e1000: neaten function declarations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
blob4bcfa374f4d6cc165cc20759b6a8b56694a4d25a
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
33 #include <asm/uaccess.h>
35 extern int e1000_up(struct e1000_adapter *adapter);
36 extern void e1000_down(struct e1000_adapter *adapter);
37 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
38 extern void e1000_reset(struct e1000_adapter *adapter);
39 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
40 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
41 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
42 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
43 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_update_stats(struct e1000_adapter *adapter);
47 struct e1000_stats {
48 char stat_string[ETH_GSTRING_LEN];
49 int sizeof_stat;
50 int stat_offset;
53 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
54 offsetof(struct e1000_adapter, m)
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 { "rx_packets", E1000_STAT(stats.gprc) },
57 { "tx_packets", E1000_STAT(stats.gptc) },
58 { "rx_bytes", E1000_STAT(stats.gorcl) },
59 { "tx_bytes", E1000_STAT(stats.gotcl) },
60 { "rx_broadcast", E1000_STAT(stats.bprc) },
61 { "tx_broadcast", E1000_STAT(stats.bptc) },
62 { "rx_multicast", E1000_STAT(stats.mprc) },
63 { "tx_multicast", E1000_STAT(stats.mptc) },
64 { "rx_errors", E1000_STAT(stats.rxerrc) },
65 { "tx_errors", E1000_STAT(stats.txerrc) },
66 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
67 { "multicast", E1000_STAT(stats.mprc) },
68 { "collisions", E1000_STAT(stats.colc) },
69 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
70 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
71 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
73 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74 { "rx_missed_errors", E1000_STAT(stats.mpc) },
75 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
78 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
79 { "tx_window_errors", E1000_STAT(stats.latecol) },
80 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81 { "tx_deferred_ok", E1000_STAT(stats.dc) },
82 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85 { "tx_restart_queue", E1000_STAT(restart_queue) },
86 { "rx_long_length_errors", E1000_STAT(stats.roc) },
87 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
96 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98 { "rx_header_split", E1000_STAT(rx_hdr_split) },
99 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100 { "tx_smbus", E1000_STAT(stats.mgptc) },
101 { "rx_smbus", E1000_STAT(stats.mgprc) },
102 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109 "Register test (offline)", "Eeprom test (offline)",
110 "Interrupt test (offline)", "Loopback test (offline)",
111 "Link test (on/offline)"
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115 static int e1000_get_settings(struct net_device *netdev,
116 struct ethtool_cmd *ecmd)
118 struct e1000_adapter *adapter = netdev_priv(netdev);
119 struct e1000_hw *hw = &adapter->hw;
121 if (hw->media_type == e1000_media_type_copper) {
123 ecmd->supported = (SUPPORTED_10baseT_Half |
124 SUPPORTED_10baseT_Full |
125 SUPPORTED_100baseT_Half |
126 SUPPORTED_100baseT_Full |
127 SUPPORTED_1000baseT_Full|
128 SUPPORTED_Autoneg |
129 SUPPORTED_TP);
130 if (hw->phy_type == e1000_phy_ife)
131 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132 ecmd->advertising = ADVERTISED_TP;
134 if (hw->autoneg == 1) {
135 ecmd->advertising |= ADVERTISED_Autoneg;
136 /* the e1000 autoneg seems to match ethtool nicely */
137 ecmd->advertising |= hw->autoneg_advertised;
140 ecmd->port = PORT_TP;
141 ecmd->phy_address = hw->phy_addr;
143 if (hw->mac_type == e1000_82543)
144 ecmd->transceiver = XCVR_EXTERNAL;
145 else
146 ecmd->transceiver = XCVR_INTERNAL;
148 } else {
149 ecmd->supported = (SUPPORTED_1000baseT_Full |
150 SUPPORTED_FIBRE |
151 SUPPORTED_Autoneg);
153 ecmd->advertising = (ADVERTISED_1000baseT_Full |
154 ADVERTISED_FIBRE |
155 ADVERTISED_Autoneg);
157 ecmd->port = PORT_FIBRE;
159 if (hw->mac_type >= e1000_82545)
160 ecmd->transceiver = XCVR_INTERNAL;
161 else
162 ecmd->transceiver = XCVR_EXTERNAL;
165 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
167 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
168 &adapter->link_duplex);
169 ecmd->speed = adapter->link_speed;
171 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172 * and HALF_DUPLEX != DUPLEX_HALF */
174 if (adapter->link_duplex == FULL_DUPLEX)
175 ecmd->duplex = DUPLEX_FULL;
176 else
177 ecmd->duplex = DUPLEX_HALF;
178 } else {
179 ecmd->speed = -1;
180 ecmd->duplex = -1;
183 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
184 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185 return 0;
188 static int e1000_set_settings(struct net_device *netdev,
189 struct ethtool_cmd *ecmd)
191 struct e1000_adapter *adapter = netdev_priv(netdev);
192 struct e1000_hw *hw = &adapter->hw;
194 /* When SoL/IDER sessions are active, autoneg/speed/duplex
195 * cannot be changed */
196 if (e1000_check_phy_reset_block(hw)) {
197 DPRINTK(DRV, ERR, "Cannot change link characteristics "
198 "when SoL/IDER is active.\n");
199 return -EINVAL;
202 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
203 msleep(1);
205 if (ecmd->autoneg == AUTONEG_ENABLE) {
206 hw->autoneg = 1;
207 if (hw->media_type == e1000_media_type_fiber)
208 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
209 ADVERTISED_FIBRE |
210 ADVERTISED_Autoneg;
211 else
212 hw->autoneg_advertised = ecmd->advertising |
213 ADVERTISED_TP |
214 ADVERTISED_Autoneg;
215 ecmd->advertising = hw->autoneg_advertised;
216 } else
217 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
218 clear_bit(__E1000_RESETTING, &adapter->flags);
219 return -EINVAL;
222 /* reset the link */
224 if (netif_running(adapter->netdev)) {
225 e1000_down(adapter);
226 e1000_up(adapter);
227 } else
228 e1000_reset(adapter);
230 clear_bit(__E1000_RESETTING, &adapter->flags);
231 return 0;
234 static void e1000_get_pauseparam(struct net_device *netdev,
235 struct ethtool_pauseparam *pause)
237 struct e1000_adapter *adapter = netdev_priv(netdev);
238 struct e1000_hw *hw = &adapter->hw;
240 pause->autoneg =
241 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
243 if (hw->fc == E1000_FC_RX_PAUSE)
244 pause->rx_pause = 1;
245 else if (hw->fc == E1000_FC_TX_PAUSE)
246 pause->tx_pause = 1;
247 else if (hw->fc == E1000_FC_FULL) {
248 pause->rx_pause = 1;
249 pause->tx_pause = 1;
253 static int e1000_set_pauseparam(struct net_device *netdev,
254 struct ethtool_pauseparam *pause)
256 struct e1000_adapter *adapter = netdev_priv(netdev);
257 struct e1000_hw *hw = &adapter->hw;
258 int retval = 0;
260 adapter->fc_autoneg = pause->autoneg;
262 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
263 msleep(1);
265 if (pause->rx_pause && pause->tx_pause)
266 hw->fc = E1000_FC_FULL;
267 else if (pause->rx_pause && !pause->tx_pause)
268 hw->fc = E1000_FC_RX_PAUSE;
269 else if (!pause->rx_pause && pause->tx_pause)
270 hw->fc = E1000_FC_TX_PAUSE;
271 else if (!pause->rx_pause && !pause->tx_pause)
272 hw->fc = E1000_FC_NONE;
274 hw->original_fc = hw->fc;
276 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
277 if (netif_running(adapter->netdev)) {
278 e1000_down(adapter);
279 e1000_up(adapter);
280 } else
281 e1000_reset(adapter);
282 } else
283 retval = ((hw->media_type == e1000_media_type_fiber) ?
