Staging: hv: make netDevice->ReceivePacketListLock a real spinlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blobdd51c68e2b868adbb403b5967c4e7c6be357e722
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
118 radix_tree_delete(&mapping->page_tree, page->index);
119 page->mapping = NULL;
120 mapping->nrpages--;
121 __dec_zone_page_state(page, NR_FILE_PAGES);
122 BUG_ON(page_mapped(page));
125 * Some filesystems seem to re-dirty the page even after
126 * the VM has canceled the dirty bit (eg ext3 journaling).
128 * Fix it up by doing a final dirty accounting check after
129 * having removed the page entirely.
131 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
132 dec_zone_page_state(page, NR_FILE_DIRTY);
133 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 void remove_from_page_cache(struct page *page)
139 struct address_space *mapping = page->mapping;
141 BUG_ON(!PageLocked(page));
143 spin_lock_irq(&mapping->tree_lock);
144 __remove_from_page_cache(page);
145 spin_unlock_irq(&mapping->tree_lock);
146 mem_cgroup_uncharge_cache_page(page);
149 static int sync_page(void *word)
151 struct address_space *mapping;
152 struct page *page;
154 page = container_of((unsigned long *)word, struct page, flags);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
185 static int sync_page_killable(void *word)
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
212 .nr_to_write = LONG_MAX,
213 .range_start = start,
214 .range_end = end,
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
220 ret = do_writepages(mapping, &wbc);
221 return ret;
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 int filemap_fdatawrite(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 EXPORT_SYMBOL(filemap_fdatawrite);
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 loff_t end)
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space *mapping)
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 EXPORT_SYMBOL(filemap_flush);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 pgoff_t start, pgoff_t end)
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
273 if (end < start)
274 return 0;
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
295 pagevec_release(&pvec);
296 cond_resched();
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
305 return ret;
309 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
310 * @mapping: address space structure to wait for
311 * @start: offset in bytes where the range starts
312 * @end: offset in bytes where the range ends (inclusive)
314 * Walk the list of under-writeback pages of the given address space
315 * in the given range and wait for all of them.
317 * This is just a simple wrapper so that callers don't have to convert offsets
318 * to page indexes themselves
320 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
321 loff_t end)
323 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
324 end >> PAGE_CACHE_SHIFT);
326 EXPORT_SYMBOL(filemap_fdatawait_range);
329 * filemap_fdatawait - wait for all under-writeback pages to complete
330 * @mapping: address space structure to wait for
332 * Walk the list of under-writeback pages of the given address space
333 * and wait for all of them.
335 int filemap_fdatawait(struct address_space *mapping)
337 loff_t i_size = i_size_read(mapping->host);
339 if (i_size == 0)
340 return 0;
342 return wait_on_page_writeback_range(mapping, 0,
343 (i_size - 1) >> PAGE_CACHE_SHIFT);
345 EXPORT_SYMBOL(filemap_fdatawait);
347 int filemap_write_and_wait(struct address_space *mapping)
349 int err = 0;
351 if (mapping->nrpages) {
352 err = filemap_fdatawrite(mapping);
354 * Even if the above returned error, the pages may be
355 * written partially (e.g. -ENOSPC), so we wait for it.
356 * But the -EIO is special case, it may indicate the worst
357 * thing (e.g. bug) happened, so we avoid waiting for it.
359 if (err != -EIO) {
360 int err2 = filemap_fdatawait(mapping);
361 if (!err)
362 err = err2;
365 return err;
367 EXPORT_SYMBOL(filemap_write_and_wait);
370 * filemap_write_and_wait_range - write out & wait on a file range
371 * @mapping: the address_space for the pages
372 * @lstart: offset in bytes where the range starts
373 * @lend: offset in bytes where the range ends (inclusive)
375 * Write out and wait upon file offsets lstart->lend, inclusive.
377 * Note that `lend' is inclusive (describes the last byte to be written) so
378 * that this function can be used to write to the very end-of-file (end = -1).
380 int filemap_write_and_wait_range(struct address_space *mapping,
381 loff_t lstart, loff_t lend)
383 int err = 0;
385 if (mapping->nrpages) {
386 err = __filemap_fdatawrite_range(mapping, lstart, lend,
387 WB_SYNC_ALL);
388 /* See comment of filemap_write_and_wait() */
389 if (err != -EIO) {
390 int err2 = wait_on_page_writeback_range(mapping,
391 lstart >> PAGE_CACHE_SHIFT,
392 lend >> PAGE_CACHE_SHIFT);
393 if (!err)
394 err = err2;
397 return err;
399 EXPORT_SYMBOL(filemap_write_and_wait_range);
402 * add_to_page_cache_locked - add a locked page to the pagecache
403 * @page: page to add
404 * @mapping: the page's address_space
405 * @offset: page index
406 * @gfp_mask: page allocation mode
408 * This function is used to add a page to the pagecache. It must be locked.
