x86, apic: Fix spurious error interrupts triggering on all non-boot APs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / ohci.c
blob50db5c14d31e0915ae6ff24f3e70e49955199992
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/page.h>
44 #include <asm/system.h>
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
48 #endif
50 #include "core.h"
51 #include "ohci.h"
53 #define DESCRIPTOR_OUTPUT_MORE 0
54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST (3 << 12)
57 #define DESCRIPTOR_STATUS (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
59 #define DESCRIPTOR_PING (1 << 7)
60 #define DESCRIPTOR_YY (1 << 6)
61 #define DESCRIPTOR_NO_IRQ (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
65 #define DESCRIPTOR_WAIT (3 << 0)
67 struct descriptor {
68 __le16 req_count;
69 __le16 control;
70 __le32 data_address;
71 __le32 branch_address;
72 __le16 res_count;
73 __le16 transfer_status;
74 } __attribute__((aligned(16)));
76 struct db_descriptor {
77 __le16 first_size;
78 __le16 control;
79 __le16 second_req_count;
80 __le16 first_req_count;
81 __le32 branch_address;
82 __le16 second_res_count;
83 __le16 first_res_count;
84 __le32 reserved0;
85 __le32 first_buffer;
86 __le32 second_buffer;
87 __le32 reserved1;
88 } __attribute__((aligned(16)));
90 #define CONTROL_SET(regs) (regs)
91 #define CONTROL_CLEAR(regs) ((regs) + 4)
92 #define COMMAND_PTR(regs) ((regs) + 12)
93 #define CONTEXT_MATCH(regs) ((regs) + 16)
95 struct ar_buffer {
96 struct descriptor descriptor;
97 struct ar_buffer *next;
98 __le32 data[0];
101 struct ar_context {
102 struct fw_ohci *ohci;
103 struct ar_buffer *current_buffer;
104 struct ar_buffer *last_buffer;
105 void *pointer;
106 u32 regs;
107 struct tasklet_struct tasklet;
110 struct context;
112 typedef int (*descriptor_callback_t)(struct context *ctx,
113 struct descriptor *d,
114 struct descriptor *last);
117 * A buffer that contains a block of DMA-able coherent memory used for
118 * storing a portion of a DMA descriptor program.
120 struct descriptor_buffer {
121 struct list_head list;
122 dma_addr_t buffer_bus;
123 size_t buffer_size;
124 size_t used;
125 struct descriptor buffer[0];
128 struct context {
129 struct fw_ohci *ohci;
130 u32 regs;
131 int total_allocation;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
136 * free buffers.
138 struct list_head buffer_list;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer *buffer_tail;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor *last;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor *prev;
158 descriptor_callback_t callback;
160 struct tasklet_struct tasklet;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct iso_context {
171 struct fw_iso_context base;
172 struct context context;
173 int excess_bytes;
174 void *header;
175 size_t header_length;
178 #define CONFIG_ROM_SIZE 1024
180 struct fw_ohci {
181 struct fw_card card;
183 __iomem char *registers;
184 dma_addr_t self_id_bus;
185 __le32 *self_id_cpu;
186 struct tasklet_struct bus_reset_tasklet;
187 int node_id;
188 int generation;
189 int request_generation; /* for timestamping incoming requests */
190 atomic_t bus_seconds;
192 bool use_dualbuffer;
193 bool old_uninorth;
194 bool bus_reset_packet_quirk;
197 * Spinlock for accessing fw_ohci data. Never call out of
198 * this driver with this lock held.
200 spinlock_t lock;
201 u32 self_id_buffer[512];
203 /* Config rom buffers */
204 __be32 *config_rom;
205 dma_addr_t config_rom_bus;
206 __be32 *next_config_rom;
207 dma_addr_t next_config_rom_bus;
208 __be32 next_header;
210 struct ar_context ar_request_ctx;
211 struct ar_context ar_response_ctx;
212 struct context at_request_ctx;
213 struct context at_response_ctx;
215 u32 it_context_mask;
216 struct iso_context *it_context_list;
217 u64 ir_context_channels;
218 u32 ir_context_mask;
219 struct iso_context *ir_context_list;
222 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
224 return container_of(card, struct fw_ohci, card);
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
228 #define IR_CONTEXT_BUFFER_FILL 0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
234 #define CONTEXT_RUN 0x8000
235 #define CONTEXT_WAKE 0x1000
236 #define CONTEXT_DEAD 0x0800
237 #define CONTEXT_ACTIVE 0x0400
239 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
243 #define OHCI1394_REGISTER_SIZE 0x800
244 #define OHCI_LOOP_COUNT 500
245 #define OHCI1394_PCI_HCI_Control 0x40
246 #define SELF_ID_BUF_SIZE 0x800
247 #define OHCI_TCODE_PHY_PACKET 0x0e
248 #define OHCI_VERSION_1_1 0x010010
250 static char ohci_driver_name[] = KBUILD_MODNAME;
252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
254 #define OHCI_PARAM_DEBUG_AT_AR 1
255 #define OHCI_PARAM_DEBUG_SELFIDS 2
256 #define OHCI_PARAM_DEBUG_IRQS 4
257 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
259 static int param_debug;
260 module_param_named(debug, param_debug, int, 0644);
261 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
262 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
263 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
264 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
265 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
266 ", or a combination, or all = -1)");
268 static void log_irqs(u32 evt)
270 if (likely(!(param_debug &
271 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
272 return;
274 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
275 !(evt & OHCI1394_busReset))
276 return;
278 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
279 evt & OHCI1394_selfIDComplete ? " selfID" : "",
280 evt & OHCI1394_RQPkt ? " AR_req" : "",
281 evt & OHCI1394_RSPkt ? " AR_resp" : "",
282 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
283 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
284 evt & OHCI1394_isochRx ? " IR" : "",
285 evt & OHCI1394_isochTx ? " IT" : "",
286 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
287 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
288 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
289 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
290 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
291 evt & OHCI1394_busReset ? " busReset" : "",
292 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
293 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
294 OHCI1394_respTxComplete | OHCI1394_isochRx |
295 OHCI1394_isochTx | OHCI1394_postedWriteErr |
296 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
297 OHCI1394_cycleInconsistent |
298 OHCI1394_regAccessFail | OHCI1394_busReset)
299 ? " ?" : "");
302 static const char *speed[] = {
303 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
305 static const char *power[] = {
306 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
307 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
309 static const char port[] = { '.', '-', 'p', 'c', };
311 static char _p(u32 *s, int shift)
313 return port[*s >> shift & 3];
316 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
318 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
319 return;
321 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
322 self_id_count, generation, node_id);
324 for (; self_id_count--; ++s)
325 if ((*s & 1 << 23) == 0)
326 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
327 "%s gc=%d %s %s%s%s\n",
328 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
329 speed[*s >> 14 & 3], *s >> 16 & 63,
330 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
331 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
332 else
333 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
334 *s, *s >> 24 & 63,
335 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
336 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
339 static const char *evts[] = {
340 [0x00] = "evt_no_status", [0x01] = "-reserved-",
341 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
342 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
343 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
344 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
345 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
346 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
347 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
348 [0x10] = "-reserved-", [0x11] = "ack_complete",
349 [0x12] = "ack_pending ", [0x13] = "-reserved-",
350 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
351 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
352 [0x18] = "-reserved-", [0x19] = "-reserved-",
353 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
354 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
355 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
356 [0x20] = "pending/cancelled",
358 static const char *tcodes[] = {
359 [0x0] = "QW req", [0x1] = "BW req",
360 [0x2] = "W resp", [0x3] = "-reserved-",
361 [0x4] = "QR req", [0x5] = "BR req",
362 [0x6] = "QR resp", [0x7] = "BR resp",
363 [0x8] = "cycle start", [0x9] = "Lk req",
364 [0xa] = "async stream packet", [0xb] = "Lk resp",
365 [0xc] = "-reserved-", [0xd] = "-reserved-",
366 [0xe] = "link internal", [0xf] = "-reserved-",
368 static const char *phys[] = {
369 [0x0] = "phy config packet", [0x1] = "link-on packet",
370 [0x2] = "self-id packet", [0x3] = "-reserved-",
373 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
375 int tcode = header[0] >> 4 & 0xf;
376 char specific[12];
378 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
379 return;
381 if (unlikely(evt >= ARRAY_SIZE(evts)))
382 evt = 0x1f;
384 if (evt == OHCI1394_evt_bus_reset) {
385 fw_notify("A%c evt_bus_reset, generation %d\n",
386 dir, (header[2] >> 16) & 0xff);
387 return;
390 if (header[0] == ~header[1]) {
391 fw_notify("A%c %s, %s, %08x\n",
392 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
393 return;
396 switch (tcode) {
397 case 0x0: case 0x6: case 0x8:
398 snprintf(specific, sizeof(specific), " = %08x",
399 be32_to_cpu((__force __be32)header[3]));
400 break;
401 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
402 snprintf(specific, sizeof(specific), " %x,%x",
403 header[3] >> 16, header[3] & 0xffff);
404 break;
405 default:
406 specific[0] = '\0';
409 switch (tcode) {
410 case 0xe: case 0xa:
411 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
412 break;
413 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
414 fw_notify("A%c spd %x tl %02x, "
415 "%04x -> %04x, %s, "
416 "%s, %04x%08x%s\n",
417 dir, speed, header[0] >> 10 & 0x3f,
418 header[1] >> 16, header[0] >> 16, evts[evt],