284 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
286 clear_bit(__E1000_RESETTING, &adapter->flags);
287 return retval;
290 static u32 e1000_get_rx_csum(struct net_device *netdev)
292 struct e1000_adapter *adapter = netdev_priv(netdev);
293 return adapter->rx_csum;
296 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
298 struct e1000_adapter *adapter = netdev_priv(netdev);
299 adapter->rx_csum = data;
301 if (netif_running(netdev))
302 e1000_reinit_locked(adapter);
303 else
304 e1000_reset(adapter);
305 return 0;
308 static u32 e1000_get_tx_csum(struct net_device *netdev)
310 return (netdev->features & NETIF_F_HW_CSUM) != 0;
313 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
315 struct e1000_adapter *adapter = netdev_priv(netdev);
317 if (adapter->hw.mac_type < e1000_82543) {
318 if (!data)
319 return -EINVAL;
320 return 0;
323 if (data)
324 netdev->features |= NETIF_F_HW_CSUM;
325 else
326 netdev->features &= ~NETIF_F_HW_CSUM;
328 return 0;
331 static int e1000_set_tso(struct net_device *netdev, u32 data)
333 struct e1000_adapter *adapter = netdev_priv(netdev);
334 if ((adapter->hw.mac_type < e1000_82544) ||
335 (adapter->hw.mac_type == e1000_82547))
336 return data ? -EINVAL : 0;
338 if (data)
339 netdev->features |= NETIF_F_TSO;
340 else
341 netdev->features &= ~NETIF_F_TSO;
343 if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
344 netdev->features |= NETIF_F_TSO6;
345 else
346 netdev->features &= ~NETIF_F_TSO6;
348 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
349 adapter->tso_force = true;
350 return 0;
353 static u32 e1000_get_msglevel(struct net_device *netdev)
355 struct e1000_adapter *adapter = netdev_priv(netdev);
356 return adapter->msg_enable;
359 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
361 struct e1000_adapter *adapter = netdev_priv(netdev);
362 adapter->msg_enable = data;
365 static int e1000_get_regs_len(struct net_device *netdev)
367 #define E1000_REGS_LEN 32
368 return E1000_REGS_LEN * sizeof(u32);
371 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
372 void *p)
374 struct e1000_adapter *adapter = netdev_priv(netdev);
375 struct e1000_hw *hw = &adapter->hw;
376 u32 *regs_buff = p;
377 u16 phy_data;
379 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
381 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
383 regs_buff[0] = E1000_READ_REG(hw, CTRL);
384 regs_buff[1] = E1000_READ_REG(hw, STATUS);
386 regs_buff[2] = E1000_READ_REG(hw, RCTL);
387 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
388 regs_buff[4] = E1000_READ_REG(hw, RDH);
389 regs_buff[5] = E1000_READ_REG(hw, RDT);
390 regs_buff[6] = E1000_READ_REG(hw, RDTR);
392 regs_buff[7] = E1000_READ_REG(hw, TCTL);
393 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
394 regs_buff[9] = E1000_READ_REG(hw, TDH);
395 regs_buff[10] = E1000_READ_REG(hw, TDT);
396 regs_buff[11] = E1000_READ_REG(hw, TIDV);
398 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
399 if (hw->phy_type == e1000_phy_igp) {
400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401 IGP01E1000_PHY_AGC_A);
402 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
403 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404 regs_buff[13] = (u32)phy_data; /* cable length */
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406 IGP01E1000_PHY_AGC_B);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409 regs_buff[14] = (u32)phy_data; /* cable length */
410 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411 IGP01E1000_PHY_AGC_C);
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414 regs_buff[15] = (u32)phy_data; /* cable length */
415 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416 IGP01E1000_PHY_AGC_D);
417 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
418 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419 regs_buff[16] = (u32)phy_data; /* cable length */
420 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
421 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
422 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
423 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424 regs_buff[18] = (u32)phy_data; /* cable polarity */
425 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
426 IGP01E1000_PHY_PCS_INIT_REG);
427 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
428 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429 regs_buff[19] = (u32)phy_data; /* cable polarity */
430 regs_buff[20] = 0; /* polarity correction enabled (always) */
431 regs_buff[22] = 0; /* phy receive errors (unavailable) */
432 regs_buff[23] = regs_buff[18]; /* mdix mode */
433 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
434 } else {
435 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
436 regs_buff[13] = (u32)phy_data; /* cable length */
437 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
438 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
441 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
442 regs_buff[18] = regs_buff[13]; /* cable polarity */
443 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 regs_buff[20] = regs_buff[17]; /* polarity correction */
445 /* phy receive errors */
446 regs_buff[22] = adapter->phy_stats.receive_errors;
447 regs_buff[23] = regs_buff[13]; /* mdix mode */
449 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
450 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
451 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
452 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
453 if (hw->mac_type >= e1000_82540 &&
454 hw->mac_type < e1000_82571 &&
455 hw->media_type == e1000_media_type_copper) {
456 regs_buff[26] = E1000_READ_REG(hw, MANC);
460 static int e1000_get_eeprom_len(struct net_device *netdev)
462 struct e1000_adapter *adapter = netdev_priv(netdev);
463 return adapter->hw.eeprom.word_size * 2;
466 static int e1000_get_eeprom(struct net_device *netdev,
467 struct ethtool_eeprom *eeprom, u8 *bytes)
469 struct e1000_adapter *adapter = netdev_priv(netdev);
470 struct e1000_hw *hw = &adapter->hw;
471 u16 *eeprom_buff;
472 int first_word, last_word;
473 int ret_val = 0;
474 u16 i;
476 if (eeprom->len == 0)
477 return -EINVAL;
479 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
481 first_word = eeprom->offset >> 1;
482 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
484 eeprom_buff = kmalloc(sizeof(u16) *
485 (last_word - first_word + 1), GFP_KERNEL);
486 if (!eeprom_buff)
487 return -ENOMEM;
489 if (hw->eeprom.type == e1000_eeprom_spi)
490 ret_val = e1000_read_eeprom(hw, first_word,
491 last_word - first_word + 1,
492 eeprom_buff);
493 else {
494 for (i = 0; i < last_word - first_word + 1; i++)
495 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
496 &eeprom_buff[i])))
497 break;
500 /* Device's eeprom is always little-endian, word addressable */
501 for (i = 0; i < last_word - first_word + 1; i++)
502 le16_to_cpus(&eeprom_buff[i]);
504 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
505 eeprom->len);
506 kfree(eeprom_buff);
508 return ret_val;
511 static int e1000_set_eeprom(struct net_device *netdev,
512 struct ethtool_eeprom *eeprom, u8 *bytes)
514 struct e1000_adapter *adapter = netdev_priv(netdev);
515 struct e1000_hw *hw = &adapter->hw;
516 u16 *eeprom_buff;
517 void *ptr;
518 int max_len, first_word, last_word, ret_val = 0;
519 u16 i;
521 if (eeprom->len == 0)
522 return -EOPNOTSUPP;
524 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