409 * This function does not add the page to the LRU. The caller must do that.
411 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
412 pgoff_t offset, gfp_t gfp_mask)
414 int error;
416 VM_BUG_ON(!PageLocked(page));
418 error = mem_cgroup_cache_charge(page, current->mm,
419 gfp_mask & GFP_RECLAIM_MASK);
420 if (error)
421 goto out;
423 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
424 if (error == 0) {
425 page_cache_get(page);
426 page->mapping = mapping;
427 page->index = offset;
429 spin_lock_irq(&mapping->tree_lock);
430 error = radix_tree_insert(&mapping->page_tree, offset, page);
431 if (likely(!error)) {
432 mapping->nrpages++;
433 __inc_zone_page_state(page, NR_FILE_PAGES);
434 spin_unlock_irq(&mapping->tree_lock);
435 } else {
436 page->mapping = NULL;
437 spin_unlock_irq(&mapping->tree_lock);
438 mem_cgroup_uncharge_cache_page(page);
439 page_cache_release(page);
441 radix_tree_preload_end();
442 } else
443 mem_cgroup_uncharge_cache_page(page);
444 out:
445 return error;
447 EXPORT_SYMBOL(add_to_page_cache_locked);
449 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
450 pgoff_t offset, gfp_t gfp_mask)
452 int ret;
455 * Splice_read and readahead add shmem/tmpfs pages into the page cache
456 * before shmem_readpage has a chance to mark them as SwapBacked: they
457 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
458 * (called in add_to_page_cache) needs to know where they're going too.
460 if (mapping_cap_swap_backed(mapping))
461 SetPageSwapBacked(page);
463 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0) {
465 if (page_is_file_cache(page))
466 lru_cache_add_file(page);
467 else
468 lru_cache_add_active_anon(page);
470 return ret;
472 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
474 #ifdef CONFIG_NUMA
475 struct page *__page_cache_alloc(gfp_t gfp)
477 if (cpuset_do_page_mem_spread()) {
478 int n = cpuset_mem_spread_node();
479 return alloc_pages_exact_node(n, gfp, 0);
481 return alloc_pages(gfp, 0);
483 EXPORT_SYMBOL(__page_cache_alloc);
484 #endif
486 static int __sleep_on_page_lock(void *word)
488 io_schedule();
489 return 0;
493 * In order to wait for pages to become available there must be
494 * waitqueues associated with pages. By using a hash table of
495 * waitqueues where the bucket discipline is to maintain all
496 * waiters on the same queue and wake all when any of the pages
497 * become available, and for the woken contexts to check to be
498 * sure the appropriate page became available, this saves space
499 * at a cost of "thundering herd" phenomena during rare hash
500 * collisions.
502 static wait_queue_head_t *page_waitqueue(struct page *page)
504 const struct zone *zone = page_zone(page);
506 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
509 static inline void wake_up_page(struct page *page, int bit)
511 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
514 void wait_on_page_bit(struct page *page, int bit_nr)
516 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
518 if (test_bit(bit_nr, &page->flags))
519 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
520 TASK_UNINTERRUPTIBLE);
522 EXPORT_SYMBOL(wait_on_page_bit);
525 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
526 * @page: Page defining the wait queue of interest
527 * @waiter: Waiter to add to the queue
529 * Add an arbitrary @waiter to the wait queue for the nominated @page.
531 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
533 wait_queue_head_t *q = page_waitqueue(page);
534 unsigned long flags;
536 spin_lock_irqsave(&q->lock, flags);
537 __add_wait_queue(q, waiter);
538 spin_unlock_irqrestore(&q->lock, flags);
540 EXPORT_SYMBOL_GPL(add_page_wait_queue);
543 * unlock_page - unlock a locked page
544 * @page: the page
546 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
547 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
548 * mechananism between PageLocked pages and PageWriteback pages is shared.
