 * place chain is disconnected - *branch->p is still zero (we did not
723 * set the last link), but branch->key contains the number that should
724 * be placed into *branch->p to fill that gap.
726 * If allocation fails we free all blocks we've allocated (and forget
727 * their buffer_heads) and return the error value the from failed
728 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729 * as described above and return 0.
731 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
732 ext4_lblk_t iblock, int indirect_blks,
733 int *blks, ext4_fsblk_t goal,
734 ext4_lblk_t *offsets, Indirect *branch)
736 int blocksize = inode->i_sb->s_blocksize;
737 int i, n = 0;
738 int err = 0;
739 struct buffer_head *bh;
740 int num;
741 ext4_fsblk_t new_blocks[4];
742 ext4_fsblk_t current_block;
744 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
745 *blks, new_blocks, &err);
746 if (err)
747 return err;
749 branch[0].key = cpu_to_le32(new_blocks[0]);
751 * metadata blocks and data blocks are allocated.
753 for (n = 1; n <= indirect_blks; n++) {
755 * Get buffer_head for parent block, zero it out
756 * and set the pointer to new one, then send
757 * parent to disk.
759 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
760 branch[n].bh = bh;
761 lock_buffer(bh);
762 BUFFER_TRACE(bh, "call get_create_access");
763 err = ext4_journal_get_create_access(handle, bh);
764 if (err) {
765 /* Don't brelse(bh) here; it's done in
766 * ext4_journal_forget() below */
767 unlock_buffer(bh);
768 goto failed;
771 memset(bh->b_data, 0, blocksize);
772 branch[n].p = (__le32 *) bh->b_data + offsets[n];
773 branch[n].key = cpu_to_le32(new_blocks[n]);
774 *branch[n].p = branch[n].key;
775 if (n == indirect_blks) {
776 current_block = new_blocks[n];
778 * End of chain, update the last new metablock of
779 * the chain to point to the new allocated
780 * data blocks numbers
782 for (i = 1; i < num; i++)
783 *(branch[n].p + i) = cpu_to_le32(++current_block);
785 BUFFER_TRACE(bh, "marking uptodate");
786 set_buffer_uptodate(bh);
787 unlock_buffer(bh);
789 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
790 err = ext4_handle_dirty_metadata(handle, inode, bh);
791 if (err)
792 goto failed;
794 *blks = num;
795 return err;
796 failed:
797 /* Allocation failed, free what we already allocated */
798 for (i = 1; i <= n ; i++) {
799 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
800 ext4_journal_forget(handle, branch[i].bh);
802 for (i = 0; i < indirect_blks; i++)
803 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
805 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
807 return err;
811 * ext4_splice_branch - splice the allocated branch onto inode.
812 * @inode: owner
813 * @block: (logical) number of block we are adding
814 * @chain: chain of indirect blocks (with a missing link - see
815 * ext4_alloc_branch)
816 * @where: location of missing link
817 * @num: number of indirect blocks we are adding
818 * @blks: number of direct blocks we are adding
820 * This function fills the missing link and does all housekeeping needed in
821 * inode (->i_blocks, etc.). In case of success we end up with the full
822 * chain to new block and return 0.
824 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
825 ext4_lblk_t block, Indirect *where, int num,
826 int blks)
828 int i;
829 int err = 0;
830 ext4_fsblk_t current_block;
833 * If we're splicing into a [td]indirect block (as opposed to the
834 * inode) then we need to get write access to the [td]indirect block
835 * before the splice.
837 if (where->bh) {
838 BUFFER_TRACE(where->bh, "get_write_access");
839 err = ext4_journal_get_write_access(handle, where->bh);
840 if (err)
841 goto err_out;
843 /* That's it */
845 *where->p = where->key;
848 * Update the host buffer_head or inode to point to more just allocated
849 * direct blocks blocks
851 if (num == 0 && blks > 1) {
852 current_block = le32_to_cpu(where->key) + 1;
853 for (i = 1; i < blks; i++)
854 *(where->p + i) = cpu_to_le32(current_block++);
857 /* We are done with atomic stuff, now do the rest of housekeeping */
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 if (err)
872 goto err_out;
873 } else {
875 * OK, we spliced it into the inode itself on a direct block.
877 ext4_mark_inode_dirty(handle, inode);
878 jbd_debug(5, "splicing direct\n");
880 return err;
882 err_out:
883 for (i = 1; i <= num; i++) {
884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 ext4_journal_forget(handle, where[i].bh);
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
891 return err;
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
910 * `handle' can be NULL if create == 0.
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 * blocks.
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923 ext4_lblk_t iblock, unsigned int maxblocks,
924 struct buffer_head *bh_result,
925 int flags)
927 int err = -EIO;
928 ext4_lblk_t offsets[4];
929 Indirect chain[4];
930 Indirect *partial;
931 ext4_fsblk_t goal;
932 int indirect_blks;
933 int blocks_to_boundary = 0;
934 int depth;
935 int count = 0;
936 ext4_fsblk_t first_block = 0;
938 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
939 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
940 depth = ext4_block_to_path(inode, iblock, offsets,
941 &blocks_to_boundary);
943 if (depth == 0)
944 goto out;
946 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948 /* Simplest case - block found, no allocation needed */
949 if (!partial) {
950 first_block = le32_to_cpu(chain[depth - 1].key);
951 clear_buffer_new(bh_result);
952 count++;
953 /*map more blocks*/
954 while (count < maxblocks && count <= blocks_to_boundary) {
955 ext4_fsblk_t blk;
957 blk = le32_to_cpu(*(chain[depth-1].p + count));
959 if (blk == first_block + count)
960 count++;
961 else
962 break;
964 goto got_it;
967 /* Next simple case - plain lookup or failed read of indirect block */
968 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
969 goto cleanup;
972 * Okay, we need to do block allocation.
974 goal = ext4_find_goal(inode, iblock, partial);
976 /* the number of blocks need to allocate for [d,t]indirect blocks */
977 indirect_blks = (chain + depth) - partial - 1;
980 * Next look up the indirect map to count the totoal number of
981 * direct blocks to allocate for this branch.
983 count = ext4_blks_to_allocate(partial, indirect_blks,
984 maxblocks, blocks_to_boundary);
986 * Block out ext4_truncate while we alter the tree
988 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
989 &count, goal,
990 offsets + (partial - chain), partial);
993 * The ext4_splice_branch call will free and forget any buffers
994 * on the new chain if there is a failure, but that risks using
995 * up transaction credits, especially for bitmaps where the
996 * credits cannot be returned. Can we handle this somehow? We
997 * may need to return -EAGAIN upwards in the worst case. --sct
999 if (!err)
1000 err = ext4_splice_branch(handle, inode, iblock,
1001 partial, indirect_blks, count);
1002 else
1003 goto cleanup;
1005 set_buffer_new(bh_result);
1006 got_it:
1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 if (count > blocks_to_boundary)
1009 set_buffer_boundary(bh_result);
1010 err = count;
1011 /* Clean up and exit */
1012 partial = chain + depth - 1; /* the whole chain */
1013 cleanup:
1014 while (partial > chain) {
1015 BUFFER_TRACE(partial->bh, "call brelse");
1016 brelse(partial->bh);
1017 partial--;
1019 BUFFER_TRACE(bh_result, "returned");
1020 out:
1021 return err;
1024 qsize_t ext4_get_reserved_space(struct inode *inode)
1026 unsigned long long total;
1028 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1029 total = EXT4_I(inode)->i_reserved_data_blocks +
1030 EXT4_I(inode)->i_reserved_meta_blocks;
1031 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033 return total;
1036 * Calculate the number of metadata blocks need to reserve
1037 * to allocate @blocks for non extent file based file
1039 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1042 int ind_blks, dind_blks, tind_blks;
1044 /* number of new indirect blocks needed */
1045 ind_blks = (blocks + icap - 1) / icap;
1047 dind_blks = (ind_blks + icap - 1) / icap;
1049 tind_blks = 1;
1051 return ind_blks + dind_blks + tind_blks;
1055 * Calculate the number of metadata blocks need to reserve
1056 * to allocate given number of blocks
1058 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060 if (!blocks)
1061 return 0;
1063 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064 return ext4_ext_calc_metadata_amount(inode, blocks);
1066 return ext4_indirect_calc_metadata_amount(inode, blocks);
1069 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1072 int total, mdb, mdb_free;
1074 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1075 /* recalculate the number of metablocks still need to be reserved */
1076 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1077 mdb = ext4_calc_metadata_amount(inode, total);
1079 /* figure out how many metablocks to release */
1080 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1081 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083 if (mdb_free) {
1084 /* Account for allocated meta_blocks */
1085 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087 /* update fs dirty blocks counter */
1088 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1089 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1090 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1093 /* update per-inode reservations */
1094 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1095 EXT4_I(inode)->i_reserved_data_blocks -= used;
1096 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1099 * free those over-booking quota for metadata blocks
1101 if (mdb_free)
1102 vfs_dq_release_reservation_block(inode, mdb_free);
1105 * If we have done all the pending block allocations and if
1106 * there aren't any writers on the inode, we can discard the
1107 * inode's preallocations.
1109 if (!total && (atomic_read(&inode->i_writecount) == 0))
1110 ext4_discard_preallocations(inode);
1113 static int check_block_validity(struct inode *inode, sector_t logical,
1114 sector_t phys, int len)
1116 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1117 ext4_error(inode->i_sb, "check_block_validity",
1118 "inode #%lu logical block %llu mapped to %llu "
1119 "(size %d)", inode->i_ino,
1120 (unsigned long long) logical,
1121 (unsigned long long) phys, len);
1122 WARN_ON(1);
1123 return -EIO;
1125 return 0;
1129 * The ext4_get_blocks() function tries to look up the requested blocks,
1130 * and returns if the blocks are already mapped.
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1134 * mapped.
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138 * based files
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1148 * It returns the error in case of allocation failure.
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 unsigned int max_blocks, struct buffer_head *bh,
1152 int flags)
1154 int retval;
1156 clear_buffer_mapped(bh);
1157 clear_buffer_unwritten(bh);
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
1163 down_read((&EXT4_I(inode)->i_data_sem));
1164 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166 bh, 0);
1167 } else {
1168 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169 bh, 0);
1171 up_read((&EXT4_I(inode)->i_data_sem));
1173 if (retval > 0 && buffer_mapped(bh)) {
1174 int ret = check_block_validity(inode, block,
1175 bh->b_blocknr, retval);
1176 if (ret != 0)
1177 return ret;
1180 /* If it is only a block(s) look up */
1181 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1182 return retval;
1185 * Returns if the blocks have already allocated
1187 * Note that if blocks have been preallocated
1188 * ext4_ext_get_block() returns th create = 0
1189 * with buffer head unmapped.
1191 if (retval > 0 && buffer_mapped(bh))
1192 return retval;
1195 * When we call get_blocks without the create flag, the
1196 * BH_Unwritten flag could have gotten set if the blocks
1197 * requested were part of a uninitialized extent. We need to
1198 * clear this flag now that we are committed to convert all or
1199 * part of the uninitialized extent to be an initialized
1200 * extent. This is because we need to avoid the combination
1201 * of BH_Unwritten and BH_Mapped flags being simultaneously
1202 * set on the buffer_head.
1204 clear_buffer_unwritten(bh);
1207 * New blocks allocate and/or writing to uninitialized extent
1208 * will possibly result in updating i_data, so we take
1209 * the write lock of i_data_sem, and call get_blocks()
1210 * with create == 1 flag.
1212 down_write((&EXT4_I(inode)->i_data_sem));
1215 * if the caller is from delayed allocation writeout path
1216 * we have already reserved fs blocks for allocation
1217 * let the underlying get_block() function know to
1218 * avoid double accounting
1220 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1221 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1223 * We need to check for EXT4 here because migrate
1224 * could have changed the inode type in between
1226 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1227 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1228 bh, flags);
1229 } else {
1230 retval = ext4_ind_get_blocks(handle, inode, block,
1231 max_blocks, bh, flags);
1233 if (retval > 0 && buffer_new(bh)) {
1235 * We allocated new blocks which will result in
1236 * i_data's format changing. Force the migrate
1237 * to fail by clearing migrate flags
1239 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1240 ~EXT4_EXT_MIGRATE;
1244 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1245 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1248 * Update reserved blocks/metadata blocks after successful
1249 * block allocation which had been deferred till now.
1251 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1252 ext4_da_update_reserve_space(inode, retval);
1254 up_write((&EXT4_I(inode)->i_data_sem));
1255 if (retval > 0 && buffer_mapped(bh)) {
1256 int ret = check_block_validity(inode, block,
1257 bh->b_blocknr, retval);
1258 if (ret != 0)
1259 return ret;
1261 return retval;
1264 /* Maximum number of blocks we map for direct IO at once. */
1265 #define DIO_MAX_BLOCKS 4096
1267 int ext4_get_block(struct inode *inode, sector_t iblock,
1268 struct buffer_head *bh_result, int create)
1270 handle_t *handle = ext4_journal_current_handle();
1271 int ret = 0, started = 0;
1272 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1273 int dio_credits;
1275 if (create && !handle) {
1276 /* Direct IO write... */
1277 if (max_blocks > DIO_MAX_BLOCKS)
1278 max_blocks = DIO_MAX_BLOCKS;
1279 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1280 handle = ext4_journal_start(inode, dio_credits);
1281 if (IS_ERR(handle)) {
1282 ret = PTR_ERR(handle);
1283 goto out;
1285 started = 1;
1288 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1289 create ? EXT4_GET_BLOCKS_CREATE : 0);
1290 if (ret > 0) {
1291 bh_result->b_size = (ret << inode->i_blkbits);
1292 ret = 0;
1294 if (started)
1295 ext4_journal_stop(handle);
1296 out:
1297 return ret;
1301 * `handle' can be NULL if create is zero
1303 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1304 ext4_lblk_t block, int create, int *errp)
1306 struct buffer_head dummy;
1307 int fatal = 0, err;
1308 int flags = 0;
1310 J_ASSERT(handle != NULL || create == 0);
1312 dummy.b_state = 0;
1313 dummy.b_blocknr = -1000;
1314 buffer_trace_init(&dummy.b_history);
1315 if (create)
1316 flags |= EXT4_GET_BLOCKS_CREATE;
1317 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1319 * ext4_get_blocks() returns number of blocks mapped. 0 in
1320 * case of a HOLE.
1322 if (err > 0) {
1323 if (err > 1)
1324 WARN_ON(1);
1325 err = 0;
1327 *errp = err;
1328 if (!err && buffer_mapped(&dummy)) {
1329 struct buffer_head *bh;
1330 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1331 if (!bh) {
1332 *errp = -EIO;
1333 goto err;
1335 if (buffer_new(&dummy)) {
1336 J_ASSERT(create != 0);
1337 J_ASSERT(handle != NULL);
1340 * Now that we do not always journal data, we should
1341 * keep in mind whether this should always journal the
1342 * new buffer as metadata. For now, regular file
1343 * writes use ext4_get_block instead, so it's not a
1344 * problem.
1346 lock_buffer(bh);
1347 BUFFER_TRACE(bh, "call get_create_access");
1348 fatal = ext4_journal_get_create_access(handle, bh);
1349 if (!fatal && !buffer_uptodate(bh)) {
1350 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1351 set_buffer_uptodate(bh);
1353 unlock_buffer(bh);
1354 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1355 err = ext4_handle_dirty_metadata(handle, inode, bh);
1356 if (!fatal)
1357 fatal = err;
1358 } else {
1359 BUFFER_TRACE(bh, "not a new buffer");
1361 if (fatal) {
1362 *errp = fatal;
1363 brelse(bh);
1364 bh = NULL;
1366 return bh;
1368 err:
1369 return NULL;
1372 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1373 ext4_lblk_t block, int create, int *err)
1375 struct buffer_head *bh;
1377 bh = ext4_getblk(handle, inode, block, create, err);
1378 if (!bh)
1379 return bh;
1380 if (buffer_uptodate(bh))
1381 return bh;
1382 ll_rw_block(READ_META, 1, &bh);
1383 wait_on_buffer(bh);
1384 if (buffer_uptodate(bh))
1385 return bh;
1386 put_bh(bh);
1387 *err = -EIO;
1388 return NULL;
1391 static int walk_page_buffers(handle_t *handle,
1392 struct buffer_head *head,
1393 unsigned from,
1394 unsigned to,
1395 int *partial,
1396 int (*fn)(handle_t *handle,
1397 struct buffer_head *bh))
1399 struct buffer_head *bh;
1400 unsigned block_start, block_end;
1401 unsigned blocksize = head->b_size;
1402 int err, ret = 0;
1403 struct buffer_head *next;
1405 for (bh = head, block_start = 0;
1406 ret == 0 && (bh != head || !block_start);
1407 block_start = block_end, bh = next) {
1408 next = bh->b_this_page;
1409 block_end = block_start + blocksize;
1410 if (block_end <= from || block_start >= to) {
1411 if (partial && !buffer_uptodate(bh))
1412 *partial = 1;
1413 continue;
1415 err = (*fn)(handle, bh);
1416 if (!ret)
1417 ret = err;
1419 return ret;
1423 * To preserve ordering, it is essential that the hole instantiation and
1424 * the data write be encapsulated in a single transaction. We cannot
1425 * close off a transaction and start a new one between the ext4_get_block()
1426 * and the commit_write(). So doing the jbd2_journal_start at the start of
1427 * prepare_write() is the right place.
