Staging: hv: make netDevice->ReceivePacketListLock a real spinlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blob0895b5c7cbff35fc2e5eb8dbe4b2ee8eeacf27da
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
54 #include <asm/tlbflush.h>
56 #include "internal.h"
58 static struct kmem_cache *anon_vma_cachep;
60 static inline struct anon_vma *anon_vma_alloc(void)
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
67 kmem_cache_free(anon_vma_cachep, anon_vma);
70 /**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
95 * This must be called with the mmap_sem held for reading.
97 int anon_vma_prepare(struct vm_area_struct *vma)
99 struct anon_vma *anon_vma = vma->anon_vma;
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
104 struct anon_vma *allocated;
106 anon_vma = find_mergeable_anon_vma(vma);
107 allocated = NULL;
108 if (!anon_vma) {
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
114 spin_lock(&anon_vma->lock);
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 allocated = NULL;
123 spin_unlock(&mm->page_table_lock);
125 spin_unlock(&anon_vma->lock);
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
129 return 0;
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
138 void __anon_vma_link(struct vm_area_struct *vma)
140 struct anon_vma *anon_vma = vma->anon_vma;
142 if (anon_vma)
143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
146 void anon_vma_link(struct vm_area_struct *vma)
148 struct anon_vma *anon_vma = vma->anon_vma;
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 spin_unlock(&anon_vma->lock);
157 void anon_vma_unlink(struct vm_area_struct *vma)
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
162 if (!anon_vma)
163 return;
165 spin_lock(&anon_vma->lock);
166 list_del(&vma->anon_vma_node);
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
172 if (empty)
173 anon_vma_free(anon_vma);
176 static void anon_vma_ctor(void *data)
178 struct anon_vma *anon_vma = data;
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
184 void __init anon_vma_init(void)
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
194 static struct anon_vma *page_lock_anon_vma(struct page *page)
196 struct anon_vma *anon_vma;
197 unsigned long anon_mapping;
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
208 return anon_vma;
209 out:
210 rcu_read_unlock();
211 return NULL;
214 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 /* page should be within @vma mapping range */
234 return -EFAULT;
236 return address;
240 * At what user virtual address is page expected in vma? checking that the
241 * page matches the vma: currently only used on anon pages, by unuse_vma;
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
259 * Check that @page is mapped at @address into @mm.
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
265 * On success returns with pte mapped and locked.
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 unsigned long address, spinlock_t **ptlp, int sync)
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274 spinlock_t *ptl;
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 return NULL;
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
290 if (!sync && !pte_present(*pte)) {
291 pte_unmap(pte);
292 return NULL;
295 ptl = pte_lockptr(mm, pmd);
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
328 return 1;
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
335 static int page_referenced_one(struct page *page,
336 struct vm_area_struct *vma,
337 unsigned int *mapcount,
338 unsigned long *vm_flags)
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
342 pte_t *pte;
343 spinlock_t *ptl;
344 int referenced = 0;
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
350 pte = page_check_address(page, mm, address, &ptl, 0);
351 if (!pte)
352 goto out;
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
359 if (vma->vm_flags & VM_LOCKED) {
360 *mapcount = 1; /* break early from loop */
361 *vm_flags |= VM_LOCKED;
362 goto out_unmap;
365 if (ptep_clear_flush_young_notify(vma, address, pte)) {
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
373 if (likely(!VM_SequentialReadHint(vma)))
374 referenced++;
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
379 if (mm != current->mm && has_swap_token(mm) &&
380 rwsem_is_locked(&mm->mmap_sem))
381 referenced++;
383 out_unmap:
384 (*mapcount)--;
385 pte_unmap_unlock(pte, ptl);
386 out:
387 if (referenced)
388 *vm_flags |= vma->vm_flags;
389 return referenced;
392 static int page_referenced_anon(struct page *page,
393 struct mem_cgroup *mem_cont,
394 unsigned long *vm_flags)
396 unsigned int mapcount;
397 struct anon_vma *anon_vma;
398 struct vm_area_struct *vma;
399 int referenced = 0;
401 anon_vma = page_lock_anon_vma(page);
402 if (!anon_vma)
403 return referenced;
405 mapcount = page_mapcount(page);
406 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
408 * If we are reclaiming on behalf of a cgroup, skip
409 * counting on behalf of references from different
410 * cgroups
412 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
413 continue;
414 referenced += page_referenced_one(page, vma,
415 &mapcount, vm_flags);
416 if (!mapcount)
417 break;
420 page_unlock_anon_vma(anon_vma);
421 return referenced;
425 * page_referenced_file - referenced check for object-based rmap
426 * @page: the page we're checking references on.