419 tcodes[tcode], header[1] & 0xffff, header[2], specific);
420 break;
421 default:
422 fw_notify("A%c spd %x tl %02x, "
423 "%04x -> %04x, %s, "
424 "%s%s\n",
425 dir, speed, header[0] >> 10 & 0x3f,
426 header[1] >> 16, header[0] >> 16, evts[evt],
427 tcodes[tcode], specific);
431 #else
433 #define log_irqs(evt)
434 #define log_selfids(node_id, generation, self_id_count, sid)
435 #define log_ar_at_event(dir, speed, header, evt)
437 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
439 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
441 writel(data, ohci->registers + offset);
444 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
446 return readl(ohci->registers + offset);
449 static inline void flush_writes(const struct fw_ohci *ohci)
451 /* Do a dummy read to flush writes. */
452 reg_read(ohci, OHCI1394_Version);
455 static int ohci_update_phy_reg(struct fw_card *card, int addr,
456 int clear_bits, int set_bits)
458 struct fw_ohci *ohci = fw_ohci(card);
459 u32 val, old;
461 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
462 flush_writes(ohci);
463 msleep(2);
464 val = reg_read(ohci, OHCI1394_PhyControl);
465 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
466 fw_error("failed to set phy reg bits.\n");
467 return -EBUSY;
470 old = OHCI1394_PhyControl_ReadData(val);
471 old = (old & ~clear_bits) | set_bits;
472 reg_write(ohci, OHCI1394_PhyControl,
473 OHCI1394_PhyControl_Write(addr, old));
475 return 0;
478 static int ar_context_add_page(struct ar_context *ctx)
480 struct device *dev = ctx->ohci->card.device;
481 struct ar_buffer *ab;
482 dma_addr_t uninitialized_var(ab_bus);
483 size_t offset;
485 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
486 if (ab == NULL)
487 return -ENOMEM;
489 ab->next = NULL;
490 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
491 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
492 DESCRIPTOR_STATUS |
493 DESCRIPTOR_BRANCH_ALWAYS);
494 offset = offsetof(struct ar_buffer, data);
495 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
496 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
497 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
498 ab->descriptor.branch_address = 0;
500 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
501 ctx->last_buffer->next = ab;
502 ctx->last_buffer = ab;
504 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
505 flush_writes(ctx->ohci);
507 return 0;
510 static void ar_context_release(struct ar_context *ctx)
512 struct ar_buffer *ab, *ab_next;
513 size_t offset;
514 dma_addr_t ab_bus;
516 for (ab = ctx->current_buffer; ab; ab = ab_next) {
517 ab_next = ab->next;
518 offset = offsetof(struct ar_buffer, data);
519 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
520 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
521 ab, ab_bus);
525 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
526 #define cond_le32_to_cpu(v) \
527 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
528 #else
529 #define cond_le32_to_cpu(v) le32_to_cpu(v)
530 #endif
532 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
534 struct fw_ohci *ohci = ctx->ohci;
535 struct fw_packet p;
536 u32 status, length, tcode;
537 int evt;
539 p.header[0] = cond_le32_to_cpu(buffer[0]);
540 p.header[1] = cond_le32_to_cpu(buffer[1]);
541 p.header[2] = cond_le32_to_cpu(buffer[2]);
543 tcode = (p.header[0] >> 4) & 0x0f;
544 switch (tcode) {
545 case TCODE_WRITE_QUADLET_REQUEST:
546 case TCODE_READ_QUADLET_RESPONSE:
547 p.header[3] = (__force __u32) buffer[3];
548 p.header_length = 16;
549 p.payload_length = 0;
550 break;
552 case TCODE_READ_BLOCK_REQUEST :
553 p.header[3] = cond_le32_to_cpu(buffer[3]);
554 p.header_length = 16;
555 p.payload_length = 0;
556 break;
558 case TCODE_WRITE_BLOCK_REQUEST:
559 case TCODE_READ_BLOCK_RESPONSE:
560 case TCODE_LOCK_REQUEST:
561 case TCODE_LOCK_RESPONSE:
562 p.header[3] = cond_le32_to_cpu(buffer[3]);
563 p.header_length = 16;
564 p.payload_length = p.header[3] >> 16;
565 break;
567 case TCODE_WRITE_RESPONSE:
568 case TCODE_READ_QUADLET_REQUEST:
569 case OHCI_TCODE_PHY_PACKET:
570 p.header_length = 12;
571 p.payload_length = 0;
572 break;
574 default:
575 /* FIXME: Stop context, discard everything, and restart? */
576 p.header_length = 0;
577 p.payload_length = 0;
580 p.payload = (void *) buffer + p.header_length;
582 /* FIXME: What to do about evt_* errors? */
583 length = (p.header_length + p.payload_length + 3) / 4;
584 status = cond_le32_to_cpu(buffer[length]);
585 evt = (status >> 16) & 0x1f;
587 p.ack = evt - 16;
588 p.speed = (status >> 21) & 0x7;
589 p.timestamp = status & 0xffff;
590 p.generation = ohci->request_generation;
592 log_ar_at_event('R', p.speed, p.header, evt);
595 * The OHCI bus reset handler synthesizes a phy packet with
596 * the new generation number when a bus reset happens (see
597 * section 8.4.2.3). This helps us determine when a request
598 * was received and make sure we send the response in the same
599 * generation. We only need this for requests; for responses
600 * we use the unique tlabel for finding the matching
601 * request.
603 * Alas some chips sometimes emit bus reset packets with a
604 * wrong generation. We set the correct generation for these
605 * at a slightly incorrect time (in bus_reset_tasklet).
607 if (evt == OHCI1394_evt_bus_reset) {
608 if (!ohci->bus_reset_packet_quirk)
609 ohci->request_generation = (p.header[2] >> 16) & 0xff;
610 } else if (ctx == &ohci->ar_request_ctx) {
611 fw_core_handle_request(&ohci->card, &p);
612 } else {
613 fw_core_handle_response(&ohci->card, &p);
616 return buffer + length + 1;
619 static void ar_context_tasklet(unsigned long data)
621 struct ar_context *ctx = (struct ar_context *)data;
622 struct fw_ohci *ohci = ctx->ohci;
623 struct ar_buffer *ab;
624 struct descriptor *d;
625 void *buffer, *end;
627 ab = ctx->current_buffer;
628 d = &ab->descriptor;
630 if (d->res_count == 0) {
631 size_t size, size2, rest, pktsize, size3, offset;
632 dma_addr_t start_bus;
633 void *start;
636 * This descriptor is finished and we may have a
637 * packet split across this and the next buffer. We
638 * reuse the page for reassembling the split packet.
641 offset = offsetof(struct ar_buffer, data);
642 start = ab;
643 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
644 buffer = ab->data;
646 ab = ab->next;
647 d = &ab->descriptor;
648 size = start + PAGE_SIZE - ctx->pointer;
649 /* valid buffer data in the next page */
650 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
651 /* what actually fits in this page */
652 size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
653 memmove(buffer, ctx->pointer, size);
654 memcpy(buffer + size, ab->data, size2);
656 while (size > 0) {
657 void *next = handle_ar_packet(ctx, buffer);
658 pktsize = next - buffer;
659 if (pktsize >= size) {
661 * We have handled all the data that was
662 * originally in this page, so we can now
663 * continue in the next page.
665 buffer = next;
666 break;
668 /* move the next packet to the start of the buffer */
669 memmove(buffer, next, size + size2 - pktsize);
670 size -= pktsize;
671 /* fill up this page again */
672 size3 = min(rest - size2,
673 (size_t)PAGE_SIZE - offset - size - size2);
674 memcpy(buffer + size + size2,
675 (void *) ab->data + size2, size3);
676 size2 += size3;
679 if (rest > 0) {
680 /* handle the packets that are fully in the next page */
681 buffer = (void *) ab->data +
682 (buffer - (start + offset + size));
683 end = (void *) ab->data + rest;
685 while (buffer < end)
686 buffer = handle_ar_packet(ctx, buffer);
688 ctx->current_buffer = ab;
689 ctx->pointer = end;
691 dma_free_coherent(ohci->card.device, PAGE_SIZE,
692 start, start_bus);
693 ar_context_add_page(ctx);
694 } else {
695 ctx->pointer = start + PAGE_SIZE;
697 } else {
698 buffer = ctx->pointer;
699 ctx->pointer = end =
700 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
702 while (buffer < end)
703 buffer = handle_ar_packet(ctx, buffer);
707 static int ar_context_init(struct ar_context *ctx,
708 struct fw_ohci *ohci, u32 regs)
710 struct ar_buffer ab;
712 ctx->regs = regs;
713 ctx->ohci = ohci;
714 ctx->last_buffer = &ab;
715 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
717 ar_context_add_page(ctx);
718 ar_context_add_page(ctx);
719 ctx->current_buffer = ab.next;
720 ctx->pointer = ctx->current_buffer->data;
722 return 0;
725 static void ar_context_run(struct ar_context *ctx)
727 struct ar_buffer *ab = ctx->current_buffer;
728 dma_addr_t ab_bus;
729 size_t offset;
731 offset = offsetof(struct ar_buffer, data);
732 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
734 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
735 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
736 flush_writes(ctx->ohci);
739 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
741 int b, key;
743 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
744 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
746 /* figure out which descriptor the branch address goes in */
747 if (z == 2 && (b == 3 || key == 2))
748 return d;
749 else
750 return d + z - 1;
753 static void context_tasklet(unsigned long data)
755 struct context *ctx = (struct context *) data;
756 struct descriptor *d, *last;
757 u32 address;
758 int z;
759 struct descriptor_buffer *desc;
761 desc = list_entry(ctx->buffer_list.next,
762 struct descriptor_buffer, list);
763 last = ctx->last;
764 while (last->branch_address != 0) {
765 struct descriptor_buffer *old_desc = desc;
766 address = le32_to_cpu(last->branch_address);
767 z = address & 0xf;
768 address &= ~0xf;
770 /* If the branch address points to a buffer outside of the
771 * current buffer, advance to the next buffer. */
772 if (address < desc->buffer_bus ||
773 address >= desc->buffer_bus + desc->used)
774 desc = list_entry(desc->list.next,
775 struct descriptor_buffer, list);
776 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
777 last = find_branch_descriptor(d, z);
779 if (!ctx->callback(ctx, d, last))
780 break;
782 if (old_desc != desc) {
783 /* If we've advanced to the next buffer, move the
784 * previous buffer to the free list. */
785 unsigned long flags;
786 old_desc->used = 0;
787 spin_lock_irqsave(&ctx->ohci->lock, flags);
788 list_move_tail(&old_desc->list, &ctx->buffer_list);
789 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
791 ctx->last = last;
796 * Allocate a new buffer and add it to the list of free buffers for this
797 * context. Must be called with ohci->lock held.
