rt2x00: Fix skbdesc->data_len initialization
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
blobf9d6f539a80fbf04bcfb22267abddc16434f1a2c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
51 * be used instead.
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54 const unsigned int offset,
55 u16 *value)
57 __le16 reg;
58 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59 USB_VENDOR_REQUEST_IN, offset,
60 &reg, sizeof(u16), REGISTER_TIMEOUT);
61 *value = le16_to_cpu(reg);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65 const unsigned int offset,
66 u16 *value)
68 __le16 reg;
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70 USB_VENDOR_REQUEST_IN, offset,
71 &reg, sizeof(u16), REGISTER_TIMEOUT);
72 *value = le16_to_cpu(reg);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76 const unsigned int offset,
77 void *value, const u16 length)
79 int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81 USB_VENDOR_REQUEST_IN, offset,
82 value, length, timeout);
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86 const unsigned int offset,
87 u16 value)
89 __le16 reg = cpu_to_le16(value);
90 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91 USB_VENDOR_REQUEST_OUT, offset,
92 &reg, sizeof(u16), REGISTER_TIMEOUT);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96 const unsigned int offset,
97 u16 value)
99 __le16 reg = cpu_to_le16(value);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101 USB_VENDOR_REQUEST_OUT, offset,
102 &reg, sizeof(u16), REGISTER_TIMEOUT);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106 const unsigned int offset,
107 void *value, const u16 length)
109 int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111 USB_VENDOR_REQUEST_OUT, offset,
112 value, length, timeout);
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
117 u16 reg;
118 unsigned int i;
120 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123 break;
124 udelay(REGISTER_BUSY_DELAY);
127 return reg;
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u8 value)
133 u16 reg;
135 mutex_lock(&rt2x00dev->usb_cache_mutex);
138 * Wait until the BBP becomes ready.
140 reg = rt2500usb_bbp_check(rt2x00dev);
141 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144 return;
148 * Write the data into the BBP.
150 reg = 0;
151 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
155 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
157 mutex_unlock(&rt2x00dev->usb_cache_mutex);
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161 const unsigned int word, u8 *value)
163 u16 reg;
165 mutex_lock(&rt2x00dev->usb_cache_mutex);
168 * Wait until the BBP becomes ready.
170 reg = rt2500usb_bbp_check(rt2x00dev);
171 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173 return;
177 * Write the request into the BBP.
179 reg = 0;
180 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
183 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
186 * Wait until the BBP becomes ready.
188 reg = rt2500usb_bbp_check(rt2x00dev);
189 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191 *value = 0xff;
192 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193 return;
196 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199 mutex_unlock(&rt2x00dev->usb_cache_mutex);
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203 const unsigned int word, const u32 value)
205 u16 reg;
206 unsigned int i;
208 if (!word)
209 return;
211 mutex_lock(&rt2x00dev->usb_cache_mutex);
213 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216 goto rf_write;
217 udelay(REGISTER_BUSY_DELAY);
220 mutex_unlock(&rt2x00dev->usb_cache_mutex);
221 ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222 return;
224 rf_write:
225 reg = 0;
226 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
229 reg = 0;
230 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
235 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236 rt2x00_rf_write(rt2x00dev, word, value);
238 mutex_unlock(&rt2x00dev->usb_cache_mutex);
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245 const unsigned int word, u32 *data)
247 rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251 const unsigned int word, u32 data)
253 rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257 .owner = THIS_MODULE,
258 .csr = {
259 .read = rt2500usb_read_csr,
260 .write = rt2500usb_write_csr,
261 .word_size = sizeof(u16),
262 .word_count = CSR_REG_SIZE / sizeof(u16),
264 .eeprom = {
265 .read = rt2x00_eeprom_read,
266 .write = rt2x00_eeprom_write,
267 .word_size = sizeof(u16),
268 .word_count = EEPROM_SIZE / sizeof(u16),
270 .bbp = {
271 .read = rt2500usb_bbp_read,
272 .write = rt2500usb_bbp_write,
273 .word_size = sizeof(u8),
274 .word_count = BBP_SIZE / sizeof(u8),
276 .rf = {
277 .read = rt2x00_rf_read,
278 .write = rt2500usb_rf_write,
279 .word_size = sizeof(u32),
280 .word_count = RF_SIZE / sizeof(u32),
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_led_brightness(struct led_classdev *led_cdev,
287 enum led_brightness brightness)
289 struct rt2x00_led *led =
290 container_of(led_cdev, struct rt2x00_led, led_dev);
291 unsigned int enabled = brightness != LED_OFF;
292 unsigned int activity =
293 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
295 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
296 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
297 MAC_CSR20_LINK, enabled);
298 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
299 MAC_CSR20_ACTIVITY, enabled && activity);
302 rt2x00usb_vendor_request_async(led->rt2x00dev, USB_SINGLE_WRITE,
303 MAC_CSR20, led->rt2x00dev->led_mcu_reg);
305 #else
306 #define rt2500usb_led_brightness NULL
307 #endif /* CONFIG_RT2500USB_LEDS */
310 * Configuration handlers.
