2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode
->i_sb
)->s_journal
,
55 &EXT4_I(inode
)->jinode
,
59 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
66 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
67 (inode
->i_sb
->s_blocksize
>> 9) : 0;
69 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
85 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
91 BUFFER_TRACE(bh
, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 bh
, is_metadata
, inode
->i_mode
,
96 test_opt(inode
->i_sb
, DATA_FLAGS
));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
103 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
104 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
106 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle
, bh
);
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
116 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
118 ext4_abort(inode
->i_sb
, __func__
,
119 "error %d when attempting revoke", err
);
120 BUFFER_TRACE(bh
, "exit");
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode
*inode
)
132 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
143 /* But we need to bound the transaction so we don't overflow the
145 if (needed
> EXT4_MAX_TRANS_DATA
)
146 needed
= EXT4_MAX_TRANS_DATA
;
148 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t
*start_transaction(struct inode
*inode
)
165 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
169 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
181 if (!ext4_handle_valid(handle
))
183 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
185 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
195 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
197 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
198 jbd_debug(2, "restarting handle %p\n", handle
);
199 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
203 * Called at the last iput() if i_nlink is zero.
205 void ext4_delete_inode(struct inode
*inode
)
210 if (ext4_should_order_data(inode
))
211 ext4_begin_ordered_truncate(inode
, 0);
212 truncate_inode_pages(&inode
->i_data
, 0);
214 if (is_bad_inode(inode
))
217 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
218 if (IS_ERR(handle
)) {
219 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
221 * If we're going to skip the normal cleanup, we still need to
222 * make sure that the in-core orphan linked list is properly
225 ext4_orphan_del(NULL
, inode
);
230 ext4_handle_sync(handle
);
232 err
= ext4_mark_inode_dirty(handle
, inode
);
234 ext4_warning(inode
->i_sb
, __func__
,
235 "couldn't mark inode dirty (err %d)", err
);
239 ext4_truncate(inode
);
242 * ext4_ext_truncate() doesn't reserve any slop when it
243 * restarts journal transactions; therefore there may not be
244 * enough credits left in the handle to remove the inode from
245 * the orphan list and set the dtime field.
247 if (!ext4_handle_has_enough_credits(handle
, 3)) {
248 err
= ext4_journal_extend(handle
, 3);
250 err
= ext4_journal_restart(handle
, 3);
252 ext4_warning(inode
->i_sb
, __func__
,
253 "couldn't extend journal (err %d)", err
);
255 ext4_journal_stop(handle
);
261 * Kill off the orphan record which ext4_truncate created.
262 * AKPM: I think this can be inside the above `if'.
263 * Note that ext4_orphan_del() has to be able to cope with the
264 * deletion of a non-existent orphan - this is because we don't
265 * know if ext4_truncate() actually created an orphan record.
266 * (Well, we could do this if we need to, but heck - it works)
268 ext4_orphan_del(handle
, inode
);
269 EXT4_I(inode
)->i_dtime
= get_seconds();
272 * One subtle ordering requirement: if anything has gone wrong
273 * (transaction abort, IO errors, whatever), then we can still
274 * do these next steps (the fs will already have been marked as
275 * having errors), but we can't free the inode if the mark_dirty
278 if (ext4_mark_inode_dirty(handle
, inode
))
279 /* If that failed, just do the required in-core inode clear. */
282 ext4_free_inode(handle
, inode
);
283 ext4_journal_stop(handle
);
286 clear_inode(inode
); /* We must guarantee clearing of inode... */
292 struct buffer_head
*bh
;
295 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
297 p
->key
= *(p
->p
= v
);
302 * ext4_block_to_path - parse the block number into array of offsets
303 * @inode: inode in question (we are only interested in its superblock)
304 * @i_block: block number to be parsed
305 * @offsets: array to store the offsets in
306 * @boundary: set this non-zero if the referred-to block is likely to be
307 * followed (on disk) by an indirect block.
309 * To store the locations of file's data ext4 uses a data structure common
310 * for UNIX filesystems - tree of pointers anchored in the inode, with
311 * data blocks at leaves and indirect blocks in intermediate nodes.
312 * This function translates the block number into path in that tree -
313 * return value is the path length and @offsets[n] is the offset of
314 * pointer to (n+1)th node in the nth one. If @block is out of range
315 * (negative or too large) warning is printed and zero returned.
317 * Note: function doesn't find node addresses, so no IO is needed. All
318 * we need to know is the capacity of indirect blocks (taken from the
323 * Portability note: the last comparison (check that we fit into triple
324 * indirect block) is spelled differently, because otherwise on an
325 * architecture with 32-bit longs and 8Kb pages we might get into trouble
326 * if our filesystem had 8Kb blocks. We might use long long, but that would
327 * kill us on x86. Oh, well, at least the sign propagation does not matter -
328 * i_block would have to be negative in the very beginning, so we would not
332 static int ext4_block_to_path(struct inode
*inode
,
334 ext4_lblk_t offsets
[4], int *boundary
)
336 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
337 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
338 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
339 indirect_blocks
= ptrs
,
340 double_blocks
= (1 << (ptrs_bits
* 2));
345 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block < 0");
346 } else if (i_block
< direct_blocks
) {
347 offsets
[n
++] = i_block
;
348 final
= direct_blocks
;
349 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
350 offsets
[n
++] = EXT4_IND_BLOCK
;
351 offsets
[n
++] = i_block
;
353 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
354 offsets
[n
++] = EXT4_DIND_BLOCK
;
355 offsets
[n
++] = i_block
>> ptrs_bits
;
356 offsets
[n
++] = i_block
& (ptrs
- 1);
358 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
359 offsets
[n
++] = EXT4_TIND_BLOCK
;
360 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
361 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
362 offsets
[n
++] = i_block
& (ptrs
- 1);
365 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
366 "block %lu > max in inode %lu",
367 i_block
+ direct_blocks
+
368 indirect_blocks
+ double_blocks
, inode
->i_ino
);
371 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
375 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
376 __le32
*p
, unsigned int max
)
381 while (bref
< p
+max
) {
382 blk
= le32_to_cpu(*bref
++);
384 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
386 ext4_error(inode
->i_sb
, function
,
387 "invalid block reference %u "
388 "in inode #%lu", blk
, inode
->i_ino
);
396 #define ext4_check_indirect_blockref(inode, bh) \
397 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
398 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
400 #define ext4_check_inode_blockref(inode) \
401 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
405 * ext4_get_branch - read the chain of indirect blocks leading to data
406 * @inode: inode in question
407 * @depth: depth of the chain (1 - direct pointer, etc.)
408 * @offsets: offsets of pointers in inode/indirect blocks
409 * @chain: place to store the result
410 * @err: here we store the error value
412 * Function fills the array of triples <key, p, bh> and returns %NULL
413 * if everything went OK or the pointer to the last filled triple
414 * (incomplete one) otherwise. Upon the return chain[i].key contains
415 * the number of (i+1)-th block in the chain (as it is stored in memory,
416 * i.e. little-endian 32-bit), chain[i].p contains the address of that
417 * number (it points into struct inode for i==0 and into the bh->b_data
418 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419 * block for i>0 and NULL for i==0. In other words, it holds the block
420 * numbers of the chain, addresses they were taken from (and where we can
421 * verify that chain did not change) and buffer_heads hosting these
424 * Function stops when it stumbles upon zero pointer (absent block)
425 * (pointer to last triple returned, *@err == 0)
426 * or when it gets an IO error reading an indirect block
427 * (ditto, *@err == -EIO)
428 * or when it reads all @depth-1 indirect blocks successfully and finds
429 * the whole chain, all way to the data (returns %NULL, *err == 0).
431 * Need to be called with
432 * down_read(&EXT4_I(inode)->i_data_sem)
434 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
435 ext4_lblk_t
*offsets
,
436 Indirect chain
[4], int *err
)
438 struct super_block
*sb
= inode
->i_sb
;
440 struct buffer_head
*bh
;
443 /* i_data is not going away, no lock needed */
444 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
448 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
452 if (!bh_uptodate_or_lock(bh
)) {
453 if (bh_submit_read(bh
) < 0) {
457 /* validate block references */
458 if (ext4_check_indirect_blockref(inode
, bh
)) {
464 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
478 * ext4_find_near - find a place for allocation with sufficient locality
480 * @ind: descriptor of indirect block.
482 * This function returns the preferred place for block allocation.
483 * It is used when heuristic for sequential allocation fails.
485 * + if there is a block to the left of our position - allocate near it.
486 * + if pointer will live in indirect block - allocate near that block.
487 * + if pointer will live in inode - allocate in the same
490 * In the latter case we colour the starting block by the callers PID to
491 * prevent it from clashing with concurrent allocations for a different inode
492 * in the same block group. The PID is used here so that functionally related
493 * files will be close-by on-disk.
495 * Caller must make sure that @ind is valid and will stay that way.
497 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
499 struct ext4_inode_info
*ei
= EXT4_I(inode
);
500 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
502 ext4_fsblk_t bg_start
;
503 ext4_fsblk_t last_block
;
504 ext4_grpblk_t colour
;
505 ext4_group_t block_group
;
506 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
508 /* Try to find previous block */
509 for (p
= ind
->p
- 1; p
>= start
; p
--) {
511 return le32_to_cpu(*p
);
514 /* No such thing, so let's try location of indirect block */
516 return ind
->bh
->b_blocknr
;
519 * It is going to be referred to from the inode itself? OK, just put it
520 * into the same cylinder group then.
522 block_group
= ei
->i_block_group
;
523 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
524 block_group
&= ~(flex_size
-1);
525 if (S_ISREG(inode
->i_mode
))
528 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
529 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
532 * If we are doing delayed allocation, we don't need take
533 * colour into account.
535 if (test_opt(inode
->i_sb
, DELALLOC
))
538 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
539 colour
= (current
->pid
% 16) *
540 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
542 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
543 return bg_start
+ colour
;
547 * ext4_find_goal - find a preferred place for allocation.
549 * @block: block we want
550 * @partial: pointer to the last triple within a chain
552 * Normally this function find the preferred place for block allocation,
555 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
559 * XXX need to get goal block from mballoc's data structures
562 return ext4_find_near(inode
, partial
);
566 * ext4_blks_to_allocate: Look up the block map and count the number
567 * of direct blocks need to be allocated for the given branch.
569 * @branch: chain of indirect blocks
570 * @k: number of blocks need for indirect blocks
571 * @blks: number of data blocks to be mapped.
572 * @blocks_to_boundary: the offset in the indirect block
574 * return the total number of blocks to be allocate, including the
575 * direct and indirect blocks.
577 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
578 int blocks_to_boundary
)
580 unsigned int count
= 0;
583 * Simple case, [t,d]Indirect block(s) has not allocated yet
584 * then it's clear blocks on that path have not allocated
587 /* right now we don't handle cross boundary allocation */
588 if (blks
< blocks_to_boundary
+ 1)
591 count
+= blocks_to_boundary
+ 1;
596 while (count
< blks
&& count
<= blocks_to_boundary
&&
597 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
604 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
605 * @indirect_blks: the number of blocks need to allocate for indirect
608 * @new_blocks: on return it will store the new block numbers for
609 * the indirect blocks(if needed) and the first direct block,
610 * @blks: on return it will store the total number of allocated
613 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
614 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
615 int indirect_blks
, int blks
,
616 ext4_fsblk_t new_blocks
[4], int *err
)
618 struct ext4_allocation_request ar
;
620 unsigned long count
= 0, blk_allocated
= 0;
622 ext4_fsblk_t current_block
= 0;
626 * Here we try to allocate the requested multiple blocks at once,
627 * on a best-effort basis.
628 * To build a branch, we should allocate blocks for
629 * the indirect blocks(if not allocated yet), and at least
630 * the first direct block of this branch. That's the
631 * minimum number of blocks need to allocate(required)
633 /* first we try to allocate the indirect blocks */
634 target
= indirect_blks
;
637 /* allocating blocks for indirect blocks and direct blocks */
638 current_block
= ext4_new_meta_blocks(handle
, inode
,
644 /* allocate blocks for indirect blocks */
645 while (index
< indirect_blks
&& count
) {
646 new_blocks
[index
++] = current_block
++;
651 * save the new block number
652 * for the first direct block
654 new_blocks
[index
] = current_block
;
655 printk(KERN_INFO
"%s returned more blocks than "
656 "requested\n", __func__
);
662 target
= blks
- count
;
663 blk_allocated
= count
;
666 /* Now allocate data blocks */
667 memset(&ar
, 0, sizeof(ar
));
672 if (S_ISREG(inode
->i_mode
))
673 /* enable in-core preallocation only for regular files */
674 ar
.flags
= EXT4_MB_HINT_DATA
;
676 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
678 if (*err
&& (target
== blks
)) {
680 * if the allocation failed and we didn't allocate
686 if (target
== blks
) {
688 * save the new block number
689 * for the first direct block
691 new_blocks
[index
] = current_block
;
693 blk_allocated
+= ar
.len
;
696 /* total number of blocks allocated for direct blocks */
701 for (i
= 0; i
< index
; i
++)
702 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
707 * ext4_alloc_branch - allocate and set up a chain of blocks.
709 * @indirect_blks: number of allocated indirect blocks
710 * @blks: number of allocated direct blocks
711 * @offsets: offsets (in the blocks) to store the pointers to next.
712 * @branch: place to store the chain in.
714 * This function allocates blocks, zeroes out all but the last one,
715 * links them into chain and (if we are synchronous) writes them to disk.
716 * In other words, it prepares a branch that can be spliced onto the
717 * inode. It stores the information about that chain in the branch[], in
718 * the same format as ext4_get_branch() would do. We are calling it after
719 * we had read the existing part of chain and partial points to the last
720 * triple of that (one with zero ->key). Upon the exit we have the same
721 * picture as after the successful ext4_get_block(), except that in one
722 * place chain is disconnected - *branch->p is still zero (we did not
723 * set the last link), but branch->key contains the number that should
724 * be placed into *branch->p to fill that gap.
726 * If allocation fails we free all blocks we've allocated (and forget
727 * their buffer_heads) and return the error value the from failed
728 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729 * as described above and return 0.
731 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
732 ext4_lblk_t iblock
, int indirect_blks
,
733 int *blks
, ext4_fsblk_t goal
,
734 ext4_lblk_t
*offsets
, Indirect
*branch
)
736 int blocksize
= inode
->i_sb
->s_blocksize
;
739 struct buffer_head
*bh
;
741 ext4_fsblk_t new_blocks
[4];
742 ext4_fsblk_t current_block
;
744 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
745 *blks
, new_blocks
, &err
);
749 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
751 * metadata blocks and data blocks are allocated.
753 for (n
= 1; n
<= indirect_blks
; n
++) {
755 * Get buffer_head for parent block, zero it out
756 * and set the pointer to new one, then send
759 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
762 BUFFER_TRACE(bh
, "call get_create_access");
763 err
= ext4_journal_get_create_access(handle
, bh
);
765 /* Don't brelse(bh) here; it's done in
766 * ext4_journal_forget() below */
771 memset(bh
->b_data
, 0, blocksize
);
772 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
773 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
774 *branch
[n
].p
= branch
[n
].key
;
775 if (n
== indirect_blks
) {
776 current_block
= new_blocks
[n
];
778 * End of chain, update the last new metablock of
779 * the chain to point to the new allocated
780 * data blocks numbers
782 for (i
= 1; i
< num
; i
++)
783 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
785 BUFFER_TRACE(bh
, "marking uptodate");
786 set_buffer_uptodate(bh
);
789 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
790 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
797 /* Allocation failed, free what we already allocated */
798 for (i
= 1; i
<= n
; i
++) {
799 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
800 ext4_journal_forget(handle
, branch
[i
].bh
);
802 for (i
= 0; i
< indirect_blks
; i
++)
803 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
805 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
811 * ext4_splice_branch - splice the allocated branch onto inode.