549 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
551 * The mb is necessary to enforce ordering between the clear_bit and the read
552 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
554 void unlock_page(struct page *page)
556 VM_BUG_ON(!PageLocked(page));
557 clear_bit_unlock(PG_locked, &page->flags);
558 smp_mb__after_clear_bit();
559 wake_up_page(page, PG_locked);
561 EXPORT_SYMBOL(unlock_page);
564 * end_page_writeback - end writeback against a page
565 * @page: the page
567 void end_page_writeback(struct page *page)
569 if (TestClearPageReclaim(page))
570 rotate_reclaimable_page(page);
572 if (!test_clear_page_writeback(page))
573 BUG();
575 smp_mb__after_clear_bit();
576 wake_up_page(page, PG_writeback);
578 EXPORT_SYMBOL(end_page_writeback);
581 * __lock_page - get a lock on the page, assuming we need to sleep to get it
582 * @page: the page to lock
584 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
585 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
586 * chances are that on the second loop, the block layer's plug list is empty,
587 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
589 void __lock_page(struct page *page)
591 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
593 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
594 TASK_UNINTERRUPTIBLE);
596 EXPORT_SYMBOL(__lock_page);
598 int __lock_page_killable(struct page *page)
600 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602 return __wait_on_bit_lock(page_waitqueue(page), &wait,
603 sync_page_killable, TASK_KILLABLE);
605 EXPORT_SYMBOL_GPL(__lock_page_killable);
608 * __lock_page_nosync - get a lock on the page, without calling sync_page()
609 * @page: the page to lock
611 * Variant of lock_page that does not require the caller to hold a reference
612 * on the page's mapping.
614 void __lock_page_nosync(struct page *page)
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
618 TASK_UNINTERRUPTIBLE);
622 * find_get_page - find and get a page reference
623 * @mapping: the address_space to search
624 * @offset: the page index
626 * Is there a pagecache struct page at the given (mapping, offset) tuple?
627 * If yes, increment its refcount and return it; if no, return NULL.
629 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
631 void **pagep;
632 struct page *page;
634 rcu_read_lock();
635 repeat:
636 page = NULL;
637 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
638 if (pagep) {
639 page = radix_tree_deref_slot(pagep);
640 if (unlikely(!page || page == RADIX_TREE_RETRY))
641 goto repeat;
643 if (!page_cache_get_speculative(page))
644 goto repeat;
647 * Has the page moved?
648 * This is part of the lockless pagecache protocol. See
649 * include/linux/pagemap.h for details.
651 if (unlikely(page != *pagep)) {
652 page_cache_release(page);
653 goto repeat;
656 rcu_read_unlock();
658 return page;
660 EXPORT_SYMBOL(find_get_page);
663 * find_lock_page - locate, pin and lock a pagecache page
664 * @mapping: the address_space to search
665 * @offset: the page index
667 * Locates the desired pagecache page, locks it, increments its reference
668 * count and returns its address.
670 * Returns zero if the page was not present. find_lock_page() may sleep.
672 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
674 struct page *page;
676 repeat:
677 page = find_get_page(mapping, offset);
678 if (page) {
679 lock_page(page);
680 /* Has the page been truncated? */
681 if (unlikely(page->mapping != mapping)) {
682 unlock_page(page);
683 page_cache_release(page);
684 goto repeat;
686 VM_BUG_ON(page->index != offset);
688 return page;
690 EXPORT_SYMBOL(find_lock_page);
693 * find_or_create_page - locate or add a pagecache page
694 * @mapping: the page's address_space
695 * @index: the page's index into the mapping
696 * @gfp_mask: page allocation mode
698 * Locates a page in the pagecache. If the page is not present, a new page
699 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
700 * LRU list. The returned page is locked and has its reference count
701 * incremented.
703 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
704 * allocation!
706 * find_or_create_page() returns the desired page's address, or zero on
707 * memory exhaustion.
709 struct page *find_or_create_page(struct address_space *mapping,
710 pgoff_t index, gfp_t gfp_mask)
712 struct page *page;
713 int err;
714 repeat:
715 page = find_lock_page(mapping, index);
716 if (!page) {
717 page = __page_cache_alloc(gfp_mask);
718 if (!page)
719 return NULL;
721 * We want a regular kernel memory (not highmem or DMA etc)
722 * allocation for the radix tree nodes, but we need to honour
723 * the context-specific requirements the caller has asked for.
724 * GFP_RECLAIM_MASK collects those requirements.
726 err = add_to_page_cache_lru(page, mapping, index,
727 (gfp_mask & GFP_RECLAIM_MASK));
728 if (unlikely(err)) {
729 page_cache_release(page);
730 page = NULL;
731 if (err == -EEXIST)
732 goto repeat;
735 return page;
737 EXPORT_SYMBOL(find_or_create_page);
740 * find_get_pages - gang pagecache lookup
741 * @mapping: The address_space to search
742 * @start: The starting page index
743 * @nr_pages: The maximum number of pages
744 * @pages: Where the resulting pages are placed
746 * find_get_pages() will search for and return a group of up to
747 * @nr_pages pages in the mapping. The pages are placed at @pages.
748 * find_get_pages() takes a reference against the returned pages.