799 static int context_add_buffer(struct context *ctx)
801 struct descriptor_buffer *desc;
802 dma_addr_t uninitialized_var(bus_addr);
803 int offset;
806 * 16MB of descriptors should be far more than enough for any DMA
807 * program. This will catch run-away userspace or DoS attacks.
809 if (ctx->total_allocation >= 16*1024*1024)
810 return -ENOMEM;
812 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
813 &bus_addr, GFP_ATOMIC);
814 if (!desc)
815 return -ENOMEM;
817 offset = (void *)&desc->buffer - (void *)desc;
818 desc->buffer_size = PAGE_SIZE - offset;
819 desc->buffer_bus = bus_addr + offset;
820 desc->used = 0;
822 list_add_tail(&desc->list, &ctx->buffer_list);
823 ctx->total_allocation += PAGE_SIZE;
825 return 0;
828 static int context_init(struct context *ctx, struct fw_ohci *ohci,
829 u32 regs, descriptor_callback_t callback)
831 ctx->ohci = ohci;
832 ctx->regs = regs;
833 ctx->total_allocation = 0;
835 INIT_LIST_HEAD(&ctx->buffer_list);
836 if (context_add_buffer(ctx) < 0)
837 return -ENOMEM;
839 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
840 struct descriptor_buffer, list);
842 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
843 ctx->callback = callback;
846 * We put a dummy descriptor in the buffer that has a NULL
847 * branch address and looks like it's been sent. That way we
848 * have a descriptor to append DMA programs to.
850 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
851 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
852 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
853 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
854 ctx->last = ctx->buffer_tail->buffer;
855 ctx->prev = ctx->buffer_tail->buffer;
857 return 0;
860 static void context_release(struct context *ctx)
862 struct fw_card *card = &ctx->ohci->card;
863 struct descriptor_buffer *desc, *tmp;
865 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
866 dma_free_coherent(card->device, PAGE_SIZE, desc,
867 desc->buffer_bus -
868 ((void *)&desc->buffer - (void *)desc));
871 /* Must be called with ohci->lock held */
872 static struct descriptor *context_get_descriptors(struct context *ctx,
873 int z, dma_addr_t *d_bus)
875 struct descriptor *d = NULL;
876 struct descriptor_buffer *desc = ctx->buffer_tail;
878 if (z * sizeof(*d) > desc->buffer_size)
879 return NULL;
881 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
882 /* No room for the descriptor in this buffer, so advance to the
883 * next one. */
885 if (desc->list.next == &ctx->buffer_list) {
886 /* If there is no free buffer next in the list,
887 * allocate one. */
888 if (context_add_buffer(ctx) < 0)
889 return NULL;
891 desc = list_entry(desc->list.next,
892 struct descriptor_buffer, list);
893 ctx->buffer_tail = desc;
896 d = desc->buffer + desc->used / sizeof(*d);
897 memset(d, 0, z * sizeof(*d));
898 *d_bus = desc->buffer_bus + desc->used;
900 return d;
903 static void context_run(struct context *ctx, u32 extra)
905 struct fw_ohci *ohci = ctx->ohci;
907 reg_write(ohci, COMMAND_PTR(ctx->regs),
908 le32_to_cpu(ctx->last->branch_address));
909 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
910 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
911 flush_writes(ohci);
914 static void context_append(struct context *ctx,
915 struct descriptor *d, int z, int extra)
917 dma_addr_t d_bus;
918 struct descriptor_buffer *desc = ctx->buffer_tail;
920 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
922 desc->used += (z + extra) * sizeof(*d);
923 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
924 ctx->prev = find_branch_descriptor(d, z);
926 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
927 flush_writes(ctx->ohci);
930 static void context_stop(struct context *ctx)
932 u32 reg;
933 int i;
935 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
936 flush_writes(ctx->ohci);
938 for (i = 0; i < 10; i++) {
939 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
940 if ((reg & CONTEXT_ACTIVE) == 0)
941 return;
943 mdelay(1);
945 fw_error("Error: DMA context still active (0x%08x)\n", reg);
948 struct driver_data {
949 struct fw_packet *packet;
953 * This function apppends a packet to the DMA queue for transmission.
954 * Must always be called with the ochi->lock held to ensure proper
955 * generation handling and locking around packet queue manipulation.
957 static int at_context_queue_packet(struct context *ctx,
958 struct fw_packet *packet)
960 struct fw_ohci *ohci = ctx->ohci;
961 dma_addr_t d_bus, uninitialized_var(payload_bus);
962 struct driver_data *driver_data;
963 struct descriptor *d, *last;
964 __le32 *header;
965 int z, tcode;
966 u32 reg;
968 d = context_get_descriptors(ctx, 4, &d_bus);
969 if (d == NULL) {
970 packet->ack = RCODE_SEND_ERROR;
971 return -1;
974 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
975 d[0].res_count = cpu_to_le16(packet->timestamp);
978 * The DMA format for asyncronous link packets is different
979 * from the IEEE1394 layout, so shift the fields around
980 * accordingly. If header_length is 8, it's a PHY packet, to
981 * which we need to prepend an extra quadlet.
984 header = (__le32 *) &d[1];
985 switch (packet->header_length) {
986 case 16:
987 case 12:
988 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
989 (packet->speed << 16));
990 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
991 (packet->header[0] & 0xffff0000));
992 header[2] = cpu_to_le32(packet->header[2]);
994 tcode = (packet->header[0] >> 4) & 0x0f;
995 if (TCODE_IS_BLOCK_PACKET(tcode))
996 header[3] = cpu_to_le32(packet->header[3]);
997 else
998 header[3] = (__force __le32) packet->header[3];
1000 d[0].req_count = cpu_to_le16(packet->header_length);
1001 break;
1003 case 8:
1004 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1005 (packet->speed << 16));
1006 header[1] = cpu_to_le32(packet->header[0]);
1007 header[2] = cpu_to_le32(packet->header[1]);
1008 d[0].req_count = cpu_to_le16(12);
1009 break;
1011 case 4:
1012 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1013 (packet->speed << 16));
1014 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1015 d[0].req_count = cpu_to_le16(8);
1016 break;
1018 default:
1019 /* BUG(); */
1020 packet->ack = RCODE_SEND_ERROR;
1021 return -1;
1024 driver_data = (struct driver_data *) &d[3];
1025 driver_data->packet = packet;
1026 packet->driver_data = driver_data;
1028 if (packet->payload_length > 0) {
1029 payload_bus =
1030 dma_map_single(ohci->card.device, packet->payload,
1031 packet->payload_length, DMA_TO_DEVICE);
1032 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1033 packet->ack = RCODE_SEND_ERROR;
1034 return -1;
1036 packet->payload_bus = payload_bus;
1037 packet->payload_mapped = true;
1039 d[2].req_count = cpu_to_le16(packet->payload_length);
1040 d[2].data_address = cpu_to_le32(payload_bus);
1041 last = &d[2];
1042 z = 3;
1043 } else {
1044 last = &d[0];
1045 z = 2;
1048 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1049 DESCRIPTOR_IRQ_ALWAYS |
1050 DESCRIPTOR_BRANCH_ALWAYS);
1053 * If the controller and packet generations don't match, we need to
1054 * bail out and try again. If IntEvent.busReset is set, the AT context
1055 * is halted, so appending to the context and trying to run it is
1056 * futile. Most controllers do the right thing and just flush the AT
1057 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1058 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1059 * up stalling out. So we just bail out in software and try again
1060 * later, and everyone is happy.
1061 * FIXME: Document how the locking works.
1063 if (ohci->generation != packet->generation ||
1064 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1065 if (packet->payload_mapped)
1066 dma_unmap_single(ohci->card.device, payload_bus,
1067 packet->payload_length, DMA_TO_DEVICE);
1068 packet->ack = RCODE_GENERATION;
1069 return -1;
1072 context_append(ctx, d, z, 4 - z);
1074 /* If the context isn't already running, start it up. */
1075 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1076 if ((reg & CONTEXT_RUN) == 0)
1077 context_run(ctx, 0);
1079 return 0;
1082 static int handle_at_packet(struct context *context,
1083 struct descriptor *d,
1084 struct descriptor *last)
1086 struct driver_data *driver_data;
1087 struct fw_packet *packet;
1088 struct fw_ohci *ohci = context->ohci;
1089 int evt;
1091 if (last->transfer_status == 0)
1092 /* This descriptor isn't done yet, stop iteration. */
1093 return 0;
1095 driver_data = (struct driver_data *) &d[3];
1096 packet = driver_data->packet;
1097 if (packet == NULL)
1098 /* This packet was cancelled, just continue. */
1099 return 1;
1101 if (packet->payload_mapped)
1102 dma_unmap_single(ohci->card.device, packet->payload_bus,
1103 packet->payload_length, DMA_TO_DEVICE);
1105 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1106 packet->timestamp = le16_to_cpu(last->res_count);
1108 log_ar_at_event('T', packet->speed, packet->header, evt);
1110 switch (evt) {
1111 case OHCI1394_evt_timeout:
1112 /* Async response transmit timed out. */
1113 packet->ack = RCODE_CANCELLED;
1114 break;
1116 case OHCI1394_evt_flushed:
1118 * The packet was flushed should give same error as
1119 * when we try to use a stale generation count.