813 * @block: (logical) number of block we are adding
814 * @chain: chain of indirect blocks (with a missing link - see
816 * @where: location of missing link
817 * @num: number of indirect blocks we are adding
818 * @blks: number of direct blocks we are adding
820 * This function fills the missing link and does all housekeeping needed in
821 * inode (->i_blocks, etc.). In case of success we end up with the full
822 * chain to new block and return 0.
824 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
825 ext4_lblk_t block
, Indirect
*where
, int num
,
830 ext4_fsblk_t current_block
;
833 * If we're splicing into a [td]indirect block (as opposed to the
834 * inode) then we need to get write access to the [td]indirect block
838 BUFFER_TRACE(where
->bh
, "get_write_access");
839 err
= ext4_journal_get_write_access(handle
, where
->bh
);
845 *where
->p
= where
->key
;
848 * Update the host buffer_head or inode to point to more just allocated
849 * direct blocks blocks
851 if (num
== 0 && blks
> 1) {
852 current_block
= le32_to_cpu(where
->key
) + 1;
853 for (i
= 1; i
< blks
; i
++)
854 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
857 /* We are done with atomic stuff, now do the rest of housekeeping */
858 /* had we spliced it onto indirect block? */
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
870 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
875 * OK, we spliced it into the inode itself on a direct block.
877 ext4_mark_inode_dirty(handle
, inode
);
878 jbd_debug(5, "splicing direct\n");
883 for (i
= 1; i
<= num
; i
++) {
884 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
885 ext4_journal_forget(handle
, where
[i
].bh
);
886 ext4_free_blocks(handle
, inode
,
887 le32_to_cpu(where
[i
-1].key
), 1, 0);
889 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
910 * `handle' can be NULL if create == 0.
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
922 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
923 ext4_lblk_t iblock
, unsigned int maxblocks
,
924 struct buffer_head
*bh_result
,
928 ext4_lblk_t offsets
[4];
933 int blocks_to_boundary
= 0;
936 ext4_fsblk_t first_block
= 0;
938 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
939 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
940 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
941 &blocks_to_boundary
);
946 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
948 /* Simplest case - block found, no allocation needed */
950 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
951 clear_buffer_new(bh_result
);
954 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
957 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
959 if (blk
== first_block
+ count
)
967 /* Next simple case - plain lookup or failed read of indirect block */
968 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
972 * Okay, we need to do block allocation.
974 goal
= ext4_find_goal(inode
, iblock
, partial
);
976 /* the number of blocks need to allocate for [d,t]indirect blocks */
977 indirect_blks
= (chain
+ depth
) - partial
- 1;
980 * Next look up the indirect map to count the totoal number of
981 * direct blocks to allocate for this branch.
983 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
984 maxblocks
, blocks_to_boundary
);
986 * Block out ext4_truncate while we alter the tree
988 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
990 offsets
+ (partial
- chain
), partial
);
993 * The ext4_splice_branch call will free and forget any buffers
994 * on the new chain if there is a failure, but that risks using
995 * up transaction credits, especially for bitmaps where the
996 * credits cannot be returned. Can we handle this somehow? We
997 * may need to return -EAGAIN upwards in the worst case. --sct
1000 err
= ext4_splice_branch(handle
, inode
, iblock
,
1001 partial
, indirect_blks
, count
);
1005 set_buffer_new(bh_result
);
1007 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1008 if (count
> blocks_to_boundary
)
1009 set_buffer_boundary(bh_result
);
1011 /* Clean up and exit */
1012 partial
= chain
+ depth
- 1; /* the whole chain */
1014 while (partial
> chain
) {
1015 BUFFER_TRACE(partial
->bh
, "call brelse");
1016 brelse(partial
->bh
);
1019 BUFFER_TRACE(bh_result
, "returned");
1024 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1026 unsigned long long total
;
1028 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1029 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1030 EXT4_I(inode
)->i_reserved_meta_blocks
;
1031 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1036 * Calculate the number of metadata blocks need to reserve
1037 * to allocate @blocks for non extent file based file
1039 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1041 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1042 int ind_blks
, dind_blks
, tind_blks
;
1044 /* number of new indirect blocks needed */
1045 ind_blks
= (blocks
+ icap
- 1) / icap
;
1047 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1051 return ind_blks
+ dind_blks
+ tind_blks
;
1055 * Calculate the number of metadata blocks need to reserve
1056 * to allocate given number of blocks
1058 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1063 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1064 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1066 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1069 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1071 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1072 int total
, mdb
, mdb_free
;
1074 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1075 /* recalculate the number of metablocks still need to be reserved */
1076 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1077 mdb
= ext4_calc_metadata_amount(inode
, total
);
1079 /* figure out how many metablocks to release */
1080 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1081 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1084 /* Account for allocated meta_blocks */
1085 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1087 /* update fs dirty blocks counter */
1088 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1089 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1090 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1093 /* update per-inode reservations */
1094 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1095 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1096 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1099 * free those over-booking quota for metadata blocks
1102 vfs_dq_release_reservation_block(inode
, mdb_free
);
1105 * If we have done all the pending block allocations and if
1106 * there aren't any writers on the inode, we can discard the
1107 * inode's preallocations.
1109 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1110 ext4_discard_preallocations(inode
);
1113 static int check_block_validity(struct inode
*inode
, sector_t logical
,
1114 sector_t phys
, int len
)
1116 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1117 ext4_error(inode
->i_sb
, "check_block_validity",
1118 "inode #%lu logical block %llu mapped to %llu "
1119 "(size %d)", inode
->i_ino
,
1120 (unsigned long long) logical
,
1121 (unsigned long long) phys
, len
);
1129 * The ext4_get_blocks() function tries to look up the requested blocks,
1130 * and returns if the blocks are already mapped.
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1148 * It returns the error in case of allocation failure.
1150 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1151 unsigned int max_blocks
, struct buffer_head
*bh
,
1156 clear_buffer_mapped(bh
);
1157 clear_buffer_unwritten(bh
);
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
1163 down_read((&EXT4_I(inode
)->i_data_sem
));
1164 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1165 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1168 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1171 up_read((&EXT4_I(inode
)->i_data_sem
));
1173 if (retval
> 0 && buffer_mapped(bh
)) {
1174 int ret
= check_block_validity(inode
, block
,
1175 bh
->b_blocknr
, retval
);
1180 /* If it is only a block(s) look up */
1181 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1185 * Returns if the blocks have already allocated
1187 * Note that if blocks have been preallocated
1188 * ext4_ext_get_block() returns th create = 0
1189 * with buffer head unmapped.
1191 if (retval
> 0 && buffer_mapped(bh
))
1195 * When we call get_blocks without the create flag, the
1196 * BH_Unwritten flag could have gotten set if the blocks
1197 * requested were part of a uninitialized extent. We need to
1198 * clear this flag now that we are committed to convert all or
1199 * part of the uninitialized extent to be an initialized
1200 * extent. This is because we need to avoid the combination
1201 * of BH_Unwritten and BH_Mapped flags being simultaneously
1202 * set on the buffer_head.
1204 clear_buffer_unwritten(bh
);
1207 * New blocks allocate and/or writing to uninitialized extent
1208 * will possibly result in updating i_data, so we take
1209 * the write lock of i_data_sem, and call get_blocks()
1210 * with create == 1 flag.
1212 down_write((&EXT4_I(inode
)->i_data_sem
));
1215 * if the caller is from delayed allocation writeout path
1216 * we have already reserved fs blocks for allocation
1217 * let the underlying get_block() function know to
1218 * avoid double accounting
1220 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1221 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1223 * We need to check for EXT4 here because migrate
1224 * could have changed the inode type in between
1226 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1227 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1230 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1231 max_blocks
, bh
, flags
);
1233 if (retval
> 0 && buffer_new(bh
)) {
1235 * We allocated new blocks which will result in
1236 * i_data's format changing. Force the migrate
1237 * to fail by clearing migrate flags
1239 EXT4_I(inode
)->i_flags
= EXT4_I(inode
)->i_flags
&
1244 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1245 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1248 * Update reserved blocks/metadata blocks after successful
1249 * block allocation which had been deferred till now.
1251 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1252 ext4_da_update_reserve_space(inode
, retval
);
1254 up_write((&EXT4_I(inode
)->i_data_sem
));
1255 if (retval
> 0 && buffer_mapped(bh
)) {
1256 int ret
= check_block_validity(inode
, block
,
1257 bh
->b_blocknr
, retval
);
1264 /* Maximum number of blocks we map for direct IO at once. */
1265 #define DIO_MAX_BLOCKS 4096
1267 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1268 struct buffer_head
*bh_result
, int create
)
1270 handle_t
*handle
= ext4_journal_current_handle();
1271 int ret
= 0, started
= 0;
1272 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1275 if (create
&& !handle
) {
1276 /* Direct IO write... */
1277 if (max_blocks
> DIO_MAX_BLOCKS
)
1278 max_blocks
= DIO_MAX_BLOCKS
;
1279 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1280 handle
= ext4_journal_start(inode
, dio_credits
);
1281 if (IS_ERR(handle
)) {
1282 ret
= PTR_ERR(handle
);
1288 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1289 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1291 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1295 ext4_journal_stop(handle
);
1301 * `handle' can be NULL if create is zero
1303 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1304 ext4_lblk_t block
, int create
, int *errp
)
1306 struct buffer_head dummy
;
1310 J_ASSERT(handle
!= NULL
|| create
== 0);
1313 dummy
.b_blocknr
= -1000;
1314 buffer_trace_init(&dummy
.b_history
);
1316 flags
|= EXT4_GET_BLOCKS_CREATE
;
1317 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1319 * ext4_get_blocks() returns number of blocks mapped. 0 in
1328 if (!err
&& buffer_mapped(&dummy
)) {
1329 struct buffer_head
*bh
;
1330 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1335 if (buffer_new(&dummy
)) {
1336 J_ASSERT(create
!= 0);
1337 J_ASSERT(handle
!= NULL
);
1340 * Now that we do not always journal data, we should
1341 * keep in mind whether this should always journal the
1342 * new buffer as metadata. For now, regular file
1343 * writes use ext4_get_block instead, so it's not a
1347 BUFFER_TRACE(bh
, "call get_create_access");
1348 fatal
= ext4_journal_get_create_access(handle
, bh
);
1349 if (!fatal
&& !buffer_uptodate(bh
)) {
1350 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1351 set_buffer_uptodate(bh
);
1354 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1355 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1359 BUFFER_TRACE(bh
, "not a new buffer");
1372 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1373 ext4_lblk_t block
, int create
, int *err
)
1375 struct buffer_head
*bh
;
1377 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1380 if (buffer_uptodate(bh
))
1382 ll_rw_block(READ_META
, 1, &bh
);
1384 if (buffer_uptodate(bh
))
1391 static int walk_page_buffers(handle_t
*handle
,
1392 struct buffer_head
*head
,
1396 int (*fn
)(handle_t
*handle
,
1397 struct buffer_head
*bh
))
1399 struct buffer_head
*bh
;
1400 unsigned block_start
, block_end
;
1401 unsigned blocksize
= head
->b_size
;
1403 struct buffer_head
*next
;
1405 for (bh
= head
, block_start
= 0;
1406 ret
== 0 && (bh
!= head
|| !block_start
);
1407 block_start
= block_end
, bh
= next
) {
1408 next
= bh
->b_this_page
;
1409 block_end
= block_start
+ blocksize
;
1410 if (block_end
<= from
|| block_start
>= to
) {
1411 if (partial
&& !buffer_uptodate(bh
))
1415 err
= (*fn
)(handle
, bh
);
1423 * To preserve ordering, it is essential that the hole instantiation and
1424 * the data write be encapsulated in a single transaction. We cannot
1425 * close off a transaction and start a new one between the ext4_get_block()
1426 * and the commit_write(). So doing the jbd2_journal_start at the start of
1427 * prepare_write() is the right place.
1429 * Also, this function can nest inside ext4_writepage() ->
1430 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1431 * has generated enough buffer credits to do the whole page. So we won't
1432 * block on the journal in that case, which is good, because the caller may
1435 * By accident, ext4 can be reentered when a transaction is open via
1436 * quota file writes. If we were to commit the transaction while thus
1437 * reentered, there can be a deadlock - we would be holding a quota
1438 * lock, and the commit would never complete if another thread had a
1439 * transaction open and was blocking on the quota lock - a ranking
1442 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1443 * will _not_ run commit under these circumstances because handle->h_ref
1444 * is elevated. We'll still have enough credits for the tiny quotafile
1447 static int do_journal_get_write_access(handle_t
*handle
,
1448 struct buffer_head
*bh
)
1450 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1452 return ext4_journal_get_write_access(handle
, bh
);
1455 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1456 loff_t pos
, unsigned len
, unsigned flags
,
1457 struct page
**pagep
, void **fsdata
)
1459 struct inode
*inode
= mapping
->host
;
1460 int ret
, needed_blocks
;
1467 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1469 * Reserve one block more for addition to orphan list in case
1470 * we allocate blocks but write fails for some reason
1472 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1473 index
= pos
>> PAGE_CACHE_SHIFT
;
1474 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1478 handle
= ext4_journal_start(inode
, needed_blocks
);
1479 if (IS_ERR(handle
)) {
1480 ret
= PTR_ERR(handle
);
1484 /* We cannot recurse into the filesystem as the transaction is already
1486 flags
|= AOP_FLAG_NOFS
;
1488 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1490 ext4_journal_stop(handle
);
1496 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1499 if (!ret
&& ext4_should_journal_data(inode
)) {
1500 ret
= walk_page_buffers(handle
, page_buffers(page
),
1501 from
, to
, NULL
, do_journal_get_write_access
);
1506 page_cache_release(page
);
1508 * block_write_begin may have instantiated a few blocks
1509 * outside i_size. Trim these off again. Don't need
1510 * i_size_read because we hold i_mutex.
1512 * Add inode to orphan list in case we crash before
1515 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1516 ext4_orphan_add(handle
, inode
);
1518 ext4_journal_stop(handle
);
1519 if (pos
+ len
> inode
->i_size
) {
1520 ext4_truncate(inode
);
1522 * If truncate failed early the inode might
1523 * still be on the orphan list; we need to
1524 * make sure the inode is removed from the
1525 * orphan list in that case.
1528 ext4_orphan_del(NULL
, inode
);
1532 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1538 /* For write_end() in data=journal mode */
1539 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1541 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1543 set_buffer_uptodate(bh
);
1544 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1547 static int ext4_generic_write_end(struct file
*file
,
1548 struct address_space
*mapping
,
1549 loff_t pos
, unsigned len
, unsigned copied
,
1550 struct page
*page
, void *fsdata
)
1552 int i_size_changed
= 0;
1553 struct inode
*inode
= mapping
->host
;
1554 handle_t
*handle
= ext4_journal_current_handle();
1556 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1559 * No need to use i_size_read() here, the i_size
1560 * cannot change under us because we hold i_mutex.