312 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
313 struct rt2x00_intf *intf,
314 struct rt2x00intf_conf *conf,
315 const unsigned int flags)
317 unsigned int bcn_preload;
318 u16 reg;
320 if (flags & CONFIG_UPDATE_TYPE) {
321 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
324 * Enable beacon config
326 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
327 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
328 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
329 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
330 2 * (conf->type != IEEE80211_IF_TYPE_STA));
331 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
334 * Enable synchronisation.
336 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
337 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
338 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
340 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
341 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
342 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
343 (conf->sync == TSF_SYNC_BEACON));
344 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
345 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
346 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
349 if (flags & CONFIG_UPDATE_MAC)
350 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
351 (3 * sizeof(__le16)));
353 if (flags & CONFIG_UPDATE_BSSID)
354 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
355 (3 * sizeof(__le16)));
358 static int rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
359 const int short_preamble,
360 const int ack_timeout,
361 const int ack_consume_time)
363 u16 reg;
366 * When in atomic context, we should let rt2x00lib
367 * try this configuration again later.
369 if (in_atomic())
370 return -EAGAIN;
372 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
373 rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
374 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
376 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
377 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
378 !!short_preamble);
379 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
381 return 0;
384 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
385 const int basic_rate_mask)
387 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
390 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
391 struct rf_channel *rf, const int txpower)
394 * Set TXpower.
396 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
399 * For RT2525E we should first set the channel to half band higher.
401 if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
402 static const u32 vals[] = {
403 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
404 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
405 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
406 0x00000902, 0x00000906
409 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
410 if (rf->rf4)
411 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
414 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
415 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
416 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
417 if (rf->rf4)
418 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
421 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
422 const int txpower)
424 u32 rf3;
426 rt2x00_rf_read(rt2x00dev, 3, &rf3);
427 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
428 rt2500usb_rf_write(rt2x00dev, 3, rf3);
431 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
432 struct antenna_setup *ant)
434 u8 r2;
435 u8 r14;
436 u16 csr5;
437 u16 csr6;
439 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
440 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
441 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
442 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
445 * Configure the TX antenna.
447 switch (ant->tx) {
448 case ANTENNA_HW_DIVERSITY:
449 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
450 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
451 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
452 break;
453 case ANTENNA_A:
454 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
455 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
456 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
457 break;
458 case ANTENNA_SW_DIVERSITY:
460 * NOTE: We should never come here because rt2x00lib is
461 * supposed to catch this and send us the correct antenna
462 * explicitely. However we are nog going to bug about this.
463 * Instead, just default to antenna B.
465 case ANTENNA_B:
466 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
467 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
468 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
469 break;
473 * Configure the RX antenna.
475 switch (ant->rx) {
476 case ANTENNA_HW_DIVERSITY:
477 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
478 break;
479 case ANTENNA_A:
480 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
481 break;
482 case ANTENNA_SW_DIVERSITY:
484 * NOTE: We should never come here because rt2x00lib is
485 * supposed to catch this and send us the correct antenna
486 * explicitely. However we are nog going to bug about this.
487 * Instead, just default to antenna B.
489 case ANTENNA_B:
490 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
491 break;
495 * RT2525E and RT5222 need to flip TX I/Q
497 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
498 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
499 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
500 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
501 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
504 * RT2525E does not need RX I/Q Flip.
506 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
507 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
508 } else {
509 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
510 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
513 rt2500usb_bbp_write(rt2x00dev, 2, r2);
514 rt2500usb_bbp_write(rt2x00dev, 14, r14);
515 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
516 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
519 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
520 struct rt2x00lib_conf *libconf)
522 u16 reg;
524 rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
525 rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
526 rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
528 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
529 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
530 libconf->conf->beacon_int * 4);
531 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
534 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
535 struct rt2x00lib_conf *libconf,
536 const unsigned int flags)
538 if (flags & CONFIG_UPDATE_PHYMODE)
539 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
540 if (flags & CONFIG_UPDATE_CHANNEL)
541 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
542 libconf->conf->power_level);
543 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
544 rt2500usb_config_txpower(rt2x00dev,
545 libconf->conf->power_level);
546 if (flags & CONFIG_UPDATE_ANTENNA)
547 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
548 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
549 rt2500usb_config_duration(rt2x00dev, libconf);
553 * Link tuning
555 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
556 struct link_qual *qual)
558 u16 reg;
561 * Update FCS error count from register.