1121 packet->ack = RCODE_GENERATION;
1122 break;
1124 case OHCI1394_evt_missing_ack:
1126 * Using a valid (current) generation count, but the
1127 * node is not on the bus or not sending acks.
1129 packet->ack = RCODE_NO_ACK;
1130 break;
1132 case ACK_COMPLETE + 0x10:
1133 case ACK_PENDING + 0x10:
1134 case ACK_BUSY_X + 0x10:
1135 case ACK_BUSY_A + 0x10:
1136 case ACK_BUSY_B + 0x10:
1137 case ACK_DATA_ERROR + 0x10:
1138 case ACK_TYPE_ERROR + 0x10:
1139 packet->ack = evt - 0x10;
1140 break;
1142 default:
1143 packet->ack = RCODE_SEND_ERROR;
1144 break;
1147 packet->callback(packet, &ohci->card, packet->ack);
1149 return 1;
1152 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1153 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1154 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1155 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1156 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1158 static void handle_local_rom(struct fw_ohci *ohci,
1159 struct fw_packet *packet, u32 csr)
1161 struct fw_packet response;
1162 int tcode, length, i;
1164 tcode = HEADER_GET_TCODE(packet->header[0]);
1165 if (TCODE_IS_BLOCK_PACKET(tcode))
1166 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1167 else
1168 length = 4;
1170 i = csr - CSR_CONFIG_ROM;
1171 if (i + length > CONFIG_ROM_SIZE) {
1172 fw_fill_response(&response, packet->header,
1173 RCODE_ADDRESS_ERROR, NULL, 0);
1174 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1175 fw_fill_response(&response, packet->header,
1176 RCODE_TYPE_ERROR, NULL, 0);
1177 } else {
1178 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1179 (void *) ohci->config_rom + i, length);
1182 fw_core_handle_response(&ohci->card, &response);
1185 static void handle_local_lock(struct fw_ohci *ohci,
1186 struct fw_packet *packet, u32 csr)
1188 struct fw_packet response;
1189 int tcode, length, ext_tcode, sel;
1190 __be32 *payload, lock_old;
1191 u32 lock_arg, lock_data;
1193 tcode = HEADER_GET_TCODE(packet->header[0]);
1194 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1195 payload = packet->payload;
1196 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1198 if (tcode == TCODE_LOCK_REQUEST &&
1199 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1200 lock_arg = be32_to_cpu(payload[0]);
1201 lock_data = be32_to_cpu(payload[1]);
1202 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1203 lock_arg = 0;
1204 lock_data = 0;
1205 } else {
1206 fw_fill_response(&response, packet->header,
1207 RCODE_TYPE_ERROR, NULL, 0);
1208 goto out;
1211 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1212 reg_write(ohci, OHCI1394_CSRData, lock_data);
1213 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1214 reg_write(ohci, OHCI1394_CSRControl, sel);
1216 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1217 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1218 else
1219 fw_notify("swap not done yet\n");
1221 fw_fill_response(&response, packet->header,
1222 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1223 out:
1224 fw_core_handle_response(&ohci->card, &response);
1227 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1229 u64 offset;
1230 u32 csr;
1232 if (ctx == &ctx->ohci->at_request_ctx) {
1233 packet->ack = ACK_PENDING;
1234 packet->callback(packet, &ctx->ohci->card, packet->ack);
1237 offset =
1238 ((unsigned long long)
1239 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1240 packet->header[2];
1241 csr = offset - CSR_REGISTER_BASE;
1243 /* Handle config rom reads. */
1244 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1245 handle_local_rom(ctx->ohci, packet, csr);
1246 else switch (csr) {
1247 case CSR_BUS_MANAGER_ID:
1248 case CSR_BANDWIDTH_AVAILABLE:
1249 case CSR_CHANNELS_AVAILABLE_HI:
1250 case CSR_CHANNELS_AVAILABLE_LO:
1251 handle_local_lock(ctx->ohci, packet, csr);
1252 break;
1253 default:
1254 if (ctx == &ctx->ohci->at_request_ctx)
1255 fw_core_handle_request(&ctx->ohci->card, packet);
1256 else
1257 fw_core_handle_response(&ctx->ohci->card, packet);
1258 break;
1261 if (ctx == &ctx->ohci->at_response_ctx) {
1262 packet->ack = ACK_COMPLETE;
1263 packet->callback(packet, &ctx->ohci->card, packet->ack);
1267 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1269 unsigned long flags;
1270 int ret;
1272 spin_lock_irqsave(&ctx->ohci->lock, flags);
1274 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1275 ctx->ohci->generation == packet->generation) {
1276 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1277 handle_local_request(ctx, packet);
1278 return;
1281 ret = at_context_queue_packet(ctx, packet);
1282 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1284 if (ret < 0)
1285 packet->callback(packet, &ctx->ohci->card, packet->ack);
1289 static void bus_reset_tasklet(unsigned long data)
1291 struct fw_ohci *ohci = (struct fw_ohci *)data;
1292 int self_id_count, i, j, reg;
1293 int generation, new_generation;
1294 unsigned long flags;
1295 void *free_rom = NULL;
1296 dma_addr_t free_rom_bus = 0;
1298 reg = reg_read(ohci, OHCI1394_NodeID);
1299 if (!(reg & OHCI1394_NodeID_idValid)) {
1300 fw_notify("node ID not valid, new bus reset in progress\n");
1301 return;
1303 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1304 fw_notify("malconfigured bus\n");
1305 return;
1307 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1308 OHCI1394_NodeID_nodeNumber);
1310 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1311 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1312 fw_notify("inconsistent self IDs\n");
1313 return;
1316 * The count in the SelfIDCount register is the number of
1317 * bytes in the self ID receive buffer. Since we also receive
1318 * the inverted quadlets and a header quadlet, we shift one
1319 * bit extra to get the actual number of self IDs.
1321 self_id_count = (reg >> 3) & 0xff;
1322 if (self_id_count == 0 || self_id_count > 252) {
1323 fw_notify("inconsistent self IDs\n");
1324 return;
1326 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1327 rmb();
1329 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1330 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1331 fw_notify("inconsistent self IDs\n");
1332 return;
1334 ohci->self_id_buffer[j] =
1335 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1337 rmb();
1340 * Check the consistency of the self IDs we just read. The
1341 * problem we face is that a new bus reset can start while we
1342 * read out the self IDs from the DMA buffer. If this happens,
1343 * the DMA buffer will be overwritten with new self IDs and we
1344 * will read out inconsistent data. The OHCI specification
1345 * (section 11.2) recommends a technique similar to
1346 * linux/seqlock.h, where we remember the generation of the
1347 * self IDs in the buffer before reading them out and compare
1348 * it to the current generation after reading them out. If
1349 * the two generations match we know we have a consistent set
1350 * of self IDs.
1353 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1354 if (new_generation != generation) {
1355 fw_notify("recursive bus reset detected, "
1356 "discarding self ids\n");
1357 return;
1360 /* FIXME: Document how the locking works. */
1361 spin_lock_irqsave(&ohci->lock, flags);
1363 ohci->generation = generation;
1364 context_stop(&ohci->at_request_ctx);
1365 context_stop(&ohci->at_response_ctx);
1366 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1368 if (ohci->bus_reset_packet_quirk)
1369 ohci->request_generation = generation;
1372 * This next bit is unrelated to the AT context stuff but we
1373 * have to do it under the spinlock also. If a new config rom
1374 * was set up before this reset, the old one is now no longer
1375 * in use and we can free it. Update the config rom pointers
1376 * to point to the current config rom and clear the
1377 * next_config_rom pointer so a new udpate can take place.
1380 if (ohci->next_config_rom != NULL) {
1381 if (ohci->next_config_rom != ohci->config_rom) {
1382 free_rom = ohci->config_rom;
1383 free_rom_bus = ohci->config_rom_bus;
1385 ohci->config_rom = ohci->next_config_rom;
1386 ohci->config_rom_bus = ohci->next_config_rom_bus;
1387 ohci->next_config_rom = NULL;
1390 * Restore config_rom image and manually update
1391 * config_rom registers. Writing the header quadlet
1392 * will indicate that the config rom is ready, so we
1393 * do that last.