1562 * But it's important to update i_size while still holding page lock:
1563 * page writeout could otherwise come in and zero beyond i_size.
1565 if (pos
+ copied
> inode
->i_size
) {
1566 i_size_write(inode
, pos
+ copied
);
1570 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1571 /* We need to mark inode dirty even if
1572 * new_i_size is less that inode->i_size
1573 * bu greater than i_disksize.(hint delalloc)
1575 ext4_update_i_disksize(inode
, (pos
+ copied
));
1579 page_cache_release(page
);
1582 * Don't mark the inode dirty under page lock. First, it unnecessarily
1583 * makes the holding time of page lock longer. Second, it forces lock
1584 * ordering of page lock and transaction start for journaling
1588 ext4_mark_inode_dirty(handle
, inode
);
1594 * We need to pick up the new inode size which generic_commit_write gave us
1595 * `file' can be NULL - eg, when called from page_symlink().
1597 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1598 * buffers are managed internally.
1600 static int ext4_ordered_write_end(struct file
*file
,
1601 struct address_space
*mapping
,
1602 loff_t pos
, unsigned len
, unsigned copied
,
1603 struct page
*page
, void *fsdata
)
1605 handle_t
*handle
= ext4_journal_current_handle();
1606 struct inode
*inode
= mapping
->host
;
1609 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1610 ret
= ext4_jbd2_file_inode(handle
, inode
);
1613 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1616 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1617 /* if we have allocated more blocks and copied
1618 * less. We will have blocks allocated outside
1619 * inode->i_size. So truncate them
1621 ext4_orphan_add(handle
, inode
);
1625 ret2
= ext4_journal_stop(handle
);
1629 if (pos
+ len
> inode
->i_size
) {
1630 ext4_truncate(inode
);
1632 * If truncate failed early the inode might still be
1633 * on the orphan list; we need to make sure the inode
1634 * is removed from the orphan list in that case.
1637 ext4_orphan_del(NULL
, inode
);
1641 return ret
? ret
: copied
;
1644 static int ext4_writeback_write_end(struct file
*file
,
1645 struct address_space
*mapping
,
1646 loff_t pos
, unsigned len
, unsigned copied
,
1647 struct page
*page
, void *fsdata
)
1649 handle_t
*handle
= ext4_journal_current_handle();
1650 struct inode
*inode
= mapping
->host
;
1653 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1654 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1657 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1658 /* if we have allocated more blocks and copied
1659 * less. We will have blocks allocated outside
1660 * inode->i_size. So truncate them
1662 ext4_orphan_add(handle
, inode
);
1667 ret2
= ext4_journal_stop(handle
);
1671 if (pos
+ len
> inode
->i_size
) {
1672 ext4_truncate(inode
);
1674 * If truncate failed early the inode might still be
1675 * on the orphan list; we need to make sure the inode
1676 * is removed from the orphan list in that case.
1679 ext4_orphan_del(NULL
, inode
);
1682 return ret
? ret
: copied
;
1685 static int ext4_journalled_write_end(struct file
*file
,
1686 struct address_space
*mapping
,
1687 loff_t pos
, unsigned len
, unsigned copied
,
1688 struct page
*page
, void *fsdata
)
1690 handle_t
*handle
= ext4_journal_current_handle();
1691 struct inode
*inode
= mapping
->host
;
1697 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1698 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1702 if (!PageUptodate(page
))
1704 page_zero_new_buffers(page
, from
+copied
, to
);
1707 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1708 to
, &partial
, write_end_fn
);
1710 SetPageUptodate(page
);
1711 new_i_size
= pos
+ copied
;
1712 if (new_i_size
> inode
->i_size
)
1713 i_size_write(inode
, pos
+copied
);
1714 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1715 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1716 ext4_update_i_disksize(inode
, new_i_size
);
1717 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1723 page_cache_release(page
);
1724 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1725 /* if we have allocated more blocks and copied
1726 * less. We will have blocks allocated outside
1727 * inode->i_size. So truncate them
1729 ext4_orphan_add(handle
, inode
);
1731 ret2
= ext4_journal_stop(handle
);
1734 if (pos
+ len
> inode
->i_size
) {
1735 ext4_truncate(inode
);
1737 * If truncate failed early the inode might still be
1738 * on the orphan list; we need to make sure the inode
1739 * is removed from the orphan list in that case.
1742 ext4_orphan_del(NULL
, inode
);
1745 return ret
? ret
: copied
;
1748 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1751 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1752 unsigned long md_needed
, mdblocks
, total
= 0;
1755 * recalculate the amount of metadata blocks to reserve
1756 * in order to allocate nrblocks
1757 * worse case is one extent per block
1760 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1761 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1762 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1763 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1765 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1766 total
= md_needed
+ nrblocks
;
1769 * Make quota reservation here to prevent quota overflow
1770 * later. Real quota accounting is done at pages writeout
1773 if (vfs_dq_reserve_block(inode
, total
)) {
1774 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1778 if (ext4_claim_free_blocks(sbi
, total
)) {
1779 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1780 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1784 vfs_dq_release_reservation_block(inode
, total
);
1787 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1788 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1790 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1791 return 0; /* success */
1794 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1796 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1797 int total
, mdb
, mdb_free
, release
;
1800 return; /* Nothing to release, exit */
1802 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1804 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1806 * if there is no reserved blocks, but we try to free some
1807 * then the counter is messed up somewhere.
1808 * but since this function is called from invalidate
1809 * page, it's harmless to return without any action
1811 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1812 "blocks for inode %lu, but there is no reserved "
1813 "data blocks\n", to_free
, inode
->i_ino
);
1814 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1818 /* recalculate the number of metablocks still need to be reserved */
1819 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1820 mdb
= ext4_calc_metadata_amount(inode
, total
);
1822 /* figure out how many metablocks to release */
1823 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1824 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1826 release
= to_free
+ mdb_free
;
1828 /* update fs dirty blocks counter for truncate case */
1829 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1831 /* update per-inode reservations */
1832 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1833 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1835 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1836 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1837 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1839 vfs_dq_release_reservation_block(inode
, release
);
1842 static void ext4_da_page_release_reservation(struct page
*page
,
1843 unsigned long offset
)
1846 struct buffer_head
*head
, *bh
;
1847 unsigned int curr_off
= 0;
1849 head
= page_buffers(page
);
1852 unsigned int next_off
= curr_off
+ bh
->b_size
;
1854 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1856 clear_buffer_delay(bh
);
1858 curr_off
= next_off
;
1859 } while ((bh
= bh
->b_this_page
) != head
);
1860 ext4_da_release_space(page
->mapping
->host
, to_release
);
1864 * Delayed allocation stuff
1867 struct mpage_da_data
{
1868 struct inode
*inode
;
1869 sector_t b_blocknr
; /* start block number of extent */
1870 size_t b_size
; /* size of extent */
1871 unsigned long b_state
; /* state of the extent */
1872 unsigned long first_page
, next_page
; /* extent of pages */
1873 struct writeback_control
*wbc
;
1880 * mpage_da_submit_io - walks through extent of pages and try to write
1881 * them with writepage() call back
1883 * @mpd->inode: inode
1884 * @mpd->first_page: first page of the extent
1885 * @mpd->next_page: page after the last page of the extent
1887 * By the time mpage_da_submit_io() is called we expect all blocks
1888 * to be allocated. this may be wrong if allocation failed.
1890 * As pages are already locked by write_cache_pages(), we can't use it
1892 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1895 struct pagevec pvec
;
1896 unsigned long index
, end
;
1897 int ret
= 0, err
, nr_pages
, i
;
1898 struct inode
*inode
= mpd
->inode
;
1899 struct address_space
*mapping
= inode
->i_mapping
;
1901 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1903 * We need to start from the first_page to the next_page - 1
1904 * to make sure we also write the mapped dirty buffer_heads.
1905 * If we look at mpd->b_blocknr we would only be looking
1906 * at the currently mapped buffer_heads.
1908 index
= mpd
->first_page
;
1909 end
= mpd
->next_page
- 1;
1911 pagevec_init(&pvec
, 0);
1912 while (index
<= end
) {
1913 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1916 for (i
= 0; i
< nr_pages
; i
++) {
1917 struct page
*page
= pvec
.pages
[i
];
1919 index
= page
->index
;
1924 BUG_ON(!PageLocked(page
));
1925 BUG_ON(PageWriteback(page
));
1927 pages_skipped
= mpd
->wbc
->pages_skipped
;
1928 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
1929 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
1931 * have successfully written the page
1932 * without skipping the same
1934 mpd
->pages_written
++;
1936 * In error case, we have to continue because
1937 * remaining pages are still locked
1938 * XXX: unlock and re-dirty them?
1943 pagevec_release(&pvec
);
1949 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1951 * @mpd->inode - inode to walk through
1952 * @exbh->b_blocknr - first block on a disk
1953 * @exbh->b_size - amount of space in bytes
1954 * @logical - first logical block to start assignment with
1956 * the function goes through all passed space and put actual disk
1957 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1959 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
1960 struct buffer_head
*exbh
)
1962 struct inode
*inode
= mpd
->inode
;
1963 struct address_space
*mapping
= inode
->i_mapping
;
1964 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
1965 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
1966 struct buffer_head
*head
, *bh
;
1968 struct pagevec pvec
;
1971 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1972 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1973 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1975 pagevec_init(&pvec
, 0);
1977 while (index
<= end
) {
1978 /* XXX: optimize tail */
1979 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1982 for (i
= 0; i
< nr_pages
; i
++) {
1983 struct page
*page
= pvec
.pages
[i
];
1985 index
= page
->index
;
1990 BUG_ON(!PageLocked(page
));
1991 BUG_ON(PageWriteback(page
));
1992 BUG_ON(!page_has_buffers(page
));
1994 bh
= page_buffers(page
);
1997 /* skip blocks out of the range */
1999 if (cur_logical
>= logical
)
2002 } while ((bh
= bh
->b_this_page
) != head
);
2005 if (cur_logical
>= logical
+ blocks
)
2008 if (buffer_delay(bh
) ||
2009 buffer_unwritten(bh
)) {
2011 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2013 if (buffer_delay(bh
)) {
2014 clear_buffer_delay(bh
);
2015 bh
->b_blocknr
= pblock
;
2018 * unwritten already should have
2019 * blocknr assigned. Verify that
2021 clear_buffer_unwritten(bh
);
2022 BUG_ON(bh
->b_blocknr
!= pblock
);
2025 } else if (buffer_mapped(bh
))
2026 BUG_ON(bh
->b_blocknr
!= pblock
);
2030 } while ((bh
= bh
->b_this_page
) != head
);
2032 pagevec_release(&pvec
);
2038 * __unmap_underlying_blocks - just a helper function to unmap
2039 * set of blocks described by @bh
2041 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2042 struct buffer_head
*bh
)
2044 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2047 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2048 for (i
= 0; i
< blocks
; i
++)
2049 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2052 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2053 sector_t logical
, long blk_cnt
)
2057 struct pagevec pvec
;
2058 struct inode
*inode
= mpd
->inode
;
2059 struct address_space
*mapping
= inode
->i_mapping
;
2061 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2062 end
= (logical
+ blk_cnt
- 1) >>
2063 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2064 while (index
<= end
) {
2065 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2068 for (i
= 0; i
< nr_pages
; i
++) {
2069 struct page
*page
= pvec
.pages
[i
];
2070 index
= page
->index
;
2075 BUG_ON(!PageLocked(page
));
2076 BUG_ON(PageWriteback(page
));
2077 block_invalidatepage(page
, 0);
2078 ClearPageUptodate(page
);
2085 static void ext4_print_free_blocks(struct inode
*inode
)
2087 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2088 printk(KERN_EMERG
"Total free blocks count %lld\n",
2089 ext4_count_free_blocks(inode
->i_sb
));
2090 printk(KERN_EMERG
"Free/Dirty block details\n");
2091 printk(KERN_EMERG
"free_blocks=%lld\n",
2092 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2093 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2094 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2095 printk(KERN_EMERG
"Block reservation details\n");
2096 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2097 EXT4_I(inode
)->i_reserved_data_blocks
);
2098 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2099 EXT4_I(inode
)->i_reserved_meta_blocks
);
2104 * mpage_da_map_blocks - go through given space
2106 * @mpd - bh describing space
2108 * The function skips space we know is already mapped to disk blocks.
2111 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2113 int err
, blks
, get_blocks_flags
;
2114 struct buffer_head
new;
2115 sector_t next
= mpd
->b_blocknr
;
2116 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2117 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2118 handle_t
*handle
= NULL
;
2121 * We consider only non-mapped and non-allocated blocks
2123 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2124 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2125 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2129 * If we didn't accumulate anything to write simply return
2134 handle
= ext4_journal_current_handle();
2138 * Call ext4_get_blocks() to allocate any delayed allocation
2139 * blocks, or to convert an uninitialized extent to be
2140 * initialized (in the case where we have written into
2141 * one or more preallocated blocks).
2143 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2144 * indicate that we are on the delayed allocation path. This
2145 * affects functions in many different parts of the allocation
2146 * call path. This flag exists primarily because we don't
2147 * want to change *many* call functions, so ext4_get_blocks()
2148 * will set the magic i_delalloc_reserved_flag once the
2149 * inode's allocation semaphore is taken.
2151 * If the blocks in questions were delalloc blocks, set
2152 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2153 * variables are updated after the blocks have been allocated.
2156 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2157 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2158 if (mpd
->b_state
& (1 << BH_Delay
))
2159 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2160 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2161 &new, get_blocks_flags
);
2165 * If get block returns with error we simply
2166 * return. Later writepage will redirty the page and
2167 * writepages will find the dirty page again
2172 if (err
== -ENOSPC
&&
2173 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2179 * get block failure will cause us to loop in
2180 * writepages, because a_ops->writepage won't be able
2181 * to make progress. The page will be redirtied by
2182 * writepage and writepages will again try to write
2185 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2186 "at logical offset %llu with max blocks "
2187 "%zd with error %d\n",
2188 __func__
, mpd
->inode
->i_ino
,
2189 (unsigned long long)next
,
2190 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2191 printk(KERN_EMERG
"This should not happen.!! "
2192 "Data will be lost\n");
2193 if (err
== -ENOSPC
) {
2194 ext4_print_free_blocks(mpd
->inode
);
2196 /* invalidate all the pages */
2197 ext4_da_block_invalidatepages(mpd
, next
,
2198 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2203 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2205 if (buffer_new(&new))
2206 __unmap_underlying_blocks(mpd
->inode
, &new);
2209 * If blocks are delayed marked, we need to
2210 * put actual blocknr and drop delayed bit
2212 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2213 (mpd
->b_state
& (1 << BH_Unwritten
)))
2214 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2216 if (ext4_should_order_data(mpd
->inode
)) {
2217 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2223 * Update on-disk size along with block allocation.