427 * @mem_cont: target memory controller
428 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
430 * For an object-based mapped page, find all the places it is mapped and
431 * check/clear the referenced flag. This is done by following the page->mapping
432 * pointer, then walking the chain of vmas it holds. It returns the number
433 * of references it found.
435 * This function is only called from page_referenced for object-based pages.
437 static int page_referenced_file(struct page *page,
438 struct mem_cgroup *mem_cont,
439 unsigned long *vm_flags)
441 unsigned int mapcount;
442 struct address_space *mapping = page->mapping;
443 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
444 struct vm_area_struct *vma;
445 struct prio_tree_iter iter;
446 int referenced = 0;
449 * The caller's checks on page->mapping and !PageAnon have made
450 * sure that this is a file page: the check for page->mapping
451 * excludes the case just before it gets set on an anon page.
453 BUG_ON(PageAnon(page));
456 * The page lock not only makes sure that page->mapping cannot
457 * suddenly be NULLified by truncation, it makes sure that the
458 * structure at mapping cannot be freed and reused yet,
459 * so we can safely take mapping->i_mmap_lock.
461 BUG_ON(!PageLocked(page));
463 spin_lock(&mapping->i_mmap_lock);
466 * i_mmap_lock does not stabilize mapcount at all, but mapcount
467 * is more likely to be accurate if we note it after spinning.
469 mapcount = page_mapcount(page);
471 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
473 * If we are reclaiming on behalf of a cgroup, skip
474 * counting on behalf of references from different
475 * cgroups
477 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
478 continue;
479 referenced += page_referenced_one(page, vma,
480 &mapcount, vm_flags);
481 if (!mapcount)
482 break;
485 spin_unlock(&mapping->i_mmap_lock);
486 return referenced;
490 * page_referenced - test if the page was referenced
491 * @page: the page to test
492 * @is_locked: caller holds lock on the page
493 * @mem_cont: target memory controller
494 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
496 * Quick test_and_clear_referenced for all mappings to a page,
497 * returns the number of ptes which referenced the page.
499 int page_referenced(struct page *page,
500 int is_locked,
501 struct mem_cgroup *mem_cont,
502 unsigned long *vm_flags)
504 int referenced = 0;
506 if (TestClearPageReferenced(page))
507 referenced++;
509 *vm_flags = 0;
510 if (page_mapped(page) && page->mapping) {
511 if (PageAnon(page))
512 referenced += page_referenced_anon(page, mem_cont,
513 vm_flags);
514 else if (is_locked)
515 referenced += page_referenced_file(page, mem_cont,
516 vm_flags);
517 else if (!trylock_page(page))
518 referenced++;
519 else {
520 if (page->mapping)
521 referenced += page_referenced_file(page,
522 mem_cont, vm_flags);
523 unlock_page(page);
527 if (page_test_and_clear_young(page))
528 referenced++;
530 return referenced;
533 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long address;
537 pte_t *pte;
538 spinlock_t *ptl;
539 int ret = 0;
541 address = vma_address(page, vma);
542 if (address == -EFAULT)
543 goto out;
545 pte = page_check_address(page, mm, address, &ptl, 1);
546 if (!pte)
547 goto out;
549 if (pte_dirty(*pte) || pte_write(*pte)) {
550 pte_t entry;
552 flush_cache_page(vma, address, pte_pfn(*pte));
553 entry = ptep_clear_flush_notify(vma, address, pte);
554 entry = pte_wrprotect(entry);
555 entry = pte_mkclean(entry);
556 set_pte_at(mm, address, pte, entry);
557 ret = 1;
560 pte_unmap_unlock(pte, ptl);
561 out:
562 return ret;
565 static int page_mkclean_file(struct address_space *mapping, struct page *page)
567 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
568 struct vm_area_struct *vma;
569 struct prio_tree_iter iter;
570 int ret = 0;
572 BUG_ON(PageAnon(page));
574 spin_lock(&mapping->i_mmap_lock);