525 return -EFAULT;
527 max_len = hw->eeprom.word_size * 2;
529 first_word = eeprom->offset >> 1;
530 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
531 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
532 if (!eeprom_buff)
533 return -ENOMEM;
535 ptr = (void *)eeprom_buff;
537 if (eeprom->offset & 1) {
538 /* need read/modify/write of first changed EEPROM word */
539 /* only the second byte of the word is being modified */
540 ret_val = e1000_read_eeprom(hw, first_word, 1,
541 &eeprom_buff[0]);
542 ptr++;
544 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
545 /* need read/modify/write of last changed EEPROM word */
546 /* only the first byte of the word is being modified */
547 ret_val = e1000_read_eeprom(hw, last_word, 1,
548 &eeprom_buff[last_word - first_word]);
551 /* Device's eeprom is always little-endian, word addressable */
552 for (i = 0; i < last_word - first_word + 1; i++)
553 le16_to_cpus(&eeprom_buff[i]);
555 memcpy(ptr, bytes, eeprom->len);
557 for (i = 0; i < last_word - first_word + 1; i++)
558 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
560 ret_val = e1000_write_eeprom(hw, first_word,
561 last_word - first_word + 1, eeprom_buff);
563 /* Update the checksum over the first part of the EEPROM if needed
564 * and flush shadow RAM for 82573 conrollers */
565 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
566 (hw->mac_type == e1000_82573)))
567 e1000_update_eeprom_checksum(hw);
569 kfree(eeprom_buff);
570 return ret_val;
573 static void e1000_get_drvinfo(struct net_device *netdev,
574 struct ethtool_drvinfo *drvinfo)
576 struct e1000_adapter *adapter = netdev_priv(netdev);
577 char firmware_version[32];
578 u16 eeprom_data;
580 strncpy(drvinfo->driver, e1000_driver_name, 32);
581 strncpy(drvinfo->version, e1000_driver_version, 32);
583 /* EEPROM image version # is reported as firmware version # for
584 * 8257{1|2|3} controllers */
585 e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
586 switch (adapter->hw.mac_type) {
587 case e1000_82571:
588 case e1000_82572:
589 case e1000_82573:
590 case e1000_80003es2lan:
591 case e1000_ich8lan:
592 sprintf(firmware_version, "%d.%d-%d",
593 (eeprom_data & 0xF000) >> 12,
594 (eeprom_data & 0x0FF0) >> 4,
595 eeprom_data & 0x000F);
596 break;
597 default:
598 sprintf(firmware_version, "N/A");
601 strncpy(drvinfo->fw_version, firmware_version, 32);
602 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603 drvinfo->regdump_len = e1000_get_regs_len(netdev);
604 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
607 static void e1000_get_ringparam(struct net_device *netdev,
608 struct ethtool_ringparam *ring)
610 struct e1000_adapter *adapter = netdev_priv(netdev);
611 e1000_mac_type mac_type = adapter->hw.mac_type;
612 struct e1000_tx_ring *txdr = adapter->tx_ring;
613 struct e1000_rx_ring *rxdr = adapter->rx_ring;
615 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
616 E1000_MAX_82544_RXD;
617 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
618 E1000_MAX_82544_TXD;
619 ring->rx_mini_max_pending = 0;
620 ring->rx_jumbo_max_pending = 0;
621 ring->rx_pending = rxdr->count;
622 ring->tx_pending = txdr->count;
623 ring->rx_mini_pending = 0;
624 ring->rx_jumbo_pending = 0;
627 static int e1000_set_ringparam(struct net_device *netdev,
628 struct ethtool_ringparam *ring)
630 struct e1000_adapter *adapter = netdev_priv(netdev);
631 e1000_mac_type mac_type = adapter->hw.mac_type;
632 struct e1000_tx_ring *txdr, *tx_old;
633 struct e1000_rx_ring *rxdr, *rx_old;
634 int i, err;
636 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
637 return -EINVAL;
639 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
640 msleep(1);
642 if (netif_running(adapter->netdev))
643 e1000_down(adapter);
645 tx_old = adapter->tx_ring;
646 rx_old = adapter->rx_ring;
648 err = -ENOMEM;
649 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
650 if (!txdr)
651 goto err_alloc_tx;
653 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
654 if (!rxdr)
655 goto err_alloc_rx;
657 adapter->tx_ring = txdr;
658 adapter->rx_ring = rxdr;
660 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
661 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
662 E1000_MAX_RXD : E1000_MAX_82544_RXD));
663 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
665 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
666 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
667 E1000_MAX_TXD : E1000_MAX_82544_TXD));
668 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
670 for (i = 0; i < adapter->num_tx_queues; i++)
671 txdr[i].count = txdr->count;
672 for (i = 0; i < adapter->num_rx_queues; i++)
673 rxdr[i].count = rxdr->count;
675 if (netif_running(adapter->netdev)) {
676 /* Try to get new resources before deleting old */
677 if ((err = e1000_setup_all_rx_resources(adapter)))
678 goto err_setup_rx;
679 if ((err = e1000_setup_all_tx_resources(adapter)))
680 goto err_setup_tx;
682 /* save the new, restore the old in order to free it,
683 * then restore the new back again */
685 adapter->rx_ring = rx_old;
686 adapter->tx_ring = tx_old;
687 e1000_free_all_rx_resources(adapter);
688 e1000_free_all_tx_resources(adapter);
689 kfree(tx_old);
690 kfree(rx_old);
691 adapter->rx_ring = rxdr;
692 adapter->tx_ring = txdr;
693 if ((err = e1000_up(adapter)))
694 goto err_setup;
697 clear_bit(__E1000_RESETTING, &adapter->flags);
698 return 0;
699 err_setup_tx:
700 e1000_free_all_rx_resources(adapter);
701 err_setup_rx:
702 adapter->rx_ring = rx_old;
703 adapter->tx_ring = tx_old;
704 kfree(rxdr);
705 err_alloc_rx:
706 kfree(txdr);
707 err_alloc_tx:
708 e1000_up(adapter);
709 err_setup:
710 clear_bit(__E1000_RESETTING, &adapter->flags);
711 return err;
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
715 u32 mask, u32 write)
717 static const u32 test[] =
718 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
719 u8 __iomem *address = adapter->hw.hw_addr + reg;
720 u32 read;
721 int i;
723 for (i = 0; i < ARRAY_SIZE(test); i++) {
724 writel(write & test[i], address);
725 read = readl(address);
726 if (read != (write & test[i] & mask)) {
727 DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
728 "got 0x%08X expected 0x%08X\n",
729 reg, read, (write & test[i] & mask));
730 *data = reg;
731 return true;
734 return false;
737 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
738 u32 mask, u32 write)
740 u8 __iomem *address = adapter->hw.hw_addr + reg;
741 u32 read;
743 writel(write & mask, address);
744 read = readl(address);
745 if ((read & mask) != (write & mask)) {
746 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
747 "got 0x%08X expected 0x%08X\n",
748 reg, (read & mask), (write & mask));
749 *data = reg;
750 return true;
752 return false;
755 #define REG_PATTERN_TEST(reg, mask, write) \
756 do { \
757 if (reg_pattern_test(adapter, data, \
758 (adapter->hw.mac_type >= e1000_82543) \
759 ? E1000_##reg : E1000_82542_##reg, \
760 mask, write)) \
761 return 1; \
762 } while (0)
764 #define REG_SET_AND_CHECK(reg, mask, write) \
765 do { \
766 if (reg_set_and_check(adapter, data, \
767 (adapter->hw.mac_type >= e1000_82543) \
768 ? E1000_##reg : E1000_82542_##reg, \
769 mask, write)) \
770 return 1; \
771 } while (0)
773 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
775 u32 value, before, after;
776 u32 i, toggle;
778 /* The status register is Read Only, so a write should fail.