563 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
564 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
567 * Update False CCA count from register.
569 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
570 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
573 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
575 u16 eeprom;
576 u16 value;
578 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
579 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
580 rt2500usb_bbp_write(rt2x00dev, 24, value);
582 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
583 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
584 rt2500usb_bbp_write(rt2x00dev, 25, value);
586 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
587 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
588 rt2500usb_bbp_write(rt2x00dev, 61, value);
590 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
591 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
592 rt2500usb_bbp_write(rt2x00dev, 17, value);
594 rt2x00dev->link.vgc_level = value;
597 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
599 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
600 u16 bbp_thresh;
601 u16 vgc_bound;
602 u16 sens;
603 u16 r24;
604 u16 r25;
605 u16 r61;
606 u16 r17_sens;
607 u8 r17;
608 u8 up_bound;
609 u8 low_bound;
612 * Read current r17 value, as well as the sensitivity values
613 * for the r17 register.
615 rt2500usb_bbp_read(rt2x00dev, 17, &r17);
616 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
618 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
619 up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
620 low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
623 * If we are not associated, we should go straight to the
624 * dynamic CCA tuning.
626 if (!rt2x00dev->intf_associated)
627 goto dynamic_cca_tune;
630 * Determine the BBP tuning threshold and correctly
631 * set BBP 24, 25 and 61.
633 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
634 bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
636 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
637 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
638 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
640 if ((rssi + bbp_thresh) > 0) {
641 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
642 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
643 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
644 } else {
645 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
646 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
647 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
650 rt2500usb_bbp_write(rt2x00dev, 24, r24);
651 rt2500usb_bbp_write(rt2x00dev, 25, r25);
652 rt2500usb_bbp_write(rt2x00dev, 61, r61);
655 * A too low RSSI will cause too much false CCA which will
656 * then corrupt the R17 tuning. To remidy this the tuning should
657 * be stopped (While making sure the R17 value will not exceed limits)
659 if (rssi >= -40) {
660 if (r17 != 0x60)
661 rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
662 return;
666 * Special big-R17 for short distance
668 if (rssi >= -58) {
669 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
670 if (r17 != sens)
671 rt2500usb_bbp_write(rt2x00dev, 17, sens);
672 return;
676 * Special mid-R17 for middle distance
678 if (rssi >= -74) {
679 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
680 if (r17 != sens)
681 rt2500usb_bbp_write(rt2x00dev, 17, sens);
682 return;
686 * Leave short or middle distance condition, restore r17
687 * to the dynamic tuning range.
689 low_bound = 0x32;
690 if (rssi < -77)
691 up_bound -= (-77 - rssi);
693 if (up_bound < low_bound)
694 up_bound = low_bound;
696 if (r17 > up_bound) {
697 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
698 rt2x00dev->link.vgc_level = up_bound;
699 return;
702 dynamic_cca_tune:
705 * R17 is inside the dynamic tuning range,
706 * start tuning the link based on the false cca counter.
708 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
709 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
710 rt2x00dev->link.vgc_level = r17;
711 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
712 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
713 rt2x00dev->link.vgc_level = r17;
718 * Initialization functions.
720 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
722 u16 reg;
724 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
725 USB_MODE_TEST, REGISTER_TIMEOUT);
726 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
727 0x00f0, REGISTER_TIMEOUT);
729 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
730 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
731 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
733 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
734 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
736 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
737 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
738 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
739 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
740 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
742 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
743 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
744 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
745 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
746 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
748 rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
749 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
750 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
751 rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
753 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
754 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
755 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
756 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
757 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
758 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
760 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
761 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
762 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
763 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
764 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
765 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
767 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
768 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
769 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
770 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
771 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
772 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
774 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
775 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
776 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
777 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
778 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
779 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
781 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
782 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
784 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
785 return -EBUSY;
787 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
788 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
789 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
790 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
791 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
793 if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
794 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
795 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
796 } else {
797 reg = 0;
798 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
799 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
801 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
803 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
804 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
805 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
806 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
808 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
809 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
810 rt2x00dev->rx->data_size);
811 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
813 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
814 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
815 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
816 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
818 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
819 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
820 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
822 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
823 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
824 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
826 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
827 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
828 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
830 return 0;
833 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
835 unsigned int i;
836 u16 eeprom;
837 u8 value;
838 u8 reg_id;
840 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
841 rt2500usb_bbp_read(rt2x00dev, 0, &value);
842 if ((value != 0xff) && (value != 0x00))
843 goto continue_csr_init;
844 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
845 udelay(REGISTER_BUSY_DELAY);
848 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
849 return -EACCES;
851 continue_csr_init:
852 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
853 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
854 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
855 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
856 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
857 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
858 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
859 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
860 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
861 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
862 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
863 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
864 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
865 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
866 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
867 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
868 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
869 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
870 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
871 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
872 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
873 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
874 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
875 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
876 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
877 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
878 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
879 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
880 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
881 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
882 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
884 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
885 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
887 if (eeprom != 0xffff && eeprom != 0x0000) {
888 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
889 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
890 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
894 return 0;
898 * Device state switch handlers.