575 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
576 if (vma->vm_flags & VM_SHARED)
577 ret += page_mkclean_one(page, vma);
579 spin_unlock(&mapping->i_mmap_lock);
580 return ret;
583 int page_mkclean(struct page *page)
585 int ret = 0;
587 BUG_ON(!PageLocked(page));
589 if (page_mapped(page)) {
590 struct address_space *mapping = page_mapping(page);
591 if (mapping) {
592 ret = page_mkclean_file(mapping, page);
593 if (page_test_dirty(page)) {
594 page_clear_dirty(page);
595 ret = 1;
600 return ret;
602 EXPORT_SYMBOL_GPL(page_mkclean);
605 * __page_set_anon_rmap - setup new anonymous rmap
606 * @page: the page to add the mapping to
607 * @vma: the vm area in which the mapping is added
608 * @address: the user virtual address mapped
610 static void __page_set_anon_rmap(struct page *page,
611 struct vm_area_struct *vma, unsigned long address)
613 struct anon_vma *anon_vma = vma->anon_vma;
615 BUG_ON(!anon_vma);
616 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
617 page->mapping = (struct address_space *) anon_vma;
619 page->index = linear_page_index(vma, address);
622 * nr_mapped state can be updated without turning off
623 * interrupts because it is not modified via interrupt.
625 __inc_zone_page_state(page, NR_ANON_PAGES);
629 * __page_check_anon_rmap - sanity check anonymous rmap addition
630 * @page: the page to add the mapping to
631 * @vma: the vm area in which the mapping is added
632 * @address: the user virtual address mapped
634 static void __page_check_anon_rmap(struct page *page,
635 struct vm_area_struct *vma, unsigned long address)
637 #ifdef CONFIG_DEBUG_VM
639 * The page's anon-rmap details (mapping and index) are guaranteed to
640 * be set up correctly at this point.
642 * We have exclusion against page_add_anon_rmap because the caller
643 * always holds the page locked, except if called from page_dup_rmap,
644 * in which case the page is already known to be setup.
646 * We have exclusion against page_add_new_anon_rmap because those pages
647 * are initially only visible via the pagetables, and the pte is locked
648 * over the call to page_add_new_anon_rmap.
650 struct anon_vma *anon_vma = vma->anon_vma;
651 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
652 BUG_ON(page->mapping != (struct address_space *)anon_vma);
653 BUG_ON(page->index != linear_page_index(vma, address));
654 #endif
658 * page_add_anon_rmap - add pte mapping to an anonymous page
659 * @page: the page to add the mapping to
660 * @vma: the vm area in which the mapping is added
661 * @address: the user virtual address mapped
663 * The caller needs to hold the pte lock and the page must be locked.
665 void page_add_anon_rmap(struct page *page,
666 struct vm_area_struct *vma, unsigned long address)
668 VM_BUG_ON(!PageLocked(page));
669 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
670 if (atomic_inc_and_test(&page->_mapcount))
671 __page_set_anon_rmap(page, vma, address);
672 else
673 __page_check_anon_rmap(page, vma, address);
677 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
678 * @page: the page to add the mapping to
679 * @vma: the vm area in which the mapping is added
680 * @address: the user virtual address mapped
682 * Same as page_add_anon_rmap but must only be called on *new* pages.
683 * This means the inc-and-test can be bypassed.
684 * Page does not have to be locked.
686 void page_add_new_anon_rmap(struct page *page,
687 struct vm_area_struct *vma, unsigned long address)
689 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
690 SetPageSwapBacked(page);
691 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
692 __page_set_anon_rmap(page, vma, address);
693 if (page_evictable(page, vma))
694 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
695 else
696 add_page_to_unevictable_list(page);
700 * page_add_file_rmap - add pte mapping to a file page
701 * @page: the page to add the mapping to
703 * The caller needs to hold the pte lock.