1395 reg_write(ohci, OHCI1394_BusOptions,
1396 be32_to_cpu(ohci->config_rom[2]));
1397 ohci->config_rom[0] = ohci->next_header;
1398 reg_write(ohci, OHCI1394_ConfigROMhdr,
1399 be32_to_cpu(ohci->next_header));
1402 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1403 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1404 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1405 #endif
1407 spin_unlock_irqrestore(&ohci->lock, flags);
1409 if (free_rom)
1410 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1411 free_rom, free_rom_bus);
1413 log_selfids(ohci->node_id, generation,
1414 self_id_count, ohci->self_id_buffer);
1416 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1417 self_id_count, ohci->self_id_buffer);
1420 static irqreturn_t irq_handler(int irq, void *data)
1422 struct fw_ohci *ohci = data;
1423 u32 event, iso_event, cycle_time;
1424 int i;
1426 event = reg_read(ohci, OHCI1394_IntEventClear);
1428 if (!event || !~event)
1429 return IRQ_NONE;
1431 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1432 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1433 log_irqs(event);
1435 if (event & OHCI1394_selfIDComplete)
1436 tasklet_schedule(&ohci->bus_reset_tasklet);
1438 if (event & OHCI1394_RQPkt)
1439 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1441 if (event & OHCI1394_RSPkt)
1442 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1444 if (event & OHCI1394_reqTxComplete)
1445 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1447 if (event & OHCI1394_respTxComplete)
1448 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1450 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1451 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1453 while (iso_event) {
1454 i = ffs(iso_event) - 1;
1455 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1456 iso_event &= ~(1 << i);
1459 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1460 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1462 while (iso_event) {
1463 i = ffs(iso_event) - 1;
1464 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1465 iso_event &= ~(1 << i);
1468 if (unlikely(event & OHCI1394_regAccessFail))
1469 fw_error("Register access failure - "
1470 "please notify linux1394-devel@lists.sf.net\n");
1472 if (unlikely(event & OHCI1394_postedWriteErr))
1473 fw_error("PCI posted write error\n");
1475 if (unlikely(event & OHCI1394_cycleTooLong)) {
1476 if (printk_ratelimit())
1477 fw_notify("isochronous cycle too long\n");
1478 reg_write(ohci, OHCI1394_LinkControlSet,
1479 OHCI1394_LinkControl_cycleMaster);
1482 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1484 * We need to clear this event bit in order to make
1485 * cycleMatch isochronous I/O work. In theory we should
1486 * stop active cycleMatch iso contexts now and restart
1487 * them at least two cycles later. (FIXME?)
1489 if (printk_ratelimit())
1490 fw_notify("isochronous cycle inconsistent\n");
1493 if (event & OHCI1394_cycle64Seconds) {
1494 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1495 if ((cycle_time & 0x80000000) == 0)
1496 atomic_inc(&ohci->bus_seconds);
1499 return IRQ_HANDLED;
1502 static int software_reset(struct fw_ohci *ohci)
1504 int i;
1506 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1508 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1509 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1510 OHCI1394_HCControl_softReset) == 0)
1511 return 0;
1512 msleep(1);
1515 return -EBUSY;
1518 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1520 size_t size = length * 4;
1522 memcpy(dest, src, size);
1523 if (size < CONFIG_ROM_SIZE)
1524 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1527 static int ohci_enable(struct fw_card *card,
1528 const __be32 *config_rom, size_t length)
1530 struct fw_ohci *ohci = fw_ohci(card);
1531 struct pci_dev *dev = to_pci_dev(card->device);
1532 u32 lps;
1533 int i;
1535 if (software_reset(ohci)) {
1536 fw_error("Failed to reset ohci card.\n");
1537 return -EBUSY;
1541 * Now enable LPS, which we need in order to start accessing
1542 * most of the registers. In fact, on some cards (ALI M5251),
1543 * accessing registers in the SClk domain without LPS enabled
1544 * will lock up the machine. Wait 50msec to make sure we have
1545 * full link enabled. However, with some cards (well, at least
1546 * a JMicron PCIe card), we have to try again sometimes.
1548 reg_write(ohci, OHCI1394_HCControlSet,
1549 OHCI1394_HCControl_LPS |
1550 OHCI1394_HCControl_postedWriteEnable);
1551 flush_writes(ohci);
1553 for (lps = 0, i = 0; !lps && i < 3; i++) {
1554 msleep(50);
1555 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1556 OHCI1394_HCControl_LPS;
1559 if (!lps) {
1560 fw_error("Failed to set Link Power Status\n");
1561 return -EIO;
1564 reg_write(ohci, OHCI1394_HCControlClear,
1565 OHCI1394_HCControl_noByteSwapData);
1567 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1568 reg_write(ohci, OHCI1394_LinkControlClear,
1569 OHCI1394_LinkControl_rcvPhyPkt);
1570 reg_write(ohci, OHCI1394_LinkControlSet,
1571 OHCI1394_LinkControl_rcvSelfID |
1572 OHCI1394_LinkControl_cycleTimerEnable |
1573 OHCI1394_LinkControl_cycleMaster);
1575 reg_write(ohci, OHCI1394_ATRetries,
1576 OHCI1394_MAX_AT_REQ_RETRIES |
1577 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1578 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1580 ar_context_run(&ohci->ar_request_ctx);
1581 ar_context_run(&ohci->ar_response_ctx);
1583 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1584 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1585 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1586 reg_write(ohci, OHCI1394_IntMaskSet,
1587 OHCI1394_selfIDComplete |
1588 OHCI1394_RQPkt | OHCI1394_RSPkt |
1589 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1590 OHCI1394_isochRx | OHCI1394_isochTx |
1591 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1592 OHCI1394_cycleInconsistent |
1593 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1594 OHCI1394_masterIntEnable);
1595 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1596 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1598 /* Activate link_on bit and contender bit in our self ID packets.*/
1599 if (ohci_update_phy_reg(card, 4, 0,
1600 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1601 return -EIO;
1604 * When the link is not yet enabled, the atomic config rom
1605 * update mechanism described below in ohci_set_config_rom()
1606 * is not active. We have to update ConfigRomHeader and
1607 * BusOptions manually, and the write to ConfigROMmap takes
1608 * effect immediately. We tie this to the enabling of the
1609 * link, so we have a valid config rom before enabling - the
1610 * OHCI requires that ConfigROMhdr and BusOptions have valid
1611 * values before enabling.
1613 * However, when the ConfigROMmap is written, some controllers
1614 * always read back quadlets 0 and 2 from the config rom to
1615 * the ConfigRomHeader and BusOptions registers on bus reset.
1616 * They shouldn't do that in this initial case where the link
1617 * isn't enabled. This means we have to use the same
1618 * workaround here, setting the bus header to 0 and then write
1619 * the right values in the bus reset tasklet.
1622 if (config_rom) {
1623 ohci->next_config_rom =
1624 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1625 &ohci->next_config_rom_bus,
1626 GFP_KERNEL);
1627 if (ohci->next_config_rom == NULL)
1628 return -ENOMEM;
1630 copy_config_rom(ohci->next_config_rom, config_rom, length);
1631 } else {
1633 * In the suspend case, config_rom is NULL, which
1634 * means that we just reuse the old config rom.
1636 ohci->next_config_rom = ohci->config_rom;
1637 ohci->next_config_rom_bus = ohci->config_rom_bus;
1640 ohci->next_header = ohci->next_config_rom[0];
1641 ohci->next_config_rom[0] = 0;
1642 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1643 reg_write(ohci, OHCI1394_BusOptions,
1644 be32_to_cpu(ohci->next_config_rom[2]));
1645 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1647 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1649 if (request_irq(dev->irq, irq_handler,
1650 IRQF_SHARED, ohci_driver_name, ohci)) {
1651 fw_error("Failed to allocate shared interrupt %d.\n",
1652 dev->irq);
1653 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1654 ohci->config_rom, ohci->config_rom_bus);
1655 return -EIO;
1658 reg_write(ohci, OHCI1394_HCControlSet,
1659 OHCI1394_HCControl_linkEnable |
1660 OHCI1394_HCControl_BIBimageValid);
1661 flush_writes(ohci);
1664 * We are ready to go, initiate bus reset to finish the
1665 * initialization.
1668 fw_core_initiate_bus_reset(&ohci->card, 1);
1670 return 0;
1673 static int ohci_set_config_rom(struct fw_card *card,
1674 const __be32 *config_rom, size_t length)
1676 struct fw_ohci *ohci;
1677 unsigned long flags;
1678 int ret = -EBUSY;
1679 __be32 *next_config_rom;
1680 dma_addr_t uninitialized_var(next_config_rom_bus);
1682 ohci = fw_ohci(card);
1685 * When the OHCI controller is enabled, the config rom update
1686 * mechanism is a bit tricky, but easy enough to use. See
1687 * section 5.5.6 in the OHCI specification.
1689 * The OHCI controller caches the new config rom address in a
1690 * shadow register (ConfigROMmapNext) and needs a bus reset
1691 * for the changes to take place. When the bus reset is
1692 * detected, the controller loads the new values for the
1693 * ConfigRomHeader and BusOptions registers from the specified
1694 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1695 * shadow register. All automatically and atomically.
1697 * Now, there's a twist to this story. The automatic load of
1698 * ConfigRomHeader and BusOptions doesn't honor the
1699 * noByteSwapData bit, so with a be32 config rom, the
1700 * controller will load be32 values in to these registers
1701 * during the atomic update, even on litte endian
1702 * architectures. The workaround we use is to put a 0 in the
1703 * header quadlet; 0 is endian agnostic and means that the
1704 * config rom isn't ready yet. In the bus reset tasklet we
1705 * then set up the real values for the two registers.
1707 * We use ohci->lock to avoid racing with the code that sets
1708 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1711 next_config_rom =
1712 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1713 &next_config_rom_bus, GFP_KERNEL);
1714 if (next_config_rom == NULL)
1715 return -ENOMEM;
1717 spin_lock_irqsave(&ohci->lock, flags);
1719 if (ohci->next_config_rom == NULL) {
1720 ohci->next_config_rom = next_config_rom;
1721 ohci->next_config_rom_bus = next_config_rom_bus;
1723 copy_config_rom(ohci->next_config_rom, config_rom, length);
1725 ohci->next_header = config_rom[0];
1726 ohci->next_config_rom[0] = 0;
1728 reg_write(ohci, OHCI1394_ConfigROMmap,
1729 ohci->next_config_rom_bus);
1730 ret = 0;
1733 spin_unlock_irqrestore(&ohci->lock, flags);
1736 * Now initiate a bus reset to have the changes take
1737 * effect. We clean up the old config rom memory and DMA
1738 * mappings in the bus reset tasklet, since the OHCI
1739 * controller could need to access it before the bus reset
1740 * takes effect.