779 * Some bits that get toggled are ignored.
781 switch (adapter->hw.mac_type) {
782 /* there are several bits on newer hardware that are r/w */
783 case e1000_82571:
784 case e1000_82572:
785 case e1000_80003es2lan:
786 toggle = 0x7FFFF3FF;
787 break;
788 case e1000_82573:
789 case e1000_ich8lan:
790 toggle = 0x7FFFF033;
791 break;
792 default:
793 toggle = 0xFFFFF833;
794 break;
797 before = E1000_READ_REG(&adapter->hw, STATUS);
798 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
799 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
800 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
801 if (value != after) {
802 DPRINTK(DRV, ERR, "failed STATUS register test got: "
803 "0x%08X expected: 0x%08X\n", after, value);
804 *data = 1;
805 return 1;
807 /* restore previous status */
808 E1000_WRITE_REG(&adapter->hw, STATUS, before);
810 if (adapter->hw.mac_type != e1000_ich8lan) {
811 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
813 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
814 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
818 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
819 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
820 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
821 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
823 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
824 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
825 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
828 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
830 before = (adapter->hw.mac_type == e1000_ich8lan ?
831 0x06C3B33E : 0x06DFB3FE);
832 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
833 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
835 if (adapter->hw.mac_type >= e1000_82543) {
837 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
838 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
839 if (adapter->hw.mac_type != e1000_ich8lan)
840 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
841 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
842 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
843 value = (adapter->hw.mac_type == e1000_ich8lan ?
844 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
845 for (i = 0; i < value; i++) {
846 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
847 0xFFFFFFFF);
850 } else {
852 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
853 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
854 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
855 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
859 value = (adapter->hw.mac_type == e1000_ich8lan ?
860 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
861 for (i = 0; i < value; i++)
862 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
864 *data = 0;
865 return 0;
868 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
870 u16 temp;
871 u16 checksum = 0;
872 u16 i;
874 *data = 0;
875 /* Read and add up the contents of the EEPROM */
876 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
877 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
878 *data = 1;
879 break;
881 checksum += temp;
884 /* If Checksum is not Correct return error else test passed */
885 if ((checksum != (u16) EEPROM_SUM) && !(*data))
886 *data = 2;
888 return *data;
891 static irqreturn_t e1000_test_intr(int irq, void *data)
893 struct net_device *netdev = (struct net_device *) data;
894 struct e1000_adapter *adapter = netdev_priv(netdev);
896 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
898 return IRQ_HANDLED;
901 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
903 struct net_device *netdev = adapter->netdev;
904 u32 mask, i = 0;
905 bool shared_int = true;
906 u32 irq = adapter->pdev->irq;
908 *data = 0;
910 /* NOTE: we don't test MSI interrupts here, yet */
911 /* Hook up test interrupt handler just for this test */
912 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
913 netdev))
914 shared_int = false;
915 else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
916 netdev->name, netdev)) {
917 *data = 1;
918 return -1;
920 DPRINTK(HW, INFO, "testing %s interrupt\n",
921 (shared_int ? "shared" : "unshared"));
923 /* Disable all the interrupts */
924 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
925 msleep(10);
927 /* Test each interrupt */
928 for (; i < 10; i++) {
930 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
931 continue;
933 /* Interrupt to test */
934 mask = 1 << i;
936 if (!shared_int) {
937 /* Disable the interrupt to be reported in
938 * the cause register and then force the same
939 * interrupt and see if one gets posted. If
940 * an interrupt was posted to the bus, the
941 * test failed.
943 adapter->test_icr = 0;
944 E1000_WRITE_REG(&adapter->hw, IMC, mask);
945 E1000_WRITE_REG(&adapter->hw, ICS, mask);
946 msleep(10);
948 if (adapter->test_icr & mask) {
949 *data = 3;
950 break;
954 /* Enable the interrupt to be reported in
955 * the cause register and then force the same
956 * interrupt and see if one gets posted. If
957 * an interrupt was not posted to the bus, the
958 * test failed.
960 adapter->test_icr = 0;
961 E1000_WRITE_REG(&adapter->hw, IMS, mask);
962 E1000_WRITE_REG(&adapter->hw, ICS, mask);
963 msleep(10);
965 if (!(adapter->test_icr & mask)) {
966 *data = 4;
967 break;
970 if (!shared_int) {
971 /* Disable the other interrupts to be reported in
972 * the cause register and then force the other
973 * interrupts and see if any get posted. If
974 * an interrupt was posted to the bus, the
975 * test failed.