900 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
901 enum dev_state state)
903 u16 reg;
905 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
906 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
907 state == STATE_RADIO_RX_OFF);
908 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
911 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
914 * Initialize all registers.
916 if (rt2500usb_init_registers(rt2x00dev) ||
917 rt2500usb_init_bbp(rt2x00dev)) {
918 ERROR(rt2x00dev, "Register initialization failed.\n");
919 return -EIO;
922 return 0;
925 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
927 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
928 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
931 * Disable synchronisation.
933 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
935 rt2x00usb_disable_radio(rt2x00dev);
938 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
939 enum dev_state state)
941 u16 reg;
942 u16 reg2;
943 unsigned int i;
944 char put_to_sleep;
945 char bbp_state;
946 char rf_state;
948 put_to_sleep = (state != STATE_AWAKE);
950 reg = 0;
951 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
952 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
953 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
954 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
955 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
956 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
959 * Device is not guaranteed to be in the requested state yet.
960 * We must wait until the register indicates that the
961 * device has entered the correct state.
963 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
964 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
965 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
966 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
967 if (bbp_state == state && rf_state == state)
968 return 0;
969 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
970 msleep(30);
973 NOTICE(rt2x00dev, "Device failed to enter state %d, "
974 "current device state: bbp %d and rf %d.\n",
975 state, bbp_state, rf_state);
977 return -EBUSY;
980 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
981 enum dev_state state)
983 int retval = 0;
985 switch (state) {
986 case STATE_RADIO_ON:
987 retval = rt2500usb_enable_radio(rt2x00dev);
988 break;
989 case STATE_RADIO_OFF:
990 rt2500usb_disable_radio(rt2x00dev);
991 break;
992 case STATE_RADIO_RX_ON:
993 case STATE_RADIO_RX_ON_LINK:
994 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
995 break;
996 case STATE_RADIO_RX_OFF:
997 case STATE_RADIO_RX_OFF_LINK:
998 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
999 break;
1000 case STATE_DEEP_SLEEP:
1001 case STATE_SLEEP:
1002 case STATE_STANDBY:
1003 case STATE_AWAKE:
1004 retval = rt2500usb_set_state(rt2x00dev, state);
1005 break;
1006 default:
1007 retval = -ENOTSUPP;
1008 break;
1011 return retval;
1015 * TX descriptor initialization
1017 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1018 struct sk_buff *skb,
1019 struct txentry_desc *txdesc,
1020 struct ieee80211_tx_control *control)
1022 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1023 __le32 *txd = skbdesc->desc;
1024 u32 word;
1027 * Start writing the descriptor words.
1029 rt2x00_desc_read(txd, 1, &word);
1030 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1031 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1032 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1033 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1034 rt2x00_desc_write(txd, 1, word);
1036 rt2x00_desc_read(txd, 2, &word);
1037 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1038 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1039 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1040 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1041 rt2x00_desc_write(txd, 2, word);
1043 rt2x00_desc_read(txd, 0, &word);
1044 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1045 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1046 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1047 rt2x00_set_field32(&word, TXD_W0_ACK,
1048 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1049 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1050 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1051 rt2x00_set_field32(&word, TXD_W0_OFDM,
1052 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1053 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1054 !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1055 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1056 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1057 rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1058 rt2x00_desc_write(txd, 0, word);
1061 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1062 struct sk_buff *skb)
1064 int length;
1067 * The length _must_ be a multiple of 2,
1068 * but it must _not_ be a multiple of the USB packet size.
1070 length = roundup(skb->len, 2);
1071 length += (2 * !(length % rt2x00dev->usb_maxpacket));
1073 return length;
1077 * TX data initialization
1079 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1080 const unsigned int queue)
1082 u16 reg;
1084 if (queue != RT2X00_BCN_QUEUE_BEACON)
1085 return;
1087 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1088 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1089 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1091 * Beacon generation will fail initially.
1092 * To prevent this we need to register the TXRX_CSR19
1093 * register several times.