1429 * Also, this function can nest inside ext4_writepage() ->
1430 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1431 * has generated enough buffer credits to do the whole page. So we won't
1432 * block on the journal in that case, which is good, because the caller may
1433 * be PF_MEMALLOC.
1435 * By accident, ext4 can be reentered when a transaction is open via
1436 * quota file writes. If we were to commit the transaction while thus
1437 * reentered, there can be a deadlock - we would be holding a quota
1438 * lock, and the commit would never complete if another thread had a
1439 * transaction open and was blocking on the quota lock - a ranking
1440 * violation.
1442 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1443 * will _not_ run commit under these circumstances because handle->h_ref
1444 * is elevated. We'll still have enough credits for the tiny quotafile
1445 * write.
1447 static int do_journal_get_write_access(handle_t *handle,
1448 struct buffer_head *bh)
1450 if (!buffer_mapped(bh) || buffer_freed(bh))
1451 return 0;
1452 return ext4_journal_get_write_access(handle, bh);
1455 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1456 loff_t pos, unsigned len, unsigned flags,
1457 struct page **pagep, void **fsdata)
1459 struct inode *inode = mapping->host;
1460 int ret, needed_blocks;
1461 handle_t *handle;
1462 int retries = 0;
1463 struct page *page;
1464 pgoff_t index;
1465 unsigned from, to;
1467 trace_ext4_write_begin(inode, pos, len, flags);
1469 * Reserve one block more for addition to orphan list in case
1470 * we allocate blocks but write fails for some reason
1472 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1473 index = pos >> PAGE_CACHE_SHIFT;
1474 from = pos & (PAGE_CACHE_SIZE - 1);
1475 to = from + len;
1477 retry:
1478 handle = ext4_journal_start(inode, needed_blocks);
1479 if (IS_ERR(handle)) {
1480 ret = PTR_ERR(handle);
1481 goto out;
1484 /* We cannot recurse into the filesystem as the transaction is already
1485 * started */
1486 flags |= AOP_FLAG_NOFS;
1488 page = grab_cache_page_write_begin(mapping, index, flags);
1489 if (!page) {
1490 ext4_journal_stop(handle);
1491 ret = -ENOMEM;
1492 goto out;
1494 *pagep = page;
1496 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1497 ext4_get_block);
1499 if (!ret && ext4_should_journal_data(inode)) {
1500 ret = walk_page_buffers(handle, page_buffers(page),
1501 from, to, NULL, do_journal_get_write_access);
1504 if (ret) {
1505 unlock_page(page);
1506 page_cache_release(page);
1508 * block_write_begin may have instantiated a few blocks
1509 * outside i_size. Trim these off again. Don't need
1510 * i_size_read because we hold i_mutex.
1512 * Add inode to orphan list in case we crash before
1513 * truncate finishes
1515 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1516 ext4_orphan_add(handle, inode);
1518 ext4_journal_stop(handle);
1519 if (pos + len > inode->i_size) {
1520 ext4_truncate(inode);
1522 * If truncate failed early the inode might
1523 * still be on the orphan list; we need to
1524 * make sure the inode is removed from the
1525 * orphan list in that case.
1527 if (inode->i_nlink)
1528 ext4_orphan_del(NULL, inode);
1532 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1533 goto retry;
1534 out:
1535 return ret;
1538 /* For write_end() in data=journal mode */
1539 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1541 if (!buffer_mapped(bh) || buffer_freed(bh))
1542 return 0;
1543 set_buffer_uptodate(bh);
1544 return ext4_handle_dirty_metadata(handle, NULL, bh);
1547 static int ext4_generic_write_end(struct file *file,
1548 struct address_space *mapping,
1549 loff_t pos, unsigned len, unsigned copied,
1550 struct page *page, void *fsdata)
1552 int i_size_changed = 0;
1553 struct inode *inode = mapping->host;
1554 handle_t *handle = ext4_journal_current_handle();
1556 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1559 * No need to use i_size_read() here, the i_size
1560 * cannot change under us because we hold i_mutex.
1562 * But it's important to update i_size while still holding page lock:
1563 * page writeout could otherwise come in and zero beyond i_size.
1565 if (pos + copied > inode->i_size) {
1566 i_size_write(inode, pos + copied);
1567 i_size_changed = 1;
1570 if (pos + copied > EXT4_I(inode)->i_disksize) {
1571 /* We need to mark inode dirty even if
1572 * new_i_size is less that inode->i_size
1573 * bu greater than i_disksize.(hint delalloc)
1575 ext4_update_i_disksize(inode, (pos + copied));
1576 i_size_changed = 1;
1578 unlock_page(page);
1579 page_cache_release(page);
1582 * Don't mark the inode dirty under page lock. First, it unnecessarily
1583 * makes the holding time of page lock longer. Second, it forces lock
1584 * ordering of page lock and transaction start for journaling
1585 * filesystems.
1587 if (i_size_changed)
1588 ext4_mark_inode_dirty(handle, inode);
1590 return copied;
1594 * We need to pick up the new inode size which generic_commit_write gave us
1595 * `file' can be NULL - eg, when called from page_symlink().
1597 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1598 * buffers are managed internally.
1600 static int ext4_ordered_write_end(struct file *file,
1601 struct address_space *mapping,
1602 loff_t pos, unsigned len, unsigned copied,
1603 struct page *page, void *fsdata)
1605 handle_t *handle = ext4_journal_current_handle();
1606 struct inode *inode = mapping->host;
1607 int ret = 0, ret2;
1609 trace_ext4_ordered_write_end(inode, pos, len, copied);
1610 ret = ext4_jbd2_file_inode(handle, inode);
1612 if (ret == 0) {
1613 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1614 page, fsdata);
1615 copied = ret2;
1616 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1617 /* if we have allocated more blocks and copied
1618 * less. We will have blocks allocated outside
1619 * inode->i_size. So truncate them
1621 ext4_orphan_add(handle, inode);
1622 if (ret2 < 0)
1623 ret = ret2;
1625 ret2 = ext4_journal_stop(handle);
1626 if (!ret)
1627 ret = ret2;
1629 if (pos + len > inode->i_size) {
1630 ext4_truncate(inode);
1632 * If truncate failed early the inode might still be
1633 * on the orphan list; we need to make sure the inode
1634 * is removed from the orphan list in that case.
1636 if (inode->i_nlink)
1637 ext4_orphan_del(NULL, inode);
1641 return ret ? ret : copied;
1644 static int ext4_writeback_write_end(struct file *file,
1645 struct address_space *mapping,
1646 loff_t pos, unsigned len, unsigned copied,
1647 struct page *page, void *fsdata)
1649 handle_t *handle = ext4_journal_current_handle();
1650 struct inode *inode = mapping->host;
1651 int ret = 0, ret2;
1653 trace_ext4_writeback_write_end(inode, pos, len, copied);
1654 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1655 page, fsdata);
1656 copied = ret2;
1657 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1658 /* if we have allocated more blocks and copied
1659 * less. We will have blocks allocated outside
1660 * inode->i_size. So truncate them
1662 ext4_orphan_add(handle, inode);
1664 if (ret2 < 0)
1665 ret = ret2;
1667 ret2 = ext4_journal_stop(handle);
1668 if (!ret)
1669 ret = ret2;
1671 if (pos + len > inode->i_size) {
1672 ext4_truncate(inode);
1674 * If truncate failed early the inode might still be
1675 * on the orphan list; we need to make sure the inode
1676 * is removed from the orphan list in that case.
1678 if (inode->i_nlink)
1679 ext4_orphan_del(NULL, inode);
1682 return ret ? ret : copied;
1685 static int ext4_journalled_write_end(struct file *file,
1686 struct address_space *mapping,
1687 loff_t pos, unsigned len, unsigned copied,
1688 struct page *page, void *fsdata)
1690 handle_t *handle = ext4_journal_current_handle();
1691 struct inode *inode = mapping->host;
1692 int ret = 0, ret2;
1693 int partial = 0;
1694 unsigned from, to;
1695 loff_t new_i_size;
1697 trace_ext4_journalled_write_end(inode, pos, len, copied);
1698 from = pos & (PAGE_CACHE_SIZE - 1);
1699 to = from + len;
1701 if (copied < len) {
1702 if (!PageUptodate(page))
1703 copied = 0;
1704 page_zero_new_buffers(page, from+copied, to);
1707 ret = walk_page_buffers(handle, page_buffers(page), from,
1708 to, &partial, write_end_fn);
1709 if (!partial)
1710 SetPageUptodate(page);
1711 new_i_size = pos + copied;
1712 if (new_i_size > inode->i_size)
1713 i_size_write(inode, pos+copied);
1714 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1715 if (new_i_size > EXT4_I(inode)->i_disksize) {
1716 ext4_update_i_disksize(inode, new_i_size);
1717 ret2 = ext4_mark_inode_dirty(handle, inode);
1718 if (!ret)
1719 ret = ret2;
1722 unlock_page(page);
1723 page_cache_release(page);
1724 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1725 /* if we have allocated more blocks and copied
1726 * less. We will have blocks allocated outside
1727 * inode->i_size. So truncate them
1729 ext4_orphan_add(handle, inode);
1731 ret2 = ext4_journal_stop(handle);
1732 if (!ret)
1733 ret = ret2;
1734 if (pos + len > inode->i_size) {
1735 ext4_truncate(inode);
1737 * If truncate failed early the inode might still be
1738 * on the orphan list; we need to make sure the inode
1739 * is removed from the orphan list in that case.
1741 if (inode->i_nlink)
1742 ext4_orphan_del(NULL, inode);
1745 return ret ? ret : copied;
1748 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1750 int retries = 0;
1751 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1752 unsigned long md_needed, mdblocks, total = 0;
1755 * recalculate the amount of metadata blocks to reserve
1756 * in order to allocate nrblocks
1757 * worse case is one extent per block
1759 repeat:
1760 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1761 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1762 mdblocks = ext4_calc_metadata_amount(inode, total);
1763 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1765 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1766 total = md_needed + nrblocks;
1769 * Make quota reservation here to prevent quota overflow
1770 * later. Real quota accounting is done at pages writeout
1771 * time.
1773 if (vfs_dq_reserve_block(inode, total)) {
1774 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1775 return -EDQUOT;
1778 if (ext4_claim_free_blocks(sbi, total)) {
1779 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1780 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1781 yield();
1782 goto repeat;
1784 vfs_dq_release_reservation_block(inode, total);
1785 return -ENOSPC;
1787 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1788 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1790 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1791 return 0; /* success */
1794 static void ext4_da_release_space(struct inode *inode, int to_free)
1796 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1797 int total, mdb, mdb_free, release;
1799 if (!to_free)
1800 return; /* Nothing to release, exit */
1802 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1804 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1806 * if there is no reserved blocks, but we try to free some
1807 * then the counter is messed up somewhere.
1808 * but since this function is called from invalidate
1809 * page, it's harmless to return without any action
1811 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1812 "blocks for inode %lu, but there is no reserved "
1813 "data blocks\n", to_free, inode->i_ino);
1814 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1815 return;
1818 /* recalculate the number of metablocks still need to be reserved */
1819 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1820 mdb = ext4_calc_metadata_amount(inode, total);
1822 /* figure out how many metablocks to release */
1823 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1824 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1826 release = to_free + mdb_free;
1828 /* update fs dirty blocks counter for truncate case */
1829 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1831 /* update per-inode reservations */
1832 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1833 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1835 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1836 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1837 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1839 vfs_dq_release_reservation_block(inode, release);
1842 static void ext4_da_page_release_reservation(struct page *page,
1843 unsigned long offset)
1845 int to_release = 0;
1846 struct buffer_head *head, *bh;
1847 unsigned int curr_off = 0;
1849 head = page_buffers(page);
1850 bh = head;
1851 do {
1852 unsigned int next_off = curr_off + bh->b_size;
1854 if ((offset <= curr_off) && (buffer_delay(bh))) {
1855 to_release++;
1856 clear_buffer_delay(bh);
1858 curr_off = next_off;
1859 } while ((bh = bh->b_this_page) != head);
1860 ext4_da_release_space(page->mapping->host, to_release);
1864 * Delayed allocation stuff
1867 struct mpage_da_data {
1868 struct inode *inode;
1869 sector_t b_blocknr; /* start block number of extent */
1870 size_t b_size; /* size of extent */
1871 unsigned long b_state; /* state of the extent */
1872 unsigned long first_page, next_page; /* extent of pages */
1873 struct writeback_control *wbc;
1874 int io_done;
1875 int pages_written;
1876 int retval;
1880 * mpage_da_submit_io - walks through extent of pages and try to write
1881 * them with writepage() call back
1883 * @mpd->inode: inode
1884 * @mpd->first_page: first page of the extent
1885 * @mpd->next_page: page after the last page of the extent
1887 * By the time mpage_da_submit_io() is called we expect all blocks
1888 * to be allocated. this may be wrong if allocation failed.
1890 * As pages are already locked by write_cache_pages(), we can't use it
1892 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1894 long pages_skipped;
1895 struct pagevec pvec;
1896 unsigned long index, end;
1897 int ret = 0, err, nr_pages, i;
1898 struct inode *inode = mpd->inode;
1899 struct address_space *mapping = inode->i_mapping;
1901 BUG_ON(mpd->next_page <= mpd->first_page);
1903 * We need to start from the first_page to the next_page - 1
1904 * to make sure we also write the mapped dirty buffer_heads.
1905 * If we look at mpd->b_blocknr we would only be looking
1906 * at the currently mapped buffer_heads.
1908 index = mpd->first_page;
1909 end = mpd->next_page - 1;
1911 pagevec_init(&pvec, 0);
1912 while (index <= end) {
1913 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1914 if (nr_pages == 0)
1915 break;
1916 for (i = 0; i < nr_pages; i++) {
1917 struct page *page = pvec.pages[i];
1919 index = page->index;
1920 if (index > end)
1921 break;
1922 index++;
1924 BUG_ON(!PageLocked(page));
1925 BUG_ON(PageWriteback(page));
1927 pages_skipped = mpd->wbc->pages_skipped;
1928 err = mapping->a_ops->writepage(page, mpd->wbc);
1929 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1931 * have successfully written the page
1932 * without skipping the same
1934 mpd->pages_written++;
1936 * In error case, we have to continue because
1937 * remaining pages are still locked
1938 * XXX: unlock and re-dirty them?