977 adapter->test_icr = 0;
978 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
979 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
980 msleep(10);
982 if (adapter->test_icr) {
983 *data = 5;
984 break;
989 /* Disable all the interrupts */
990 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
991 msleep(10);
993 /* Unhook test interrupt handler */
994 free_irq(irq, netdev);
996 return *data;
999 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1001 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1002 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1003 struct pci_dev *pdev = adapter->pdev;
1004 int i;
1006 if (txdr->desc && txdr->buffer_info) {
1007 for (i = 0; i < txdr->count; i++) {
1008 if (txdr->buffer_info[i].dma)
1009 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1010 txdr->buffer_info[i].length,
1011 PCI_DMA_TODEVICE);
1012 if (txdr->buffer_info[i].skb)
1013 dev_kfree_skb(txdr->buffer_info[i].skb);
1017 if (rxdr->desc && rxdr->buffer_info) {
1018 for (i = 0; i < rxdr->count; i++) {
1019 if (rxdr->buffer_info[i].dma)
1020 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1021 rxdr->buffer_info[i].length,
1022 PCI_DMA_FROMDEVICE);
1023 if (rxdr->buffer_info[i].skb)
1024 dev_kfree_skb(rxdr->buffer_info[i].skb);
1028 if (txdr->desc) {
1029 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1030 txdr->desc = NULL;
1032 if (rxdr->desc) {
1033 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1034 rxdr->desc = NULL;
1037 kfree(txdr->buffer_info);
1038 txdr->buffer_info = NULL;
1039 kfree(rxdr->buffer_info);
1040 rxdr->buffer_info = NULL;
1042 return;
1045 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1047 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1048 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1049 struct pci_dev *pdev = adapter->pdev;
1050 u32 rctl;
1051 int i, ret_val;
1053 /* Setup Tx descriptor ring and Tx buffers */
1055 if (!txdr->count)
1056 txdr->count = E1000_DEFAULT_TXD;
1058 if (!(txdr->buffer_info = kcalloc(txdr->count,
1059 sizeof(struct e1000_buffer),
1060 GFP_KERNEL))) {
1061 ret_val = 1;
1062 goto err_nomem;
1065 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1066 txdr->size = ALIGN(txdr->size, 4096);
1067 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1068 &txdr->dma))) {
1069 ret_val = 2;
1070 goto err_nomem;
1072 memset(txdr->desc, 0, txdr->size);
1073 txdr->next_to_use = txdr->next_to_clean = 0;
1075 E1000_WRITE_REG(&adapter->hw, TDBAL,
1076 ((u64) txdr->dma & 0x00000000FFFFFFFF));
1077 E1000_WRITE_REG(&adapter->hw, TDBAH, ((u64) txdr->dma >> 32));
1078 E1000_WRITE_REG(&adapter->hw, TDLEN,
1079 txdr->count * sizeof(struct e1000_tx_desc));
1080 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1081 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1082 E1000_WRITE_REG(&adapter->hw, TCTL,
1083 E1000_TCTL_PSP | E1000_TCTL_EN |
1084 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1085 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1087 for (i = 0; i < txdr->count; i++) {
1088 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1089 struct sk_buff *skb;
1090 unsigned int size = 1024;
1092 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1093 ret_val = 3;
1094 goto err_nomem;
1096 skb_put(skb, size);
1097 txdr->buffer_info[i].skb = skb;
1098 txdr->buffer_info[i].length = skb->len;
1099 txdr->buffer_info[i].dma =
1100 pci_map_single(pdev, skb->data, skb->len,
1101 PCI_DMA_TODEVICE);
1102 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1103 tx_desc->lower.data = cpu_to_le32(skb->len);
1104 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1105 E1000_TXD_CMD_IFCS |
1106 E1000_TXD_CMD_RPS);
1107 tx_desc->upper.data = 0;
1110 /* Setup Rx descriptor ring and Rx buffers */
1112 if (!rxdr->count)
1113 rxdr->count = E1000_DEFAULT_RXD;
1115 if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1116 sizeof(struct e1000_buffer),
1117 GFP_KERNEL))) {
1118 ret_val = 4;
1119 goto err_nomem;
1122 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1123 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1124 ret_val = 5;
1125 goto err_nomem;
1127 memset(rxdr->desc, 0, rxdr->size);
1128 rxdr->next_to_use = rxdr->next_to_clean = 0;
1130 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1131 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1132 E1000_WRITE_REG(&adapter->hw, RDBAL,
1133 ((u64) rxdr->dma & 0xFFFFFFFF));
1134 E1000_WRITE_REG(&adapter->hw, RDBAH, ((u64) rxdr->dma >> 32));
1135 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1136 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1137 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1138 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1139 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1140 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1141 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1143 for (i = 0; i < rxdr->count; i++) {
1144 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1145 struct sk_buff *skb;
1147 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1148 GFP_KERNEL))) {
1149 ret_val = 6;
1150 goto err_nomem;
1152 skb_reserve(skb, NET_IP_ALIGN);
1153 rxdr->buffer_info[i].skb = skb;
1154 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1155 rxdr->buffer_info[i].dma =
1156 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1157 PCI_DMA_FROMDEVICE);
1158 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1159 memset(skb->data, 0x00, skb->len);
1162 return 0;
1164 err_nomem:
1165 e1000_free_desc_rings(adapter);
1166 return ret_val;
1169 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1171 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1173 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1174 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1175 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1178 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1180 u16 phy_reg;
1182 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1183 * Extended PHY Specific Control Register to 25MHz clock. This
1184 * value defaults back to a 2.5MHz clock when the PHY is reset.
1186 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1187 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1188 e1000_write_phy_reg(&adapter->hw,
1189 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1191 /* In addition, because of the s/w reset above, we need to enable
1192 * CRS on TX. This must be set for both full and half duplex
1193 * operation.
1195 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1196 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1197 e1000_write_phy_reg(&adapter->hw,
1198 M88E1000_PHY_SPEC_CTRL, phy_reg);
1201 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1203 u32 ctrl_reg;
1204 u16 phy_reg;
1206 /* Setup the Device Control Register for PHY loopback test. */
1208 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1209 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1210 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1211 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1212 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1213 E1000_CTRL_FD); /* Force Duplex to FULL */
1215 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1217 /* Read the PHY Specific Control Register (0x10) */
1218 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1220 /* Clear Auto-Crossover bits in PHY Specific Control Register
1221 * (bits 6:5).
1223 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1224 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1226 /* Perform software reset on the PHY */
1227 e1000_phy_reset(&adapter->hw);
1229 /* Have to setup TX_CLK and TX_CRS after software reset */
1230 e1000_phy_reset_clk_and_crs(adapter);
1232 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1234 /* Wait for reset to complete. */
1235 udelay(500);
1237 /* Have to setup TX_CLK and TX_CRS after software reset */
1238 e1000_phy_reset_clk_and_crs(adapter);
1240 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1241 e1000_phy_disable_receiver(adapter);
1243 /* Set the loopback bit in the PHY control register. */
1244 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1245 phy_reg |= MII_CR_LOOPBACK;
1246 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1248 /* Setup TX_CLK and TX_CRS one more time. */
1249 e1000_phy_reset_clk_and_crs(adapter);
1251 /* Check Phy Configuration */
1252 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1253 if (phy_reg != 0x4100)
1254 return 9;
1256 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1257 if (phy_reg != 0x0070)
1258 return 10;
1260 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1261 if (phy_reg != 0x001A)
1262 return 11;
1264 return 0;
1267 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1269 u32 ctrl_reg = 0;
1270 u32 stat_reg = 0;
1272 adapter->hw.autoneg = false;
1274 if (adapter->hw.phy_type == e1000_phy_m88) {
1275 /* Auto-MDI/MDIX Off */
1276 e1000_write_phy_reg(&adapter->hw,
1277 M88E1000_PHY_SPEC_CTRL, 0x0808);
1278 /* reset to update Auto-MDI/MDIX */
1279 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1280 /* autoneg off */
1281 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1282 } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1283 e1000_write_phy_reg(&adapter->hw,
1284 GG82563_PHY_KMRN_MODE_CTRL,
1285 0x1CC);
1287 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1289 if (adapter->hw.phy_type == e1000_phy_ife) {
1290 /* force 100, set loopback */
1291 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1293 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1295 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1296 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1297 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1298 E1000_CTRL_FD); /* Force Duplex to FULL */
1299 } else {
1300 /* force 1000, set loopback */
1301 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1303 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1305 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1306 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1307 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1308 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1309 E1000_CTRL_FD); /* Force Duplex to FULL */
1312 if (adapter->hw.media_type == e1000_media_type_copper &&
1313 adapter->hw.phy_type == e1000_phy_m88)
1314 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1315 else {
1316 /* Set the ILOS bit on the fiber Nic is half
1317 * duplex link is detected. */
1318 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1319 if ((stat_reg & E1000_STATUS_FD) == 0)
1320 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1323 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1325 /* Disable the receiver on the PHY so when a cable is plugged in, the
1326 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1328 if (adapter->hw.phy_type == e1000_phy_m88)
1329 e1000_phy_disable_receiver(adapter);
1331 udelay(500);
1333 return 0;
1336 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1338 u16 phy_reg = 0;
1339 u16 count = 0;
1341 switch (adapter->hw.mac_type) {
1342 case e1000_82543:
1343 if (adapter->hw.media_type == e1000_media_type_copper) {
1344 /* Attempt to setup Loopback mode on Non-integrated PHY.