1095 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1096 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1097 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1098 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1099 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1104 * RX control handlers
1106 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1107 struct rxdone_entry_desc *rxdesc)
1109 struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1110 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1111 __le32 *rxd =
1112 (__le32 *)(entry->skb->data +
1113 (priv_rx->urb->actual_length - entry->queue->desc_size));
1114 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
1115 int header_size = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
1116 u32 word0;
1117 u32 word1;
1119 rt2x00_desc_read(rxd, 0, &word0);
1120 rt2x00_desc_read(rxd, 1, &word1);
1122 rxdesc->flags = 0;
1123 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1124 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1125 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1126 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1129 * Obtain the status about this packet.
1131 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1132 rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1133 entry->queue->rt2x00dev->rssi_offset;
1134 rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1135 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1136 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1139 * The data behind the ieee80211 header must be
1140 * aligned on a 4 byte boundary.
1142 if (header_size % 4 == 0) {
1143 skb_push(entry->skb, 2);
1144 memmove(entry->skb->data, entry->skb->data + 2,
1145 entry->skb->len - 2);
1149 * Set descriptor pointer.
1151 skbdesc->data = entry->skb->data;
1152 skbdesc->data_len = rxdesc->size;
1153 skbdesc->desc = entry->skb->data + rxdesc->size;
1154 skbdesc->desc_len = entry->queue->desc_size;
1157 * Remove descriptor from skb buffer and trim the whole thing
1158 * down to only contain data.
1160 skb_trim(entry->skb, rxdesc->size);
1164 * Interrupt functions.
1166 static void rt2500usb_beacondone(struct urb *urb)
1168 struct queue_entry *entry = (struct queue_entry *)urb->context;
1169 struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1171 if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1172 return;
1175 * Check if this was the guardian beacon,
1176 * if that was the case we need to send the real beacon now.
1177 * Otherwise we should free the sk_buffer, the device
1178 * should be doing the rest of the work now.
1180 if (priv_bcn->guardian_urb == urb) {
1181 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1182 } else if (priv_bcn->urb == urb) {
1183 dev_kfree_skb(entry->skb);
1184 entry->skb = NULL;
1189 * Device probe functions.
1191 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1193 u16 word;
1194 u8 *mac;
1195 u8 bbp;
1197 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1200 * Start validation of the data that has been read.
1202 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1203 if (!is_valid_ether_addr(mac)) {
1204 DECLARE_MAC_BUF(macbuf);
1206 random_ether_addr(mac);
1207 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1210 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1211 if (word == 0xffff) {
1212 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1213 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1214 ANTENNA_SW_DIVERSITY);
1215 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1216 ANTENNA_SW_DIVERSITY);
1217 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1218 LED_MODE_DEFAULT);
1219 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1220 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1221 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1222 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1223 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1226 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1227 if (word == 0xffff) {
1228 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1229 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1230 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1231 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1232 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1235 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1236 if (word == 0xffff) {
1237 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1238 DEFAULT_RSSI_OFFSET);
1239 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1240 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1243 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1244 if (word == 0xffff) {
1245 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1246 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1247 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1251 * Switch lower vgc bound to current BBP R17 value,
1252 * lower the value a bit for better quality.
1254 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1255 bbp -= 6;
1257 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1258 if (word == 0xffff) {
1259 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1260 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1261 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1262 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1265 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1266 if (word == 0xffff) {
1267 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1268 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1269 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1270 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1271 } else {
1272 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1273 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1276 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1277 if (word == 0xffff) {
1278 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1279 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1280 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1281 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1284 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1285 if (word == 0xffff) {
1286 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1287 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1288 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1289 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1292 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1293 if (word == 0xffff) {
1294 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1295 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1296 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1297 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1300 return 0;
1303 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1305 u16 reg;
1306 u16 value;
1307 u16 eeprom;
1310 * Read EEPROM word for configuration.
1312 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1315 * Identify RF chipset.
1317 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1318 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1319 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1321 if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1322 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1323 return -ENODEV;
1326 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1327 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1328 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1329 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1330 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1331 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1332 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1333 return -ENODEV;
1337 * Identify default antenna configuration.
1339 rt2x00dev->default_ant.tx =
1340 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1341 rt2x00dev->default_ant.rx =
1342 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1345 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1346 * I am not 100% sure about this, but the legacy drivers do not
1347 * indicate antenna swapping in software is required when
1348 * diversity is enabled.
1350 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1351 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1352 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1353 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1356 * Store led mode, for correct led behaviour.
1358 #ifdef CONFIG_RT2500USB_LEDS
1359 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1361 switch (value) {
1362 case LED_MODE_ASUS:
1363 case LED_MODE_ALPHA:
1364 case LED_MODE_DEFAULT:
1365 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1366 break;
1367 case LED_MODE_TXRX_ACTIVITY:
1368 rt2x00dev->led_flags =
1369 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1370 break;
1371 case LED_MODE_SIGNAL_STRENGTH:
1372 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1373 break;
1377 * Store the current led register value, we need it later
1378 * in set_brightness but that is called in irq context which
1379 * means we can't use rt2500usb_register_read() at that time.