1742 if (ret == 0)
1743 fw_core_initiate_bus_reset(&ohci->card, 1);
1744 else
1745 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1746 next_config_rom, next_config_rom_bus);
1748 return ret;
1751 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1753 struct fw_ohci *ohci = fw_ohci(card);
1755 at_context_transmit(&ohci->at_request_ctx, packet);
1758 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1760 struct fw_ohci *ohci = fw_ohci(card);
1762 at_context_transmit(&ohci->at_response_ctx, packet);
1765 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1767 struct fw_ohci *ohci = fw_ohci(card);
1768 struct context *ctx = &ohci->at_request_ctx;
1769 struct driver_data *driver_data = packet->driver_data;
1770 int ret = -ENOENT;
1772 tasklet_disable(&ctx->tasklet);
1774 if (packet->ack != 0)
1775 goto out;
1777 if (packet->payload_mapped)
1778 dma_unmap_single(ohci->card.device, packet->payload_bus,
1779 packet->payload_length, DMA_TO_DEVICE);
1781 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1782 driver_data->packet = NULL;
1783 packet->ack = RCODE_CANCELLED;
1784 packet->callback(packet, &ohci->card, packet->ack);
1785 ret = 0;
1786 out:
1787 tasklet_enable(&ctx->tasklet);
1789 return ret;
1792 static int ohci_enable_phys_dma(struct fw_card *card,
1793 int node_id, int generation)
1795 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1796 return 0;
1797 #else
1798 struct fw_ohci *ohci = fw_ohci(card);
1799 unsigned long flags;
1800 int n, ret = 0;
1803 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1804 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1807 spin_lock_irqsave(&ohci->lock, flags);
1809 if (ohci->generation != generation) {
1810 ret = -ESTALE;
1811 goto out;
1815 * Note, if the node ID contains a non-local bus ID, physical DMA is
1816 * enabled for _all_ nodes on remote buses.
1819 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1820 if (n < 32)
1821 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1822 else
1823 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1825 flush_writes(ohci);
1826 out:
1827 spin_unlock_irqrestore(&ohci->lock, flags);
1829 return ret;
1830 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1833 static u64 ohci_get_bus_time(struct fw_card *card)
1835 struct fw_ohci *ohci = fw_ohci(card);
1836 u32 cycle_time;
1837 u64 bus_time;
1839 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1840 bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1842 return bus_time;
1845 static void copy_iso_headers(struct iso_context *ctx, void *p)
1847 int i = ctx->header_length;
1849 if (i + ctx->base.header_size > PAGE_SIZE)
1850 return;
1853 * The iso header is byteswapped to little endian by
1854 * the controller, but the remaining header quadlets
1855 * are big endian. We want to present all the headers
1856 * as big endian, so we have to swap the first quadlet.
1858 if (ctx->base.header_size > 0)
1859 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1860 if (ctx->base.header_size > 4)
1861 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1862 if (ctx->base.header_size > 8)
1863 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1864 ctx->header_length += ctx->base.header_size;
1867 static int handle_ir_dualbuffer_packet(struct context *context,
1868 struct descriptor *d,
1869 struct descriptor *last)
1871 struct iso_context *ctx =
1872 container_of(context, struct iso_context, context);
1873 struct db_descriptor *db = (struct db_descriptor *) d;
1874 __le32 *ir_header;
1875 size_t header_length;
1876 void *p, *end;
1878 if (db->first_res_count != 0 && db->second_res_count != 0) {
1879 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1880 /* This descriptor isn't done yet, stop iteration. */
1881 return 0;
1883 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1886 header_length = le16_to_cpu(db->first_req_count) -
1887 le16_to_cpu(db->first_res_count);
1889 p = db + 1;
1890 end = p + header_length;
1891 while (p < end) {
1892 copy_iso_headers(ctx, p);
1893 ctx->excess_bytes +=
1894 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1895 p += max(ctx->base.header_size, (size_t)8);
1898 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1899 le16_to_cpu(db->second_res_count);
1901 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1902 ir_header = (__le32 *) (db + 1);
1903 ctx->base.callback(&ctx->base,
1904 le32_to_cpu(ir_header[0]) & 0xffff,
1905 ctx->header_length, ctx->header,
1906 ctx->base.callback_data);
1907 ctx->header_length = 0;
1910 return 1;
1913 static int handle_ir_packet_per_buffer(struct context *context,
1914 struct descriptor *d,
1915 struct descriptor *last)
1917 struct iso_context *ctx =
1918 container_of(context, struct iso_context, context);
1919 struct descriptor *pd;
1920 __le32 *ir_header;
1921 void *p;
1923 for (pd = d; pd <= last; pd++) {
1924 if (pd->transfer_status)
1925 break;
1927 if (pd > last)
1928 /* Descriptor(s) not done yet, stop iteration */
1929 return 0;
1931 p = last + 1;
1932 copy_iso_headers(ctx, p);
1934 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935 ir_header = (__le32 *) p;
1936 ctx->base.callback(&ctx->base,
1937 le32_to_cpu(ir_header[0]) & 0xffff,
1938 ctx->header_length, ctx->header,
1939 ctx->base.callback_data);
1940 ctx->header_length = 0;
1943 return 1;
1946 static int handle_it_packet(struct context *context,
1947 struct descriptor *d,
1948 struct descriptor *last)
1950 struct iso_context *ctx =
1951 container_of(context, struct iso_context, context);
1952 int i;
1953 struct descriptor *pd;
1955 for (pd = d; pd <= last; pd++)
1956 if (pd->transfer_status)
1957 break;
1958 if (pd > last)
1959 /* Descriptor(s) not done yet, stop iteration */
1960 return 0;
1962 i = ctx->header_length;
1963 if (i + 4 < PAGE_SIZE) {
1964 /* Present this value as big-endian to match the receive code */
1965 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1966 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1967 le16_to_cpu(pd->res_count));
1968 ctx->header_length += 4;
1970 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1971 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1972 ctx->header_length, ctx->header,
1973 ctx->base.callback_data);
1974 ctx->header_length = 0;
1976 return 1;
1979 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1980 int type, int channel, size_t header_size)
1982 struct fw_ohci *ohci = fw_ohci(card);
1983 struct iso_context *ctx, *list;
1984 descriptor_callback_t callback;
1985 u64 *channels, dont_care = ~0ULL;
1986 u32 *mask, regs;
1987 unsigned long flags;
1988 int index, ret = -ENOMEM;
1990 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1991 channels = &dont_care;
1992 mask = &ohci->it_context_mask;
1993 list = ohci->it_context_list;
1994 callback = handle_it_packet;
1995 } else {
1996 channels = &ohci->ir_context_channels;
1997 mask = &ohci->ir_context_mask;
1998 list = ohci->ir_context_list;
1999 if (ohci->use_dualbuffer)
2000 callback = handle_ir_dualbuffer_packet;
2001 else
2002 callback = handle_ir_packet_per_buffer;
2005 spin_lock_irqsave(&ohci->lock, flags);
2006 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2007 if (index >= 0) {
2008 *channels &= ~(1ULL << channel);
2009 *mask &= ~(1 << index);
2011 spin_unlock_irqrestore(&ohci->lock, flags);
2013 if (index < 0)
2014 return ERR_PTR(-EBUSY);
2016 if (type == FW_ISO_CONTEXT_TRANSMIT)
2017 regs = OHCI1394_IsoXmitContextBase(index);
2018 else
2019 regs = OHCI1394_IsoRcvContextBase(index);
2021 ctx = &list[index];
2022 memset(ctx, 0, sizeof(*ctx));
2023 ctx->header_length = 0;
2024 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2025 if (ctx->header == NULL)
2026 goto out;
2028 ret = context_init(&ctx->context, ohci, regs, callback);
2029 if (ret < 0)
2030 goto out_with_header;
2032 return &ctx->base;
2034 out_with_header:
2035 free_page((unsigned long)ctx->header);
2036 out:
2037 spin_lock_irqsave(&ohci->lock, flags);
2038 *mask |= 1 << index;
2039 spin_unlock_irqrestore(&ohci->lock, flags);
2041 return ERR_PTR(ret);
2044 static int ohci_start_iso(struct fw_iso_context *base,
2045 s32 cycle, u32 sync, u32 tags)
2047 struct iso_context *ctx = container_of(base, struct iso_context, base);
2048 struct fw_ohci *ohci = ctx->context.ohci;
2049 u32 control, match;
2050 int index;
2052 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2053 index = ctx - ohci->it_context_list;
2054 match = 0;
2055 if (cycle >= 0)
2056 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2057 (cycle & 0x7fff) << 16;
2059 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2060 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2061 context_run(&ctx->context, match);
2062 } else {
2063 index = ctx - ohci->ir_context_list;
2064 control = IR_CONTEXT_ISOCH_HEADER;
2065 if (ohci->use_dualbuffer)
2066 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2067 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2068 if (cycle >= 0) {
2069 match |= (cycle & 0x07fff) << 12;
2070 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2073 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2074 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2075 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2076 context_run(&ctx->context, control);
2079 return 0;
2082 static int ohci_stop_iso(struct fw_iso_context *base)
2084 struct fw_ohci *ohci = fw_ohci(base->card);
2085 struct iso_context *ctx = container_of(base, struct iso_context, base);
2086 int index;
2088 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2089 index = ctx - ohci->it_context_list;
2090 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2091 } else {
2092 index = ctx - ohci->ir_context_list;
2093 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2095 flush_writes(ohci);
2096 context_stop(&ctx->context);
2098 return 0;
2101 static void ohci_free_iso_context(struct fw_iso_context *base)
2103 struct fw_ohci *ohci = fw_ohci(base->card);
2104 struct iso_context *ctx = container_of(base, struct iso_context, base);
2105 unsigned long flags;
2106 int index;
2108 ohci_stop_iso(base);
2109 context_release(&ctx->context);
2110 free_page((unsigned long)ctx->header);
2112 spin_lock_irqsave(&ohci->lock, flags);
2114 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2115 index = ctx - ohci->it_context_list;
2116 ohci->it_context_mask |= 1 << index;
2117 } else {
2118 index = ctx - ohci->ir_context_list;
2119 ohci->ir_context_mask |= 1 << index;
2120 ohci->ir_context_channels |= 1ULL << base->channel;
2123 spin_unlock_irqrestore(&ohci->lock, flags);
2126 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2127 struct fw_iso_packet *packet,
2128 struct fw_iso_buffer *buffer,
2129 unsigned long payload)
2131 struct iso_context *ctx = container_of(base, struct iso_context, base);
2132 struct descriptor *d, *last, *pd;
2133 struct fw_iso_packet *p;
2134 __le32 *header;
2135 dma_addr_t d_bus, page_bus;
2136 u32 z, header_z, payload_z, irq;
2137 u32 payload_index, payload_end_index, next_page_index;
2138 int page, end_page, i, length, offset;
2140 p = packet;
2141 payload_index = payload;
2143 if (p->skip)
2144 z = 1;
2145 else
2146 z = 2;
2147 if (p->header_length > 0)
2148 z++;
2150 /* Determine the first page the payload isn't contained in. */
2151 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2152 if (p->payload_length > 0)
2153 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2154 else
2155 payload_z = 0;
2157 z += payload_z;
2159 /* Get header size in number of descriptors. */
2160 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2162 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2163 if (d == NULL)
2164 return -ENOMEM;
2166 if (!p->skip) {
2167 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2168 d[0].req_count = cpu_to_le16(8);
2170 * Link the skip address to this descriptor itself. This causes
2171 * a context to skip a cycle whenever lost cycles or FIFO
2172 * overruns occur, without dropping the data. The application
2173 * should then decide whether this is an error condition or not.