1940 if (ret == 0)
1941 ret = err;
1943 pagevec_release(&pvec);
1945 return ret;
1949 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1951 * @mpd->inode - inode to walk through
1952 * @exbh->b_blocknr - first block on a disk
1953 * @exbh->b_size - amount of space in bytes
1954 * @logical - first logical block to start assignment with
1956 * the function goes through all passed space and put actual disk
1957 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1959 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1960 struct buffer_head *exbh)
1962 struct inode *inode = mpd->inode;
1963 struct address_space *mapping = inode->i_mapping;
1964 int blocks = exbh->b_size >> inode->i_blkbits;
1965 sector_t pblock = exbh->b_blocknr, cur_logical;
1966 struct buffer_head *head, *bh;
1967 pgoff_t index, end;
1968 struct pagevec pvec;
1969 int nr_pages, i;
1971 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1975 pagevec_init(&pvec, 0);
1977 while (index <= end) {
1978 /* XXX: optimize tail */
1979 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1980 if (nr_pages == 0)
1981 break;
1982 for (i = 0; i < nr_pages; i++) {
1983 struct page *page = pvec.pages[i];
1985 index = page->index;
1986 if (index > end)
1987 break;
1988 index++;
1990 BUG_ON(!PageLocked(page));
1991 BUG_ON(PageWriteback(page));
1992 BUG_ON(!page_has_buffers(page));
1994 bh = page_buffers(page);
1995 head = bh;
1997 /* skip blocks out of the range */
1998 do {
1999 if (cur_logical >= logical)
2000 break;
2001 cur_logical++;
2002 } while ((bh = bh->b_this_page) != head);
2004 do {
2005 if (cur_logical >= logical + blocks)
2006 break;
2008 if (buffer_delay(bh) ||
2009 buffer_unwritten(bh)) {
2011 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2013 if (buffer_delay(bh)) {
2014 clear_buffer_delay(bh);
2015 bh->b_blocknr = pblock;
2016 } else {
2018 * unwritten already should have
2019 * blocknr assigned. Verify that
2021 clear_buffer_unwritten(bh);
2022 BUG_ON(bh->b_blocknr != pblock);
2025 } else if (buffer_mapped(bh))
2026 BUG_ON(bh->b_blocknr != pblock);
2028 cur_logical++;
2029 pblock++;
2030 } while ((bh = bh->b_this_page) != head);
2032 pagevec_release(&pvec);
2038 * __unmap_underlying_blocks - just a helper function to unmap
2039 * set of blocks described by @bh
2041 static inline void __unmap_underlying_blocks(struct inode *inode,
2042 struct buffer_head *bh)
2044 struct block_device *bdev = inode->i_sb->s_bdev;
2045 int blocks, i;
2047 blocks = bh->b_size >> inode->i_blkbits;
2048 for (i = 0; i < blocks; i++)
2049 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2052 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2053 sector_t logical, long blk_cnt)
2055 int nr_pages, i;
2056 pgoff_t index, end;
2057 struct pagevec pvec;
2058 struct inode *inode = mpd->inode;
2059 struct address_space *mapping = inode->i_mapping;
2061 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062 end = (logical + blk_cnt - 1) >>
2063 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2064 while (index <= end) {
2065 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2066 if (nr_pages == 0)
2067 break;
2068 for (i = 0; i < nr_pages; i++) {
2069 struct page *page = pvec.pages[i];
2070 index = page->index;
2071 if (index > end)
2072 break;
2073 index++;
2075 BUG_ON(!PageLocked(page));
2076 BUG_ON(PageWriteback(page));
2077 block_invalidatepage(page, 0);
2078 ClearPageUptodate(page);
2079 unlock_page(page);
2082 return;
2085 static void ext4_print_free_blocks(struct inode *inode)
2087 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2088 printk(KERN_EMERG "Total free blocks count %lld\n",
2089 ext4_count_free_blocks(inode->i_sb));
2090 printk(KERN_EMERG "Free/Dirty block details\n");
2091 printk(KERN_EMERG "free_blocks=%lld\n",
2092 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2093 printk(KERN_EMERG "dirty_blocks=%lld\n",
2094 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2095 printk(KERN_EMERG "Block reservation details\n");
2096 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2097 EXT4_I(inode)->i_reserved_data_blocks);
2098 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2099 EXT4_I(inode)->i_reserved_meta_blocks);
2100 return;
2104 * mpage_da_map_blocks - go through given space
2106 * @mpd - bh describing space
2108 * The function skips space we know is already mapped to disk blocks.
2111 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2113 int err, blks, get_blocks_flags;
2114 struct buffer_head new;
2115 sector_t next = mpd->b_blocknr;
2116 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2117 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2118 handle_t *handle = NULL;
2121 * We consider only non-mapped and non-allocated blocks
2123 if ((mpd->b_state & (1 << BH_Mapped)) &&
2124 !(mpd->b_state & (1 << BH_Delay)) &&
2125 !(mpd->b_state & (1 << BH_Unwritten)))
2126 return 0;
2129 * If we didn't accumulate anything to write simply return
2131 if (!mpd->b_size)
2132 return 0;
2134 handle = ext4_journal_current_handle();
2135 BUG_ON(!handle);
2138 * Call ext4_get_blocks() to allocate any delayed allocation
2139 * blocks, or to convert an uninitialized extent to be
2140 * initialized (in the case where we have written into
2141 * one or more preallocated blocks).
2143 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2144 * indicate that we are on the delayed allocation path. This
2145 * affects functions in many different parts of the allocation
2146 * call path. This flag exists primarily because we don't
2147 * want to change *many* call functions, so ext4_get_blocks()
2148 * will set the magic i_delalloc_reserved_flag once the
2149 * inode's allocation semaphore is taken.
2151 * If the blocks in questions were delalloc blocks, set
2152 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2153 * variables are updated after the blocks have been allocated.
2155 new.b_state = 0;
2156 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2157 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2158 if (mpd->b_state & (1 << BH_Delay))
2159 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2160 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2161 &new, get_blocks_flags);
2162 if (blks < 0) {
2163 err = blks;
2165 * If get block returns with error we simply
2166 * return. Later writepage will redirty the page and
2167 * writepages will find the dirty page again
2169 if (err == -EAGAIN)
2170 return 0;
2172 if (err == -ENOSPC &&
2173 ext4_count_free_blocks(mpd->inode->i_sb)) {
2174 mpd->retval = err;
2175 return 0;
2179 * get block failure will cause us to loop in
2180 * writepages, because a_ops->writepage won't be able
2181 * to make progress. The page will be redirtied by
2182 * writepage and writepages will again try to write
2183 * the same.
2185 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2186 "at logical offset %llu with max blocks "
2187 "%zd with error %d\n",
2188 __func__, mpd->inode->i_ino,
2189 (unsigned long long)next,
2190 mpd->b_size >> mpd->inode->i_blkbits, err);
2191 printk(KERN_EMERG "This should not happen.!! "
2192 "Data will be lost\n");
2193 if (err == -ENOSPC) {
2194 ext4_print_free_blocks(mpd->inode);
2196 /* invalidate all the pages */
2197 ext4_da_block_invalidatepages(mpd, next,
2198 mpd->b_size >> mpd->inode->i_blkbits);
2199 return err;
2201 BUG_ON(blks == 0);
2203 new.b_size = (blks << mpd->inode->i_blkbits);
2205 if (buffer_new(&new))
2206 __unmap_underlying_blocks(mpd->inode, &new);
2209 * If blocks are delayed marked, we need to
2210 * put actual blocknr and drop delayed bit
2212 if ((mpd->b_state & (1 << BH_Delay)) ||
2213 (mpd->b_state & (1 << BH_Unwritten)))
2214 mpage_put_bnr_to_bhs(mpd, next, &new);
2216 if (ext4_should_order_data(mpd->inode)) {
2217 err = ext4_jbd2_file_inode(handle, mpd->inode);
2218 if (err)
2219 return err;
2223 * Update on-disk size along with block allocation.
2225 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2226 if (disksize > i_size_read(mpd->inode))
2227 disksize = i_size_read(mpd->inode);
2228 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2229 ext4_update_i_disksize(mpd->inode, disksize);
2230 return ext4_mark_inode_dirty(handle, mpd->inode);
2233 return 0;
2236 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2237 (1 << BH_Delay) | (1 << BH_Unwritten))
2240 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2242 * @mpd->lbh - extent of blocks
2243 * @logical - logical number of the block in the file
2244 * @bh - bh of the block (used to access block's state)
2246 * the function is used to collect contig. blocks in same state
2248 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2249 sector_t logical, size_t b_size,
2250 unsigned long b_state)
2252 sector_t next;
2253 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2255 /* check if thereserved journal credits might overflow */
2256 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2257 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2259 * With non-extent format we are limited by the journal
2260 * credit available. Total credit needed to insert
2261 * nrblocks contiguous blocks is dependent on the
2262 * nrblocks. So limit nrblocks.
2264 goto flush_it;
2265 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2266 EXT4_MAX_TRANS_DATA) {
2268 * Adding the new buffer_head would make it cross the
2269 * allowed limit for which we have journal credit
2270 * reserved. So limit the new bh->b_size
2272 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2273 mpd->inode->i_blkbits;
2274 /* we will do mpage_da_submit_io in the next loop */
2278 * First block in the extent
2280 if (mpd->b_size == 0) {
2281 mpd->b_blocknr = logical;
2282 mpd->b_size = b_size;
2283 mpd->b_state = b_state & BH_FLAGS;
2284 return;
2287 next = mpd->b_blocknr + nrblocks;
2289 * Can we merge the block to our big extent?
2291 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2292 mpd->b_size += b_size;
2293 return;
2296 flush_it:
2298 * We couldn't merge the block to our extent, so we
2299 * need to flush current extent and start new one
2301 if (mpage_da_map_blocks(mpd) == 0)
2302 mpage_da_submit_io(mpd);
2303 mpd->io_done = 1;
2304 return;
2307 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2309 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2313 * __mpage_da_writepage - finds extent of pages and blocks
2315 * @page: page to consider
2316 * @wbc: not used, we just follow rules
2317 * @data: context
2319 * The function finds extents of pages and scan them for all blocks.
2321 static int __mpage_da_writepage(struct page *page,
2322 struct writeback_control *wbc, void *data)
2324 struct mpage_da_data *mpd = data;
2325 struct inode *inode = mpd->inode;
2326 struct buffer_head *bh, *head;
2327 sector_t logical;
2329 if (mpd->io_done) {
2331 * Rest of the page in the page_vec
2332 * redirty then and skip then. We will
2333 * try to to write them again after
2334 * starting a new transaction
2336 redirty_page_for_writepage(wbc, page);
2337 unlock_page(page);
2338 return MPAGE_DA_EXTENT_TAIL;
2341 * Can we merge this page to current extent?
2343 if (mpd->next_page != page->index) {
2345 * Nope, we can't. So, we map non-allocated blocks
2346 * and start IO on them using writepage()
2348 if (mpd->next_page != mpd->first_page) {
2349 if (mpage_da_map_blocks(mpd) == 0)
2350 mpage_da_submit_io(mpd);
2352 * skip rest of the page in the page_vec
2354 mpd->io_done = 1;
2355 redirty_page_for_writepage(wbc, page);
2356 unlock_page(page);
2357 return MPAGE_DA_EXTENT_TAIL;
2361 * Start next extent of pages ...
2363 mpd->first_page = page->index;
2366 * ... and blocks
2368 mpd->b_size = 0;
2369 mpd->b_state = 0;
2370 mpd->b_blocknr = 0;
2373 mpd->next_page = page->index + 1;
2374 logical = (sector_t) page->index <<
2375 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2377 if (!page_has_buffers(page)) {
2378 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2379 (1 << BH_Dirty) | (1 << BH_Uptodate));
2380 if (mpd->io_done)
2381 return MPAGE_DA_EXTENT_TAIL;
2382 } else {
2384 * Page with regular buffer heads, just add all dirty ones
2386 head = page_buffers(page);
2387 bh = head;
2388 do {
2389 BUG_ON(buffer_locked(bh));
2391 * We need to try to allocate
2392 * unmapped blocks in the same page.
2393 * Otherwise we won't make progress
2394 * with the page in ext4_writepage
2396 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2397 mpage_add_bh_to_extent(mpd, logical,
2398 bh->b_size,
2399 bh->b_state);
2400 if (mpd->io_done)
2401 return MPAGE_DA_EXTENT_TAIL;
2402 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2404 * mapped dirty buffer. We need to update
2405 * the b_state because we look at
2406 * b_state in mpage_da_map_blocks. We don't
2407 * update b_size because if we find an
2408 * unmapped buffer_head later we need to
2409 * use the b_state flag of that buffer_head.
2411 if (mpd->b_size == 0)
2412 mpd->b_state = bh->b_state & BH_FLAGS;
2414 logical++;
2415 } while ((bh = bh->b_this_page) != head);
2418 return 0;
2422 * This is a special get_blocks_t callback which is used by
2423 * ext4_da_write_begin(). It will either return mapped block or
2424 * reserve space for a single block.
2426 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2427 * We also have b_blocknr = -1 and b_bdev initialized properly
2429 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2430 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2431 * initialized properly.
2433 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2434 struct buffer_head *bh_result, int create)
2436 int ret = 0;
2437 sector_t invalid_block = ~((sector_t) 0xffff);
2439 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2440 invalid_block = ~0;
2442 BUG_ON(create == 0);
2443 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2446 * first, we need to know whether the block is allocated already
2447 * preallocated blocks are unmapped but should treated
2448 * the same as allocated blocks.
2450 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2451 if ((ret == 0) && !buffer_delay(bh_result)) {
2452 /* the block isn't (pre)allocated yet, let's reserve space */
2454 * XXX: __block_prepare_write() unmaps passed block,
2455 * is it OK?
2457 ret = ext4_da_reserve_space(inode, 1);
2458 if (ret)
2459 /* not enough space to reserve */
2460 return ret;
2462 map_bh(bh_result, inode->i_sb, invalid_block);
2463 set_buffer_new(bh_result);
2464 set_buffer_delay(bh_result);
2465 } else if (ret > 0) {
2466 bh_result->b_size = (ret << inode->i_blkbits);
2467 if (buffer_unwritten(bh_result)) {
2468 /* A delayed write to unwritten bh should
2469 * be marked new and mapped. Mapped ensures
2470 * that we don't do get_block multiple times
2471 * when we write to the same offset and new
2472 * ensures that we do proper zero out for
2473 * partial write.
2475 set_buffer_new(bh_result);
2476 set_buffer_mapped(bh_result);
2478 ret = 0;
2481 return ret;
2485 * This function is used as a standard get_block_t calback function
2486 * when there is no desire to allocate any blocks. It is used as a
2487 * callback function for block_prepare_write(), nobh_writepage(), and
2488 * block_write_full_page(). These functions should only try to map a
2489 * single block at a time.
2491 * Since this function doesn't do block allocations even if the caller
2492 * requests it by passing in create=1, it is critically important that
2493 * any caller checks to make sure that any buffer heads are returned
2494 * by this function are either all already mapped or marked for
2495 * delayed allocation before calling nobh_writepage() or
2496 * block_write_full_page(). Otherwise, b_blocknr could be left
2497 * unitialized, and the page write functions will be taken by
2498 * surprise.
2500 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2501 struct buffer_head *bh_result, int create)
2503 int ret = 0;
2504 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2506 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2509 * we don't want to do block allocation in writepage
2510 * so call get_block_wrap with create = 0
2512 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2513 if (ret > 0) {
2514 bh_result->b_size = (ret << inode->i_blkbits);
2515 ret = 0;
2517 return ret;
2520 static int bget_one(handle_t *handle, struct buffer_head *bh)
2522 get_bh(bh);
2523 return 0;
2526 static int bput_one(handle_t *handle, struct buffer_head *bh)
2528 put_bh(bh);
2529 return 0;
2532 static int __ext4_journalled_writepage(struct page *page,
2533 struct writeback_control *wbc,
2534 unsigned int len)
2536 struct address_space *mapping = page->mapping;
2537 struct inode *inode = mapping->host;
2538 struct buffer_head *page_bufs;
2539 handle_t *handle = NULL;
2540 int ret = 0;
2541 int err;
2543 page_bufs = page_buffers(page);
2544 BUG_ON(!page_bufs);
2545 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2546 /* As soon as we unlock the page, it can go away, but we have
2547 * references to buffers so we are safe */
2548 unlock_page(page);
2550 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2551 if (IS_ERR(handle)) {
2552 ret = PTR_ERR(handle);
2553 goto out;
2556 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2557 do_journal_get_write_access);
2559 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2560 write_end_fn);
2561 if (ret == 0)
2562 ret = err;
2563 err = ext4_journal_stop(handle);
2564 if (!ret)
2565 ret = err;
2567 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2568 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2569 out:
2570 return ret;
2574 * Note that we don't need to start a transaction unless we're journaling data
2575 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2576 * need to file the inode to the transaction's list in ordered mode because if
2577 * we are writing back data added by write(), the inode is already there and if
2578 * we are writing back data modified via mmap(), noone guarantees in which
2579 * transaction the data will hit the disk. In case we are journaling data, we
2580 * cannot start transaction directly because transaction start ranks above page
2581 * lock so we have to do some magic.