1381 rt2500usb_register_read(rt2x00dev, MAC_CSR20, &rt2x00dev->led_mcu_reg);
1382 #endif /* CONFIG_RT2500USB_LEDS */
1385 * Check if the BBP tuning should be disabled.
1387 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1388 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1389 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1392 * Read the RSSI <-> dBm offset information.
1394 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1395 rt2x00dev->rssi_offset =
1396 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1398 return 0;
1402 * RF value list for RF2522
1403 * Supports: 2.4 GHz
1405 static const struct rf_channel rf_vals_bg_2522[] = {
1406 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1407 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1408 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1409 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1410 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1411 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1412 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1413 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1414 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1415 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1416 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1417 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1418 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1419 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1423 * RF value list for RF2523
1424 * Supports: 2.4 GHz
1426 static const struct rf_channel rf_vals_bg_2523[] = {
1427 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1428 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1429 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1430 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1431 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1432 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1433 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1434 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1435 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1436 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1437 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1438 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1439 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1440 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1444 * RF value list for RF2524
1445 * Supports: 2.4 GHz
1447 static const struct rf_channel rf_vals_bg_2524[] = {
1448 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1449 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1450 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1451 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1452 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1453 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1454 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1455 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1456 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1457 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1458 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1459 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1460 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1461 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1465 * RF value list for RF2525
1466 * Supports: 2.4 GHz
1468 static const struct rf_channel rf_vals_bg_2525[] = {
1469 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1470 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1471 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1472 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1473 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1474 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1475 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1476 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1477 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1478 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1479 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1480 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1481 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1482 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1486 * RF value list for RF2525e
1487 * Supports: 2.4 GHz
1489 static const struct rf_channel rf_vals_bg_2525e[] = {
1490 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1491 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1492 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1493 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1494 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1495 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1496 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1497 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1498 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1499 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1500 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1501 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1502 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1503 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1507 * RF value list for RF5222
1508 * Supports: 2.4 GHz & 5.2 GHz
1510 static const struct rf_channel rf_vals_5222[] = {
1511 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1512 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1513 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1514 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1515 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1516 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1517 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1518 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1519 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1520 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1521 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1522 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1523 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1524 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1526 /* 802.11 UNI / HyperLan 2 */
1527 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1528 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1529 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1530 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1531 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1532 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1533 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1534 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1536 /* 802.11 HyperLan 2 */
1537 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1538 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1539 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1540 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1541 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1542 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1543 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1544 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1545 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1546 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1548 /* 802.11 UNII */
1549 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1550 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1551 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1552 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1553 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1556 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1558 struct hw_mode_spec *spec = &rt2x00dev->spec;
1559 u8 *txpower;
1560 unsigned int i;
1563 * Initialize all hw fields.
1565 rt2x00dev->hw->flags =
1566 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1567 IEEE80211_HW_RX_INCLUDES_FCS |
1568 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1569 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1570 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1571 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1572 rt2x00dev->hw->queues = 2;
1574 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1575 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1576 rt2x00_eeprom_addr(rt2x00dev,
1577 EEPROM_MAC_ADDR_0));
1580 * Convert tx_power array in eeprom.
1582 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1583 for (i = 0; i < 14; i++)
1584 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1587 * Initialize hw_mode information.
1589 spec->num_modes = 2;
1590 spec->num_rates = 12;
1591 spec->tx_power_a = NULL;
1592 spec->tx_power_bg = txpower;
1593 spec->tx_power_default = DEFAULT_TXPOWER;
1595 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1596 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1597 spec->channels = rf_vals_bg_2522;
1598 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1599 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1600 spec->channels = rf_vals_bg_2523;
1601 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1602 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1603 spec->channels = rf_vals_bg_2524;
1604 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1605 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1606 spec->channels = rf_vals_bg_2525;
1607 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1608 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1609 spec->channels = rf_vals_bg_2525e;
1610 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1611 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1612 spec->channels = rf_vals_5222;
1613 spec->num_modes = 3;
1617 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1619 int retval;
1622 * Allocate eeprom data.
1624 retval = rt2500usb_validate_eeprom(rt2x00dev);
1625 if (retval)
1626 return retval;
1628 retval = rt2500usb_init_eeprom(rt2x00dev);
1629 if (retval)
1630 return retval;
1633 * Initialize hw specifications.
1635 rt2500usb_probe_hw_mode(rt2x00dev);
1638 * This device requires the atim queue
1640 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1641 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1644 * Set the rssi offset.
1646 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1648 return 0;
1652 * IEEE80211 stack callback functions.