2174 * FIXME: Make the context's cycle-lost behaviour configurable?
2176 d[0].branch_address = cpu_to_le32(d_bus | z);
2178 header = (__le32 *) &d[1];
2179 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2180 IT_HEADER_TAG(p->tag) |
2181 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2182 IT_HEADER_CHANNEL(ctx->base.channel) |
2183 IT_HEADER_SPEED(ctx->base.speed));
2184 header[1] =
2185 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2186 p->payload_length));
2189 if (p->header_length > 0) {
2190 d[2].req_count = cpu_to_le16(p->header_length);
2191 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2192 memcpy(&d[z], p->header, p->header_length);
2195 pd = d + z - payload_z;
2196 payload_end_index = payload_index + p->payload_length;
2197 for (i = 0; i < payload_z; i++) {
2198 page = payload_index >> PAGE_SHIFT;
2199 offset = payload_index & ~PAGE_MASK;
2200 next_page_index = (page + 1) << PAGE_SHIFT;
2201 length =
2202 min(next_page_index, payload_end_index) - payload_index;
2203 pd[i].req_count = cpu_to_le16(length);
2205 page_bus = page_private(buffer->pages[page]);
2206 pd[i].data_address = cpu_to_le32(page_bus + offset);
2208 payload_index += length;
2211 if (p->interrupt)
2212 irq = DESCRIPTOR_IRQ_ALWAYS;
2213 else
2214 irq = DESCRIPTOR_NO_IRQ;
2216 last = z == 2 ? d : d + z - 1;
2217 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2218 DESCRIPTOR_STATUS |
2219 DESCRIPTOR_BRANCH_ALWAYS |
2220 irq);
2222 context_append(&ctx->context, d, z, header_z);
2224 return 0;
2227 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2228 struct fw_iso_packet *packet,
2229 struct fw_iso_buffer *buffer,
2230 unsigned long payload)
2232 struct iso_context *ctx = container_of(base, struct iso_context, base);
2233 struct db_descriptor *db = NULL;
2234 struct descriptor *d;
2235 struct fw_iso_packet *p;
2236 dma_addr_t d_bus, page_bus;
2237 u32 z, header_z, length, rest;
2238 int page, offset, packet_count, header_size;
2241 * FIXME: Cycle lost behavior should be configurable: lose
2242 * packet, retransmit or terminate..
2245 p = packet;
2246 z = 2;
2249 * The OHCI controller puts the isochronous header and trailer in the
2250 * buffer, so we need at least 8 bytes.
2252 packet_count = p->header_length / ctx->base.header_size;
2253 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2255 /* Get header size in number of descriptors. */
2256 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2257 page = payload >> PAGE_SHIFT;
2258 offset = payload & ~PAGE_MASK;
2259 rest = p->payload_length;
2261 * The controllers I've tested have not worked correctly when
2262 * second_req_count is zero. Rather than do something we know won't
2263 * work, return an error
2265 if (rest == 0)
2266 return -EINVAL;
2268 while (rest > 0) {
2269 d = context_get_descriptors(&ctx->context,
2270 z + header_z, &d_bus);
2271 if (d == NULL)
2272 return -ENOMEM;
2274 db = (struct db_descriptor *) d;
2275 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2276 DESCRIPTOR_BRANCH_ALWAYS);
2277 db->first_size =
2278 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2279 if (p->skip && rest == p->payload_length) {
2280 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2281 db->first_req_count = db->first_size;
2282 } else {
2283 db->first_req_count = cpu_to_le16(header_size);
2285 db->first_res_count = db->first_req_count;
2286 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2288 if (p->skip && rest == p->payload_length)
2289 length = 4;
2290 else if (offset + rest < PAGE_SIZE)
2291 length = rest;
2292 else
2293 length = PAGE_SIZE - offset;
2295 db->second_req_count = cpu_to_le16(length);
2296 db->second_res_count = db->second_req_count;
2297 page_bus = page_private(buffer->pages[page]);
2298 db->second_buffer = cpu_to_le32(page_bus + offset);
2300 if (p->interrupt && length == rest)
2301 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2303 context_append(&ctx->context, d, z, header_z);
2304 offset = (offset + length) & ~PAGE_MASK;
2305 rest -= length;
2306 if (offset == 0)
2307 page++;
2310 return 0;
2313 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2314 struct fw_iso_packet *packet,
2315 struct fw_iso_buffer *buffer,
2316 unsigned long payload)
2318 struct iso_context *ctx = container_of(base, struct iso_context, base);
2319 struct descriptor *d, *pd;
2320 struct fw_iso_packet *p = packet;
2321 dma_addr_t d_bus, page_bus;
2322 u32 z, header_z, rest;
2323 int i, j, length;
2324 int page, offset, packet_count, header_size, payload_per_buffer;
2327 * The OHCI controller puts the isochronous header and trailer in the
2328 * buffer, so we need at least 8 bytes.