705 void page_add_file_rmap(struct page *page)
707 if (atomic_inc_and_test(&page->_mapcount)) {
708 __inc_zone_page_state(page, NR_FILE_MAPPED);
709 mem_cgroup_update_mapped_file_stat(page, 1);
713 #ifdef CONFIG_DEBUG_VM
715 * page_dup_rmap - duplicate pte mapping to a page
716 * @page: the page to add the mapping to
717 * @vma: the vm area being duplicated
718 * @address: the user virtual address mapped
720 * For copy_page_range only: minimal extract from page_add_file_rmap /
721 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
722 * quicker.
724 * The caller needs to hold the pte lock.
726 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
728 if (PageAnon(page))
729 __page_check_anon_rmap(page, vma, address);
730 atomic_inc(&page->_mapcount);
732 #endif
735 * page_remove_rmap - take down pte mapping from a page
736 * @page: page to remove mapping from
738 * The caller needs to hold the pte lock.
740 void page_remove_rmap(struct page *page)
742 if (atomic_add_negative(-1, &page->_mapcount)) {
744 * Now that the last pte has gone, s390 must transfer dirty
745 * flag from storage key to struct page. We can usually skip
746 * this if the page is anon, so about to be freed; but perhaps
747 * not if it's in swapcache - there might be another pte slot
748 * containing the swap entry, but page not yet written to swap.
750 if ((!PageAnon(page) || PageSwapCache(page)) &&
751 page_test_dirty(page)) {
752 page_clear_dirty(page);
753 set_page_dirty(page);
755 if (PageAnon(page))
756 mem_cgroup_uncharge_page(page);
757 __dec_zone_page_state(page,
758 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
759 mem_cgroup_update_mapped_file_stat(page, -1);
761 * It would be tidy to reset the PageAnon mapping here,
762 * but that might overwrite a racing page_add_anon_rmap
763 * which increments mapcount after us but sets mapping
764 * before us: so leave the reset to free_hot_cold_page,
765 * and remember that it's only reliable while mapped.
766 * Leaving it set also helps swapoff to reinstate ptes
767 * faster for those pages still in swapcache.
773 * Subfunctions of try_to_unmap: try_to_unmap_one called
774 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
776 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
777 int migration)
779 struct mm_struct *mm = vma->vm_mm;
780 unsigned long address;
781 pte_t *pte;
782 pte_t pteval;
783 spinlock_t *ptl;
784 int ret = SWAP_AGAIN;
786 address = vma_address(page, vma);
787 if (address == -EFAULT)
788 goto out;
790 pte = page_check_address(page, mm, address, &ptl, 0);
791 if (!pte)
792 goto out;
795 * If the page is mlock()d, we cannot swap it out.
796 * If it's recently referenced (perhaps page_referenced
797 * skipped over this mm) then we should reactivate it.
799 if (!migration) {
800 if (vma->vm_flags & VM_LOCKED) {
801 ret = SWAP_MLOCK;
802 goto out_unmap;
804 if (ptep_clear_flush_young_notify(vma, address, pte)) {
805 ret = SWAP_FAIL;
806 goto out_unmap;
810 /* Nuke the page table entry. */
811 flush_cache_page(vma, address, page_to_pfn(page));
812 pteval = ptep_clear_flush_notify(vma, address, pte);
814 /* Move the dirty bit to the physical page now the pte is gone. */
815 if (pte_dirty(pteval))
816 set_page_dirty(page);
818 /* Update high watermark before we lower rss */
819 update_hiwater_rss(mm);
821 if (PageAnon(page)) {
822 swp_entry_t entry = { .val = page_private(page) };
824 if (PageSwapCache(page)) {
826 * Store the swap location in the pte.
827 * See handle_pte_fault() ...
829 swap_duplicate(entry);
830 if (list_empty(&mm->mmlist)) {
831 spin_lock(&mmlist_lock);
832 if (list_empty(&mm->mmlist))
833 list_add(&mm->mmlist, &init_mm.mmlist);
834 spin_unlock(&mmlist_lock);
836 dec_mm_counter(mm, anon_rss);
837 } else if (PAGE_MIGRATION) {
839 * Store the pfn of the page in a special migration
840 * pte. do_swap_page() will wait until the migration
841 * pte is removed and then restart fault handling.