2583 * This function can get called via...
2584 * - ext4_da_writepages after taking page lock (have journal handle)
2585 * - journal_submit_inode_data_buffers (no journal handle)
2586 * - shrink_page_list via pdflush (no journal handle)
2587 * - grab_page_cache when doing write_begin (have journal handle)
2589 * We don't do any block allocation in this function. If we have page with
2590 * multiple blocks we need to write those buffer_heads that are mapped. This
2591 * is important for mmaped based write. So if we do with blocksize 1K
2592 * truncate(f, 1024);
2593 * a = mmap(f, 0, 4096);
2594 * a[0] = 'a';
2595 * truncate(f, 4096);
2596 * we have in the page first buffer_head mapped via page_mkwrite call back
2597 * but other bufer_heads would be unmapped but dirty(dirty done via the
2598 * do_wp_page). So writepage should write the first block. If we modify
2599 * the mmap area beyond 1024 we will again get a page_fault and the
2600 * page_mkwrite callback will do the block allocation and mark the
2601 * buffer_heads mapped.
2603 * We redirty the page if we have any buffer_heads that is either delay or
2604 * unwritten in the page.
2606 * We can get recursively called as show below.
2608 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2609 * ext4_writepage()
2611 * But since we don't do any block allocation we should not deadlock.
2612 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2614 static int ext4_writepage(struct page *page,
2615 struct writeback_control *wbc)
2617 int ret = 0;
2618 loff_t size;
2619 unsigned int len;
2620 struct buffer_head *page_bufs;
2621 struct inode *inode = page->mapping->host;
2623 trace_ext4_writepage(inode, page);
2624 size = i_size_read(inode);
2625 if (page->index == size >> PAGE_CACHE_SHIFT)
2626 len = size & ~PAGE_CACHE_MASK;
2627 else
2628 len = PAGE_CACHE_SIZE;
2630 if (page_has_buffers(page)) {
2631 page_bufs = page_buffers(page);
2632 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2633 ext4_bh_delay_or_unwritten)) {
2635 * We don't want to do block allocation
2636 * So redirty the page and return
2637 * We may reach here when we do a journal commit
2638 * via journal_submit_inode_data_buffers.
2639 * If we don't have mapping block we just ignore
2640 * them. We can also reach here via shrink_page_list
2642 redirty_page_for_writepage(wbc, page);
2643 unlock_page(page);
2644 return 0;
2646 } else {
2648 * The test for page_has_buffers() is subtle:
2649 * We know the page is dirty but it lost buffers. That means
2650 * that at some moment in time after write_begin()/write_end()
2651 * has been called all buffers have been clean and thus they
2652 * must have been written at least once. So they are all
2653 * mapped and we can happily proceed with mapping them
2654 * and writing the page.
2656 * Try to initialize the buffer_heads and check whether
2657 * all are mapped and non delay. We don't want to
2658 * do block allocation here.
2660 ret = block_prepare_write(page, 0, len,
2661 noalloc_get_block_write);
2662 if (!ret) {
2663 page_bufs = page_buffers(page);
2664 /* check whether all are mapped and non delay */
2665 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2666 ext4_bh_delay_or_unwritten)) {
2667 redirty_page_for_writepage(wbc, page);
2668 unlock_page(page);
2669 return 0;
2671 } else {
2673 * We can't do block allocation here
2674 * so just redity the page and unlock
2675 * and return
2677 redirty_page_for_writepage(wbc, page);
2678 unlock_page(page);
2679 return 0;
2681 /* now mark the buffer_heads as dirty and uptodate */
2682 block_commit_write(page, 0, len);
2685 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2687 * It's mmapped pagecache. Add buffers and journal it. There
2688 * doesn't seem much point in redirtying the page here.
2690 ClearPageChecked(page);
2691 return __ext4_journalled_writepage(page, wbc, len);
2694 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2695 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2696 else
2697 ret = block_write_full_page(page, noalloc_get_block_write,
2698 wbc);
2700 return ret;
2704 * This is called via ext4_da_writepages() to
2705 * calulate the total number of credits to reserve to fit
2706 * a single extent allocation into a single transaction,
2707 * ext4_da_writpeages() will loop calling this before
2708 * the block allocation.
2711 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2713 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2716 * With non-extent format the journal credit needed to
2717 * insert nrblocks contiguous block is dependent on
2718 * number of contiguous block. So we will limit
2719 * number of contiguous block to a sane value
2721 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2722 (max_blocks > EXT4_MAX_TRANS_DATA))
2723 max_blocks = EXT4_MAX_TRANS_DATA;
2725 return ext4_chunk_trans_blocks(inode, max_blocks);
2728 static int ext4_da_writepages(struct address_space *mapping,
2729 struct writeback_control *wbc)
2731 pgoff_t index;
2732 int range_whole = 0;
2733 handle_t *handle = NULL;
2734 struct mpage_da_data mpd;
2735 struct inode *inode = mapping->host;
2736 int no_nrwrite_index_update;
2737 int pages_written = 0;
2738 long pages_skipped;
2739 int range_cyclic, cycled = 1, io_done = 0;
2740 int needed_blocks, ret = 0, nr_to_writebump = 0;
2741 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2743 trace_ext4_da_writepages(inode, wbc);
2746 * No pages to write? This is mainly a kludge to avoid starting
2747 * a transaction for special inodes like journal inode on last iput()
2748 * because that could violate lock ordering on umount
2750 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2751 return 0;
2754 * If the filesystem has aborted, it is read-only, so return
2755 * right away instead of dumping stack traces later on that
2756 * will obscure the real source of the problem. We test
2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758 * the latter could be true if the filesystem is mounted
2759 * read-only, and in that case, ext4_da_writepages should
2760 * *never* be called, so if that ever happens, we would want
2761 * the stack trace.
2763 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2764 return -EROFS;
2767 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2768 * This make sure small files blocks are allocated in
2769 * single attempt. This ensure that small files
2770 * get less fragmented.
2772 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2773 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2774 wbc->nr_to_write = sbi->s_mb_stream_request;
2776 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2777 range_whole = 1;
2779 range_cyclic = wbc->range_cyclic;
2780 if (wbc->range_cyclic) {
2781 index = mapping->writeback_index;
2782 if (index)
2783 cycled = 0;
2784 wbc->range_start = index << PAGE_CACHE_SHIFT;
2785 wbc->range_end = LLONG_MAX;
2786 wbc->range_cyclic = 0;
2787 } else
2788 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2790 mpd.wbc = wbc;
2791 mpd.inode = mapping->host;
2794 * we don't want write_cache_pages to update
2795 * nr_to_write and writeback_index
2797 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2798 wbc->no_nrwrite_index_update = 1;
2799 pages_skipped = wbc->pages_skipped;
2801 retry:
2802 while (!ret && wbc->nr_to_write > 0) {
2805 * we insert one extent at a time. So we need
2806 * credit needed for single extent allocation.
2807 * journalled mode is currently not supported
2808 * by delalloc
2810 BUG_ON(ext4_should_journal_data(inode));
2811 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2813 /* start a new transaction*/
2814 handle = ext4_journal_start(inode, needed_blocks);
2815 if (IS_ERR(handle)) {
2816 ret = PTR_ERR(handle);
2817 printk(KERN_CRIT "%s: jbd2_start: "
2818 "%ld pages, ino %lu; err %d\n", __func__,
2819 wbc->nr_to_write, inode->i_ino, ret);
2820 dump_stack();
2821 goto out_writepages;
2825 * Now call __mpage_da_writepage to find the next
2826 * contiguous region of logical blocks that need
2827 * blocks to be allocated by ext4. We don't actually
2828 * submit the blocks for I/O here, even though
2829 * write_cache_pages thinks it will, and will set the
2830 * pages as clean for write before calling
2831 * __mpage_da_writepage().
2833 mpd.b_size = 0;
2834 mpd.b_state = 0;
2835 mpd.b_blocknr = 0;
2836 mpd.first_page = 0;
2837 mpd.next_page = 0;
2838 mpd.io_done = 0;
2839 mpd.pages_written = 0;
2840 mpd.retval = 0;
2841 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2842 &mpd);
2844 * If we have a contigous extent of pages and we
2845 * haven't done the I/O yet, map the blocks and submit
2846 * them for I/O.
2848 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2849 if (mpage_da_map_blocks(&mpd) == 0)
2850 mpage_da_submit_io(&mpd);
2851 mpd.io_done = 1;
2852 ret = MPAGE_DA_EXTENT_TAIL;
2854 wbc->nr_to_write -= mpd.pages_written;
2856 ext4_journal_stop(handle);
2858 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2859 /* commit the transaction which would
2860 * free blocks released in the transaction
2861 * and try again
2863 jbd2_journal_force_commit_nested(sbi->s_journal);
2864 wbc->pages_skipped = pages_skipped;
2865 ret = 0;
2866 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2868 * got one extent now try with
2869 * rest of the pages
2871 pages_written += mpd.pages_written;
2872 wbc->pages_skipped = pages_skipped;
2873 ret = 0;
2874 io_done = 1;
2875 } else if (wbc->nr_to_write)
2877 * There is no more writeout needed
2878 * or we requested for a noblocking writeout
2879 * and we found the device congested
2881 break;
2883 if (!io_done && !cycled) {
2884 cycled = 1;
2885 index = 0;
2886 wbc->range_start = index << PAGE_CACHE_SHIFT;
2887 wbc->range_end = mapping->writeback_index - 1;
2888 goto retry;
2890 if (pages_skipped != wbc->pages_skipped)
2891 printk(KERN_EMERG "This should not happen leaving %s "
2892 "with nr_to_write = %ld ret = %d\n",
2893 __func__, wbc->nr_to_write, ret);
2895 /* Update index */
2896 index += pages_written;
2897 wbc->range_cyclic = range_cyclic;
2898 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2900 * set the writeback_index so that range_cyclic
2901 * mode will write it back later
2903 mapping->writeback_index = index;
2905 out_writepages:
2906 if (!no_nrwrite_index_update)
2907 wbc->no_nrwrite_index_update = 0;
2908 wbc->nr_to_write -= nr_to_writebump;
2909 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2910 return ret;
2913 #define FALL_BACK_TO_NONDELALLOC 1
2914 static int ext4_nonda_switch(struct super_block *sb)
2916 s64 free_blocks, dirty_blocks;
2917 struct ext4_sb_info *sbi = EXT4_SB(sb);
2920 * switch to non delalloc mode if we are running low
2921 * on free block. The free block accounting via percpu
2922 * counters can get slightly wrong with percpu_counter_batch getting
2923 * accumulated on each CPU without updating global counters
2924 * Delalloc need an accurate free block accounting. So switch
2925 * to non delalloc when we are near to error range.
2927 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2928 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2929 if (2 * free_blocks < 3 * dirty_blocks ||
2930 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2932 * free block count is less that 150% of dirty blocks
2933 * or free blocks is less that watermark
2935 return 1;
2937 return 0;
2940 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2941 loff_t pos, unsigned len, unsigned flags,
2942 struct page **pagep, void **fsdata)
2944 int ret, retries = 0;
2945 struct page *page;
2946 pgoff_t index;
2947 unsigned from, to;
2948 struct inode *inode = mapping->host;
2949 handle_t *handle;
2951 index = pos >> PAGE_CACHE_SHIFT;
2952 from = pos & (PAGE_CACHE_SIZE - 1);
2953 to = from + len;
2955 if (ext4_nonda_switch(inode->i_sb)) {
2956 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2957 return ext4_write_begin(file, mapping, pos,
2958 len, flags, pagep, fsdata);
2960 *fsdata = (void *)0;
2961 trace_ext4_da_write_begin(inode, pos, len, flags);
2962 retry:
2964 * With delayed allocation, we don't log the i_disksize update
2965 * if there is delayed block allocation. But we still need
2966 * to journalling the i_disksize update if writes to the end
2967 * of file which has an already mapped buffer.
2969 handle = ext4_journal_start(inode, 1);
2970 if (IS_ERR(handle)) {
2971 ret = PTR_ERR(handle);
2972 goto out;
2974 /* We cannot recurse into the filesystem as the transaction is already
2975 * started */
2976 flags |= AOP_FLAG_NOFS;
2978 page = grab_cache_page_write_begin(mapping, index, flags);
2979 if (!page) {
2980 ext4_journal_stop(handle);
2981 ret = -ENOMEM;
2982 goto out;
2984 *pagep = page;
2986 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2987 ext4_da_get_block_prep);
2988 if (ret < 0) {
2989 unlock_page(page);
2990 ext4_journal_stop(handle);
2991 page_cache_release(page);
2993 * block_write_begin may have instantiated a few blocks
2994 * outside i_size. Trim these off again. Don't need
2995 * i_size_read because we hold i_mutex.
2997 if (pos + len > inode->i_size)
2998 ext4_truncate(inode);
3001 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3002 goto retry;
3003 out:
3004 return ret;
3008 * Check if we should update i_disksize
3009 * when write to the end of file but not require block allocation
3011 static int ext4_da_should_update_i_disksize(struct page *page,
3012 unsigned long offset)
3014 struct buffer_head *bh;
3015 struct inode *inode = page->mapping->host;
3016 unsigned int idx;
3017 int i;
3019 bh = page_buffers(page);
3020 idx = offset >> inode->i_blkbits;
3022 for (i = 0; i < idx; i++)
3023 bh = bh->b_this_page;
3025 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3026 return 0;
3027 return 1;
3030 static int ext4_da_write_end(struct file *file,
3031 struct address_space *mapping,
3032 loff_t pos, unsigned len, unsigned copied,
3033 struct page *page, void *fsdata)
3035 struct inode *inode = mapping->host;
3036 int ret = 0, ret2;
3037 handle_t *handle = ext4_journal_current_handle();
3038 loff_t new_i_size;
3039 unsigned long start, end;
3040 int write_mode = (int)(unsigned long)fsdata;
3042 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3043 if (ext4_should_order_data(inode)) {
3044 return ext4_ordered_write_end(file, mapping, pos,
3045 len, copied, page, fsdata);
3046 } else if (ext4_should_writeback_data(inode)) {
3047 return ext4_writeback_write_end(file, mapping, pos,
3048 len, copied, page, fsdata);
3049 } else {
3050 BUG();
3054 trace_ext4_da_write_end(inode, pos, len, copied);
3055 start = pos & (PAGE_CACHE_SIZE - 1);
3056 end = start + copied - 1;
3059 * generic_write_end() will run mark_inode_dirty() if i_size
3060 * changes. So let's piggyback the i_disksize mark_inode_dirty
3061 * into that.
3064 new_i_size = pos + copied;
3065 if (new_i_size > EXT4_I(inode)->i_disksize) {
3066 if (ext4_da_should_update_i_disksize(page, end)) {
3067 down_write(&EXT4_I(inode)->i_data_sem);
3068 if (new_i_size > EXT4_I(inode)->i_disksize) {
3070 * Updating i_disksize when extending file
3071 * without needing block allocation
3073 if (ext4_should_order_data(inode))
3074 ret = ext4_jbd2_file_inode(handle,
3075 inode);
3077 EXT4_I(inode)->i_disksize = new_i_size;
3079 up_write(&EXT4_I(inode)->i_data_sem);
3080 /* We need to mark inode dirty even if
3081 * new_i_size is less that inode->i_size
3082 * bu greater than i_disksize.(hint delalloc)
3084 ext4_mark_inode_dirty(handle, inode);
3087 ret2 = generic_write_end(file, mapping, pos, len, copied,
3088 page, fsdata);
3089 copied = ret2;
3090 if (ret2 < 0)
3091 ret = ret2;
3092 ret2 = ext4_journal_stop(handle);
3093 if (!ret)
3094 ret = ret2;
3096 return ret ? ret : copied;
3099 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3102 * Drop reserved blocks
3104 BUG_ON(!PageLocked(page));
3105 if (!page_has_buffers(page))
3106 goto out;
3108 ext4_da_page_release_reservation(page, offset);
3110 out:
3111 ext4_invalidatepage(page, offset);
3113 return;
3117 * Force all delayed allocation blocks to be allocated for a given inode.