2225 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2226 if (disksize
> i_size_read(mpd
->inode
))
2227 disksize
= i_size_read(mpd
->inode
);
2228 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2229 ext4_update_i_disksize(mpd
->inode
, disksize
);
2230 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2236 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2237 (1 << BH_Delay) | (1 << BH_Unwritten))
2240 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2242 * @mpd->lbh - extent of blocks
2243 * @logical - logical number of the block in the file
2244 * @bh - bh of the block (used to access block's state)
2246 * the function is used to collect contig. blocks in same state
2248 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2249 sector_t logical
, size_t b_size
,
2250 unsigned long b_state
)
2253 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2255 /* check if thereserved journal credits might overflow */
2256 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2257 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2259 * With non-extent format we are limited by the journal
2260 * credit available. Total credit needed to insert
2261 * nrblocks contiguous blocks is dependent on the
2262 * nrblocks. So limit nrblocks.
2265 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2266 EXT4_MAX_TRANS_DATA
) {
2268 * Adding the new buffer_head would make it cross the
2269 * allowed limit for which we have journal credit
2270 * reserved. So limit the new bh->b_size
2272 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2273 mpd
->inode
->i_blkbits
;
2274 /* we will do mpage_da_submit_io in the next loop */
2278 * First block in the extent
2280 if (mpd
->b_size
== 0) {
2281 mpd
->b_blocknr
= logical
;
2282 mpd
->b_size
= b_size
;
2283 mpd
->b_state
= b_state
& BH_FLAGS
;
2287 next
= mpd
->b_blocknr
+ nrblocks
;
2289 * Can we merge the block to our big extent?
2291 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2292 mpd
->b_size
+= b_size
;
2298 * We couldn't merge the block to our extent, so we
2299 * need to flush current extent and start new one
2301 if (mpage_da_map_blocks(mpd
) == 0)
2302 mpage_da_submit_io(mpd
);
2307 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2309 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2313 * __mpage_da_writepage - finds extent of pages and blocks
2315 * @page: page to consider
2316 * @wbc: not used, we just follow rules
2319 * The function finds extents of pages and scan them for all blocks.
2321 static int __mpage_da_writepage(struct page
*page
,
2322 struct writeback_control
*wbc
, void *data
)
2324 struct mpage_da_data
*mpd
= data
;
2325 struct inode
*inode
= mpd
->inode
;
2326 struct buffer_head
*bh
, *head
;
2331 * Rest of the page in the page_vec
2332 * redirty then and skip then. We will
2333 * try to to write them again after
2334 * starting a new transaction
2336 redirty_page_for_writepage(wbc
, page
);
2338 return MPAGE_DA_EXTENT_TAIL
;
2341 * Can we merge this page to current extent?
2343 if (mpd
->next_page
!= page
->index
) {
2345 * Nope, we can't. So, we map non-allocated blocks
2346 * and start IO on them using writepage()
2348 if (mpd
->next_page
!= mpd
->first_page
) {
2349 if (mpage_da_map_blocks(mpd
) == 0)
2350 mpage_da_submit_io(mpd
);
2352 * skip rest of the page in the page_vec
2355 redirty_page_for_writepage(wbc
, page
);
2357 return MPAGE_DA_EXTENT_TAIL
;
2361 * Start next extent of pages ...
2363 mpd
->first_page
= page
->index
;
2373 mpd
->next_page
= page
->index
+ 1;
2374 logical
= (sector_t
) page
->index
<<
2375 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2377 if (!page_has_buffers(page
)) {
2378 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2379 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2381 return MPAGE_DA_EXTENT_TAIL
;
2384 * Page with regular buffer heads, just add all dirty ones
2386 head
= page_buffers(page
);
2389 BUG_ON(buffer_locked(bh
));
2391 * We need to try to allocate
2392 * unmapped blocks in the same page.
2393 * Otherwise we won't make progress
2394 * with the page in ext4_writepage
2396 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2397 mpage_add_bh_to_extent(mpd
, logical
,
2401 return MPAGE_DA_EXTENT_TAIL
;
2402 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2404 * mapped dirty buffer. We need to update
2405 * the b_state because we look at
2406 * b_state in mpage_da_map_blocks. We don't
2407 * update b_size because if we find an
2408 * unmapped buffer_head later we need to
2409 * use the b_state flag of that buffer_head.
2411 if (mpd
->b_size
== 0)
2412 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2415 } while ((bh
= bh
->b_this_page
) != head
);
2422 * This is a special get_blocks_t callback which is used by
2423 * ext4_da_write_begin(). It will either return mapped block or
2424 * reserve space for a single block.
2426 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2427 * We also have b_blocknr = -1 and b_bdev initialized properly
2429 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2430 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2431 * initialized properly.
2433 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2434 struct buffer_head
*bh_result
, int create
)
2437 sector_t invalid_block
= ~((sector_t
) 0xffff);
2439 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2442 BUG_ON(create
== 0);
2443 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2446 * first, we need to know whether the block is allocated already
2447 * preallocated blocks are unmapped but should treated
2448 * the same as allocated blocks.
2450 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2451 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2452 /* the block isn't (pre)allocated yet, let's reserve space */
2454 * XXX: __block_prepare_write() unmaps passed block,
2457 ret
= ext4_da_reserve_space(inode
, 1);
2459 /* not enough space to reserve */
2462 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2463 set_buffer_new(bh_result
);
2464 set_buffer_delay(bh_result
);
2465 } else if (ret
> 0) {
2466 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2467 if (buffer_unwritten(bh_result
)) {
2468 /* A delayed write to unwritten bh should
2469 * be marked new and mapped. Mapped ensures
2470 * that we don't do get_block multiple times
2471 * when we write to the same offset and new
2472 * ensures that we do proper zero out for
2475 set_buffer_new(bh_result
);
2476 set_buffer_mapped(bh_result
);
2485 * This function is used as a standard get_block_t calback function
2486 * when there is no desire to allocate any blocks. It is used as a
2487 * callback function for block_prepare_write(), nobh_writepage(), and
2488 * block_write_full_page(). These functions should only try to map a
2489 * single block at a time.
2491 * Since this function doesn't do block allocations even if the caller
2492 * requests it by passing in create=1, it is critically important that
2493 * any caller checks to make sure that any buffer heads are returned
2494 * by this function are either all already mapped or marked for
2495 * delayed allocation before calling nobh_writepage() or
2496 * block_write_full_page(). Otherwise, b_blocknr could be left
2497 * unitialized, and the page write functions will be taken by
2500 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2501 struct buffer_head
*bh_result
, int create
)
2504 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2506 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2509 * we don't want to do block allocation in writepage
2510 * so call get_block_wrap with create = 0
2512 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2514 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2520 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2526 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2532 static int __ext4_journalled_writepage(struct page
*page
,
2533 struct writeback_control
*wbc
,
2536 struct address_space
*mapping
= page
->mapping
;
2537 struct inode
*inode
= mapping
->host
;
2538 struct buffer_head
*page_bufs
;
2539 handle_t
*handle
= NULL
;
2543 page_bufs
= page_buffers(page
);
2545 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2546 /* As soon as we unlock the page, it can go away, but we have
2547 * references to buffers so we are safe */
2550 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2551 if (IS_ERR(handle
)) {
2552 ret
= PTR_ERR(handle
);
2556 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2557 do_journal_get_write_access
);
2559 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2563 err
= ext4_journal_stop(handle
);
2567 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2568 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2574 * Note that we don't need to start a transaction unless we're journaling data
2575 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2576 * need to file the inode to the transaction's list in ordered mode because if
2577 * we are writing back data added by write(), the inode is already there and if
2578 * we are writing back data modified via mmap(), noone guarantees in which
2579 * transaction the data will hit the disk. In case we are journaling data, we
2580 * cannot start transaction directly because transaction start ranks above page
2581 * lock so we have to do some magic.
2583 * This function can get called via...
2584 * - ext4_da_writepages after taking page lock (have journal handle)
2585 * - journal_submit_inode_data_buffers (no journal handle)
2586 * - shrink_page_list via pdflush (no journal handle)
2587 * - grab_page_cache when doing write_begin (have journal handle)
2589 * We don't do any block allocation in this function. If we have page with
2590 * multiple blocks we need to write those buffer_heads that are mapped. This
2591 * is important for mmaped based write. So if we do with blocksize 1K
2592 * truncate(f, 1024);
2593 * a = mmap(f, 0, 4096);
2595 * truncate(f, 4096);
2596 * we have in the page first buffer_head mapped via page_mkwrite call back
2597 * but other bufer_heads would be unmapped but dirty(dirty done via the
2598 * do_wp_page). So writepage should write the first block. If we modify
2599 * the mmap area beyond 1024 we will again get a page_fault and the
2600 * page_mkwrite callback will do the block allocation and mark the
2601 * buffer_heads mapped.
2603 * We redirty the page if we have any buffer_heads that is either delay or
2604 * unwritten in the page.
2606 * We can get recursively called as show below.
2608 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2611 * But since we don't do any block allocation we should not deadlock.
2612 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2614 static int ext4_writepage(struct page
*page
,
2615 struct writeback_control
*wbc
)
2620 struct buffer_head
*page_bufs
;
2621 struct inode
*inode
= page
->mapping
->host
;
2623 trace_ext4_writepage(inode
, page
);
2624 size
= i_size_read(inode
);
2625 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2626 len
= size
& ~PAGE_CACHE_MASK
;
2628 len
= PAGE_CACHE_SIZE
;
2630 if (page_has_buffers(page
)) {
2631 page_bufs
= page_buffers(page
);
2632 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2633 ext4_bh_delay_or_unwritten
)) {
2635 * We don't want to do block allocation
2636 * So redirty the page and return
2637 * We may reach here when we do a journal commit
2638 * via journal_submit_inode_data_buffers.
2639 * If we don't have mapping block we just ignore
2640 * them. We can also reach here via shrink_page_list
2642 redirty_page_for_writepage(wbc
, page
);
2648 * The test for page_has_buffers() is subtle:
2649 * We know the page is dirty but it lost buffers. That means
2650 * that at some moment in time after write_begin()/write_end()
2651 * has been called all buffers have been clean and thus they
2652 * must have been written at least once. So they are all
2653 * mapped and we can happily proceed with mapping them
2654 * and writing the page.
2656 * Try to initialize the buffer_heads and check whether
2657 * all are mapped and non delay. We don't want to
2658 * do block allocation here.
2660 ret
= block_prepare_write(page
, 0, len
,
2661 noalloc_get_block_write
);
2663 page_bufs
= page_buffers(page
);
2664 /* check whether all are mapped and non delay */
2665 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2666 ext4_bh_delay_or_unwritten
)) {
2667 redirty_page_for_writepage(wbc
, page
);
2673 * We can't do block allocation here
2674 * so just redity the page and unlock
2677 redirty_page_for_writepage(wbc
, page
);
2681 /* now mark the buffer_heads as dirty and uptodate */
2682 block_commit_write(page
, 0, len
);
2685 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2687 * It's mmapped pagecache. Add buffers and journal it. There
2688 * doesn't seem much point in redirtying the page here.
2690 ClearPageChecked(page
);
2691 return __ext4_journalled_writepage(page
, wbc
, len
);
2694 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2695 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2697 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2704 * This is called via ext4_da_writepages() to
2705 * calulate the total number of credits to reserve to fit
2706 * a single extent allocation into a single transaction,
2707 * ext4_da_writpeages() will loop calling this before
2708 * the block allocation.
2711 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2713 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2716 * With non-extent format the journal credit needed to
2717 * insert nrblocks contiguous block is dependent on
2718 * number of contiguous block. So we will limit
2719 * number of contiguous block to a sane value
2721 if (!(inode
->i_flags
& EXT4_EXTENTS_FL
) &&
2722 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2723 max_blocks
= EXT4_MAX_TRANS_DATA
;
2725 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2728 static int ext4_da_writepages(struct address_space
*mapping
,
2729 struct writeback_control
*wbc
)
2732 int range_whole
= 0;
2733 handle_t
*handle
= NULL
;
2734 struct mpage_da_data mpd
;
2735 struct inode
*inode
= mapping
->host
;
2736 int no_nrwrite_index_update
;
2737 int pages_written
= 0;
2739 int range_cyclic
, cycled
= 1, io_done
= 0;
2740 int needed_blocks
, ret
= 0, nr_to_writebump
= 0;
2741 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2743 trace_ext4_da_writepages(inode
, wbc
);
2746 * No pages to write? This is mainly a kludge to avoid starting
2747 * a transaction for special inodes like journal inode on last iput()
2748 * because that could violate lock ordering on umount
2750 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2754 * If the filesystem has aborted, it is read-only, so return
2755 * right away instead of dumping stack traces later on that
2756 * will obscure the real source of the problem. We test
2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758 * the latter could be true if the filesystem is mounted
2759 * read-only, and in that case, ext4_da_writepages should
2760 * *never* be called, so if that ever happens, we would want
2763 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2767 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2768 * This make sure small files blocks are allocated in
2769 * single attempt. This ensure that small files
2770 * get less fragmented.
2772 if (wbc
->nr_to_write
< sbi
->s_mb_stream_request
) {
2773 nr_to_writebump
= sbi
->s_mb_stream_request
- wbc
->nr_to_write
;
2774 wbc
->nr_to_write
= sbi
->s_mb_stream_request
;
2776 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2779 range_cyclic
= wbc
->range_cyclic
;
2780 if (wbc
->range_cyclic
) {
2781 index
= mapping
->writeback_index
;
2784 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2785 wbc
->range_end
= LLONG_MAX
;
2786 wbc
->range_cyclic
= 0;
2788 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2791 mpd
.inode
= mapping
->host
;
2794 * we don't want write_cache_pages to update
2795 * nr_to_write and writeback_index
2797 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2798 wbc
->no_nrwrite_index_update
= 1;
2799 pages_skipped
= wbc
->pages_skipped
;
2802 while (!ret
&& wbc
->nr_to_write
> 0) {
2805 * we insert one extent at a time. So we need
2806 * credit needed for single extent allocation.
2807 * journalled mode is currently not supported
2810 BUG_ON(ext4_should_journal_data(inode
));
2811 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2813 /* start a new transaction*/
2814 handle
= ext4_journal_start(inode
, needed_blocks
);
2815 if (IS_ERR(handle
)) {
2816 ret
= PTR_ERR(handle
);
2817 printk(KERN_CRIT
"%s: jbd2_start: "
2818 "%ld pages, ino %lu; err %d\n", __func__
,
2819 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2821 goto out_writepages
;
2825 * Now call __mpage_da_writepage to find the next
2826 * contiguous region of logical blocks that need
2827 * blocks to be allocated by ext4. We don't actually
2828 * submit the blocks for I/O here, even though
2829 * write_cache_pages thinks it will, and will set the
2830 * pages as clean for write before calling
2831 * __mpage_da_writepage().