1654 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1655 unsigned int changed_flags,
1656 unsigned int *total_flags,
1657 int mc_count,
1658 struct dev_addr_list *mc_list)
1660 struct rt2x00_dev *rt2x00dev = hw->priv;
1661 u16 reg;
1664 * Mask off any flags we are going to ignore from
1665 * the total_flags field.
1667 *total_flags &=
1668 FIF_ALLMULTI |
1669 FIF_FCSFAIL |
1670 FIF_PLCPFAIL |
1671 FIF_CONTROL |
1672 FIF_OTHER_BSS |
1673 FIF_PROMISC_IN_BSS;
1676 * Apply some rules to the filters:
1677 * - Some filters imply different filters to be set.
1678 * - Some things we can't filter out at all.
1680 if (mc_count)
1681 *total_flags |= FIF_ALLMULTI;
1682 if (*total_flags & FIF_OTHER_BSS ||
1683 *total_flags & FIF_PROMISC_IN_BSS)
1684 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1687 * Check if there is any work left for us.
1689 if (rt2x00dev->packet_filter == *total_flags)
1690 return;
1691 rt2x00dev->packet_filter = *total_flags;
1694 * When in atomic context, reschedule and let rt2x00lib
1695 * call this function again.
1697 if (in_atomic()) {
1698 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1699 return;
1703 * Start configuration steps.
1704 * Note that the version error will always be dropped
1705 * and broadcast frames will always be accepted since
1706 * there is no filter for it at this time.
1708 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1709 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1710 !(*total_flags & FIF_FCSFAIL));
1711 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1712 !(*total_flags & FIF_PLCPFAIL));
1713 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1714 !(*total_flags & FIF_CONTROL));
1715 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1716 !(*total_flags & FIF_PROMISC_IN_BSS));
1717 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1718 !(*total_flags & FIF_PROMISC_IN_BSS));
1719 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1720 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1721 !(*total_flags & FIF_ALLMULTI));
1722 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1723 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1726 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1727 struct sk_buff *skb,
1728 struct ieee80211_tx_control *control)
1730 struct rt2x00_dev *rt2x00dev = hw->priv;
1731 struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1732 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1733 struct queue_entry_priv_usb_bcn *priv_bcn;
1734 struct skb_frame_desc *skbdesc;
1735 int pipe = usb_sndbulkpipe(usb_dev, 1);
1736 int length;
1738 if (unlikely(!intf->beacon))
1739 return -ENOBUFS;
1741 priv_bcn = intf->beacon->priv_data;
1744 * Add the descriptor in front of the skb.
1746 skb_push(skb, intf->beacon->queue->desc_size);
1747 memset(skb->data, 0, intf->beacon->queue->desc_size);
1750 * Fill in skb descriptor
1752 skbdesc = get_skb_frame_desc(skb);
1753 memset(skbdesc, 0, sizeof(*skbdesc));
1754 skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1755 skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1756 skbdesc->desc = skb->data;
1757 skbdesc->desc_len = intf->beacon->queue->desc_size;
1758 skbdesc->entry = intf->beacon;
1761 * mac80211 doesn't provide the control->queue variable
1762 * for beacons. Set our own queue identification so
1763 * it can be used during descriptor initialization.
1765 control->queue = RT2X00_BCN_QUEUE_BEACON;
1766 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1769 * USB devices cannot blindly pass the skb->len as the
1770 * length of the data to usb_fill_bulk_urb. Pass the skb
1771 * to the driver to determine what the length should be.
1773 length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1775 usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1776 skb->data, length, rt2500usb_beacondone,
1777 intf->beacon);
1780 * Second we need to create the guardian byte.
1781 * We only need a single byte, so lets recycle
1782 * the 'flags' field we are not using for beacons.
1784 priv_bcn->guardian_data = 0;
1785 usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1786 &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1787 intf->beacon);
1790 * Send out the guardian byte.
1792 usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1795 * Enable beacon generation.