3119 int ext4_alloc_da_blocks(struct inode *inode)
3121 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3122 !EXT4_I(inode)->i_reserved_meta_blocks)
3123 return 0;
3126 * We do something simple for now. The filemap_flush() will
3127 * also start triggering a write of the data blocks, which is
3128 * not strictly speaking necessary (and for users of
3129 * laptop_mode, not even desirable). However, to do otherwise
3130 * would require replicating code paths in:
3132 * ext4_da_writepages() ->
3133 * write_cache_pages() ---> (via passed in callback function)
3134 * __mpage_da_writepage() -->
3135 * mpage_add_bh_to_extent()
3136 * mpage_da_map_blocks()
3138 * The problem is that write_cache_pages(), located in
3139 * mm/page-writeback.c, marks pages clean in preparation for
3140 * doing I/O, which is not desirable if we're not planning on
3141 * doing I/O at all.
3143 * We could call write_cache_pages(), and then redirty all of
3144 * the pages by calling redirty_page_for_writeback() but that
3145 * would be ugly in the extreme. So instead we would need to
3146 * replicate parts of the code in the above functions,
3147 * simplifying them becuase we wouldn't actually intend to
3148 * write out the pages, but rather only collect contiguous
3149 * logical block extents, call the multi-block allocator, and
3150 * then update the buffer heads with the block allocations.
3152 * For now, though, we'll cheat by calling filemap_flush(),
3153 * which will map the blocks, and start the I/O, but not
3154 * actually wait for the I/O to complete.
3156 return filemap_flush(inode->i_mapping);
3160 * bmap() is special. It gets used by applications such as lilo and by
3161 * the swapper to find the on-disk block of a specific piece of data.
3163 * Naturally, this is dangerous if the block concerned is still in the
3164 * journal. If somebody makes a swapfile on an ext4 data-journaling
3165 * filesystem and enables swap, then they may get a nasty shock when the
3166 * data getting swapped to that swapfile suddenly gets overwritten by
3167 * the original zero's written out previously to the journal and
3168 * awaiting writeback in the kernel's buffer cache.
3170 * So, if we see any bmap calls here on a modified, data-journaled file,
3171 * take extra steps to flush any blocks which might be in the cache.
3173 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3175 struct inode *inode = mapping->host;
3176 journal_t *journal;
3177 int err;
3179 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3180 test_opt(inode->i_sb, DELALLOC)) {
3182 * With delalloc we want to sync the file
3183 * so that we can make sure we allocate
3184 * blocks for file
3186 filemap_write_and_wait(mapping);
3189 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3191 * This is a REALLY heavyweight approach, but the use of
3192 * bmap on dirty files is expected to be extremely rare:
3193 * only if we run lilo or swapon on a freshly made file
3194 * do we expect this to happen.
3196 * (bmap requires CAP_SYS_RAWIO so this does not
3197 * represent an unprivileged user DOS attack --- we'd be
3198 * in trouble if mortal users could trigger this path at
3199 * will.)
3201 * NB. EXT4_STATE_JDATA is not set on files other than
3202 * regular files. If somebody wants to bmap a directory
3203 * or symlink and gets confused because the buffer
3204 * hasn't yet been flushed to disk, they deserve
3205 * everything they get.
3208 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3209 journal = EXT4_JOURNAL(inode);
3210 jbd2_journal_lock_updates(journal);
3211 err = jbd2_journal_flush(journal);
3212 jbd2_journal_unlock_updates(journal);
3214 if (err)
3215 return 0;
3218 return generic_block_bmap(mapping, block, ext4_get_block);
3221 static int ext4_readpage(struct file *file, struct page *page)
3223 return mpage_readpage(page, ext4_get_block);
3226 static int
3227 ext4_readpages(struct file *file, struct address_space *mapping,
3228 struct list_head *pages, unsigned nr_pages)
3230 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3233 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3235 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3238 * If it's a full truncate we just forget about the pending dirtying
3240 if (offset == 0)
3241 ClearPageChecked(page);
3243 if (journal)
3244 jbd2_journal_invalidatepage(journal, page, offset);
3245 else
3246 block_invalidatepage(page, offset);
3249 static int ext4_releasepage(struct page *page, gfp_t wait)
3251 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3253 WARN_ON(PageChecked(page));
3254 if (!page_has_buffers(page))
3255 return 0;
3256 if (journal)
3257 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3258 else
3259 return try_to_free_buffers(page);
3263 * If the O_DIRECT write will extend the file then add this inode to the
3264 * orphan list. So recovery will truncate it back to the original size
3265 * if the machine crashes during the write.
3267 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3268 * crashes then stale disk data _may_ be exposed inside the file. But current
3269 * VFS code falls back into buffered path in that case so we are safe.
3271 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3272 const struct iovec *iov, loff_t offset,
3273 unsigned long nr_segs)
3275 struct file *file = iocb->ki_filp;
3276 struct inode *inode = file->f_mapping->host;
3277 struct ext4_inode_info *ei = EXT4_I(inode);
3278 handle_t *handle;
3279 ssize_t ret;
3280 int orphan = 0;
3281 size_t count = iov_length(iov, nr_segs);
3283 if (rw == WRITE) {
3284 loff_t final_size = offset + count;
3286 if (final_size > inode->i_size) {
3287 /* Credits for sb + inode write */
3288 handle = ext4_journal_start(inode, 2);
3289 if (IS_ERR(handle)) {
3290 ret = PTR_ERR(handle);
3291 goto out;
3293 ret = ext4_orphan_add(handle, inode);
3294 if (ret) {
3295 ext4_journal_stop(handle);
3296 goto out;
3298 orphan = 1;
3299 ei->i_disksize = inode->i_size;
3300 ext4_journal_stop(handle);
3304 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3305 offset, nr_segs,
3306 ext4_get_block, NULL);
3308 if (orphan) {
3309 int err;
3311 /* Credits for sb + inode write */
3312 handle = ext4_journal_start(inode, 2);
3313 if (IS_ERR(handle)) {
3314 /* This is really bad luck. We've written the data
3315 * but cannot extend i_size. Bail out and pretend
3316 * the write failed... */
3317 ret = PTR_ERR(handle);
3318 goto out;
3320 if (inode->i_nlink)
3321 ext4_orphan_del(handle, inode);
3322 if (ret > 0) {
3323 loff_t end = offset + ret;
3324 if (end > inode->i_size) {
3325 ei->i_disksize = end;
3326 i_size_write(inode, end);
3328 * We're going to return a positive `ret'
3329 * here due to non-zero-length I/O, so there's
3330 * no way of reporting error returns from
3331 * ext4_mark_inode_dirty() to userspace. So
3332 * ignore it.
3334 ext4_mark_inode_dirty(handle, inode);
3337 err = ext4_journal_stop(handle);
3338 if (ret == 0)
3339 ret = err;
3341 out:
3342 return ret;
3346 * Pages can be marked dirty completely asynchronously from ext4's journalling
3347 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3348 * much here because ->set_page_dirty is called under VFS locks. The page is
3349 * not necessarily locked.
3351 * We cannot just dirty the page and leave attached buffers clean, because the
3352 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3353 * or jbddirty because all the journalling code will explode.
3355 * So what we do is to mark the page "pending dirty" and next time writepage
3356 * is called, propagate that into the buffers appropriately.
3358 static int ext4_journalled_set_page_dirty(struct page *page)
3360 SetPageChecked(page);
3361 return __set_page_dirty_nobuffers(page);
3364 static const struct address_space_operations ext4_ordered_aops = {
3365 .readpage = ext4_readpage,
3366 .readpages = ext4_readpages,
3367 .writepage = ext4_writepage,
3368 .sync_page = block_sync_page,
3369 .write_begin = ext4_write_begin,
3370 .write_end = ext4_ordered_write_end,
3371 .bmap = ext4_bmap,
3372 .invalidatepage = ext4_invalidatepage,
3373 .releasepage = ext4_releasepage,
3374 .direct_IO = ext4_direct_IO,
3375 .migratepage = buffer_migrate_page,
3376 .is_partially_uptodate = block_is_partially_uptodate,
3379 static const struct address_space_operations ext4_writeback_aops = {
3380 .readpage = ext4_readpage,
3381 .readpages = ext4_readpages,
3382 .writepage = ext4_writepage,
3383 .sync_page = block_sync_page,
3384 .write_begin = ext4_write_begin,
3385 .write_end = ext4_writeback_write_end,
3386 .bmap = ext4_bmap,
3387 .invalidatepage = ext4_invalidatepage,
3388 .releasepage = ext4_releasepage,
3389 .direct_IO = ext4_direct_IO,
3390 .migratepage = buffer_migrate_page,
3391 .is_partially_uptodate = block_is_partially_uptodate,
3394 static const struct address_space_operations ext4_journalled_aops = {
3395 .readpage = ext4_readpage,
3396 .readpages = ext4_readpages,
3397 .writepage = ext4_writepage,
3398 .sync_page = block_sync_page,
3399 .write_begin = ext4_write_begin,
3400 .write_end = ext4_journalled_write_end,
3401 .set_page_dirty = ext4_journalled_set_page_dirty,
3402 .bmap = ext4_bmap,
3403 .invalidatepage = ext4_invalidatepage,
3404 .releasepage = ext4_releasepage,
3405 .is_partially_uptodate = block_is_partially_uptodate,
3408 static const struct address_space_operations ext4_da_aops = {
3409 .readpage = ext4_readpage,
3410 .readpages = ext4_readpages,
3411 .writepage = ext4_writepage,
3412 .writepages = ext4_da_writepages,
3413 .sync_page = block_sync_page,
3414 .write_begin = ext4_da_write_begin,
3415 .write_end = ext4_da_write_end,
3416 .bmap = ext4_bmap,
3417 .invalidatepage = ext4_da_invalidatepage,
3418 .releasepage = ext4_releasepage,
3419 .direct_IO = ext4_direct_IO,
3420 .migratepage = buffer_migrate_page,
3421 .is_partially_uptodate = block_is_partially_uptodate,
3424 void ext4_set_aops(struct inode *inode)
3426 if (ext4_should_order_data(inode) &&
3427 test_opt(inode->i_sb, DELALLOC))
3428 inode->i_mapping->a_ops = &ext4_da_aops;
3429 else if (ext4_should_order_data(inode))
3430 inode->i_mapping->a_ops = &ext4_ordered_aops;
3431 else if (ext4_should_writeback_data(inode) &&
3432 test_opt(inode->i_sb, DELALLOC))
3433 inode->i_mapping->a_ops = &ext4_da_aops;
3434 else if (ext4_should_writeback_data(inode))
3435 inode->i_mapping->a_ops = &ext4_writeback_aops;
3436 else
3437 inode->i_mapping->a_ops = &ext4_journalled_aops;
3441 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3442 * up to the end of the block which corresponds to `from'.
3443 * This required during truncate. We need to physically zero the tail end
3444 * of that block so it doesn't yield old data if the file is later grown.
3446 int ext4_block_truncate_page(handle_t *handle,
3447 struct address_space *mapping, loff_t from)
3449 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3450 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3451 unsigned blocksize, length, pos;
3452 ext4_lblk_t iblock;
3453 struct inode *inode = mapping->host;
3454 struct buffer_head *bh;
3455 struct page *page;
3456 int err = 0;
3458 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3459 mapping_gfp_mask(mapping) & ~__GFP_FS);
3460 if (!page)
3461 return -EINVAL;
3463 blocksize = inode->i_sb->s_blocksize;
3464 length = blocksize - (offset & (blocksize - 1));
3465 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3468 * For "nobh" option, we can only work if we don't need to
3469 * read-in the page - otherwise we create buffers to do the IO.
3471 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3472 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3473 zero_user(page, offset, length);
3474 set_page_dirty(page);
3475 goto unlock;
3478 if (!page_has_buffers(page))
3479 create_empty_buffers(page, blocksize, 0);
3481 /* Find the buffer that contains "offset" */
3482 bh = page_buffers(page);
3483 pos = blocksize;
3484 while (offset >= pos) {
3485 bh = bh->b_this_page;
3486 iblock++;
3487 pos += blocksize;
3490 err = 0;
3491 if (buffer_freed(bh)) {
3492 BUFFER_TRACE(bh, "freed: skip");
3493 goto unlock;
3496 if (!buffer_mapped(bh)) {
3497 BUFFER_TRACE(bh, "unmapped");
3498 ext4_get_block(inode, iblock, bh, 0);
3499 /* unmapped? It's a hole - nothing to do */
3500 if (!buffer_mapped(bh)) {
3501 BUFFER_TRACE(bh, "still unmapped");
3502 goto unlock;
3506 /* Ok, it's mapped. Make sure it's up-to-date */
3507 if (PageUptodate(page))
3508 set_buffer_uptodate(bh);
3510 if (!buffer_uptodate(bh)) {
3511 err = -EIO;
3512 ll_rw_block(READ, 1, &bh);
3513 wait_on_buffer(bh);
3514 /* Uhhuh. Read error. Complain and punt. */
3515 if (!buffer_uptodate(bh))
3516 goto unlock;
3519 if (ext4_should_journal_data(inode)) {
3520 BUFFER_TRACE(bh, "get write access");
3521 err = ext4_journal_get_write_access(handle, bh);
3522 if (err)
3523 goto unlock;
3526 zero_user(page, offset, length);
3528 BUFFER_TRACE(bh, "zeroed end of block");
3530 err = 0;
3531 if (ext4_should_journal_data(inode)) {
3532 err = ext4_handle_dirty_metadata(handle, inode, bh);
3533 } else {
3534 if (ext4_should_order_data(inode))
3535 err = ext4_jbd2_file_inode(handle, inode);
3536 mark_buffer_dirty(bh);
3539 unlock:
3540 unlock_page(page);
3541 page_cache_release(page);
3542 return err;
3546 * Probably it should be a library function... search for first non-zero word
3547 * or memcmp with zero_page, whatever is better for particular architecture.
3548 * Linus?
3550 static inline int all_zeroes(__le32 *p, __le32 *q)
3552 while (p < q)
3553 if (*p++)
3554 return 0;
3555 return 1;
3559 * ext4_find_shared - find the indirect blocks for partial truncation.
3560 * @inode: inode in question
3561 * @depth: depth of the affected branch
3562 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3563 * @chain: place to store the pointers to partial indirect blocks
3564 * @top: place to the (detached) top of branch
3566 * This is a helper function used by ext4_truncate().
3568 * When we do truncate() we may have to clean the ends of several
3569 * indirect blocks but leave the blocks themselves alive. Block is
3570 * partially truncated if some data below the new i_size is refered
3571 * from it (and it is on the path to the first completely truncated
3572 * data block, indeed). We have to free the top of that path along
3573 * with everything to the right of the path. Since no allocation
3574 * past the truncation point is possible until ext4_truncate()
3575 * finishes, we may safely do the latter, but top of branch may
3576 * require special attention - pageout below the truncation point
3577 * might try to populate it.
3579 * We atomically detach the top of branch from the tree, store the
3580 * block number of its root in *@top, pointers to buffer_heads of
3581 * partially truncated blocks - in @chain[].bh and pointers to
3582 * their last elements that should not be removed - in
3583 * @chain[].p. Return value is the pointer to last filled element
3584 * of @chain.
3586 * The work left to caller to do the actual freeing of subtrees:
3587 * a) free the subtree starting from *@top
3588 * b) free the subtrees whose roots are stored in
3589 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3590 * c) free the subtrees growing from the inode past the @chain[0].
3591 * (no partially truncated stuff there). */
3593 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3594 ext4_lblk_t offsets[4], Indirect chain[4],
3595 __le32 *top)
3597 Indirect *partial, *p;
3598 int k, err;
3600 *top = 0;
3601 /* Make k index the deepest non-null offest + 1 */
3602 for (k = depth; k > 1 && !offsets[k-1]; k--)
3604 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3605 /* Writer: pointers */
3606 if (!partial)
3607 partial = chain + k-1;
3609 * If the branch acquired continuation since we've looked at it -
3610 * fine, it should all survive and (new) top doesn't belong to us.
3612 if (!partial->key && *partial->p)
3613 /* Writer: end */
3614 goto no_top;
3615 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3618 * OK, we've found the last block that must survive. The rest of our
3619 * branch should be detached before unlocking. However, if that rest
3620 * of branch is all ours and does not grow immediately from the inode
3621 * it's easier to cheat and just decrement partial->p.