2839 mpd
.pages_written
= 0;
2841 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2844 * If we have a contigous extent of pages and we
2845 * haven't done the I/O yet, map the blocks and submit
2848 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2849 if (mpage_da_map_blocks(&mpd
) == 0)
2850 mpage_da_submit_io(&mpd
);
2852 ret
= MPAGE_DA_EXTENT_TAIL
;
2854 wbc
->nr_to_write
-= mpd
.pages_written
;
2856 ext4_journal_stop(handle
);
2858 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2859 /* commit the transaction which would
2860 * free blocks released in the transaction
2863 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2864 wbc
->pages_skipped
= pages_skipped
;
2866 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2868 * got one extent now try with
2871 pages_written
+= mpd
.pages_written
;
2872 wbc
->pages_skipped
= pages_skipped
;
2875 } else if (wbc
->nr_to_write
)
2877 * There is no more writeout needed
2878 * or we requested for a noblocking writeout
2879 * and we found the device congested
2883 if (!io_done
&& !cycled
) {
2886 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2887 wbc
->range_end
= mapping
->writeback_index
- 1;
2890 if (pages_skipped
!= wbc
->pages_skipped
)
2891 printk(KERN_EMERG
"This should not happen leaving %s "
2892 "with nr_to_write = %ld ret = %d\n",
2893 __func__
, wbc
->nr_to_write
, ret
);
2896 index
+= pages_written
;
2897 wbc
->range_cyclic
= range_cyclic
;
2898 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2900 * set the writeback_index so that range_cyclic
2901 * mode will write it back later
2903 mapping
->writeback_index
= index
;
2906 if (!no_nrwrite_index_update
)
2907 wbc
->no_nrwrite_index_update
= 0;
2908 wbc
->nr_to_write
-= nr_to_writebump
;
2909 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2913 #define FALL_BACK_TO_NONDELALLOC 1
2914 static int ext4_nonda_switch(struct super_block
*sb
)
2916 s64 free_blocks
, dirty_blocks
;
2917 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2920 * switch to non delalloc mode if we are running low
2921 * on free block. The free block accounting via percpu
2922 * counters can get slightly wrong with percpu_counter_batch getting
2923 * accumulated on each CPU without updating global counters
2924 * Delalloc need an accurate free block accounting. So switch
2925 * to non delalloc when we are near to error range.
2927 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2928 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2929 if (2 * free_blocks
< 3 * dirty_blocks
||
2930 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2932 * free block count is less that 150% of dirty blocks
2933 * or free blocks is less that watermark
2940 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2941 loff_t pos
, unsigned len
, unsigned flags
,
2942 struct page
**pagep
, void **fsdata
)
2944 int ret
, retries
= 0;
2948 struct inode
*inode
= mapping
->host
;
2951 index
= pos
>> PAGE_CACHE_SHIFT
;
2952 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2955 if (ext4_nonda_switch(inode
->i_sb
)) {
2956 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2957 return ext4_write_begin(file
, mapping
, pos
,
2958 len
, flags
, pagep
, fsdata
);
2960 *fsdata
= (void *)0;
2961 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2964 * With delayed allocation, we don't log the i_disksize update
2965 * if there is delayed block allocation. But we still need
2966 * to journalling the i_disksize update if writes to the end
2967 * of file which has an already mapped buffer.
2969 handle
= ext4_journal_start(inode
, 1);
2970 if (IS_ERR(handle
)) {
2971 ret
= PTR_ERR(handle
);
2974 /* We cannot recurse into the filesystem as the transaction is already
2976 flags
|= AOP_FLAG_NOFS
;
2978 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2980 ext4_journal_stop(handle
);
2986 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
2987 ext4_da_get_block_prep
);
2990 ext4_journal_stop(handle
);
2991 page_cache_release(page
);
2993 * block_write_begin may have instantiated a few blocks
2994 * outside i_size. Trim these off again. Don't need
2995 * i_size_read because we hold i_mutex.
2997 if (pos
+ len
> inode
->i_size
)
2998 ext4_truncate(inode
);
3001 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3008 * Check if we should update i_disksize
3009 * when write to the end of file but not require block allocation
3011 static int ext4_da_should_update_i_disksize(struct page
*page
,
3012 unsigned long offset
)
3014 struct buffer_head
*bh
;
3015 struct inode
*inode
= page
->mapping
->host
;
3019 bh
= page_buffers(page
);
3020 idx
= offset
>> inode
->i_blkbits
;
3022 for (i
= 0; i
< idx
; i
++)
3023 bh
= bh
->b_this_page
;
3025 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3030 static int ext4_da_write_end(struct file
*file
,
3031 struct address_space
*mapping
,
3032 loff_t pos
, unsigned len
, unsigned copied
,
3033 struct page
*page
, void *fsdata
)
3035 struct inode
*inode
= mapping
->host
;
3037 handle_t
*handle
= ext4_journal_current_handle();
3039 unsigned long start
, end
;
3040 int write_mode
= (int)(unsigned long)fsdata
;
3042 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3043 if (ext4_should_order_data(inode
)) {
3044 return ext4_ordered_write_end(file
, mapping
, pos
,
3045 len
, copied
, page
, fsdata
);
3046 } else if (ext4_should_writeback_data(inode
)) {
3047 return ext4_writeback_write_end(file
, mapping
, pos
,
3048 len
, copied
, page
, fsdata
);
3054 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3055 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3056 end
= start
+ copied
- 1;
3059 * generic_write_end() will run mark_inode_dirty() if i_size
3060 * changes. So let's piggyback the i_disksize mark_inode_dirty
3064 new_i_size
= pos
+ copied
;
3065 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3066 if (ext4_da_should_update_i_disksize(page
, end
)) {
3067 down_write(&EXT4_I(inode
)->i_data_sem
);
3068 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3070 * Updating i_disksize when extending file
3071 * without needing block allocation
3073 if (ext4_should_order_data(inode
))
3074 ret
= ext4_jbd2_file_inode(handle
,
3077 EXT4_I(inode
)->i_disksize
= new_i_size
;
3079 up_write(&EXT4_I(inode
)->i_data_sem
);
3080 /* We need to mark inode dirty even if
3081 * new_i_size is less that inode->i_size
3082 * bu greater than i_disksize.(hint delalloc)
3084 ext4_mark_inode_dirty(handle
, inode
);
3087 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3092 ret2
= ext4_journal_stop(handle
);
3096 return ret
? ret
: copied
;
3099 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3102 * Drop reserved blocks
3104 BUG_ON(!PageLocked(page
));
3105 if (!page_has_buffers(page
))
3108 ext4_da_page_release_reservation(page
, offset
);
3111 ext4_invalidatepage(page
, offset
);
3117 * Force all delayed allocation blocks to be allocated for a given inode.
3119 int ext4_alloc_da_blocks(struct inode
*inode
)
3121 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3122 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3126 * We do something simple for now. The filemap_flush() will
3127 * also start triggering a write of the data blocks, which is
3128 * not strictly speaking necessary (and for users of
3129 * laptop_mode, not even desirable). However, to do otherwise
3130 * would require replicating code paths in:
3132 * ext4_da_writepages() ->
3133 * write_cache_pages() ---> (via passed in callback function)
3134 * __mpage_da_writepage() -->
3135 * mpage_add_bh_to_extent()
3136 * mpage_da_map_blocks()
3138 * The problem is that write_cache_pages(), located in
3139 * mm/page-writeback.c, marks pages clean in preparation for
3140 * doing I/O, which is not desirable if we're not planning on
3143 * We could call write_cache_pages(), and then redirty all of
3144 * the pages by calling redirty_page_for_writeback() but that
3145 * would be ugly in the extreme. So instead we would need to
3146 * replicate parts of the code in the above functions,
3147 * simplifying them becuase we wouldn't actually intend to
3148 * write out the pages, but rather only collect contiguous
3149 * logical block extents, call the multi-block allocator, and
3150 * then update the buffer heads with the block allocations.
3152 * For now, though, we'll cheat by calling filemap_flush(),
3153 * which will map the blocks, and start the I/O, but not
3154 * actually wait for the I/O to complete.
3156 return filemap_flush(inode
->i_mapping
);
3160 * bmap() is special. It gets used by applications such as lilo and by
3161 * the swapper to find the on-disk block of a specific piece of data.
3163 * Naturally, this is dangerous if the block concerned is still in the
3164 * journal. If somebody makes a swapfile on an ext4 data-journaling
3165 * filesystem and enables swap, then they may get a nasty shock when the
3166 * data getting swapped to that swapfile suddenly gets overwritten by
3167 * the original zero's written out previously to the journal and
3168 * awaiting writeback in the kernel's buffer cache.
3170 * So, if we see any bmap calls here on a modified, data-journaled file,
3171 * take extra steps to flush any blocks which might be in the cache.
3173 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3175 struct inode
*inode
= mapping
->host
;
3179 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3180 test_opt(inode
->i_sb
, DELALLOC
)) {
3182 * With delalloc we want to sync the file
3183 * so that we can make sure we allocate
3186 filemap_write_and_wait(mapping
);
3189 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3191 * This is a REALLY heavyweight approach, but the use of
3192 * bmap on dirty files is expected to be extremely rare:
3193 * only if we run lilo or swapon on a freshly made file
3194 * do we expect this to happen.
3196 * (bmap requires CAP_SYS_RAWIO so this does not
3197 * represent an unprivileged user DOS attack --- we'd be
3198 * in trouble if mortal users could trigger this path at
3201 * NB. EXT4_STATE_JDATA is not set on files other than
3202 * regular files. If somebody wants to bmap a directory
3203 * or symlink and gets confused because the buffer
3204 * hasn't yet been flushed to disk, they deserve
3205 * everything they get.
3208 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3209 journal
= EXT4_JOURNAL(inode
);
3210 jbd2_journal_lock_updates(journal
);
3211 err
= jbd2_journal_flush(journal
);
3212 jbd2_journal_unlock_updates(journal
);
3218 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3221 static int ext4_readpage(struct file
*file
, struct page
*page
)
3223 return mpage_readpage(page
, ext4_get_block
);
3227 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3228 struct list_head
*pages
, unsigned nr_pages
)
3230 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3233 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3235 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3238 * If it's a full truncate we just forget about the pending dirtying
3241 ClearPageChecked(page
);
3244 jbd2_journal_invalidatepage(journal
, page
, offset
);
3246 block_invalidatepage(page
, offset
);
3249 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3251 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3253 WARN_ON(PageChecked(page
));
3254 if (!page_has_buffers(page
))
3257 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3259 return try_to_free_buffers(page
);
3263 * If the O_DIRECT write will extend the file then add this inode to the
3264 * orphan list. So recovery will truncate it back to the original size
3265 * if the machine crashes during the write.
3267 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3268 * crashes then stale disk data _may_ be exposed inside the file. But current
3269 * VFS code falls back into buffered path in that case so we are safe.
3271 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3272 const struct iovec
*iov
, loff_t offset
,
3273 unsigned long nr_segs
)
3275 struct file
*file
= iocb
->ki_filp
;
3276 struct inode
*inode
= file
->f_mapping
->host
;
3277 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3281 size_t count
= iov_length(iov
, nr_segs
);
3284 loff_t final_size
= offset
+ count
;
3286 if (final_size
> inode
->i_size
) {
3287 /* Credits for sb + inode write */
3288 handle
= ext4_journal_start(inode
, 2);
3289 if (IS_ERR(handle
)) {
3290 ret
= PTR_ERR(handle
);
3293 ret
= ext4_orphan_add(handle
, inode
);
3295 ext4_journal_stop(handle
);
3299 ei
->i_disksize
= inode
->i_size
;
3300 ext4_journal_stop(handle
);
3304 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3306 ext4_get_block
, NULL
);
3311 /* Credits for sb + inode write */
3312 handle
= ext4_journal_start(inode
, 2);
3313 if (IS_ERR(handle
)) {
3314 /* This is really bad luck. We've written the data
3315 * but cannot extend i_size. Bail out and pretend
3316 * the write failed... */
3317 ret
= PTR_ERR(handle
);
3321 ext4_orphan_del(handle
, inode
);
3323 loff_t end
= offset
+ ret
;
3324 if (end
> inode
->i_size
) {
3325 ei
->i_disksize
= end
;
3326 i_size_write(inode
, end
);
3328 * We're going to return a positive `ret'
3329 * here due to non-zero-length I/O, so there's
3330 * no way of reporting error returns from
3331 * ext4_mark_inode_dirty() to userspace. So
3334 ext4_mark_inode_dirty(handle
, inode
);
3337 err
= ext4_journal_stop(handle
);
3346 * Pages can be marked dirty completely asynchronously from ext4's journalling
3347 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3348 * much here because ->set_page_dirty is called under VFS locks. The page is
3349 * not necessarily locked.
3351 * We cannot just dirty the page and leave attached buffers clean, because the
3352 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3353 * or jbddirty because all the journalling code will explode.
3355 * So what we do is to mark the page "pending dirty" and next time writepage
3356 * is called, propagate that into the buffers appropriately.
3358 static int ext4_journalled_set_page_dirty(struct page
*page
)
3360 SetPageChecked(page
);
3361 return __set_page_dirty_nobuffers(page
);
3364 static const struct address_space_operations ext4_ordered_aops
= {
3365 .readpage
= ext4_readpage
,
3366 .readpages
= ext4_readpages
,
3367 .writepage
= ext4_writepage
,
3368 .sync_page
= block_sync_page
,
3369 .write_begin
= ext4_write_begin
,
3370 .write_end
= ext4_ordered_write_end
,
3372 .invalidatepage
= ext4_invalidatepage
,
3373 .releasepage
= ext4_releasepage
,
3374 .direct_IO
= ext4_direct_IO
,
3375 .migratepage
= buffer_migrate_page
,
3376 .is_partially_uptodate
= block_is_partially_uptodate
,
3379 static const struct address_space_operations ext4_writeback_aops
= {
3380 .readpage
= ext4_readpage
,
3381 .readpages
= ext4_readpages
,
3382 .writepage
= ext4_writepage
,
3383 .sync_page
= block_sync_page
,
3384 .write_begin
= ext4_write_begin
,
3385 .write_end
= ext4_writeback_write_end
,
3387 .invalidatepage
= ext4_invalidatepage
,
3388 .releasepage
= ext4_releasepage
,
3389 .direct_IO
= ext4_direct_IO
,
3390 .migratepage
= buffer_migrate_page
,
3391 .is_partially_uptodate
= block_is_partially_uptodate
,
3394 static const struct address_space_operations ext4_journalled_aops
= {
3395 .readpage
= ext4_readpage
,
3396 .readpages
= ext4_readpages
,
3397 .writepage
= ext4_writepage
,
3398 .sync_page
= block_sync_page
,
3399 .write_begin
= ext4_write_begin
,
3400 .write_end
= ext4_journalled_write_end
,
3401 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3403 .invalidatepage
= ext4_invalidatepage
,
3404 .releasepage
= ext4_releasepage
,
3405 .is_partially_uptodate
= block_is_partially_uptodate
,
3408 static const struct address_space_operations ext4_da_aops
= {
3409 .readpage
= ext4_readpage
,
3410 .readpages
= ext4_readpages
,
3411 .writepage
= ext4_writepage
,
3412 .writepages
= ext4_da_writepages
,
3413 .sync_page
= block_sync_page
,
3414 .write_begin
= ext4_da_write_begin
,
3415 .write_end
= ext4_da_write_end
,
3417 .invalidatepage
= ext4_da_invalidatepage
,
3418 .releasepage
= ext4_releasepage
,
3419 .direct_IO
= ext4_direct_IO
,
3420 .migratepage
= buffer_migrate_page
,
3421 .is_partially_uptodate
= block_is_partially_uptodate
,
3424 void ext4_set_aops(struct inode
*inode
)
3426 if (ext4_should_order_data(inode
) &&
3427 test_opt(inode
->i_sb
, DELALLOC
))
3428 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3429 else if (ext4_should_order_data(inode
))
3430 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3431 else if (ext4_should_writeback_data(inode
) &&
3432 test_opt(inode
->i_sb
, DELALLOC
))
3433 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3434 else if (ext4_should_writeback_data(inode
))
3435 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3437 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3441 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3442 * up to the end of the block which corresponds to `from'.