843 BUG_ON(!migration);
844 entry = make_migration_entry(page, pte_write(pteval));
846 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
847 BUG_ON(pte_file(*pte));
848 } else if (PAGE_MIGRATION && migration) {
849 /* Establish migration entry for a file page */
850 swp_entry_t entry;
851 entry = make_migration_entry(page, pte_write(pteval));
852 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
853 } else
854 dec_mm_counter(mm, file_rss);
857 page_remove_rmap(page);
858 page_cache_release(page);
860 out_unmap:
861 pte_unmap_unlock(pte, ptl);
862 out:
863 return ret;
867 * objrmap doesn't work for nonlinear VMAs because the assumption that
868 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
869 * Consequently, given a particular page and its ->index, we cannot locate the
870 * ptes which are mapping that page without an exhaustive linear search.
872 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
873 * maps the file to which the target page belongs. The ->vm_private_data field
874 * holds the current cursor into that scan. Successive searches will circulate
875 * around the vma's virtual address space.
877 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
878 * more scanning pressure is placed against them as well. Eventually pages
879 * will become fully unmapped and are eligible for eviction.
881 * For very sparsely populated VMAs this is a little inefficient - chances are
882 * there there won't be many ptes located within the scan cluster. In this case
883 * maybe we could scan further - to the end of the pte page, perhaps.
885 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
886 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
887 * rather than unmapping them. If we encounter the "check_page" that vmscan is
888 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
890 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
891 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
893 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
894 struct vm_area_struct *vma, struct page *check_page)
896 struct mm_struct *mm = vma->vm_mm;
897 pgd_t *pgd;
898 pud_t *pud;
899 pmd_t *pmd;
900 pte_t *pte;
901 pte_t pteval;
902 spinlock_t *ptl;
903 struct page *page;
904 unsigned long address;
905 unsigned long end;
906 int ret = SWAP_AGAIN;
907 int locked_vma = 0;
909 address = (vma->vm_start + cursor) & CLUSTER_MASK;
910 end = address + CLUSTER_SIZE;
911 if (address < vma->vm_start)
912 address = vma->vm_start;
913 if (end > vma->vm_end)
914 end = vma->vm_end;
916 pgd = pgd_offset(mm, address);
917 if (!pgd_present(*pgd))
918 return ret;
920 pud = pud_offset(pgd, address);
921 if (!pud_present(*pud))
922 return ret;
924 pmd = pmd_offset(pud, address);
925 if (!pmd_present(*pmd))
926 return ret;
929 * MLOCK_PAGES => feature is configured.
930 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
931 * keep the sem while scanning the cluster for mlocking pages.
933 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
934 locked_vma = (vma->vm_flags & VM_LOCKED);
935 if (!locked_vma)
936 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
939 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
941 /* Update high watermark before we lower rss */
942 update_hiwater_rss(mm);
944 for (; address < end; pte++, address += PAGE_SIZE) {
945 if (!pte_present(*pte))
946 continue;
947 page = vm_normal_page(vma, address, *pte);
948 BUG_ON(!page || PageAnon(page));
950 if (locked_vma) {
951 mlock_vma_page(page); /* no-op if already mlocked */
952 if (page == check_page)
953 ret = SWAP_MLOCK;
954 continue; /* don't unmap */
957 if (ptep_clear_flush_young_notify(vma, address, pte))
958 continue;
960 /* Nuke the page table entry. */
961 flush_cache_page(vma, address, pte_pfn(*pte));
962 pteval = ptep_clear_flush_notify(vma, address, pte);
964 /* If nonlinear, store the file page offset in the pte. */
965 if (page->index != linear_page_index(vma, address))
966 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
968 /* Move the dirty bit to the physical page now the pte is gone. */
969 if (pte_dirty(pteval))
970 set_page_dirty(page);
972 page_remove_rmap(page);
973 page_cache_release(page);
974 dec_mm_counter(mm, file_rss);
975 (*mapcount)--;
977 pte_unmap_unlock(pte - 1, ptl);
978 if (locked_vma)
979 up_read(&vma->vm_mm->mmap_sem);
980 return ret;
984 * common handling for pages mapped in VM_LOCKED vmas
986 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
988 int mlocked = 0;
990 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
991 if (vma->vm_flags & VM_LOCKED) {
992 mlock_vma_page(page);
993 mlocked++; /* really mlocked the page */
995 up_read(&vma->vm_mm->mmap_sem);
997 return mlocked;
1001 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1002 * rmap method
1003 * @page: the page to unmap/unlock
1004 * @unlock: request for unlock rather than unmap [unlikely]
1005 * @migration: unmapping for migration - ignored if @unlock
1007 * Find all the mappings of a page using the mapping pointer and the vma chains
1008 * contained in the anon_vma struct it points to.