3623 if (p == chain + k - 1 && p > chain) {
3624 p->p--;
3625 } else {
3626 *top = *p->p;
3627 /* Nope, don't do this in ext4. Must leave the tree intact */
3628 #if 0
3629 *p->p = 0;
3630 #endif
3632 /* Writer: end */
3634 while (partial > p) {
3635 brelse(partial->bh);
3636 partial--;
3638 no_top:
3639 return partial;
3643 * Zero a number of block pointers in either an inode or an indirect block.
3644 * If we restart the transaction we must again get write access to the
3645 * indirect block for further modification.
3647 * We release `count' blocks on disk, but (last - first) may be greater
3648 * than `count' because there can be holes in there.
3650 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3651 struct buffer_head *bh,
3652 ext4_fsblk_t block_to_free,
3653 unsigned long count, __le32 *first,
3654 __le32 *last)
3656 __le32 *p;
3657 if (try_to_extend_transaction(handle, inode)) {
3658 if (bh) {
3659 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3660 ext4_handle_dirty_metadata(handle, inode, bh);
3662 ext4_mark_inode_dirty(handle, inode);
3663 ext4_journal_test_restart(handle, inode);
3664 if (bh) {
3665 BUFFER_TRACE(bh, "retaking write access");
3666 ext4_journal_get_write_access(handle, bh);
3671 * Any buffers which are on the journal will be in memory. We
3672 * find them on the hash table so jbd2_journal_revoke() will
3673 * run jbd2_journal_forget() on them. We've already detached
3674 * each block from the file, so bforget() in
3675 * jbd2_journal_forget() should be safe.
3677 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3679 for (p = first; p < last; p++) {
3680 u32 nr = le32_to_cpu(*p);
3681 if (nr) {
3682 struct buffer_head *tbh;
3684 *p = 0;
3685 tbh = sb_find_get_block(inode->i_sb, nr);
3686 ext4_forget(handle, 0, inode, tbh, nr);
3690 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3694 * ext4_free_data - free a list of data blocks
3695 * @handle: handle for this transaction
3696 * @inode: inode we are dealing with
3697 * @this_bh: indirect buffer_head which contains *@first and *@last
3698 * @first: array of block numbers
3699 * @last: points immediately past the end of array
3701 * We are freeing all blocks refered from that array (numbers are stored as
3702 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3704 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3705 * blocks are contiguous then releasing them at one time will only affect one
3706 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3707 * actually use a lot of journal space.
3709 * @this_bh will be %NULL if @first and @last point into the inode's direct
3710 * block pointers.
3712 static void ext4_free_data(handle_t *handle, struct inode *inode,
3713 struct buffer_head *this_bh,
3714 __le32 *first, __le32 *last)
3716 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3717 unsigned long count = 0; /* Number of blocks in the run */
3718 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3719 corresponding to
3720 block_to_free */
3721 ext4_fsblk_t nr; /* Current block # */
3722 __le32 *p; /* Pointer into inode/ind
3723 for current block */
3724 int err;
3726 if (this_bh) { /* For indirect block */
3727 BUFFER_TRACE(this_bh, "get_write_access");
3728 err = ext4_journal_get_write_access(handle, this_bh);
3729 /* Important: if we can't update the indirect pointers
3730 * to the blocks, we can't free them. */
3731 if (err)
3732 return;
3735 for (p = first; p < last; p++) {
3736 nr = le32_to_cpu(*p);
3737 if (nr) {
3738 /* accumulate blocks to free if they're contiguous */
3739 if (count == 0) {
3740 block_to_free = nr;
3741 block_to_free_p = p;
3742 count = 1;
3743 } else if (nr == block_to_free + count) {
3744 count++;
3745 } else {
3746 ext4_clear_blocks(handle, inode, this_bh,
3747 block_to_free,
3748 count, block_to_free_p, p);
3749 block_to_free = nr;
3750 block_to_free_p = p;
3751 count = 1;
3756 if (count > 0)
3757 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3758 count, block_to_free_p, p);
3760 if (this_bh) {
3761 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3764 * The buffer head should have an attached journal head at this
3765 * point. However, if the data is corrupted and an indirect
3766 * block pointed to itself, it would have been detached when
3767 * the block was cleared. Check for this instead of OOPSing.
3769 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3770 ext4_handle_dirty_metadata(handle, inode, this_bh);
3771 else
3772 ext4_error(inode->i_sb, __func__,
3773 "circular indirect block detected, "
3774 "inode=%lu, block=%llu",
3775 inode->i_ino,
3776 (unsigned long long) this_bh->b_blocknr);
3781 * ext4_free_branches - free an array of branches
3782 * @handle: JBD handle for this transaction
3783 * @inode: inode we are dealing with
3784 * @parent_bh: the buffer_head which contains *@first and *@last
3785 * @first: array of block numbers
3786 * @last: pointer immediately past the end of array
3787 * @depth: depth of the branches to free
3789 * We are freeing all blocks refered from these branches (numbers are
3790 * stored as little-endian 32-bit) and updating @inode->i_blocks
3791 * appropriately.
3793 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3794 struct buffer_head *parent_bh,
3795 __le32 *first, __le32 *last, int depth)
3797 ext4_fsblk_t nr;
3798 __le32 *p;
3800 if (ext4_handle_is_aborted(handle))
3801 return;
3803 if (depth--) {
3804 struct buffer_head *bh;
3805 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3806 p = last;
3807 while (--p >= first) {
3808 nr = le32_to_cpu(*p);
3809 if (!nr)
3810 continue; /* A hole */
3812 /* Go read the buffer for the next level down */
3813 bh = sb_bread(inode->i_sb, nr);
3816 * A read failure? Report error and clear slot
3817 * (should be rare).
3819 if (!bh) {
3820 ext4_error(inode->i_sb, "ext4_free_branches",
3821 "Read failure, inode=%lu, block=%llu",
3822 inode->i_ino, nr);
3823 continue;
3826 /* This zaps the entire block. Bottom up. */
3827 BUFFER_TRACE(bh, "free child branches");
3828 ext4_free_branches(handle, inode, bh,
3829 (__le32 *) bh->b_data,
3830 (__le32 *) bh->b_data + addr_per_block,
3831 depth);
3834 * We've probably journalled the indirect block several
3835 * times during the truncate. But it's no longer
3836 * needed and we now drop it from the transaction via
3837 * jbd2_journal_revoke().
3839 * That's easy if it's exclusively part of this
3840 * transaction. But if it's part of the committing
3841 * transaction then jbd2_journal_forget() will simply
3842 * brelse() it. That means that if the underlying
3843 * block is reallocated in ext4_get_block(),
3844 * unmap_underlying_metadata() will find this block
3845 * and will try to get rid of it. damn, damn.
3847 * If this block has already been committed to the
3848 * journal, a revoke record will be written. And
3849 * revoke records must be emitted *before* clearing
3850 * this block's bit in the bitmaps.
3852 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3855 * Everything below this this pointer has been
3856 * released. Now let this top-of-subtree go.
3858 * We want the freeing of this indirect block to be
3859 * atomic in the journal with the updating of the
3860 * bitmap block which owns it. So make some room in
3861 * the journal.
3863 * We zero the parent pointer *after* freeing its
3864 * pointee in the bitmaps, so if extend_transaction()
3865 * for some reason fails to put the bitmap changes and
3866 * the release into the same transaction, recovery
3867 * will merely complain about releasing a free block,
3868 * rather than leaking blocks.
3870 if (ext4_handle_is_aborted(handle))
3871 return;
3872 if (try_to_extend_transaction(handle, inode)) {
3873 ext4_mark_inode_dirty(handle, inode);
3874 ext4_journal_test_restart(handle, inode);
3877 ext4_free_blocks(handle, inode, nr, 1, 1);
3879 if (parent_bh) {
3881 * The block which we have just freed is
3882 * pointed to by an indirect block: journal it
3884 BUFFER_TRACE(parent_bh, "get_write_access");
3885 if (!ext4_journal_get_write_access(handle,
3886 parent_bh)){
3887 *p = 0;
3888 BUFFER_TRACE(parent_bh,
3889 "call ext4_handle_dirty_metadata");
3890 ext4_handle_dirty_metadata(handle,
3891 inode,
3892 parent_bh);
3896 } else {
3897 /* We have reached the bottom of the tree. */
3898 BUFFER_TRACE(parent_bh, "free data blocks");
3899 ext4_free_data(handle, inode, parent_bh, first, last);
3903 int ext4_can_truncate(struct inode *inode)
3905 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3906 return 0;
3907 if (S_ISREG(inode->i_mode))
3908 return 1;
3909 if (S_ISDIR(inode->i_mode))
3910 return 1;
3911 if (S_ISLNK(inode->i_mode))
3912 return !ext4_inode_is_fast_symlink(inode);
3913 return 0;
3917 * ext4_truncate()
3919 * We block out ext4_get_block() block instantiations across the entire
3920 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3921 * simultaneously on behalf of the same inode.
3923 * As we work through the truncate and commmit bits of it to the journal there
3924 * is one core, guiding principle: the file's tree must always be consistent on
3925 * disk. We must be able to restart the truncate after a crash.
3927 * The file's tree may be transiently inconsistent in memory (although it
3928 * probably isn't), but whenever we close off and commit a journal transaction,
3929 * the contents of (the filesystem + the journal) must be consistent and
3930 * restartable. It's pretty simple, really: bottom up, right to left (although
3931 * left-to-right works OK too).
3933 * Note that at recovery time, journal replay occurs *before* the restart of
3934 * truncate against the orphan inode list.
3936 * The committed inode has the new, desired i_size (which is the same as
3937 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3938 * that this inode's truncate did not complete and it will again call
3939 * ext4_truncate() to have another go. So there will be instantiated blocks
3940 * to the right of the truncation point in a crashed ext4 filesystem. But
3941 * that's fine - as long as they are linked from the inode, the post-crash
3942 * ext4_truncate() run will find them and release them.
3944 void ext4_truncate(struct inode *inode)
3946 handle_t *handle;
3947 struct ext4_inode_info *ei = EXT4_I(inode);
3948 __le32 *i_data = ei->i_data;
3949 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3950 struct address_space *mapping = inode->i_mapping;
3951 ext4_lblk_t offsets[4];
3952 Indirect chain[4];
3953 Indirect *partial;
3954 __le32 nr = 0;
3955 int n;
3956 ext4_lblk_t last_block;
3957 unsigned blocksize = inode->i_sb->s_blocksize;
3959 if (!ext4_can_truncate(inode))
3960 return;
3962 if (ei->i_disksize && inode->i_size == 0 &&
3963 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3964 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3966 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3967 ext4_ext_truncate(inode);
3968 return;
3971 handle = start_transaction(inode);
3972 if (IS_ERR(handle))
3973 return; /* AKPM: return what? */
3975 last_block = (inode->i_size + blocksize-1)
3976 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3978 if (inode->i_size & (blocksize - 1))
3979 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3980 goto out_stop;
3982 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3983 if (n == 0)
3984 goto out_stop; /* error */
3987 * OK. This truncate is going to happen. We add the inode to the
3988 * orphan list, so that if this truncate spans multiple transactions,
3989 * and we crash, we will resume the truncate when the filesystem
3990 * recovers. It also marks the inode dirty, to catch the new size.
3992 * Implication: the file must always be in a sane, consistent
3993 * truncatable state while each transaction commits.
3995 if (ext4_orphan_add(handle, inode))
3996 goto out_stop;
3999 * From here we block out all ext4_get_block() callers who want to
4000 * modify the block allocation tree.
4002 down_write(&ei->i_data_sem);
4004 ext4_discard_preallocations(inode);
4007 * The orphan list entry will now protect us from any crash which
4008 * occurs before the truncate completes, so it is now safe to propagate
4009 * the new, shorter inode size (held for now in i_size) into the
4010 * on-disk inode. We do this via i_disksize, which is the value which
4011 * ext4 *really* writes onto the disk inode.
4013 ei->i_disksize = inode->i_size;
4015 if (n == 1) { /* direct blocks */
4016 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4017 i_data + EXT4_NDIR_BLOCKS);
4018 goto do_indirects;
4021 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4022 /* Kill the top of shared branch (not detached) */
4023 if (nr) {
4024 if (partial == chain) {
4025 /* Shared branch grows from the inode */
4026 ext4_free_branches(handle, inode, NULL,
4027 &nr, &nr+1, (chain+n-1) - partial);
4028 *partial->p = 0;
4030 * We mark the inode dirty prior to restart,
4031 * and prior to stop. No need for it here.
4033 } else {
4034 /* Shared branch grows from an indirect block */
4035 BUFFER_TRACE(partial->bh, "get_write_access");
4036 ext4_free_branches(handle, inode, partial->bh,
4037 partial->p,
4038 partial->p+1, (chain+n-1) - partial);
4041 /* Clear the ends of indirect blocks on the shared branch */
4042 while (partial > chain) {
4043 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4044 (__le32*)partial->bh->b_data+addr_per_block,
4045 (chain+n-1) - partial);
4046 BUFFER_TRACE(partial->bh, "call brelse");
4047 brelse(partial->bh);
4048 partial--;
4050 do_indirects:
4051 /* Kill the remaining (whole) subtrees */
4052 switch (offsets[0]) {
4053 default:
4054 nr = i_data[EXT4_IND_BLOCK];
4055 if (nr) {
4056 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4057 i_data[EXT4_IND_BLOCK] = 0;
4059 case EXT4_IND_BLOCK:
4060 nr = i_data[EXT4_DIND_BLOCK];
4061 if (nr) {
4062 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4063 i_data[EXT4_DIND_BLOCK] = 0;
4065 case EXT4_DIND_BLOCK:
4066 nr = i_data[EXT4_TIND_BLOCK];
4067 if (nr) {
4068 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4069 i_data[EXT4_TIND_BLOCK] = 0;
4071 case EXT4_TIND_BLOCK:
4075 up_write(&ei->i_data_sem);
4076 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4077 ext4_mark_inode_dirty(handle, inode);
4080 * In a multi-transaction truncate, we only make the final transaction
4081 * synchronous
4083 if (IS_SYNC(inode))
4084 ext4_handle_sync(handle);
4085 out_stop:
4087 * If this was a simple ftruncate(), and the file will remain alive
4088 * then we need to clear up the orphan record which we created above.
4089 * However, if this was a real unlink then we were called by
4090 * ext4_delete_inode(), and we allow that function to clean up the
4091 * orphan info for us.
4093 if (inode->i_nlink)
4094 ext4_orphan_del(handle, inode);
4096 ext4_journal_stop(handle);
4100 * ext4_get_inode_loc returns with an extra refcount against the inode's
4101 * underlying buffer_head on success. If 'in_mem' is true, we have all
4102 * data in memory that is needed to recreate the on-disk version of this
4103 * inode.
4105 static int __ext4_get_inode_loc(struct inode *inode,
4106 struct ext4_iloc *iloc, int in_mem)
4108 struct ext4_group_desc *gdp;
4109 struct buffer_head *bh;
4110 struct super_block *sb = inode->i_sb;
4111 ext4_fsblk_t block;
4112 int inodes_per_block, inode_offset;
4114 iloc->bh = NULL;
4115 if (!ext4_valid_inum(sb, inode->i_ino))
4116 return -EIO;
4118 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4119 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4120 if (!gdp)
4121 return -EIO;
4124 * Figure out the offset within the block group inode table
4126 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4127 inode_offset = ((inode->i_ino - 1) %
4128 EXT4_INODES_PER_GROUP(sb));
4129 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4130 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4132 bh = sb_getblk(sb, block);
4133 if (!bh) {
4134 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4135 "inode block - inode=%lu, block=%llu",
4136 inode->i_ino, block);
4137 return -EIO;
4139 if (!buffer_uptodate(bh)) {
4140 lock_buffer(bh);
4143 * If the buffer has the write error flag, we have failed
4144 * to write out another inode in the same block. In this
4145 * case, we don't have to read the block because we may
4146 * read the old inode data successfully.
4148 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4149 set_buffer_uptodate(bh);
4151 if (buffer_uptodate(bh)) {
4152 /* someone brought it uptodate while we waited */
4153 unlock_buffer(bh);
4154 goto has_buffer;
4158 * If we have all information of the inode in memory and this
4159 * is the only valid inode in the block, we need not read the
4160 * block.
4162 if (in_mem) {
4163 struct buffer_head *bitmap_bh;
4164 int i, start;
4166 start = inode_offset & ~(inodes_per_block - 1);
4168 /* Is the inode bitmap in cache? */
4169 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4170 if (!bitmap_bh)
4171 goto make_io;
4174 * If the inode bitmap isn't in cache then the
4175 * optimisation may end up performing two reads instead
4176 * of one, so skip it.