1797 rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1799 return 0;
1802 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1803 .tx = rt2x00mac_tx,
1804 .start = rt2x00mac_start,
1805 .stop = rt2x00mac_stop,
1806 .add_interface = rt2x00mac_add_interface,
1807 .remove_interface = rt2x00mac_remove_interface,
1808 .config = rt2x00mac_config,
1809 .config_interface = rt2x00mac_config_interface,
1810 .configure_filter = rt2500usb_configure_filter,
1811 .get_stats = rt2x00mac_get_stats,
1812 .bss_info_changed = rt2x00mac_bss_info_changed,
1813 .conf_tx = rt2x00mac_conf_tx,
1814 .get_tx_stats = rt2x00mac_get_tx_stats,
1815 .beacon_update = rt2500usb_beacon_update,
1818 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1819 .probe_hw = rt2500usb_probe_hw,
1820 .initialize = rt2x00usb_initialize,
1821 .uninitialize = rt2x00usb_uninitialize,
1822 .init_rxentry = rt2x00usb_init_rxentry,
1823 .init_txentry = rt2x00usb_init_txentry,
1824 .set_device_state = rt2500usb_set_device_state,
1825 .link_stats = rt2500usb_link_stats,
1826 .reset_tuner = rt2500usb_reset_tuner,
1827 .link_tuner = rt2500usb_link_tuner,
1828 .led_brightness = rt2500usb_led_brightness,
1829 .write_tx_desc = rt2500usb_write_tx_desc,
1830 .write_tx_data = rt2x00usb_write_tx_data,
1831 .get_tx_data_len = rt2500usb_get_tx_data_len,
1832 .kick_tx_queue = rt2500usb_kick_tx_queue,
1833 .fill_rxdone = rt2500usb_fill_rxdone,
1834 .config_intf = rt2500usb_config_intf,
1835 .config_preamble = rt2500usb_config_preamble,
1836 .config = rt2500usb_config,
1839 static const struct data_queue_desc rt2500usb_queue_rx = {
1840 .entry_num = RX_ENTRIES,
1841 .data_size = DATA_FRAME_SIZE,
1842 .desc_size = RXD_DESC_SIZE,
1843 .priv_size = sizeof(struct queue_entry_priv_usb_rx),
1846 static const struct data_queue_desc rt2500usb_queue_tx = {
1847 .entry_num = TX_ENTRIES,
1848 .data_size = DATA_FRAME_SIZE,
1849 .desc_size = TXD_DESC_SIZE,
1850 .priv_size = sizeof(struct queue_entry_priv_usb_tx),
1853 static const struct data_queue_desc rt2500usb_queue_bcn = {
1854 .entry_num = BEACON_ENTRIES,
1855 .data_size = MGMT_FRAME_SIZE,
1856 .desc_size = TXD_DESC_SIZE,
1857 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1860 static const struct data_queue_desc rt2500usb_queue_atim = {
1861 .entry_num = ATIM_ENTRIES,
1862 .data_size = DATA_FRAME_SIZE,
1863 .desc_size = TXD_DESC_SIZE,
1864 .priv_size = sizeof(struct queue_entry_priv_usb_tx),
1867 static const struct rt2x00_ops rt2500usb_ops = {
1868 .name = KBUILD_MODNAME,
1869 .max_sta_intf = 1,
1870 .max_ap_intf = 1,
1871 .eeprom_size = EEPROM_SIZE,
1872 .rf_size = RF_SIZE,
1873 .rx = &rt2500usb_queue_rx,
1874 .tx = &rt2500usb_queue_tx,
1875 .bcn = &rt2500usb_queue_bcn,
1876 .atim = &rt2500usb_queue_atim,
1877 .lib = &rt2500usb_rt2x00_ops,
1878 .hw = &rt2500usb_mac80211_ops,
1879 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1880 .debugfs = &rt2500usb_rt2x00debug,
1881 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1885 * rt2500usb module information.
1887 static struct usb_device_id rt2500usb_device_table[] = {
1888 /* ASUS */
1889 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1890 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1891 /* Belkin */
1892 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1893 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1894 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1895 /* Cisco Systems */
1896 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1897 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1898 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1899 /* Conceptronic */
1900 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1901 /* D-LINK */
1902 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1903 /* Gigabyte */
1904 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1905 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1906 /* Hercules */
1907 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1908 /* Melco */
1909 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1910 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1911 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1912 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1913 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1914 /* MSI */
1915 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1916 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1917 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1918 /* Ralink */
1919 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1920 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1921 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1922 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1923 /* Siemens */
1924 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1925 /* SMC */
1926 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1927 /* Spairon */
1928 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1929 /* Trust */
1930 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1931 /* Zinwell */
1932 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1933 { 0, }
1936 MODULE_AUTHOR(DRV_PROJECT);
1937 MODULE_VERSION(DRV_VERSION);
1938 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1939 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1940 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1941 MODULE_LICENSE("GPL");
1943 static struct usb_driver rt2500usb_driver = {
1944 .name = KBUILD_MODNAME,
1945 .id_table = rt2500usb_device_table,
1946 .probe = rt2x00usb_probe,
1947 .disconnect = rt2x00usb_disconnect,
1948 .suspend = rt2x00usb_suspend,
1949 .resume = rt2x00usb_resume,
1952 static int __init rt2500usb_init(void)
1954 return usb_register(&rt2500usb_driver);
1957 static void __exit rt2500usb_exit(void)
1959 usb_deregister(&rt2500usb_driver);
1962 module_init(rt2500usb_init);
1963 module_exit(rt2500usb_exit);