1010 * This function is only called from try_to_unmap/try_to_munlock for
1011 * anonymous pages.
1012 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1013 * where the page was found will be held for write. So, we won't recheck
1014 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1015 * 'LOCKED.
1017 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1019 struct anon_vma *anon_vma;
1020 struct vm_area_struct *vma;
1021 unsigned int mlocked = 0;
1022 int ret = SWAP_AGAIN;
1024 if (MLOCK_PAGES && unlikely(unlock))
1025 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1027 anon_vma = page_lock_anon_vma(page);
1028 if (!anon_vma)
1029 return ret;
1031 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1032 if (MLOCK_PAGES && unlikely(unlock)) {
1033 if (!((vma->vm_flags & VM_LOCKED) &&
1034 page_mapped_in_vma(page, vma)))
1035 continue; /* must visit all unlocked vmas */
1036 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1037 } else {
1038 ret = try_to_unmap_one(page, vma, migration);
1039 if (ret == SWAP_FAIL || !page_mapped(page))
1040 break;
1042 if (ret == SWAP_MLOCK) {
1043 mlocked = try_to_mlock_page(page, vma);
1044 if (mlocked)
1045 break; /* stop if actually mlocked page */
1049 page_unlock_anon_vma(anon_vma);
1051 if (mlocked)
1052 ret = SWAP_MLOCK; /* actually mlocked the page */
1053 else if (ret == SWAP_MLOCK)
1054 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1056 return ret;
1060 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1061 * @page: the page to unmap/unlock
1062 * @unlock: request for unlock rather than unmap [unlikely]
1063 * @migration: unmapping for migration - ignored if @unlock
1065 * Find all the mappings of a page using the mapping pointer and the vma chains
1066 * contained in the address_space struct it points to.
1068 * This function is only called from try_to_unmap/try_to_munlock for
1069 * object-based pages.
1070 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1071 * where the page was found will be held for write. So, we won't recheck
1072 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1073 * 'LOCKED.
1075 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1077 struct address_space *mapping = page->mapping;
1078 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1079 struct vm_area_struct *vma;
1080 struct prio_tree_iter iter;
1081 int ret = SWAP_AGAIN;
1082 unsigned long cursor;
1083 unsigned long max_nl_cursor = 0;
1084 unsigned long max_nl_size = 0;
1085 unsigned int mapcount;
1086 unsigned int mlocked = 0;
1088 if (MLOCK_PAGES && unlikely(unlock))
1089 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1091 spin_lock(&mapping->i_mmap_lock);
1092 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1093 if (MLOCK_PAGES && unlikely(unlock)) {
1094 if (!((vma->vm_flags & VM_LOCKED) &&
1095 page_mapped_in_vma(page, vma)))
1096 continue; /* must visit all vmas */
1097 ret = SWAP_MLOCK;
1098 } else {
1099 ret = try_to_unmap_one(page, vma, migration);
1100 if (ret == SWAP_FAIL || !page_mapped(page))
1101 goto out;
1103 if (ret == SWAP_MLOCK) {
1104 mlocked = try_to_mlock_page(page, vma);
1105 if (mlocked)
1106 break; /* stop if actually mlocked page */
1110 if (mlocked)
1111 goto out;
1113 if (list_empty(&mapping->i_mmap_nonlinear))
1114 goto out;
1116 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1117 shared.vm_set.list) {
1118 if (MLOCK_PAGES && unlikely(unlock)) {
1119 if (!(vma->vm_flags & VM_LOCKED))
1120 continue; /* must visit all vmas */
1121 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1122 goto out; /* no need to look further */
1124 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1125 continue;
1126 cursor = (unsigned long) vma->vm_private_data;
1127 if (cursor > max_nl_cursor)
1128 max_nl_cursor = cursor;
1129 cursor = vma->vm_end - vma->vm_start;
1130 if (cursor > max_nl_size)
1131 max_nl_size = cursor;
1134 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1135 ret = SWAP_FAIL;
1136 goto out;
1140 * We don't try to search for this page in the nonlinear vmas,
1141 * and page_referenced wouldn't have found it anyway. Instead
1142 * just walk the nonlinear vmas trying to age and unmap some.