4178 if (!buffer_uptodate(bitmap_bh)) {
4179 brelse(bitmap_bh);
4180 goto make_io;
4182 for (i = start; i < start + inodes_per_block; i++) {
4183 if (i == inode_offset)
4184 continue;
4185 if (ext4_test_bit(i, bitmap_bh->b_data))
4186 break;
4188 brelse(bitmap_bh);
4189 if (i == start + inodes_per_block) {
4190 /* all other inodes are free, so skip I/O */
4191 memset(bh->b_data, 0, bh->b_size);
4192 set_buffer_uptodate(bh);
4193 unlock_buffer(bh);
4194 goto has_buffer;
4198 make_io:
4200 * If we need to do any I/O, try to pre-readahead extra
4201 * blocks from the inode table.
4203 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4204 ext4_fsblk_t b, end, table;
4205 unsigned num;
4207 table = ext4_inode_table(sb, gdp);
4208 /* s_inode_readahead_blks is always a power of 2 */
4209 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4210 if (table > b)
4211 b = table;
4212 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4213 num = EXT4_INODES_PER_GROUP(sb);
4214 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4215 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4216 num -= ext4_itable_unused_count(sb, gdp);
4217 table += num / inodes_per_block;
4218 if (end > table)
4219 end = table;
4220 while (b <= end)
4221 sb_breadahead(sb, b++);
4225 * There are other valid inodes in the buffer, this inode
4226 * has in-inode xattrs, or we don't have this inode in memory.
4227 * Read the block from disk.
4229 get_bh(bh);
4230 bh->b_end_io = end_buffer_read_sync;
4231 submit_bh(READ_META, bh);
4232 wait_on_buffer(bh);
4233 if (!buffer_uptodate(bh)) {
4234 ext4_error(sb, __func__,
4235 "unable to read inode block - inode=%lu, "
4236 "block=%llu", inode->i_ino, block);
4237 brelse(bh);
4238 return -EIO;
4241 has_buffer:
4242 iloc->bh = bh;
4243 return 0;
4246 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4248 /* We have all inode data except xattrs in memory here. */
4249 return __ext4_get_inode_loc(inode, iloc,
4250 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4253 void ext4_set_inode_flags(struct inode *inode)
4255 unsigned int flags = EXT4_I(inode)->i_flags;
4257 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4258 if (flags & EXT4_SYNC_FL)
4259 inode->i_flags |= S_SYNC;
4260 if (flags & EXT4_APPEND_FL)
4261 inode->i_flags |= S_APPEND;
4262 if (flags & EXT4_IMMUTABLE_FL)
4263 inode->i_flags |= S_IMMUTABLE;
4264 if (flags & EXT4_NOATIME_FL)
4265 inode->i_flags |= S_NOATIME;
4266 if (flags & EXT4_DIRSYNC_FL)
4267 inode->i_flags |= S_DIRSYNC;
4270 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4271 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4273 unsigned int flags = ei->vfs_inode.i_flags;
4275 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4276 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4277 if (flags & S_SYNC)
4278 ei->i_flags |= EXT4_SYNC_FL;
4279 if (flags & S_APPEND)
4280 ei->i_flags |= EXT4_APPEND_FL;
4281 if (flags & S_IMMUTABLE)
4282 ei->i_flags |= EXT4_IMMUTABLE_FL;
4283 if (flags & S_NOATIME)
4284 ei->i_flags |= EXT4_NOATIME_FL;
4285 if (flags & S_DIRSYNC)
4286 ei->i_flags |= EXT4_DIRSYNC_FL;
4289 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4290 struct ext4_inode_info *ei)
4292 blkcnt_t i_blocks ;
4293 struct inode *inode = &(ei->vfs_inode);
4294 struct super_block *sb = inode->i_sb;
4296 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4298 /* we are using combined 48 bit field */
4299 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4300 le32_to_cpu(raw_inode->i_blocks_lo);
4301 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4302 /* i_blocks represent file system block size */
4303 return i_blocks << (inode->i_blkbits - 9);
4304 } else {
4305 return i_blocks;
4307 } else {
4308 return le32_to_cpu(raw_inode->i_blocks_lo);
4312 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4314 struct ext4_iloc iloc;
4315 struct ext4_inode *raw_inode;
4316 struct ext4_inode_info *ei;
4317 struct buffer_head *bh;
4318 struct inode *inode;
4319 long ret;
4320 int block;
4322 inode = iget_locked(sb, ino);
4323 if (!inode)
4324 return ERR_PTR(-ENOMEM);
4325 if (!(inode->i_state & I_NEW))
4326 return inode;
4328 ei = EXT4_I(inode);
4330 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4331 if (ret < 0)
4332 goto bad_inode;
4333 bh = iloc.bh;
4334 raw_inode = ext4_raw_inode(&iloc);
4335 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4336 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4337 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4338 if (!(test_opt(inode->i_sb, NO_UID32))) {
4339 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4340 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4342 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4344 ei->i_state = 0;
4345 ei->i_dir_start_lookup = 0;
4346 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4347 /* We now have enough fields to check if the inode was active or not.
4348 * This is needed because nfsd might try to access dead inodes
4349 * the test is that same one that e2fsck uses
4350 * NeilBrown 1999oct15
4352 if (inode->i_nlink == 0) {
4353 if (inode->i_mode == 0 ||
4354 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4355 /* this inode is deleted */
4356 brelse(bh);
4357 ret = -ESTALE;
4358 goto bad_inode;
4360 /* The only unlinked inodes we let through here have
4361 * valid i_mode and are being read by the orphan
4362 * recovery code: that's fine, we're about to complete
4363 * the process of deleting those. */
4365 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4366 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4367 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4368 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4369 ei->i_file_acl |=
4370 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4371 inode->i_size = ext4_isize(raw_inode);
4372 ei->i_disksize = inode->i_size;
4373 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4374 ei->i_block_group = iloc.block_group;
4375 ei->i_last_alloc_group = ~0;
4377 * NOTE! The in-memory inode i_data array is in little-endian order
4378 * even on big-endian machines: we do NOT byteswap the block numbers!
4380 for (block = 0; block < EXT4_N_BLOCKS; block++)
4381 ei->i_data[block] = raw_inode->i_block[block];
4382 INIT_LIST_HEAD(&ei->i_orphan);
4384 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4385 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4386 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4387 EXT4_INODE_SIZE(inode->i_sb)) {
4388 brelse(bh);
4389 ret = -EIO;
4390 goto bad_inode;
4392 if (ei->i_extra_isize == 0) {
4393 /* The extra space is currently unused. Use it. */
4394 ei->i_extra_isize = sizeof(struct ext4_inode) -
4395 EXT4_GOOD_OLD_INODE_SIZE;
4396 } else {
4397 __le32 *magic = (void *)raw_inode +
4398 EXT4_GOOD_OLD_INODE_SIZE +
4399 ei->i_extra_isize;
4400 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4401 ei->i_state |= EXT4_STATE_XATTR;
4403 } else
4404 ei->i_extra_isize = 0;
4406 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4407 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4408 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4409 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4411 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4412 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4413 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4414 inode->i_version |=
4415 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4418 ret = 0;
4419 if (ei->i_file_acl &&
4420 ((ei->i_file_acl <
4421 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4422 EXT4_SB(sb)->s_gdb_count)) ||
4423 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4424 ext4_error(sb, __func__,
4425 "bad extended attribute block %llu in inode #%lu",
4426 ei->i_file_acl, inode->i_ino);
4427 ret = -EIO;
4428 goto bad_inode;
4429 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4430 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4431 (S_ISLNK(inode->i_mode) &&
4432 !ext4_inode_is_fast_symlink(inode)))
4433 /* Validate extent which is part of inode */
4434 ret = ext4_ext_check_inode(inode);
4435 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4436 (S_ISLNK(inode->i_mode) &&
4437 !ext4_inode_is_fast_symlink(inode))) {
4438 /* Validate block references which are part of inode */
4439 ret = ext4_check_inode_blockref(inode);
4441 if (ret) {
4442 brelse(bh);
4443 goto bad_inode;
4446 if (S_ISREG(inode->i_mode)) {
4447 inode->i_op = &ext4_file_inode_operations;
4448 inode->i_fop = &ext4_file_operations;
4449 ext4_set_aops(inode);
4450 } else if (S_ISDIR(inode->i_mode)) {
4451 inode->i_op = &ext4_dir_inode_operations;
4452 inode->i_fop = &ext4_dir_operations;
4453 } else if (S_ISLNK(inode->i_mode)) {
4454 if (ext4_inode_is_fast_symlink(inode)) {
4455 inode->i_op = &ext4_fast_symlink_inode_operations;
4456 nd_terminate_link(ei->i_data, inode->i_size,
4457 sizeof(ei->i_data) - 1);
4458 } else {
4459 inode->i_op = &ext4_symlink_inode_operations;
4460 ext4_set_aops(inode);
4462 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4463 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4464 inode->i_op = &ext4_special_inode_operations;
4465 if (raw_inode->i_block[0])
4466 init_special_inode(inode, inode->i_mode,
4467 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4468 else
4469 init_special_inode(inode, inode->i_mode,
4470 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4471 } else {
4472 brelse(bh);
4473 ret = -EIO;
4474 ext4_error(inode->i_sb, __func__,
4475 "bogus i_mode (%o) for inode=%lu",
4476 inode->i_mode, inode->i_ino);
4477 goto bad_inode;
4479 brelse(iloc.bh);
4480 ext4_set_inode_flags(inode);
4481 unlock_new_inode(inode);
4482 return inode;
4484 bad_inode:
4485 iget_failed(inode);
4486 return ERR_PTR(ret);
4489 static int ext4_inode_blocks_set(handle_t *handle,
4490 struct ext4_inode *raw_inode,
4491 struct ext4_inode_info *ei)
4493 struct inode *inode = &(ei->vfs_inode);
4494 u64 i_blocks = inode->i_blocks;
4495 struct super_block *sb = inode->i_sb;
4497 if (i_blocks <= ~0U) {
4499 * i_blocks can be represnted in a 32 bit variable
4500 * as multiple of 512 bytes
4502 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4503 raw_inode->i_blocks_high = 0;
4504 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4505 return 0;
4507 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4508 return -EFBIG;
4510 if (i_blocks <= 0xffffffffffffULL) {
4512 * i_blocks can be represented in a 48 bit variable
4513 * as multiple of 512 bytes
4515 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4516 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4517 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4518 } else {
4519 ei->i_flags |= EXT4_HUGE_FILE_FL;
4520 /* i_block is stored in file system block size */
4521 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4522 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4523 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4525 return 0;
4529 * Post the struct inode info into an on-disk inode location in the
4530 * buffer-cache. This gobbles the caller's reference to the
4531 * buffer_head in the inode location struct.
4533 * The caller must have write access to iloc->bh.
4535 static int ext4_do_update_inode(handle_t *handle,
4536 struct inode *inode,
4537 struct ext4_iloc *iloc)
4539 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4540 struct ext4_inode_info *ei = EXT4_I(inode);
4541 struct buffer_head *bh = iloc->bh;
4542 int err = 0, rc, block;
4544 /* For fields not not tracking in the in-memory inode,
4545 * initialise them to zero for new inodes. */
4546 if (ei->i_state & EXT4_STATE_NEW)
4547 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4549 ext4_get_inode_flags(ei);
4550 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4551 if (!(test_opt(inode->i_sb, NO_UID32))) {
4552 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4553 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4555 * Fix up interoperability with old kernels. Otherwise, old inodes get
4556 * re-used with the upper 16 bits of the uid/gid intact
4558 if (!ei->i_dtime) {
4559 raw_inode->i_uid_high =
4560 cpu_to_le16(high_16_bits(inode->i_uid));
4561 raw_inode->i_gid_high =
4562 cpu_to_le16(high_16_bits(inode->i_gid));
4563 } else {
4564 raw_inode->i_uid_high = 0;
4565 raw_inode->i_gid_high = 0;
4567 } else {
4568 raw_inode->i_uid_low =
4569 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4570 raw_inode->i_gid_low =
4571 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4572 raw_inode->i_uid_high = 0;
4573 raw_inode->i_gid_high = 0;
4575 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4577 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4578 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4579 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4580 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4582 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4583 goto out_brelse;
4584 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4585 /* clear the migrate flag in the raw_inode */
4586 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4587 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4588 cpu_to_le32(EXT4_OS_HURD))
4589 raw_inode->i_file_acl_high =
4590 cpu_to_le16(ei->i_file_acl >> 32);
4591 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4592 ext4_isize_set(raw_inode, ei->i_disksize);
4593 if (ei->i_disksize > 0x7fffffffULL) {
4594 struct super_block *sb = inode->i_sb;
4595 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4596 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4597 EXT4_SB(sb)->s_es->s_rev_level ==
4598 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4599 /* If this is the first large file
4600 * created, add a flag to the superblock.
4602 err = ext4_journal_get_write_access(handle,
4603 EXT4_SB(sb)->s_sbh);
4604 if (err)
4605 goto out_brelse;
4606 ext4_update_dynamic_rev(sb);
4607 EXT4_SET_RO_COMPAT_FEATURE(sb,
4608 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4609 sb->s_dirt = 1;
4610 ext4_handle_sync(handle);
4611 err = ext4_handle_dirty_metadata(handle, inode,
4612 EXT4_SB(sb)->s_sbh);
4615 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4616 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4617 if (old_valid_dev(inode->i_rdev)) {
4618 raw_inode->i_block[0] =
4619 cpu_to_le32(old_encode_dev(inode->i_rdev));
4620 raw_inode->i_block[1] = 0;
4621 } else {
4622 raw_inode->i_block[0] = 0;
4623 raw_inode->i_block[1] =
4624 cpu_to_le32(new_encode_dev(inode->i_rdev));
4625 raw_inode->i_block[2] = 0;
4627 } else
4628 for (block = 0; block < EXT4_N_BLOCKS; block++)
4629 raw_inode->i_block[block] = ei->i_data[block];
4631 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4632 if (ei->i_extra_isize) {
4633 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4634 raw_inode->i_version_hi =
4635 cpu_to_le32(inode->i_version >> 32);
4636 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4639 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4640 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4641 if (!err)
4642 err = rc;
4643 ei->i_state &= ~EXT4_STATE_NEW;
4645 out_brelse:
4646 brelse(bh);
4647 ext4_std_error(inode->i_sb, err);
4648 return err;
4652 * ext4_write_inode()
4654 * We are called from a few places:
4656 * - Within generic_file_write() for O_SYNC files.
4657 * Here, there will be no transaction running. We wait for any running
4658 * trasnaction to commit.
4660 * - Within sys_sync(), kupdate and such.
4661 * We wait on commit, if tol to.
4663 * - Within prune_icache() (PF_MEMALLOC == true)
4664 * Here we simply return. We can't afford to block kswapd on the
4665 * journal commit.
4667 * In all cases it is actually safe for us to return without doing anything,
4668 * because the inode has been copied into a raw inode buffer in
4669 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4670 * knfsd.
4672 * Note that we are absolutely dependent upon all inode dirtiers doing the
4673 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4674 * which we are interested.
4676 * It would be a bug for them to not do this. The code:
4678 * mark_inode_dirty(inode)
4679 * stuff();
4680 * inode->i_size = expr;
4682 * is in error because a kswapd-driven write_inode() could occur while
4683 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4684 * will no longer be on the superblock's dirty inode list.
4686 int ext4_write_inode(struct inode *inode, int wait)
4688 if (current->flags & PF_MEMALLOC)
4689 return 0;
4691 if (ext4_journal_current_handle()) {
4692 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4693 dump_stack();
4694 return -EIO;
4697 if (!wait)
4698 return 0;
4700 return ext4_force_commit(inode->i_sb);
4704 * ext4_setattr()
4706 * Called from notify_change.
4708 * We want to trap VFS attempts to truncate the file as soon as
4709 * possible. In particular, we want to make sure that when the VFS
4710 * shrinks i_size, we put the inode on the orphan list and modify
4711 * i_disksize immediately, so that during the subsequent flushing of
4712 * dirty pages and freeing of disk blocks, we can guarantee that any
4713 * commit will leave the blocks being flushed in an unused state on
4714 * disk. (On recovery, the inode will get truncated and the blocks will
4715 * be freed, so we have a strong guarantee that no future commit will
4716 * leave these blocks visible to the user.)