3443 * This required during truncate. We need to physically zero the tail end
3444 * of that block so it doesn't yield old data if the file is later grown.
3446 int ext4_block_truncate_page(handle_t
*handle
,
3447 struct address_space
*mapping
, loff_t from
)
3449 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3450 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3451 unsigned blocksize
, length
, pos
;
3453 struct inode
*inode
= mapping
->host
;
3454 struct buffer_head
*bh
;
3458 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3459 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3463 blocksize
= inode
->i_sb
->s_blocksize
;
3464 length
= blocksize
- (offset
& (blocksize
- 1));
3465 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3468 * For "nobh" option, we can only work if we don't need to
3469 * read-in the page - otherwise we create buffers to do the IO.
3471 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3472 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3473 zero_user(page
, offset
, length
);
3474 set_page_dirty(page
);
3478 if (!page_has_buffers(page
))
3479 create_empty_buffers(page
, blocksize
, 0);
3481 /* Find the buffer that contains "offset" */
3482 bh
= page_buffers(page
);
3484 while (offset
>= pos
) {
3485 bh
= bh
->b_this_page
;
3491 if (buffer_freed(bh
)) {
3492 BUFFER_TRACE(bh
, "freed: skip");
3496 if (!buffer_mapped(bh
)) {
3497 BUFFER_TRACE(bh
, "unmapped");
3498 ext4_get_block(inode
, iblock
, bh
, 0);
3499 /* unmapped? It's a hole - nothing to do */
3500 if (!buffer_mapped(bh
)) {
3501 BUFFER_TRACE(bh
, "still unmapped");
3506 /* Ok, it's mapped. Make sure it's up-to-date */
3507 if (PageUptodate(page
))
3508 set_buffer_uptodate(bh
);
3510 if (!buffer_uptodate(bh
)) {
3512 ll_rw_block(READ
, 1, &bh
);
3514 /* Uhhuh. Read error. Complain and punt. */
3515 if (!buffer_uptodate(bh
))
3519 if (ext4_should_journal_data(inode
)) {
3520 BUFFER_TRACE(bh
, "get write access");
3521 err
= ext4_journal_get_write_access(handle
, bh
);
3526 zero_user(page
, offset
, length
);
3528 BUFFER_TRACE(bh
, "zeroed end of block");
3531 if (ext4_should_journal_data(inode
)) {
3532 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3534 if (ext4_should_order_data(inode
))
3535 err
= ext4_jbd2_file_inode(handle
, inode
);
3536 mark_buffer_dirty(bh
);
3541 page_cache_release(page
);
3546 * Probably it should be a library function... search for first non-zero word
3547 * or memcmp with zero_page, whatever is better for particular architecture.
3550 static inline int all_zeroes(__le32
*p
, __le32
*q
)
3559 * ext4_find_shared - find the indirect blocks for partial truncation.
3560 * @inode: inode in question
3561 * @depth: depth of the affected branch
3562 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3563 * @chain: place to store the pointers to partial indirect blocks
3564 * @top: place to the (detached) top of branch
3566 * This is a helper function used by ext4_truncate().
3568 * When we do truncate() we may have to clean the ends of several
3569 * indirect blocks but leave the blocks themselves alive. Block is
3570 * partially truncated if some data below the new i_size is refered
3571 * from it (and it is on the path to the first completely truncated
3572 * data block, indeed). We have to free the top of that path along
3573 * with everything to the right of the path. Since no allocation
3574 * past the truncation point is possible until ext4_truncate()
3575 * finishes, we may safely do the latter, but top of branch may
3576 * require special attention - pageout below the truncation point
3577 * might try to populate it.
3579 * We atomically detach the top of branch from the tree, store the
3580 * block number of its root in *@top, pointers to buffer_heads of
3581 * partially truncated blocks - in @chain[].bh and pointers to
3582 * their last elements that should not be removed - in
3583 * @chain[].p. Return value is the pointer to last filled element
3586 * The work left to caller to do the actual freeing of subtrees:
3587 * a) free the subtree starting from *@top
3588 * b) free the subtrees whose roots are stored in
3589 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3590 * c) free the subtrees growing from the inode past the @chain[0].
3591 * (no partially truncated stuff there). */
3593 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
3594 ext4_lblk_t offsets
[4], Indirect chain
[4],
3597 Indirect
*partial
, *p
;
3601 /* Make k index the deepest non-null offest + 1 */
3602 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
3604 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
3605 /* Writer: pointers */
3607 partial
= chain
+ k
-1;
3609 * If the branch acquired continuation since we've looked at it -
3610 * fine, it should all survive and (new) top doesn't belong to us.
3612 if (!partial
->key
&& *partial
->p
)
3615 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
3618 * OK, we've found the last block that must survive. The rest of our
3619 * branch should be detached before unlocking. However, if that rest
3620 * of branch is all ours and does not grow immediately from the inode
3621 * it's easier to cheat and just decrement partial->p.
3623 if (p
== chain
+ k
- 1 && p
> chain
) {
3627 /* Nope, don't do this in ext4. Must leave the tree intact */
3634 while (partial
> p
) {
3635 brelse(partial
->bh
);
3643 * Zero a number of block pointers in either an inode or an indirect block.
3644 * If we restart the transaction we must again get write access to the
3645 * indirect block for further modification.
3647 * We release `count' blocks on disk, but (last - first) may be greater
3648 * than `count' because there can be holes in there.
3650 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
3651 struct buffer_head
*bh
,
3652 ext4_fsblk_t block_to_free
,
3653 unsigned long count
, __le32
*first
,
3657 if (try_to_extend_transaction(handle
, inode
)) {
3659 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3660 ext4_handle_dirty_metadata(handle
, inode
, bh
);
3662 ext4_mark_inode_dirty(handle
, inode
);
3663 ext4_journal_test_restart(handle
, inode
);
3665 BUFFER_TRACE(bh
, "retaking write access");
3666 ext4_journal_get_write_access(handle
, bh
);
3671 * Any buffers which are on the journal will be in memory. We
3672 * find them on the hash table so jbd2_journal_revoke() will
3673 * run jbd2_journal_forget() on them. We've already detached
3674 * each block from the file, so bforget() in
3675 * jbd2_journal_forget() should be safe.
3677 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3679 for (p
= first
; p
< last
; p
++) {
3680 u32 nr
= le32_to_cpu(*p
);
3682 struct buffer_head
*tbh
;
3685 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
3686 ext4_forget(handle
, 0, inode
, tbh
, nr
);
3690 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
3694 * ext4_free_data - free a list of data blocks
3695 * @handle: handle for this transaction
3696 * @inode: inode we are dealing with
3697 * @this_bh: indirect buffer_head which contains *@first and *@last
3698 * @first: array of block numbers
3699 * @last: points immediately past the end of array
3701 * We are freeing all blocks refered from that array (numbers are stored as
3702 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3704 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3705 * blocks are contiguous then releasing them at one time will only affect one
3706 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3707 * actually use a lot of journal space.
3709 * @this_bh will be %NULL if @first and @last point into the inode's direct
3712 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
3713 struct buffer_head
*this_bh
,
3714 __le32
*first
, __le32
*last
)
3716 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
3717 unsigned long count
= 0; /* Number of blocks in the run */
3718 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
3721 ext4_fsblk_t nr
; /* Current block # */
3722 __le32
*p
; /* Pointer into inode/ind
3723 for current block */
3726 if (this_bh
) { /* For indirect block */
3727 BUFFER_TRACE(this_bh
, "get_write_access");
3728 err
= ext4_journal_get_write_access(handle
, this_bh
);
3729 /* Important: if we can't update the indirect pointers
3730 * to the blocks, we can't free them. */
3735 for (p
= first
; p
< last
; p
++) {
3736 nr
= le32_to_cpu(*p
);
3738 /* accumulate blocks to free if they're contiguous */
3741 block_to_free_p
= p
;
3743 } else if (nr
== block_to_free
+ count
) {
3746 ext4_clear_blocks(handle
, inode
, this_bh
,
3748 count
, block_to_free_p
, p
);
3750 block_to_free_p
= p
;
3757 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
3758 count
, block_to_free_p
, p
);
3761 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
3764 * The buffer head should have an attached journal head at this
3765 * point. However, if the data is corrupted and an indirect
3766 * block pointed to itself, it would have been detached when
3767 * the block was cleared. Check for this instead of OOPSing.
3769 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
3770 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
3772 ext4_error(inode
->i_sb
, __func__
,
3773 "circular indirect block detected, "
3774 "inode=%lu, block=%llu",
3776 (unsigned long long) this_bh
->b_blocknr
);
3781 * ext4_free_branches - free an array of branches
3782 * @handle: JBD handle for this transaction
3783 * @inode: inode we are dealing with
3784 * @parent_bh: the buffer_head which contains *@first and *@last
3785 * @first: array of block numbers
3786 * @last: pointer immediately past the end of array
3787 * @depth: depth of the branches to free
3789 * We are freeing all blocks refered from these branches (numbers are
3790 * stored as little-endian 32-bit) and updating @inode->i_blocks
3793 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
3794 struct buffer_head
*parent_bh
,
3795 __le32
*first
, __le32
*last
, int depth
)
3800 if (ext4_handle_is_aborted(handle
))
3804 struct buffer_head
*bh
;
3805 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3807 while (--p
>= first
) {
3808 nr
= le32_to_cpu(*p
);
3810 continue; /* A hole */
3812 /* Go read the buffer for the next level down */
3813 bh
= sb_bread(inode
->i_sb
, nr
);
3816 * A read failure? Report error and clear slot
3820 ext4_error(inode
->i_sb
, "ext4_free_branches",
3821 "Read failure, inode=%lu, block=%llu",
3826 /* This zaps the entire block. Bottom up. */
3827 BUFFER_TRACE(bh
, "free child branches");
3828 ext4_free_branches(handle
, inode
, bh
,
3829 (__le32
*) bh
->b_data
,
3830 (__le32
*) bh
->b_data
+ addr_per_block
,
3834 * We've probably journalled the indirect block several
3835 * times during the truncate. But it's no longer
3836 * needed and we now drop it from the transaction via
3837 * jbd2_journal_revoke().
3839 * That's easy if it's exclusively part of this
3840 * transaction. But if it's part of the committing
3841 * transaction then jbd2_journal_forget() will simply
3842 * brelse() it. That means that if the underlying
3843 * block is reallocated in ext4_get_block(),
3844 * unmap_underlying_metadata() will find this block
3845 * and will try to get rid of it. damn, damn.
3847 * If this block has already been committed to the
3848 * journal, a revoke record will be written. And
3849 * revoke records must be emitted *before* clearing
3850 * this block's bit in the bitmaps.
3852 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
3855 * Everything below this this pointer has been
3856 * released. Now let this top-of-subtree go.
3858 * We want the freeing of this indirect block to be
3859 * atomic in the journal with the updating of the
3860 * bitmap block which owns it. So make some room in
3863 * We zero the parent pointer *after* freeing its
3864 * pointee in the bitmaps, so if extend_transaction()
3865 * for some reason fails to put the bitmap changes and
3866 * the release into the same transaction, recovery
3867 * will merely complain about releasing a free block,
3868 * rather than leaking blocks.
3870 if (ext4_handle_is_aborted(handle
))
3872 if (try_to_extend_transaction(handle
, inode
)) {
3873 ext4_mark_inode_dirty(handle
, inode
);
3874 ext4_journal_test_restart(handle
, inode
);
3877 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
3881 * The block which we have just freed is
3882 * pointed to by an indirect block: journal it
3884 BUFFER_TRACE(parent_bh
, "get_write_access");
3885 if (!ext4_journal_get_write_access(handle
,
3888 BUFFER_TRACE(parent_bh
,
3889 "call ext4_handle_dirty_metadata");
3890 ext4_handle_dirty_metadata(handle
,
3897 /* We have reached the bottom of the tree. */
3898 BUFFER_TRACE(parent_bh
, "free data blocks");
3899 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
3903 int ext4_can_truncate(struct inode
*inode
)
3905 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
3907 if (S_ISREG(inode
->i_mode
))
3909 if (S_ISDIR(inode
->i_mode
))
3911 if (S_ISLNK(inode
->i_mode
))
3912 return !ext4_inode_is_fast_symlink(inode
);
3919 * We block out ext4_get_block() block instantiations across the entire
3920 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3921 * simultaneously on behalf of the same inode.
3923 * As we work through the truncate and commmit bits of it to the journal there
3924 * is one core, guiding principle: the file's tree must always be consistent on
3925 * disk. We must be able to restart the truncate after a crash.
3927 * The file's tree may be transiently inconsistent in memory (although it
3928 * probably isn't), but whenever we close off and commit a journal transaction,
3929 * the contents of (the filesystem + the journal) must be consistent and
3930 * restartable. It's pretty simple, really: bottom up, right to left (although
3931 * left-to-right works OK too).
3933 * Note that at recovery time, journal replay occurs *before* the restart of
3934 * truncate against the orphan inode list.
3936 * The committed inode has the new, desired i_size (which is the same as
3937 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3938 * that this inode's truncate did not complete and it will again call
3939 * ext4_truncate() to have another go. So there will be instantiated blocks
3940 * to the right of the truncation point in a crashed ext4 filesystem. But
3941 * that's fine - as long as they are linked from the inode, the post-crash
3942 * ext4_truncate() run will find them and release them.
3944 void ext4_truncate(struct inode
*inode
)
3947 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3948 __le32
*i_data
= ei
->i_data
;
3949 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3950 struct address_space
*mapping
= inode
->i_mapping
;
3951 ext4_lblk_t offsets
[4];
3956 ext4_lblk_t last_block
;
3957 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3959 if (!ext4_can_truncate(inode
))
3962 if (ei
->i_disksize
&& inode
->i_size
== 0 &&
3963 !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3964 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
3966 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
3967 ext4_ext_truncate(inode
);
3971 handle
= start_transaction(inode
);
3973 return; /* AKPM: return what? */
3975 last_block
= (inode
->i_size
+ blocksize
-1)
3976 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
3978 if (inode
->i_size
& (blocksize
- 1))
3979 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
3982 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
3984 goto out_stop
; /* error */
3987 * OK. This truncate is going to happen. We add the inode to the
3988 * orphan list, so that if this truncate spans multiple transactions,
3989 * and we crash, we will resume the truncate when the filesystem
3990 * recovers. It also marks the inode dirty, to catch the new size.
3992 * Implication: the file must always be in a sane, consistent
3993 * truncatable state while each transaction commits.
3995 if (ext4_orphan_add(handle
, inode
))
3999 * From here we block out all ext4_get_block() callers who want to
4000 * modify the block allocation tree.
4002 down_write(&ei
->i_data_sem
);
4004 ext4_discard_preallocations(inode
);
4007 * The orphan list entry will now protect us from any crash which
4008 * occurs before the truncate completes, so it is now safe to propagate
4009 * the new, shorter inode size (held for now in i_size) into the
4010 * on-disk inode. We do this via i_disksize, which is the value which
4011 * ext4 *really* writes onto the disk inode.