1143 * The mapcount of the page we came in with is irrelevant,
1144 * but even so use it as a guide to how hard we should try?
1146 mapcount = page_mapcount(page);
1147 if (!mapcount)
1148 goto out;
1149 cond_resched_lock(&mapping->i_mmap_lock);
1151 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1152 if (max_nl_cursor == 0)
1153 max_nl_cursor = CLUSTER_SIZE;
1155 do {
1156 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1157 shared.vm_set.list) {
1158 if (!MLOCK_PAGES && !migration &&
1159 (vma->vm_flags & VM_LOCKED))
1160 continue;
1161 cursor = (unsigned long) vma->vm_private_data;
1162 while ( cursor < max_nl_cursor &&
1163 cursor < vma->vm_end - vma->vm_start) {
1164 ret = try_to_unmap_cluster(cursor, &mapcount,
1165 vma, page);
1166 if (ret == SWAP_MLOCK)
1167 mlocked = 2; /* to return below */
1168 cursor += CLUSTER_SIZE;
1169 vma->vm_private_data = (void *) cursor;
1170 if ((int)mapcount <= 0)
1171 goto out;
1173 vma->vm_private_data = (void *) max_nl_cursor;
1175 cond_resched_lock(&mapping->i_mmap_lock);
1176 max_nl_cursor += CLUSTER_SIZE;
1177 } while (max_nl_cursor <= max_nl_size);
1180 * Don't loop forever (perhaps all the remaining pages are
1181 * in locked vmas). Reset cursor on all unreserved nonlinear
1182 * vmas, now forgetting on which ones it had fallen behind.
1184 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1185 vma->vm_private_data = NULL;
1186 out:
1187 spin_unlock(&mapping->i_mmap_lock);
1188 if (mlocked)
1189 ret = SWAP_MLOCK; /* actually mlocked the page */
1190 else if (ret == SWAP_MLOCK)
1191 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1192 return ret;
1196 * try_to_unmap - try to remove all page table mappings to a page
1197 * @page: the page to get unmapped
1198 * @migration: migration flag
1200 * Tries to remove all the page table entries which are mapping this
1201 * page, used in the pageout path. Caller must hold the page lock.
1202 * Return values are:
1204 * SWAP_SUCCESS - we succeeded in removing all mappings
1205 * SWAP_AGAIN - we missed a mapping, try again later
1206 * SWAP_FAIL - the page is unswappable
1207 * SWAP_MLOCK - page is mlocked.
1209 int try_to_unmap(struct page *page, int migration)
1211 int ret;
1213 BUG_ON(!PageLocked(page));
1215 if (PageAnon(page))
1216 ret = try_to_unmap_anon(page, 0, migration);
1217 else
1218 ret = try_to_unmap_file(page, 0, migration);
1219 if (ret != SWAP_MLOCK && !page_mapped(page))
1220 ret = SWAP_SUCCESS;
1221 return ret;
1225 * try_to_munlock - try to munlock a page
1226 * @page: the page to be munlocked
1228 * Called from munlock code. Checks all of the VMAs mapping the page
1229 * to make sure nobody else has this page mlocked. The page will be
1230 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1232 * Return values are:
1234 * SWAP_SUCCESS - no vma's holding page mlocked.
1235 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1236 * SWAP_MLOCK - page is now mlocked.
1238 int try_to_munlock(struct page *page)
1240 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1242 if (PageAnon(page))
1243 return try_to_unmap_anon(page, 1, 0);
1244 else
1245 return try_to_unmap_file(page, 1, 0);