1345 * Some PHY registers get corrupted at random, so
1346 * attempt this 10 times.
1348 while (e1000_nonintegrated_phy_loopback(adapter) &&
1349 count++ < 10);
1350 if (count < 11)
1351 return 0;
1353 break;
1355 case e1000_82544:
1356 case e1000_82540:
1357 case e1000_82545:
1358 case e1000_82545_rev_3:
1359 case e1000_82546:
1360 case e1000_82546_rev_3:
1361 case e1000_82541:
1362 case e1000_82541_rev_2:
1363 case e1000_82547:
1364 case e1000_82547_rev_2:
1365 case e1000_82571:
1366 case e1000_82572:
1367 case e1000_82573:
1368 case e1000_80003es2lan:
1369 case e1000_ich8lan:
1370 return e1000_integrated_phy_loopback(adapter);
1371 break;
1373 default:
1374 /* Default PHY loopback work is to read the MII
1375 * control register and assert bit 14 (loopback mode).
1377 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1378 phy_reg |= MII_CR_LOOPBACK;
1379 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1380 return 0;
1381 break;
1384 return 8;
1387 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1389 struct e1000_hw *hw = &adapter->hw;
1390 u32 rctl;
1392 if (hw->media_type == e1000_media_type_fiber ||
1393 hw->media_type == e1000_media_type_internal_serdes) {
1394 switch (hw->mac_type) {
1395 case e1000_82545:
1396 case e1000_82546:
1397 case e1000_82545_rev_3:
1398 case e1000_82546_rev_3:
1399 return e1000_set_phy_loopback(adapter);
1400 break;
1401 case e1000_82571:
1402 case e1000_82572:
1403 #define E1000_SERDES_LB_ON 0x410
1404 e1000_set_phy_loopback(adapter);
1405 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1406 msleep(10);
1407 return 0;
1408 break;
1409 default:
1410 rctl = E1000_READ_REG(hw, RCTL);
1411 rctl |= E1000_RCTL_LBM_TCVR;
1412 E1000_WRITE_REG(hw, RCTL, rctl);
1413 return 0;
1415 } else if (hw->media_type == e1000_media_type_copper)
1416 return e1000_set_phy_loopback(adapter);
1418 return 7;
1421 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1423 struct e1000_hw *hw = &adapter->hw;
1424 u32 rctl;
1425 u16 phy_reg;
1427 rctl = E1000_READ_REG(hw, RCTL);
1428 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1429 E1000_WRITE_REG(hw, RCTL, rctl);
1431 switch (hw->mac_type) {
1432 case e1000_82571:
1433 case e1000_82572:
1434 if (hw->media_type == e1000_media_type_fiber ||
1435 hw->media_type == e1000_media_type_internal_serdes) {
1436 #define E1000_SERDES_LB_OFF 0x400
1437 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1438 msleep(10);
1439 break;
1441 /* Fall Through */
1442 case e1000_82545:
1443 case e1000_82546:
1444 case e1000_82545_rev_3:
1445 case e1000_82546_rev_3:
1446 default:
1447 hw->autoneg = true;
1448 if (hw->phy_type == e1000_phy_gg82563)
1449 e1000_write_phy_reg(hw,
1450 GG82563_PHY_KMRN_MODE_CTRL,
1451 0x180);
1452 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1453 if (phy_reg & MII_CR_LOOPBACK) {
1454 phy_reg &= ~MII_CR_LOOPBACK;
1455 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1456 e1000_phy_reset(hw);
1458 break;
1462 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1463 unsigned int frame_size)
1465 memset(skb->data, 0xFF, frame_size);
1466 frame_size &= ~1;
1467 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1468 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1469 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1472 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1473 unsigned int frame_size)
1475 frame_size &= ~1;
1476 if (*(skb->data + 3) == 0xFF) {
1477 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1478 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1479 return 0;
1482 return 13;
1485 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1487 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1488 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1489 struct pci_dev *pdev = adapter->pdev;
1490 int i, j, k, l, lc, good_cnt, ret_val=0;
1491 unsigned long time;
1493 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1495 /* Calculate the loop count based on the largest descriptor ring
1496 * The idea is to wrap the largest ring a number of times using 64
1497 * send/receive pairs during each loop
1500 if (rxdr->count <= txdr->count)
1501 lc = ((txdr->count / 64) * 2) + 1;
1502 else
1503 lc = ((rxdr->count / 64) * 2) + 1;
1505 k = l = 0;
1506 for (j = 0; j <= lc; j++) { /* loop count loop */
1507 for (i = 0; i < 64; i++) { /* send the packets */
1508 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1509 1024);
1510 pci_dma_sync_single_for_device(pdev,
1511 txdr->buffer_info[k].dma,
1512 txdr->buffer_info[k].length,
1513 PCI_DMA_TODEVICE);
1514 if (unlikely(++k == txdr->count)) k = 0;
1516 E1000_WRITE_REG(&adapter->hw, TDT, k);
1517 msleep(200);
1518 time = jiffies; /* set the start time for the receive */
1519 good_cnt = 0;
1520 do { /* receive the sent packets */
1521 pci_dma_sync_single_for_cpu(pdev,
1522 rxdr->buffer_info[l].dma,
1523 rxdr->buffer_info[l].length,
1524 PCI_DMA_FROMDEVICE);
1526 ret_val = e1000_check_lbtest_frame(
1527 rxdr->buffer_info[l].skb,
1528 1024);
1529 if (!ret_val)
1530 good_cnt++;
1531 if (unlikely(++l == rxdr->count)) l = 0;
1532 /* time + 20 msecs (200 msecs on 2.4) is more than
1533 * enough time to complete the receives, if it's
1534 * exceeded, break and error off
1536 } while (good_cnt < 64 && jiffies < (time + 20));
1537 if (good_cnt != 64) {
1538 ret_val = 13; /* ret_val is the same as mis-compare */
1539 break;
1541 if (jiffies >= (time + 2)) {
1542 ret_val = 14; /* error code for time out error */
1543 break;
1545 } /* end loop count loop */
1546 return ret_val;
1549 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1551 /* PHY loopback cannot be performed if SoL/IDER
1552 * sessions are active */
1553 if (e1000_check_phy_reset_block(&adapter->hw)) {
1554 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1555 "when SoL/IDER is active.\n");
1556 *data = 0;
1557 goto out;