4013 ei
->i_disksize
= inode
->i_size
;
4015 if (n
== 1) { /* direct blocks */
4016 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4017 i_data
+ EXT4_NDIR_BLOCKS
);
4021 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4022 /* Kill the top of shared branch (not detached) */
4024 if (partial
== chain
) {
4025 /* Shared branch grows from the inode */
4026 ext4_free_branches(handle
, inode
, NULL
,
4027 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4030 * We mark the inode dirty prior to restart,
4031 * and prior to stop. No need for it here.
4034 /* Shared branch grows from an indirect block */
4035 BUFFER_TRACE(partial
->bh
, "get_write_access");
4036 ext4_free_branches(handle
, inode
, partial
->bh
,
4038 partial
->p
+1, (chain
+n
-1) - partial
);
4041 /* Clear the ends of indirect blocks on the shared branch */
4042 while (partial
> chain
) {
4043 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4044 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4045 (chain
+n
-1) - partial
);
4046 BUFFER_TRACE(partial
->bh
, "call brelse");
4047 brelse(partial
->bh
);
4051 /* Kill the remaining (whole) subtrees */
4052 switch (offsets
[0]) {
4054 nr
= i_data
[EXT4_IND_BLOCK
];
4056 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4057 i_data
[EXT4_IND_BLOCK
] = 0;
4059 case EXT4_IND_BLOCK
:
4060 nr
= i_data
[EXT4_DIND_BLOCK
];
4062 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4063 i_data
[EXT4_DIND_BLOCK
] = 0;
4065 case EXT4_DIND_BLOCK
:
4066 nr
= i_data
[EXT4_TIND_BLOCK
];
4068 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4069 i_data
[EXT4_TIND_BLOCK
] = 0;
4071 case EXT4_TIND_BLOCK
:
4075 up_write(&ei
->i_data_sem
);
4076 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4077 ext4_mark_inode_dirty(handle
, inode
);
4080 * In a multi-transaction truncate, we only make the final transaction
4084 ext4_handle_sync(handle
);
4087 * If this was a simple ftruncate(), and the file will remain alive
4088 * then we need to clear up the orphan record which we created above.
4089 * However, if this was a real unlink then we were called by
4090 * ext4_delete_inode(), and we allow that function to clean up the
4091 * orphan info for us.
4094 ext4_orphan_del(handle
, inode
);
4096 ext4_journal_stop(handle
);
4100 * ext4_get_inode_loc returns with an extra refcount against the inode's
4101 * underlying buffer_head on success. If 'in_mem' is true, we have all
4102 * data in memory that is needed to recreate the on-disk version of this
4105 static int __ext4_get_inode_loc(struct inode
*inode
,
4106 struct ext4_iloc
*iloc
, int in_mem
)
4108 struct ext4_group_desc
*gdp
;
4109 struct buffer_head
*bh
;
4110 struct super_block
*sb
= inode
->i_sb
;
4112 int inodes_per_block
, inode_offset
;
4115 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4118 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4119 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4124 * Figure out the offset within the block group inode table
4126 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4127 inode_offset
= ((inode
->i_ino
- 1) %
4128 EXT4_INODES_PER_GROUP(sb
));
4129 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4130 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4132 bh
= sb_getblk(sb
, block
);
4134 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4135 "inode block - inode=%lu, block=%llu",
4136 inode
->i_ino
, block
);
4139 if (!buffer_uptodate(bh
)) {
4143 * If the buffer has the write error flag, we have failed
4144 * to write out another inode in the same block. In this
4145 * case, we don't have to read the block because we may
4146 * read the old inode data successfully.
4148 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4149 set_buffer_uptodate(bh
);
4151 if (buffer_uptodate(bh
)) {
4152 /* someone brought it uptodate while we waited */
4158 * If we have all information of the inode in memory and this
4159 * is the only valid inode in the block, we need not read the
4163 struct buffer_head
*bitmap_bh
;
4166 start
= inode_offset
& ~(inodes_per_block
- 1);
4168 /* Is the inode bitmap in cache? */
4169 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4174 * If the inode bitmap isn't in cache then the
4175 * optimisation may end up performing two reads instead
4176 * of one, so skip it.
4178 if (!buffer_uptodate(bitmap_bh
)) {
4182 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4183 if (i
== inode_offset
)
4185 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4189 if (i
== start
+ inodes_per_block
) {
4190 /* all other inodes are free, so skip I/O */
4191 memset(bh
->b_data
, 0, bh
->b_size
);
4192 set_buffer_uptodate(bh
);
4200 * If we need to do any I/O, try to pre-readahead extra
4201 * blocks from the inode table.
4203 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4204 ext4_fsblk_t b
, end
, table
;
4207 table
= ext4_inode_table(sb
, gdp
);
4208 /* s_inode_readahead_blks is always a power of 2 */
4209 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4212 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4213 num
= EXT4_INODES_PER_GROUP(sb
);
4214 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4215 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4216 num
-= ext4_itable_unused_count(sb
, gdp
);
4217 table
+= num
/ inodes_per_block
;
4221 sb_breadahead(sb
, b
++);
4225 * There are other valid inodes in the buffer, this inode
4226 * has in-inode xattrs, or we don't have this inode in memory.
4227 * Read the block from disk.
4230 bh
->b_end_io
= end_buffer_read_sync
;
4231 submit_bh(READ_META
, bh
);
4233 if (!buffer_uptodate(bh
)) {
4234 ext4_error(sb
, __func__
,
4235 "unable to read inode block - inode=%lu, "
4236 "block=%llu", inode
->i_ino
, block
);
4246 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4248 /* We have all inode data except xattrs in memory here. */
4249 return __ext4_get_inode_loc(inode
, iloc
,
4250 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4253 void ext4_set_inode_flags(struct inode
*inode
)
4255 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4257 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4258 if (flags
& EXT4_SYNC_FL
)
4259 inode
->i_flags
|= S_SYNC
;
4260 if (flags
& EXT4_APPEND_FL
)
4261 inode
->i_flags
|= S_APPEND
;
4262 if (flags
& EXT4_IMMUTABLE_FL
)
4263 inode
->i_flags
|= S_IMMUTABLE
;
4264 if (flags
& EXT4_NOATIME_FL
)
4265 inode
->i_flags
|= S_NOATIME
;
4266 if (flags
& EXT4_DIRSYNC_FL
)
4267 inode
->i_flags
|= S_DIRSYNC
;
4270 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4271 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4273 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4275 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4276 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4278 ei
->i_flags
|= EXT4_SYNC_FL
;
4279 if (flags
& S_APPEND
)
4280 ei
->i_flags
|= EXT4_APPEND_FL
;
4281 if (flags
& S_IMMUTABLE
)
4282 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4283 if (flags
& S_NOATIME
)
4284 ei
->i_flags
|= EXT4_NOATIME_FL
;
4285 if (flags
& S_DIRSYNC
)
4286 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4289 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4290 struct ext4_inode_info
*ei
)
4293 struct inode
*inode
= &(ei
->vfs_inode
);
4294 struct super_block
*sb
= inode
->i_sb
;
4296 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4297 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4298 /* we are using combined 48 bit field */
4299 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4300 le32_to_cpu(raw_inode
->i_blocks_lo
);
4301 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4302 /* i_blocks represent file system block size */
4303 return i_blocks
<< (inode
->i_blkbits
- 9);
4308 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4312 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4314 struct ext4_iloc iloc
;
4315 struct ext4_inode
*raw_inode
;
4316 struct ext4_inode_info
*ei
;
4317 struct buffer_head
*bh
;
4318 struct inode
*inode
;
4322 inode
= iget_locked(sb
, ino
);
4324 return ERR_PTR(-ENOMEM
);
4325 if (!(inode
->i_state
& I_NEW
))
4330 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4334 raw_inode
= ext4_raw_inode(&iloc
);
4335 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4336 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4337 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4338 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4339 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4340 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4342 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4345 ei
->i_dir_start_lookup
= 0;
4346 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4347 /* We now have enough fields to check if the inode was active or not.
4348 * This is needed because nfsd might try to access dead inodes
4349 * the test is that same one that e2fsck uses
4350 * NeilBrown 1999oct15
4352 if (inode
->i_nlink
== 0) {
4353 if (inode
->i_mode
== 0 ||
4354 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4355 /* this inode is deleted */
4360 /* The only unlinked inodes we let through here have
4361 * valid i_mode and are being read by the orphan
4362 * recovery code: that's fine, we're about to complete
4363 * the process of deleting those. */
4365 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4366 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4367 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4368 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4370 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4371 inode
->i_size
= ext4_isize(raw_inode
);
4372 ei
->i_disksize
= inode
->i_size
;
4373 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4374 ei
->i_block_group
= iloc
.block_group
;
4375 ei
->i_last_alloc_group
= ~0;
4377 * NOTE! The in-memory inode i_data array is in little-endian order
4378 * even on big-endian machines: we do NOT byteswap the block numbers!
4380 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4381 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4382 INIT_LIST_HEAD(&ei
->i_orphan
);
4384 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4385 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4386 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4387 EXT4_INODE_SIZE(inode
->i_sb
)) {
4392 if (ei
->i_extra_isize
== 0) {
4393 /* The extra space is currently unused. Use it. */
4394 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4395 EXT4_GOOD_OLD_INODE_SIZE
;
4397 __le32
*magic
= (void *)raw_inode
+
4398 EXT4_GOOD_OLD_INODE_SIZE
+
4400 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4401 ei
->i_state
|= EXT4_STATE_XATTR
;
4404 ei
->i_extra_isize
= 0;
4406 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4407 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4408 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4409 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4411 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4412 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4413 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4415 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4419 if (ei
->i_file_acl
&&
4421 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
) +
4422 EXT4_SB(sb
)->s_gdb_count
)) ||
4423 (ei
->i_file_acl
>= ext4_blocks_count(EXT4_SB(sb
)->s_es
)))) {
4424 ext4_error(sb
, __func__
,
4425 "bad extended attribute block %llu in inode #%lu",
4426 ei
->i_file_acl
, inode
->i_ino
);
4429 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4430 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4431 (S_ISLNK(inode
->i_mode
) &&
4432 !ext4_inode_is_fast_symlink(inode
)))
4433 /* Validate extent which is part of inode */
4434 ret
= ext4_ext_check_inode(inode
);
4435 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4436 (S_ISLNK(inode
->i_mode
) &&
4437 !ext4_inode_is_fast_symlink(inode
))) {
4438 /* Validate block references which are part of inode */
4439 ret
= ext4_check_inode_blockref(inode
);
4446 if (S_ISREG(inode
->i_mode
)) {
4447 inode
->i_op
= &ext4_file_inode_operations
;
4448 inode
->i_fop
= &ext4_file_operations
;
4449 ext4_set_aops(inode
);
4450 } else if (S_ISDIR(inode
->i_mode
)) {
4451 inode
->i_op
= &ext4_dir_inode_operations
;
4452 inode
->i_fop
= &ext4_dir_operations
;
4453 } else if (S_ISLNK(inode
->i_mode
)) {
4454 if (ext4_inode_is_fast_symlink(inode
)) {
4455 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4456 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4457 sizeof(ei
->i_data
) - 1);
4459 inode
->i_op
= &ext4_symlink_inode_operations
;
4460 ext4_set_aops(inode
);
4462 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4463 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4464 inode
->i_op
= &ext4_special_inode_operations
;
4465 if (raw_inode
->i_block
[0])
4466 init_special_inode(inode
, inode
->i_mode
,
4467 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4469 init_special_inode(inode
, inode
->i_mode
,
4470 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4474 ext4_error(inode
->i_sb
, __func__
,
4475 "bogus i_mode (%o) for inode=%lu",
4476 inode
->i_mode
, inode
->i_ino
);
4480 ext4_set_inode_flags(inode
);
4481 unlock_new_inode(inode
);
4486 return ERR_PTR(ret
);
4489 static int ext4_inode_blocks_set(handle_t
*handle
,
4490 struct ext4_inode
*raw_inode
,
4491 struct ext4_inode_info
*ei
)
4493 struct inode
*inode
= &(ei
->vfs_inode
);
4494 u64 i_blocks
= inode
->i_blocks
;
4495 struct super_block
*sb
= inode
->i_sb
;
4497 if (i_blocks
<= ~0U) {
4499 * i_blocks can be represnted in a 32 bit variable
4500 * as multiple of 512 bytes
4502 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4503 raw_inode
->i_blocks_high
= 0;
4504 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4507 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4510 if (i_blocks
<= 0xffffffffffffULL
) {
4512 * i_blocks can be represented in a 48 bit variable
4513 * as multiple of 512 bytes
4515 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4516 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4517 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4519 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
4520 /* i_block is stored in file system block size */
4521 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4522 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4523 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4529 * Post the struct inode info into an on-disk inode location in the
4530 * buffer-cache. This gobbles the caller's reference to the
4531 * buffer_head in the inode location struct.
4533 * The caller must have write access to iloc->bh.
4535 static int ext4_do_update_inode(handle_t
*handle
,
4536 struct inode
*inode
,
4537 struct ext4_iloc
*iloc
)
4539 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4540 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4541 struct buffer_head
*bh
= iloc
->bh
;
4542 int err
= 0, rc
, block
;
4544 /* For fields not not tracking in the in-memory inode,
4545 * initialise them to zero for new inodes. */
4546 if (ei
->i_state
& EXT4_STATE_NEW
)
4547 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4549 ext4_get_inode_flags(ei
);
4550 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4551 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4552 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
4553 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
4555 * Fix up interoperability with old kernels. Otherwise, old inodes get
4556 * re-used with the upper 16 bits of the uid/gid intact
4559 raw_inode
->i_uid_high
=
4560 cpu_to_le16(high_16_bits(inode
->i_uid
));
4561 raw_inode
->i_gid_high
=
4562 cpu_to_le16(high_16_bits(inode
->i_gid
));
4564 raw_inode
->i_uid_high
= 0;
4565 raw_inode
->i_gid_high
= 0;
4568 raw_inode
->i_uid_low
=
4569 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4570 raw_inode
->i_gid_low
=
4571 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4572 raw_inode
->i_uid_high
= 0;
4573 raw_inode
->i_gid_high
= 0;
4575 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4577 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4578 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4579 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4580 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4582 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4584 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4585 /* clear the migrate flag in the raw_inode */
4586 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& ~EXT4_EXT_MIGRATE
);
4587 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4588 cpu_to_le32(EXT4_OS_HURD
))
4589 raw_inode
->i_file_acl_high
=
4590 cpu_to_le16(ei
->i_file_acl
>> 32);
4591 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4592 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4593 if (ei
->i_disksize
> 0x7fffffffULL
) {
4594 struct super_block
*sb
= inode
->i_sb
;
4595 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4596 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4597 EXT4_SB(sb
)->s_es
->s_rev_level
==
4598 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4599 /* If this is the first large file
4600 * created, add a flag to the superblock.
4602 err
= ext4_journal_get_write_access(handle
,
4603 EXT4_SB(sb
)->s_sbh
);
4606 ext4_update_dynamic_rev(sb
);
4607 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4608 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4610 ext4_handle_sync(handle
);
4611 err
= ext4_handle_dirty_metadata(handle
, inode
,
4612 EXT4_SB(sb
)->s_sbh
);
4615 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4616 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4617 if (old_valid_dev(inode
->i_rdev
)) {
4618 raw_inode
->i_block
[0] =
4619 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4620 raw_inode
->i_block
[1] = 0;
4622 raw_inode
->i_block
[0] = 0;
4623 raw_inode
->i_block
[1] =
4624 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4625 raw_inode
->i_block
[2] = 0;
4628 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4629 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4631 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4632 if (ei
->i_extra_isize
) {
4633 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4634 raw_inode
->i_version_hi
=
4635 cpu_to_le32(inode
->i_version
>> 32);
4636 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4639 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4640 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4643 ei
->i_state
&= ~EXT4_STATE_NEW
;
4647 ext4_std_error(inode
->i_sb
, err
);
4652 * ext4_write_inode()
4654 * We are called from a few places:
4656 * - Within generic_file_write() for O_SYNC files.