4718 * Another thing we have to assure is that if we are in ordered mode
4719 * and inode is still attached to the committing transaction, we must
4720 * we start writeout of all the dirty pages which are being truncated.
4721 * This way we are sure that all the data written in the previous
4722 * transaction are already on disk (truncate waits for pages under
4723 * writeback).
4725 * Called with inode->i_mutex down.
4727 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4729 struct inode *inode = dentry->d_inode;
4730 int error, rc = 0;
4731 const unsigned int ia_valid = attr->ia_valid;
4733 error = inode_change_ok(inode, attr);
4734 if (error)
4735 return error;
4737 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4738 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4739 handle_t *handle;
4741 /* (user+group)*(old+new) structure, inode write (sb,
4742 * inode block, ? - but truncate inode update has it) */
4743 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4744 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4745 if (IS_ERR(handle)) {
4746 error = PTR_ERR(handle);
4747 goto err_out;
4749 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4750 if (error) {
4751 ext4_journal_stop(handle);
4752 return error;
4754 /* Update corresponding info in inode so that everything is in
4755 * one transaction */
4756 if (attr->ia_valid & ATTR_UID)
4757 inode->i_uid = attr->ia_uid;
4758 if (attr->ia_valid & ATTR_GID)
4759 inode->i_gid = attr->ia_gid;
4760 error = ext4_mark_inode_dirty(handle, inode);
4761 ext4_journal_stop(handle);
4764 if (attr->ia_valid & ATTR_SIZE) {
4765 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4766 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4768 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4769 error = -EFBIG;
4770 goto err_out;
4775 if (S_ISREG(inode->i_mode) &&
4776 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4777 handle_t *handle;
4779 handle = ext4_journal_start(inode, 3);
4780 if (IS_ERR(handle)) {
4781 error = PTR_ERR(handle);
4782 goto err_out;
4785 error = ext4_orphan_add(handle, inode);
4786 EXT4_I(inode)->i_disksize = attr->ia_size;
4787 rc = ext4_mark_inode_dirty(handle, inode);
4788 if (!error)
4789 error = rc;
4790 ext4_journal_stop(handle);
4792 if (ext4_should_order_data(inode)) {
4793 error = ext4_begin_ordered_truncate(inode,
4794 attr->ia_size);
4795 if (error) {
4796 /* Do as much error cleanup as possible */
4797 handle = ext4_journal_start(inode, 3);
4798 if (IS_ERR(handle)) {
4799 ext4_orphan_del(NULL, inode);
4800 goto err_out;
4802 ext4_orphan_del(handle, inode);
4803 ext4_journal_stop(handle);
4804 goto err_out;
4809 rc = inode_setattr(inode, attr);
4811 /* If inode_setattr's call to ext4_truncate failed to get a
4812 * transaction handle at all, we need to clean up the in-core
4813 * orphan list manually. */
4814 if (inode->i_nlink)
4815 ext4_orphan_del(NULL, inode);
4817 if (!rc && (ia_valid & ATTR_MODE))
4818 rc = ext4_acl_chmod(inode);
4820 err_out:
4821 ext4_std_error(inode->i_sb, error);
4822 if (!error)
4823 error = rc;
4824 return error;
4827 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4828 struct kstat *stat)
4830 struct inode *inode;
4831 unsigned long delalloc_blocks;
4833 inode = dentry->d_inode;
4834 generic_fillattr(inode, stat);
4837 * We can't update i_blocks if the block allocation is delayed
4838 * otherwise in the case of system crash before the real block
4839 * allocation is done, we will have i_blocks inconsistent with
4840 * on-disk file blocks.
4841 * We always keep i_blocks updated together with real
4842 * allocation. But to not confuse with user, stat
4843 * will return the blocks that include the delayed allocation
4844 * blocks for this file.
4846 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4847 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4848 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4850 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4851 return 0;
4854 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4855 int chunk)
4857 int indirects;
4859 /* if nrblocks are contiguous */
4860 if (chunk) {
4862 * With N contiguous data blocks, it need at most
4863 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4864 * 2 dindirect blocks
4865 * 1 tindirect block
4867 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4868 return indirects + 3;
4871 * if nrblocks are not contiguous, worse case, each block touch
4872 * a indirect block, and each indirect block touch a double indirect
4873 * block, plus a triple indirect block
4875 indirects = nrblocks * 2 + 1;
4876 return indirects;
4879 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4881 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4882 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4883 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4887 * Account for index blocks, block groups bitmaps and block group
4888 * descriptor blocks if modify datablocks and index blocks
4889 * worse case, the indexs blocks spread over different block groups
4891 * If datablocks are discontiguous, they are possible to spread over
4892 * different block groups too. If they are contiugous, with flexbg,
4893 * they could still across block group boundary.
4895 * Also account for superblock, inode, quota and xattr blocks
4897 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4899 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4900 int gdpblocks;
4901 int idxblocks;
4902 int ret = 0;
4905 * How many index blocks need to touch to modify nrblocks?
4906 * The "Chunk" flag indicating whether the nrblocks is
4907 * physically contiguous on disk
4909 * For Direct IO and fallocate, they calls get_block to allocate
4910 * one single extent at a time, so they could set the "Chunk" flag
4912 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4914 ret = idxblocks;
4917 * Now let's see how many group bitmaps and group descriptors need
4918 * to account
4920 groups = idxblocks;
4921 if (chunk)
4922 groups += 1;
4923 else
4924 groups += nrblocks;
4926 gdpblocks = groups;
4927 if (groups > ngroups)
4928 groups = ngroups;
4929 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4930 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4932 /* bitmaps and block group descriptor blocks */
4933 ret += groups + gdpblocks;
4935 /* Blocks for super block, inode, quota and xattr blocks */
4936 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4938 return ret;
4942 * Calulate the total number of credits to reserve to fit
4943 * the modification of a single pages into a single transaction,
4944 * which may include multiple chunks of block allocations.
4946 * This could be called via ext4_write_begin()
4948 * We need to consider the worse case, when
4949 * one new block per extent.
4951 int ext4_writepage_trans_blocks(struct inode *inode)
4953 int bpp = ext4_journal_blocks_per_page(inode);
4954 int ret;
4956 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4958 /* Account for data blocks for journalled mode */
4959 if (ext4_should_journal_data(inode))
4960 ret += bpp;
4961 return ret;
4965 * Calculate the journal credits for a chunk of data modification.
4967 * This is called from DIO, fallocate or whoever calling
4968 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4970 * journal buffers for data blocks are not included here, as DIO
4971 * and fallocate do no need to journal data buffers.
4973 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4975 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4979 * The caller must have previously called ext4_reserve_inode_write().
4980 * Give this, we know that the caller already has write access to iloc->bh.
4982 int ext4_mark_iloc_dirty(handle_t *handle,
4983 struct inode *inode, struct ext4_iloc *iloc)
4985 int err = 0;
4987 if (test_opt(inode->i_sb, I_VERSION))
4988 inode_inc_iversion(inode);
4990 /* the do_update_inode consumes one bh->b_count */
4991 get_bh(iloc->bh);
4993 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4994 err = ext4_do_update_inode(handle, inode, iloc);
4995 put_bh(iloc->bh);
4996 return err;
5000 * On success, We end up with an outstanding reference count against
5001 * iloc->bh. This _must_ be cleaned up later.
5005 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5006 struct ext4_iloc *iloc)
5008 int err;
5010 err = ext4_get_inode_loc(inode, iloc);
5011 if (!err) {
5012 BUFFER_TRACE(iloc->bh, "get_write_access");
5013 err = ext4_journal_get_write_access(handle, iloc->bh);
5014 if (err) {
5015 brelse(iloc->bh);
5016 iloc->bh = NULL;
5019 ext4_std_error(inode->i_sb, err);
5020 return err;
5024 * Expand an inode by new_extra_isize bytes.
5025 * Returns 0 on success or negative error number on failure.
5027 static int ext4_expand_extra_isize(struct inode *inode,
5028 unsigned int new_extra_isize,
5029 struct ext4_iloc iloc,
5030 handle_t *handle)
5032 struct ext4_inode *raw_inode;
5033 struct ext4_xattr_ibody_header *header;
5034 struct ext4_xattr_entry *entry;
5036 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5037 return 0;
5039 raw_inode = ext4_raw_inode(&iloc);
5041 header = IHDR(inode, raw_inode);
5042 entry = IFIRST(header);
5044 /* No extended attributes present */
5045 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5046 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5047 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5048 new_extra_isize);
5049 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5050 return 0;
5053 /* try to expand with EAs present */
5054 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5055 raw_inode, handle);
5059 * What we do here is to mark the in-core inode as clean with respect to inode
5060 * dirtiness (it may still be data-dirty).
5061 * This means that the in-core inode may be reaped by prune_icache
5062 * without having to perform any I/O. This is a very good thing,
5063 * because *any* task may call prune_icache - even ones which
5064 * have a transaction open against a different journal.
5066 * Is this cheating? Not really. Sure, we haven't written the
5067 * inode out, but prune_icache isn't a user-visible syncing function.
5068 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5069 * we start and wait on commits.
5071 * Is this efficient/effective? Well, we're being nice to the system
5072 * by cleaning up our inodes proactively so they can be reaped
5073 * without I/O. But we are potentially leaving up to five seconds'
5074 * worth of inodes floating about which prune_icache wants us to
5075 * write out. One way to fix that would be to get prune_icache()
5076 * to do a write_super() to free up some memory. It has the desired
5077 * effect.
5079 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5081 struct ext4_iloc iloc;
5082 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5083 static unsigned int mnt_count;
5084 int err, ret;
5086 might_sleep();
5087 err = ext4_reserve_inode_write(handle, inode, &iloc);
5088 if (ext4_handle_valid(handle) &&
5089 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5090 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5092 * We need extra buffer credits since we may write into EA block
5093 * with this same handle. If journal_extend fails, then it will
5094 * only result in a minor loss of functionality for that inode.
5095 * If this is felt to be critical, then e2fsck should be run to
5096 * force a large enough s_min_extra_isize.
5098 if ((jbd2_journal_extend(handle,
5099 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5100 ret = ext4_expand_extra_isize(inode,
5101 sbi->s_want_extra_isize,
5102 iloc, handle);
5103 if (ret) {
5104 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5105 if (mnt_count !=
5106 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5107 ext4_warning(inode->i_sb, __func__,
5108 "Unable to expand inode %lu. Delete"
5109 " some EAs or run e2fsck.",
5110 inode->i_ino);
5111 mnt_count =
5112 le16_to_cpu(sbi->s_es->s_mnt_count);
5117 if (!err)
5118 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5119 return err;
5123 * ext4_dirty_inode() is called from __mark_inode_dirty()
5125 * We're really interested in the case where a file is being extended.
5126 * i_size has been changed by generic_commit_write() and we thus need
5127 * to include the updated inode in the current transaction.
5129 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5130 * are allocated to the file.
5132 * If the inode is marked synchronous, we don't honour that here - doing
5133 * so would cause a commit on atime updates, which we don't bother doing.
5134 * We handle synchronous inodes at the highest possible level.
5136 void ext4_dirty_inode(struct inode *inode)
5138 handle_t *current_handle = ext4_journal_current_handle();
5139 handle_t *handle;
5141 if (!ext4_handle_valid(current_handle)) {
5142 ext4_mark_inode_dirty(current_handle, inode);
5143 return;
5146 handle = ext4_journal_start(inode, 2);
5147 if (IS_ERR(handle))
5148 goto out;
5149 if (current_handle &&
5150 current_handle->h_transaction != handle->h_transaction) {
5151 /* This task has a transaction open against a different fs */
5152 printk(KERN_EMERG "%s: transactions do not match!\n",
5153 __func__);
5154 } else {
5155 jbd_debug(5, "marking dirty. outer handle=%p\n",
5156 current_handle);
5157 ext4_mark_inode_dirty(handle, inode);
5159 ext4_journal_stop(handle);
5160 out:
5161 return;
5164 #if 0
5166 * Bind an inode's backing buffer_head into this transaction, to prevent
5167 * it from being flushed to disk early. Unlike
5168 * ext4_reserve_inode_write, this leaves behind no bh reference and
5169 * returns no iloc structure, so the caller needs to repeat the iloc
5170 * lookup to mark the inode dirty later.
5172 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5174 struct ext4_iloc iloc;
5176 int err = 0;
5177 if (handle) {
5178 err = ext4_get_inode_loc(inode, &iloc);
5179 if (!err) {
5180 BUFFER_TRACE(iloc.bh, "get_write_access");
5181 err = jbd2_journal_get_write_access(handle, iloc.bh);
5182 if (!err)
5183 err = ext4_handle_dirty_metadata(handle,
5184 inode,
5185 iloc.bh);
5186 brelse(iloc.bh);
5189 ext4_std_error(inode->i_sb, err);
5190 return err;
5192 #endif
5194 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5196 journal_t *journal;
5197 handle_t *handle;
5198 int err;
5201 * We have to be very careful here: changing a data block's
5202 * journaling status dynamically is dangerous. If we write a
5203 * data block to the journal, change the status and then delete
5204 * that block, we risk forgetting to revoke the old log record
5205 * from the journal and so a subsequent replay can corrupt data.
5206 * So, first we make sure that the journal is empty and that
5207 * nobody is changing anything.
5210 journal = EXT4_JOURNAL(inode);
5211 if (!journal)
5212 return 0;
5213 if (is_journal_aborted(journal))
5214 return -EROFS;
5216 jbd2_journal_lock_updates(journal);
5217 jbd2_journal_flush(journal);
5220 * OK, there are no updates running now, and all cached data is
5221 * synced to disk. We are now in a completely consistent state
5222 * which doesn't have anything in the journal, and we know that
5223 * no filesystem updates are running, so it is safe to modify
5224 * the inode's in-core data-journaling state flag now.
5227 if (val)
5228 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5229 else
5230 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5231 ext4_set_aops(inode);
5233 jbd2_journal_unlock_updates(journal);
5235 /* Finally we can mark the inode as dirty. */
5237 handle = ext4_journal_start(inode, 1);
5238 if (IS_ERR(handle))
5239 return PTR_ERR(handle);
5241 err = ext4_mark_inode_dirty(handle, inode);
5242 ext4_handle_sync(handle);
5243 ext4_journal_stop(handle);
5244 ext4_std_error(inode->i_sb, err);
5246 return err;
5249 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5251 return !buffer_mapped(bh);
5254 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5256 struct page *page = vmf->page;
5257 loff_t size;
5258 unsigned long len;
5259 int ret = -EINVAL;
5260 void *fsdata;
5261 struct file *file = vma->vm_file;
5262 struct inode *inode = file->f_path.dentry->d_inode;
5263 struct address_space *mapping = inode->i_mapping;
5266 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5267 * get i_mutex because we are already holding mmap_sem.
5269 down_read(&inode->i_alloc_sem);
5270 size = i_size_read(inode);
5271 if (page->mapping != mapping || size <= page_offset(page)
5272 || !PageUptodate(page)) {
5273 /* page got truncated from under us? */
5274 goto out_unlock;
5276 ret = 0;
5277 if (PageMappedToDisk(page))
5278 goto out_unlock;
5280 if (page->index == size >> PAGE_CACHE_SHIFT)
5281 len = size & ~PAGE_CACHE_MASK;
5282 else
5283 len = PAGE_CACHE_SIZE;
5285 if (page_has_buffers(page)) {
5286 /* return if we have all the buffers mapped */
5287 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5288 ext4_bh_unmapped))
5289 goto out_unlock;
5292 * OK, we need to fill the hole... Do write_begin write_end
5293 * to do block allocation/reservation.We are not holding
5294 * inode.i__mutex here. That allow * parallel write_begin,
5295 * write_end call. lock_page prevent this from happening
5296 * on the same page though
5298 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5299 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5300 if (ret < 0)
5301 goto out_unlock;
5302 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5303 len, len, page, fsdata);
5304 if (ret < 0)
5305 goto out_unlock;
5306 ret = 0;
5307 out_unlock:
5308 if (ret)
5309 ret = VM_FAULT_SIGBUS;
5310 up_read(&inode->i_alloc_sem);
5311 return ret;