1560 if ((*data = e1000_setup_desc_rings(adapter)))
1561 goto out;
1562 if ((*data = e1000_setup_loopback_test(adapter)))
1563 goto err_loopback;
1564 *data = e1000_run_loopback_test(adapter);
1565 e1000_loopback_cleanup(adapter);
1567 err_loopback:
1568 e1000_free_desc_rings(adapter);
1569 out:
1570 return *data;
1573 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1575 *data = 0;
1576 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1577 int i = 0;
1578 adapter->hw.serdes_link_down = true;
1580 /* On some blade server designs, link establishment
1581 * could take as long as 2-3 minutes */
1582 do {
1583 e1000_check_for_link(&adapter->hw);
1584 if (!adapter->hw.serdes_link_down)
1585 return *data;
1586 msleep(20);
1587 } while (i++ < 3750);
1589 *data = 1;
1590 } else {
1591 e1000_check_for_link(&adapter->hw);
1592 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1593 msleep(4000);
1595 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1596 *data = 1;
1599 return *data;
1602 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1604 switch (sset) {
1605 case ETH_SS_TEST:
1606 return E1000_TEST_LEN;
1607 case ETH_SS_STATS:
1608 return E1000_STATS_LEN;
1609 default:
1610 return -EOPNOTSUPP;
1614 static void e1000_diag_test(struct net_device *netdev,
1615 struct ethtool_test *eth_test, u64 *data)
1617 struct e1000_adapter *adapter = netdev_priv(netdev);
1618 bool if_running = netif_running(netdev);
1620 set_bit(__E1000_TESTING, &adapter->flags);
1621 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1622 /* Offline tests */
1624 /* save speed, duplex, autoneg settings */
1625 u16 autoneg_advertised = adapter->hw.autoneg_advertised;
1626 u8 forced_speed_duplex = adapter->hw.forced_speed_duplex;
1627 u8 autoneg = adapter->hw.autoneg;
1629 DPRINTK(HW, INFO, "offline testing starting\n");
1631 /* Link test performed before hardware reset so autoneg doesn't
1632 * interfere with test result */
1633 if (e1000_link_test(adapter, &data[4]))
1634 eth_test->flags |= ETH_TEST_FL_FAILED;
1636 if (if_running)
1637 /* indicate we're in test mode */
1638 dev_close(netdev);
1639 else
1640 e1000_reset(adapter);
1642 if (e1000_reg_test(adapter, &data[0]))
1643 eth_test->flags |= ETH_TEST_FL_FAILED;
1645 e1000_reset(adapter);
1646 if (e1000_eeprom_test(adapter, &data[1]))
1647 eth_test->flags |= ETH_TEST_FL_FAILED;
1649 e1000_reset(adapter);
1650 if (e1000_intr_test(adapter, &data[2]))
1651 eth_test->flags |= ETH_TEST_FL_FAILED;
1653 e1000_reset(adapter);
1654 /* make sure the phy is powered up */
1655 e1000_power_up_phy(adapter);
1656 if (e1000_loopback_test(adapter, &data[3]))
1657 eth_test->flags |= ETH_TEST_FL_FAILED;
1659 /* restore speed, duplex, autoneg settings */
1660 adapter->hw.autoneg_advertised = autoneg_advertised;
1661 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1662 adapter->hw.autoneg = autoneg;
1664 e1000_reset(adapter);
1665 clear_bit(__E1000_TESTING, &adapter->flags);
1666 if (if_running)
1667 dev_open(netdev);
1668 } else {
1669 DPRINTK(HW, INFO, "online testing starting\n");
1670 /* Online tests */
1671 if (e1000_link_test(adapter, &data[4]))
1672 eth_test->flags |= ETH_TEST_FL_FAILED;
1674 /* Online tests aren't run; pass by default */
1675 data[0] = 0;
1676 data[1] = 0;
1677 data[2] = 0;
1678 data[3] = 0;
1680 clear_bit(__E1000_TESTING, &adapter->flags);
1682 msleep_interruptible(4 * 1000);
1685 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1686 struct ethtool_wolinfo *wol)
1688 struct e1000_hw *hw = &adapter->hw;
1689 int retval = 1; /* fail by default */
1691 switch (hw->device_id) {
1692 case E1000_DEV_ID_82542:
1693 case E1000_DEV_ID_82543GC_FIBER:
1694 case E1000_DEV_ID_82543GC_COPPER:
1695 case E1000_DEV_ID_82544EI_FIBER:
1696 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1697 case E1000_DEV_ID_82545EM_FIBER:
1698 case E1000_DEV_ID_82545EM_COPPER:
1699 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1700 case E1000_DEV_ID_82546GB_PCIE:
1701 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1702 /* these don't support WoL at all */
1703 wol->supported = 0;
1704 break;
1705 case E1000_DEV_ID_82546EB_FIBER:
1706 case E1000_DEV_ID_82546GB_FIBER:
1707 case E1000_DEV_ID_82571EB_FIBER:
1708 case E1000_DEV_ID_82571EB_SERDES:
1709 case E1000_DEV_ID_82571EB_COPPER:
1710 /* Wake events not supported on port B */
1711 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1712 wol->supported = 0;
1713 break;
1715 /* return success for non excluded adapter ports */
1716 retval = 0;
1717 break;
1718 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1719 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1720 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1721 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1722 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1723 /* quad port adapters only support WoL on port A */
1724 if (!adapter->quad_port_a) {
1725 wol->supported = 0;
1726 break;
1728 /* return success for non excluded adapter ports */
1729 retval = 0;
1730 break;
1731 default:
1732 /* dual port cards only support WoL on port A from now on
1733 * unless it was enabled in the eeprom for port B
1734 * so exclude FUNC_1 ports from having WoL enabled */
1735 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1736 !adapter->eeprom_wol) {
1737 wol->supported = 0;
1738 break;
1741 retval = 0;
1744 return retval;
1747 static void e1000_get_wol(struct net_device *netdev,
1748 struct ethtool_wolinfo *wol)
1750 struct e1000_adapter *adapter = netdev_priv(netdev);
1752 wol->supported = WAKE_UCAST | WAKE_MCAST |
1753 WAKE_BCAST | WAKE_MAGIC;
1754 wol->wolopts = 0;
1756 /* this function will set ->supported = 0 and return 1 if wol is not
1757 * supported by this hardware */
1758 if (e1000_wol_exclusion(adapter, wol))
1759 return;
1761 /* apply any specific unsupported masks here */
1762 switch (adapter->hw.device_id) {