2330 packet_count = p->header_length / ctx->base.header_size;
2331 header_size = max(ctx->base.header_size, (size_t)8);
2333 /* Get header size in number of descriptors. */
2334 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2335 page = payload >> PAGE_SHIFT;
2336 offset = payload & ~PAGE_MASK;
2337 payload_per_buffer = p->payload_length / packet_count;
2339 for (i = 0; i < packet_count; i++) {
2340 /* d points to the header descriptor */
2341 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2342 d = context_get_descriptors(&ctx->context,
2343 z + header_z, &d_bus);
2344 if (d == NULL)
2345 return -ENOMEM;
2347 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2348 DESCRIPTOR_INPUT_MORE);
2349 if (p->skip && i == 0)
2350 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2351 d->req_count = cpu_to_le16(header_size);
2352 d->res_count = d->req_count;
2353 d->transfer_status = 0;
2354 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2356 rest = payload_per_buffer;
2357 pd = d;
2358 for (j = 1; j < z; j++) {
2359 pd++;
2360 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2361 DESCRIPTOR_INPUT_MORE);
2363 if (offset + rest < PAGE_SIZE)
2364 length = rest;
2365 else
2366 length = PAGE_SIZE - offset;
2367 pd->req_count = cpu_to_le16(length);
2368 pd->res_count = pd->req_count;
2369 pd->transfer_status = 0;
2371 page_bus = page_private(buffer->pages[page]);
2372 pd->data_address = cpu_to_le32(page_bus + offset);
2374 offset = (offset + length) & ~PAGE_MASK;
2375 rest -= length;
2376 if (offset == 0)
2377 page++;
2379 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2380 DESCRIPTOR_INPUT_LAST |
2381 DESCRIPTOR_BRANCH_ALWAYS);
2382 if (p->interrupt && i == packet_count - 1)
2383 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2385 context_append(&ctx->context, d, z, header_z);
2388 return 0;
2391 static int ohci_queue_iso(struct fw_iso_context *base,
2392 struct fw_iso_packet *packet,
2393 struct fw_iso_buffer *buffer,
2394 unsigned long payload)
2396 struct iso_context *ctx = container_of(base, struct iso_context, base);
2397 unsigned long flags;
2398 int ret;
2400 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2401 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2402 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2403 else if (ctx->context.ohci->use_dualbuffer)
2404 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2405 buffer, payload);
2406 else
2407 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2408 buffer, payload);
2409 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2411 return ret;
2414 static const struct fw_card_driver ohci_driver = {
2415 .enable = ohci_enable,
2416 .update_phy_reg = ohci_update_phy_reg,
2417 .set_config_rom = ohci_set_config_rom,
2418 .send_request = ohci_send_request,
2419 .send_response = ohci_send_response,
2420 .cancel_packet = ohci_cancel_packet,
2421 .enable_phys_dma = ohci_enable_phys_dma,
2422 .get_bus_time = ohci_get_bus_time,
2424 .allocate_iso_context = ohci_allocate_iso_context,
2425 .free_iso_context = ohci_free_iso_context,
2426 .queue_iso = ohci_queue_iso,
2427 .start_iso = ohci_start_iso,
2428 .stop_iso = ohci_stop_iso,
2431 #ifdef CONFIG_PPC_PMAC
2432 static void ohci_pmac_on(struct pci_dev *dev)
2434 if (machine_is(powermac)) {
2435 struct device_node *ofn = pci_device_to_OF_node(dev);
2437 if (ofn) {
2438 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2439 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2444 static void ohci_pmac_off(struct pci_dev *dev)
2446 if (machine_is(powermac)) {
2447 struct device_node *ofn = pci_device_to_OF_node(dev);
2449 if (ofn) {
2450 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2451 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2455 #else
2456 #define ohci_pmac_on(dev)
2457 #define ohci_pmac_off(dev)
2458 #endif /* CONFIG_PPC_PMAC */
2460 #define PCI_VENDOR_ID_AGERE PCI_VENDOR_ID_ATT
2461 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
2462 #define PCI_DEVICE_ID_TI_TSB43AB23 0x8024
2464 static int __devinit pci_probe(struct pci_dev *dev,
2465 const struct pci_device_id *ent)
2467 struct fw_ohci *ohci;
2468 u32 bus_options, max_receive, link_speed, version;
2469 u64 guid;
2470 int err;
2471 size_t size;
2473 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2474 if (ohci == NULL) {
2475 err = -ENOMEM;
2476 goto fail;
2479 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2481 ohci_pmac_on(dev);
2483 err = pci_enable_device(dev);
2484 if (err) {
2485 fw_error("Failed to enable OHCI hardware\n");
2486 goto fail_free;
2489 pci_set_master(dev);
2490 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2491 pci_set_drvdata(dev, ohci);
2493 spin_lock_init(&ohci->lock);
2495 tasklet_init(&ohci->bus_reset_tasklet,
2496 bus_reset_tasklet, (unsigned long)ohci);
2498 err = pci_request_region(dev, 0, ohci_driver_name);
2499 if (err) {
2500 fw_error("MMIO resource unavailable\n");
2501 goto fail_disable;
2504 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2505 if (ohci->registers == NULL) {
2506 fw_error("Failed to remap registers\n");
2507 err = -ENXIO;
2508 goto fail_iomem;
2511 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2512 #if 0
2513 /* FIXME: make it a context option or remove dual-buffer mode */
2514 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2515 #endif
2517 /* dual-buffer mode is broken if more than one IR context is active */
2518 if (dev->vendor == PCI_VENDOR_ID_AGERE &&
2519 dev->device == PCI_DEVICE_ID_AGERE_FW643)
2520 ohci->use_dualbuffer = false;
2522 /* dual-buffer mode is broken */
2523 if (dev->vendor == PCI_VENDOR_ID_RICOH &&
2524 dev->device == PCI_DEVICE_ID_RICOH_R5C832)
2525 ohci->use_dualbuffer = false;
2527 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2528 #if !defined(CONFIG_X86_32)
2529 /* dual-buffer mode is broken with descriptor addresses above 2G */
2530 if (dev->vendor == PCI_VENDOR_ID_TI &&
2531 (dev->device == PCI_DEVICE_ID_TI_TSB43AB22 ||
2532 dev->device == PCI_DEVICE_ID_TI_TSB43AB23))
2533 ohci->use_dualbuffer = false;
2534 #endif
2536 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2537 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2538 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2539 #endif
2540 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2542 ar_context_init(&ohci->ar_request_ctx, ohci,
2543 OHCI1394_AsReqRcvContextControlSet);
2545 ar_context_init(&ohci->ar_response_ctx, ohci,
2546 OHCI1394_AsRspRcvContextControlSet);
2548 context_init(&ohci->at_request_ctx, ohci,
2549 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2551 context_init(&ohci->at_response_ctx, ohci,
2552 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2554 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2555 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2556 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2557 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2558 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2560 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2561 ohci->ir_context_channels = ~0ULL;
2562 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2563 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2564 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2565 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2567 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2568 err = -ENOMEM;
2569 goto fail_contexts;
2572 /* self-id dma buffer allocation */
2573 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2574 SELF_ID_BUF_SIZE,
2575 &ohci->self_id_bus,
2576 GFP_KERNEL);
2577 if (ohci->self_id_cpu == NULL) {
2578 err = -ENOMEM;
2579 goto fail_contexts;
2582 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2583 max_receive = (bus_options >> 12) & 0xf;
2584 link_speed = bus_options & 0x7;
2585 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2586 reg_read(ohci, OHCI1394_GUIDLo);
2588 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2589 if (err)
2590 goto fail_self_id;
2592 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2593 dev_name(&dev->dev), version >> 16, version & 0xff);
2595 return 0;
2597 fail_self_id:
2598 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2599 ohci->self_id_cpu, ohci->self_id_bus);
2600 fail_contexts:
2601 kfree(ohci->ir_context_list);
2602 kfree(ohci->it_context_list);
2603 context_release(&ohci->at_response_ctx);
2604 context_release(&ohci->at_request_ctx);
2605 ar_context_release(&ohci->ar_response_ctx);
2606 ar_context_release(&ohci->ar_request_ctx);
2607 pci_iounmap(dev, ohci->registers);
2608 fail_iomem:
2609 pci_release_region(dev, 0);
2610 fail_disable:
2611 pci_disable_device(dev);
2612 fail_free:
2613 kfree(&ohci->card);
2614 ohci_pmac_off(dev);
2615 fail:
2616 if (err == -ENOMEM)
2617 fw_error("Out of memory\n");
2619 return err;
2622 static void pci_remove(struct pci_dev *dev)
2624 struct fw_ohci *ohci;
2626 ohci = pci_get_drvdata(dev);
2627 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2628 flush_writes(ohci);
2629 fw_core_remove_card(&ohci->card);
2632 * FIXME: Fail all pending packets here, now that the upper
2633 * layers can't queue any more.
2636 software_reset(ohci);
2637 free_irq(dev->irq, ohci);
2639 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2640 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2641 ohci->next_config_rom, ohci->next_config_rom_bus);
2642 if (ohci->config_rom)
2643 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2644 ohci->config_rom, ohci->config_rom_bus);
2645 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2646 ohci->self_id_cpu, ohci->self_id_bus);
2647 ar_context_release(&ohci->ar_request_ctx);
2648 ar_context_release(&ohci->ar_response_ctx);
2649 context_release(&ohci->at_request_ctx);
2650 context_release(&ohci->at_response_ctx);
2651 kfree(ohci->it_context_list);
2652 kfree(ohci->ir_context_list);
2653 pci_iounmap(dev, ohci->registers);
2654 pci_release_region(dev, 0);
2655 pci_disable_device(dev);
2656 kfree(&ohci->card);
2657 ohci_pmac_off(dev);
2659 fw_notify("Removed fw-ohci device.\n");
2662 #ifdef CONFIG_PM
2663 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2665 struct fw_ohci *ohci = pci_get_drvdata(dev);
2666 int err;
2668 software_reset(ohci);
2669 free_irq(dev->irq, ohci);
2670 err = pci_save_state(dev);
2671 if (err) {
2672 fw_error("pci_save_state failed\n");
2673 return err;
2675 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2676 if (err)
2677 fw_error("pci_set_power_state failed with %d\n", err);
2678 ohci_pmac_off(dev);
2680 return 0;
2683 static int pci_resume(struct pci_dev *dev)
2685 struct fw_ohci *ohci = pci_get_drvdata(dev);
2686 int err;
2688 ohci_pmac_on(dev);
2689 pci_set_power_state(dev, PCI_D0);
2690 pci_restore_state(dev);
2691 err = pci_enable_device(dev);
2692 if (err) {
2693 fw_error("pci_enable_device failed\n");
2694 return err;
2697 return ohci_enable(&ohci->card, NULL, 0);
2699 #endif
2701 static struct pci_device_id pci_table[] = {
2702 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2706 MODULE_DEVICE_TABLE(pci, pci_table);
2708 static struct pci_driver fw_ohci_pci_driver = {
2709 .name = ohci_driver_name,
2710 .id_table = pci_table,
2711 .probe = pci_probe,
2712 .remove = pci_remove,
2713 #ifdef CONFIG_PM
2714 .resume = pci_resume,
2715 .suspend = pci_suspend,
2716 #endif
2719 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2720 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2721 MODULE_LICENSE("GPL");
2723 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2724 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2725 MODULE_ALIAS("ohci1394");
2726 #endif
2728 static int __init fw_ohci_init(void)
2730 return pci_register_driver(&fw_ohci_pci_driver);
2733 static void __exit fw_ohci_cleanup(void)
2735 pci_unregister_driver(&fw_ohci_pci_driver);
2738 module_init(fw_ohci_init);
2739 module_exit(fw_ohci_cleanup);