4657 * Here, there will be no transaction running. We wait for any running
4658 * trasnaction to commit.
4660 * - Within sys_sync(), kupdate and such.
4661 * We wait on commit, if tol to.
4663 * - Within prune_icache() (PF_MEMALLOC == true)
4664 * Here we simply return. We can't afford to block kswapd on the
4667 * In all cases it is actually safe for us to return without doing anything,
4668 * because the inode has been copied into a raw inode buffer in
4669 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4672 * Note that we are absolutely dependent upon all inode dirtiers doing the
4673 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4674 * which we are interested.
4676 * It would be a bug for them to not do this. The code:
4678 * mark_inode_dirty(inode)
4680 * inode->i_size = expr;
4682 * is in error because a kswapd-driven write_inode() could occur while
4683 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4684 * will no longer be on the superblock's dirty inode list.
4686 int ext4_write_inode(struct inode
*inode
, int wait
)
4688 if (current
->flags
& PF_MEMALLOC
)
4691 if (ext4_journal_current_handle()) {
4692 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4700 return ext4_force_commit(inode
->i_sb
);
4706 * Called from notify_change.
4708 * We want to trap VFS attempts to truncate the file as soon as
4709 * possible. In particular, we want to make sure that when the VFS
4710 * shrinks i_size, we put the inode on the orphan list and modify
4711 * i_disksize immediately, so that during the subsequent flushing of
4712 * dirty pages and freeing of disk blocks, we can guarantee that any
4713 * commit will leave the blocks being flushed in an unused state on
4714 * disk. (On recovery, the inode will get truncated and the blocks will
4715 * be freed, so we have a strong guarantee that no future commit will
4716 * leave these blocks visible to the user.)
4718 * Another thing we have to assure is that if we are in ordered mode
4719 * and inode is still attached to the committing transaction, we must
4720 * we start writeout of all the dirty pages which are being truncated.
4721 * This way we are sure that all the data written in the previous
4722 * transaction are already on disk (truncate waits for pages under
4725 * Called with inode->i_mutex down.
4727 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4729 struct inode
*inode
= dentry
->d_inode
;
4731 const unsigned int ia_valid
= attr
->ia_valid
;
4733 error
= inode_change_ok(inode
, attr
);
4737 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4738 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4741 /* (user+group)*(old+new) structure, inode write (sb,
4742 * inode block, ? - but truncate inode update has it) */
4743 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
4744 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
4745 if (IS_ERR(handle
)) {
4746 error
= PTR_ERR(handle
);
4749 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
4751 ext4_journal_stop(handle
);
4754 /* Update corresponding info in inode so that everything is in
4755 * one transaction */
4756 if (attr
->ia_valid
& ATTR_UID
)
4757 inode
->i_uid
= attr
->ia_uid
;
4758 if (attr
->ia_valid
& ATTR_GID
)
4759 inode
->i_gid
= attr
->ia_gid
;
4760 error
= ext4_mark_inode_dirty(handle
, inode
);
4761 ext4_journal_stop(handle
);
4764 if (attr
->ia_valid
& ATTR_SIZE
) {
4765 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
4766 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4768 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
4775 if (S_ISREG(inode
->i_mode
) &&
4776 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
4779 handle
= ext4_journal_start(inode
, 3);
4780 if (IS_ERR(handle
)) {
4781 error
= PTR_ERR(handle
);
4785 error
= ext4_orphan_add(handle
, inode
);
4786 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4787 rc
= ext4_mark_inode_dirty(handle
, inode
);
4790 ext4_journal_stop(handle
);
4792 if (ext4_should_order_data(inode
)) {
4793 error
= ext4_begin_ordered_truncate(inode
,
4796 /* Do as much error cleanup as possible */
4797 handle
= ext4_journal_start(inode
, 3);
4798 if (IS_ERR(handle
)) {
4799 ext4_orphan_del(NULL
, inode
);
4802 ext4_orphan_del(handle
, inode
);
4803 ext4_journal_stop(handle
);
4809 rc
= inode_setattr(inode
, attr
);
4811 /* If inode_setattr's call to ext4_truncate failed to get a
4812 * transaction handle at all, we need to clean up the in-core
4813 * orphan list manually. */
4815 ext4_orphan_del(NULL
, inode
);
4817 if (!rc
&& (ia_valid
& ATTR_MODE
))
4818 rc
= ext4_acl_chmod(inode
);
4821 ext4_std_error(inode
->i_sb
, error
);
4827 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4830 struct inode
*inode
;
4831 unsigned long delalloc_blocks
;
4833 inode
= dentry
->d_inode
;
4834 generic_fillattr(inode
, stat
);
4837 * We can't update i_blocks if the block allocation is delayed
4838 * otherwise in the case of system crash before the real block
4839 * allocation is done, we will have i_blocks inconsistent with
4840 * on-disk file blocks.
4841 * We always keep i_blocks updated together with real
4842 * allocation. But to not confuse with user, stat
4843 * will return the blocks that include the delayed allocation
4844 * blocks for this file.
4846 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
4847 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4848 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
4850 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4854 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
4859 /* if nrblocks are contiguous */
4862 * With N contiguous data blocks, it need at most
4863 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4864 * 2 dindirect blocks
4867 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4868 return indirects
+ 3;
4871 * if nrblocks are not contiguous, worse case, each block touch
4872 * a indirect block, and each indirect block touch a double indirect
4873 * block, plus a triple indirect block
4875 indirects
= nrblocks
* 2 + 1;
4879 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4881 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
4882 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
4883 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4887 * Account for index blocks, block groups bitmaps and block group
4888 * descriptor blocks if modify datablocks and index blocks
4889 * worse case, the indexs blocks spread over different block groups
4891 * If datablocks are discontiguous, they are possible to spread over
4892 * different block groups too. If they are contiugous, with flexbg,
4893 * they could still across block group boundary.
4895 * Also account for superblock, inode, quota and xattr blocks
4897 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4899 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4905 * How many index blocks need to touch to modify nrblocks?
4906 * The "Chunk" flag indicating whether the nrblocks is
4907 * physically contiguous on disk
4909 * For Direct IO and fallocate, they calls get_block to allocate
4910 * one single extent at a time, so they could set the "Chunk" flag
4912 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4917 * Now let's see how many group bitmaps and group descriptors need
4927 if (groups
> ngroups
)
4929 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4930 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4932 /* bitmaps and block group descriptor blocks */
4933 ret
+= groups
+ gdpblocks
;
4935 /* Blocks for super block, inode, quota and xattr blocks */
4936 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4942 * Calulate the total number of credits to reserve to fit
4943 * the modification of a single pages into a single transaction,
4944 * which may include multiple chunks of block allocations.
4946 * This could be called via ext4_write_begin()
4948 * We need to consider the worse case, when
4949 * one new block per extent.
4951 int ext4_writepage_trans_blocks(struct inode
*inode
)
4953 int bpp
= ext4_journal_blocks_per_page(inode
);
4956 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4958 /* Account for data blocks for journalled mode */
4959 if (ext4_should_journal_data(inode
))
4965 * Calculate the journal credits for a chunk of data modification.
4967 * This is called from DIO, fallocate or whoever calling
4968 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4970 * journal buffers for data blocks are not included here, as DIO
4971 * and fallocate do no need to journal data buffers.
4973 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4975 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4979 * The caller must have previously called ext4_reserve_inode_write().
4980 * Give this, we know that the caller already has write access to iloc->bh.
4982 int ext4_mark_iloc_dirty(handle_t
*handle
,
4983 struct inode
*inode
, struct ext4_iloc
*iloc
)
4987 if (test_opt(inode
->i_sb
, I_VERSION
))
4988 inode_inc_iversion(inode
);
4990 /* the do_update_inode consumes one bh->b_count */
4993 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4994 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5000 * On success, We end up with an outstanding reference count against
5001 * iloc->bh. This _must_ be cleaned up later.
5005 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5006 struct ext4_iloc
*iloc
)
5010 err
= ext4_get_inode_loc(inode
, iloc
);
5012 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5013 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5019 ext4_std_error(inode
->i_sb
, err
);
5024 * Expand an inode by new_extra_isize bytes.
5025 * Returns 0 on success or negative error number on failure.
5027 static int ext4_expand_extra_isize(struct inode
*inode
,
5028 unsigned int new_extra_isize
,
5029 struct ext4_iloc iloc
,
5032 struct ext4_inode
*raw_inode
;
5033 struct ext4_xattr_ibody_header
*header
;
5034 struct ext4_xattr_entry
*entry
;
5036 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5039 raw_inode
= ext4_raw_inode(&iloc
);
5041 header
= IHDR(inode
, raw_inode
);
5042 entry
= IFIRST(header
);
5044 /* No extended attributes present */
5045 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5046 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5047 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5049 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5053 /* try to expand with EAs present */
5054 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5059 * What we do here is to mark the in-core inode as clean with respect to inode
5060 * dirtiness (it may still be data-dirty).
5061 * This means that the in-core inode may be reaped by prune_icache
5062 * without having to perform any I/O. This is a very good thing,
5063 * because *any* task may call prune_icache - even ones which
5064 * have a transaction open against a different journal.
5066 * Is this cheating? Not really. Sure, we haven't written the
5067 * inode out, but prune_icache isn't a user-visible syncing function.
5068 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5069 * we start and wait on commits.
5071 * Is this efficient/effective? Well, we're being nice to the system
5072 * by cleaning up our inodes proactively so they can be reaped
5073 * without I/O. But we are potentially leaving up to five seconds'
5074 * worth of inodes floating about which prune_icache wants us to
5075 * write out. One way to fix that would be to get prune_icache()
5076 * to do a write_super() to free up some memory. It has the desired
5079 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5081 struct ext4_iloc iloc
;
5082 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5083 static unsigned int mnt_count
;
5087 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5088 if (ext4_handle_valid(handle
) &&
5089 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5090 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5092 * We need extra buffer credits since we may write into EA block
5093 * with this same handle. If journal_extend fails, then it will
5094 * only result in a minor loss of functionality for that inode.
5095 * If this is felt to be critical, then e2fsck should be run to
5096 * force a large enough s_min_extra_isize.
5098 if ((jbd2_journal_extend(handle
,
5099 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5100 ret
= ext4_expand_extra_isize(inode
,
5101 sbi
->s_want_extra_isize
,
5104 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5106 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5107 ext4_warning(inode
->i_sb
, __func__
,
5108 "Unable to expand inode %lu. Delete"
5109 " some EAs or run e2fsck.",
5112 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5118 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5123 * ext4_dirty_inode() is called from __mark_inode_dirty()
5125 * We're really interested in the case where a file is being extended.
5126 * i_size has been changed by generic_commit_write() and we thus need
5127 * to include the updated inode in the current transaction.
5129 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5130 * are allocated to the file.
5132 * If the inode is marked synchronous, we don't honour that here - doing
5133 * so would cause a commit on atime updates, which we don't bother doing.
5134 * We handle synchronous inodes at the highest possible level.
5136 void ext4_dirty_inode(struct inode
*inode
)
5138 handle_t
*current_handle
= ext4_journal_current_handle();
5141 if (!ext4_handle_valid(current_handle
)) {
5142 ext4_mark_inode_dirty(current_handle
, inode
);
5146 handle
= ext4_journal_start(inode
, 2);
5149 if (current_handle
&&
5150 current_handle
->h_transaction
!= handle
->h_transaction
) {
5151 /* This task has a transaction open against a different fs */
5152 printk(KERN_EMERG
"%s: transactions do not match!\n",
5155 jbd_debug(5, "marking dirty. outer handle=%p\n",
5157 ext4_mark_inode_dirty(handle
, inode
);
5159 ext4_journal_stop(handle
);
5166 * Bind an inode's backing buffer_head into this transaction, to prevent
5167 * it from being flushed to disk early. Unlike
5168 * ext4_reserve_inode_write, this leaves behind no bh reference and
5169 * returns no iloc structure, so the caller needs to repeat the iloc
5170 * lookup to mark the inode dirty later.
5172 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5174 struct ext4_iloc iloc
;
5178 err
= ext4_get_inode_loc(inode
, &iloc
);
5180 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5181 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5183 err
= ext4_handle_dirty_metadata(handle
,
5189 ext4_std_error(inode
->i_sb
, err
);
5194 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5201 * We have to be very careful here: changing a data block's
5202 * journaling status dynamically is dangerous. If we write a
5203 * data block to the journal, change the status and then delete
5204 * that block, we risk forgetting to revoke the old log record
5205 * from the journal and so a subsequent replay can corrupt data.
5206 * So, first we make sure that the journal is empty and that
5207 * nobody is changing anything.
5210 journal
= EXT4_JOURNAL(inode
);
5213 if (is_journal_aborted(journal
))
5216 jbd2_journal_lock_updates(journal
);
5217 jbd2_journal_flush(journal
);
5220 * OK, there are no updates running now, and all cached data is
5221 * synced to disk. We are now in a completely consistent state
5222 * which doesn't have anything in the journal, and we know that
5223 * no filesystem updates are running, so it is safe to modify
5224 * the inode's in-core data-journaling state flag now.
5228 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5230 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5231 ext4_set_aops(inode
);
5233 jbd2_journal_unlock_updates(journal
);
5235 /* Finally we can mark the inode as dirty. */
5237 handle
= ext4_journal_start(inode
, 1);
5239 return PTR_ERR(handle
);
5241 err
= ext4_mark_inode_dirty(handle
, inode
);
5242 ext4_handle_sync(handle
);
5243 ext4_journal_stop(handle
);
5244 ext4_std_error(inode
->i_sb
, err
);
5249 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5251 return !buffer_mapped(bh
);
5254 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5256 struct page
*page
= vmf
->page
;
5261 struct file
*file
= vma
->vm_file
;
5262 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5263 struct address_space
*mapping
= inode
->i_mapping
;
5266 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5267 * get i_mutex because we are already holding mmap_sem.
5269 down_read(&inode
->i_alloc_sem
);
5270 size
= i_size_read(inode
);
5271 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5272 || !PageUptodate(page
)) {
5273 /* page got truncated from under us? */
5277 if (PageMappedToDisk(page
))
5280 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5281 len
= size
& ~PAGE_CACHE_MASK
;
5283 len
= PAGE_CACHE_SIZE
;
5285 if (page_has_buffers(page
)) {
5286 /* return if we have all the buffers mapped */
5287 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5292 * OK, we need to fill the hole... Do write_begin write_end
5293 * to do block allocation/reservation.We are not holding
5294 * inode.i__mutex here. That allow * parallel write_begin,
5295 * write_end call. lock_page prevent this from happening
5296 * on the same page though
5298 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5299 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5302 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5303 len
, len
, page
, fsdata
);
5309 ret
= VM_FAULT_SIGBUS
;
5310 up_read(&inode
->i_alloc_sem
);