1763 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1764 /* KSP3 does not suppport UCAST wake-ups */
1765 wol->supported &= ~WAKE_UCAST;
1767 if (adapter->wol & E1000_WUFC_EX)
1768 DPRINTK(DRV, ERR, "Interface does not support "
1769 "directed (unicast) frame wake-up packets\n");
1770 break;
1771 default:
1772 break;
1775 if (adapter->wol & E1000_WUFC_EX)
1776 wol->wolopts |= WAKE_UCAST;
1777 if (adapter->wol & E1000_WUFC_MC)
1778 wol->wolopts |= WAKE_MCAST;
1779 if (adapter->wol & E1000_WUFC_BC)
1780 wol->wolopts |= WAKE_BCAST;
1781 if (adapter->wol & E1000_WUFC_MAG)
1782 wol->wolopts |= WAKE_MAGIC;
1784 return;
1787 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1789 struct e1000_adapter *adapter = netdev_priv(netdev);
1790 struct e1000_hw *hw = &adapter->hw;
1792 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1793 return -EOPNOTSUPP;
1795 if (e1000_wol_exclusion(adapter, wol))
1796 return wol->wolopts ? -EOPNOTSUPP : 0;
1798 switch (hw->device_id) {
1799 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1800 if (wol->wolopts & WAKE_UCAST) {
1801 DPRINTK(DRV, ERR, "Interface does not support "
1802 "directed (unicast) frame wake-up packets\n");
1803 return -EOPNOTSUPP;
1805 break;
1806 default:
1807 break;
1810 /* these settings will always override what we currently have */
1811 adapter->wol = 0;
1813 if (wol->wolopts & WAKE_UCAST)
1814 adapter->wol |= E1000_WUFC_EX;
1815 if (wol->wolopts & WAKE_MCAST)
1816 adapter->wol |= E1000_WUFC_MC;
1817 if (wol->wolopts & WAKE_BCAST)
1818 adapter->wol |= E1000_WUFC_BC;
1819 if (wol->wolopts & WAKE_MAGIC)
1820 adapter->wol |= E1000_WUFC_MAG;
1822 return 0;
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define E1000_ID_INTERVAL (HZ/4)
1828 /* bit defines for adapter->led_status */
1829 #define E1000_LED_ON 0
1831 static void e1000_led_blink_callback(unsigned long data)
1833 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1835 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1836 e1000_led_off(&adapter->hw);
1837 else
1838 e1000_led_on(&adapter->hw);
1840 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1843 static int e1000_phys_id(struct net_device *netdev, u32 data)
1845 struct e1000_adapter *adapter = netdev_priv(netdev);
1847 if (!data)
1848 data = INT_MAX;
1850 if (adapter->hw.mac_type < e1000_82571) {
1851 if (!adapter->blink_timer.function) {
1852 init_timer(&adapter->blink_timer);
1853 adapter->blink_timer.function = e1000_led_blink_callback;
1854 adapter->blink_timer.data = (unsigned long) adapter;
1856 e1000_setup_led(&adapter->hw);
1857 mod_timer(&adapter->blink_timer, jiffies);
1858 msleep_interruptible(data * 1000);
1859 del_timer_sync(&adapter->blink_timer);
1860 } else if (adapter->hw.phy_type == e1000_phy_ife) {
1861 if (!adapter->blink_timer.function) {
1862 init_timer(&adapter->blink_timer);
1863 adapter->blink_timer.function = e1000_led_blink_callback;
1864 adapter->blink_timer.data = (unsigned long) adapter;
1866 mod_timer(&adapter->blink_timer, jiffies);
1867 msleep_interruptible(data * 1000);
1868 del_timer_sync(&adapter->blink_timer);
1869 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1870 } else {
1871 e1000_blink_led_start(&adapter->hw);
1872 msleep_interruptible(data * 1000);
1875 e1000_led_off(&adapter->hw);
1876 clear_bit(E1000_LED_ON, &adapter->led_status);
1877 e1000_cleanup_led(&adapter->hw);
1879 return 0;
1882 static int e1000_nway_reset(struct net_device *netdev)
1884 struct e1000_adapter *adapter = netdev_priv(netdev);
1885 if (netif_running(netdev))
1886 e1000_reinit_locked(adapter);
1887 return 0;
1890 static void e1000_get_ethtool_stats(struct net_device *netdev,
1891 struct ethtool_stats *stats, u64 *data)
1893 struct e1000_adapter *adapter = netdev_priv(netdev);
1894 int i;
1896 e1000_update_stats(adapter);
1897 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1898 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1899 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1900 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1902 /* BUG_ON(i != E1000_STATS_LEN); */
1905 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1906 u8 *data)
1908 u8 *p = data;
1909 int i;
1911 switch (stringset) {
1912 case ETH_SS_TEST:
1913 memcpy(data, *e1000_gstrings_test,
1914 sizeof(e1000_gstrings_test));
1915 break;
1916 case ETH_SS_STATS:
1917 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1918 memcpy(p, e1000_gstrings_stats[i].stat_string,
1919 ETH_GSTRING_LEN);
1920 p += ETH_GSTRING_LEN;
1922 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1923 break;
1927 static const struct ethtool_ops e1000_ethtool_ops = {
1928 .get_settings = e1000_get_settings,
1929 .set_settings = e1000_set_settings,
1930 .get_drvinfo = e1000_get_drvinfo,
1931 .get_regs_len = e1000_get_regs_len,
1932 .get_regs = e1000_get_regs,
1933 .get_wol = e1000_get_wol,
1934 .set_wol = e1000_set_wol,
1935 .get_msglevel = e1000_get_msglevel,
1936 .set_msglevel = e1000_set_msglevel,
1937 .nway_reset = e1000_nway_reset,
1938 .get_link = ethtool_op_get_link,
1939 .get_eeprom_len = e1000_get_eeprom_len,
1940 .get_eeprom = e1000_get_eeprom,
1941 .set_eeprom = e1000_set_eeprom,
1942 .get_ringparam = e1000_get_ringparam,
1943 .set_ringparam = e1000_set_ringparam,
1944 .get_pauseparam = e1000_get_pauseparam,
1945 .set_pauseparam = e1000_set_pauseparam,
1946 .get_rx_csum = e1000_get_rx_csum,
1947 .set_rx_csum = e1000_set_rx_csum,
1948 .get_tx_csum = e1000_get_tx_csum,
1949 .set_tx_csum = e1000_set_tx_csum,
1950 .set_sg = ethtool_op_set_sg,
1951 .set_tso = e1000_set_tso,
1952 .self_test = e1000_diag_test,
1953 .get_strings = e1000_get_strings,
1954 .phys_id = e1000_phys_id,
1955 .get_ethtool_stats = e1000_get_ethtool_stats,
1956 .get_sset_count = e1000_get_sset_count,
1959 void e1000_set_ethtool_ops(struct net_device *netdev)
1961 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);