750 * The search returns a group of mapping-contiguous pages with ascending
751 * indexes. There may be holes in the indices due to not-present pages.
753 * find_get_pages() returns the number of pages which were found.
755 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
756 unsigned int nr_pages, struct page **pages)
758 unsigned int i;
759 unsigned int ret;
760 unsigned int nr_found;
762 rcu_read_lock();
763 restart:
764 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
765 (void ***)pages, start, nr_pages);
766 ret = 0;
767 for (i = 0; i < nr_found; i++) {
768 struct page *page;
769 repeat:
770 page = radix_tree_deref_slot((void **)pages[i]);
771 if (unlikely(!page))
772 continue;
774 * this can only trigger if nr_found == 1, making livelock
775 * a non issue.
777 if (unlikely(page == RADIX_TREE_RETRY))
778 goto restart;
780 if (!page_cache_get_speculative(page))
781 goto repeat;
783 /* Has the page moved? */
784 if (unlikely(page != *((void **)pages[i]))) {
785 page_cache_release(page);
786 goto repeat;
789 pages[ret] = page;
790 ret++;
792 rcu_read_unlock();
793 return ret;
797 * find_get_pages_contig - gang contiguous pagecache lookup
798 * @mapping: The address_space to search
799 * @index: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
803 * find_get_pages_contig() works exactly like find_get_pages(), except
804 * that the returned number of pages are guaranteed to be contiguous.
806 * find_get_pages_contig() returns the number of pages which were found.
808 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
809 unsigned int nr_pages, struct page **pages)
811 unsigned int i;
812 unsigned int ret;
813 unsigned int nr_found;
815 rcu_read_lock();
816 restart:
817 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
818 (void ***)pages, index, nr_pages);
819 ret = 0;
820 for (i = 0; i < nr_found; i++) {
821 struct page *page;
822 repeat:
823 page = radix_tree_deref_slot((void **)pages[i]);
824 if (unlikely(!page))
825 continue;
827 * this can only trigger if nr_found == 1, making livelock
828 * a non issue.
830 if (unlikely(page == RADIX_TREE_RETRY))
831 goto restart;
833 if (page->mapping == NULL || page->index != index)
834 break;
836 if (!page_cache_get_speculative(page))
837 goto repeat;
839 /* Has the page moved? */
840 if (unlikely(page != *((void **)pages[i]))) {
841 page_cache_release(page);
842 goto repeat;
845 pages[ret] = page;
846 ret++;
847 index++;
849 rcu_read_unlock();
850 return ret;
852 EXPORT_SYMBOL(find_get_pages_contig);
855 * find_get_pages_tag - find and return pages that match @tag
856 * @mapping: the address_space to search
857 * @index: the starting page index
858 * @tag: the tag index
859 * @nr_pages: the maximum number of pages
860 * @pages: where the resulting pages are placed
862 * Like find_get_pages, except we only return pages which are tagged with
863 * @tag. We update @index to index the next page for the traversal.
865 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
866 int tag, unsigned int nr_pages, struct page **pages)
868 unsigned int i;
869 unsigned int ret;
870 unsigned int nr_found;
872 rcu_read_lock();
873 restart:
874 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
875 (void ***)pages, *index, nr_pages, tag);
876 ret = 0;
877 for (i = 0; i < nr_found; i++) {
878 struct page *page;
879 repeat:
880 page = radix_tree_deref_slot((void **)pages[i]);
881 if (unlikely(!page))
882 continue;
884 * this can only trigger if nr_found == 1, making livelock
885 * a non issue.
887 if (unlikely(page == RADIX_TREE_RETRY))
888 goto restart;
890 if (!page_cache_get_speculative(page))
891 goto repeat;
893 /* Has the page moved? */
894 if (unlikely(page != *((void **)pages[i]))) {
895 page_cache_release(page);
896 goto repeat;
899 pages[ret] = page;
900 ret++;
902 rcu_read_unlock();
904 if (ret)
905 *index = pages[ret - 1]->index + 1;
907 return ret;
909 EXPORT_SYMBOL(find_get_pages_tag);
912 * grab_cache_page_nowait - returns locked page at given index in given cache
913 * @mapping: target address_space
914 * @index: the page index
916 * Same as grab_cache_page(), but do not wait if the page is unavailable.
917 * This is intended for speculative data generators, where the data can
918 * be regenerated if the page couldn't be grabbed. This routine should
919 * be safe to call while holding the lock for another page.
921 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
922 * and deadlock against the caller's locked page.
924 struct page *
925 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
927 struct page *page = find_get_page(mapping, index);
929 if (page) {
930 if (trylock_page(page))
931 return page;
932 page_cache_release(page);
933 return NULL;
935 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
936 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
937 page_cache_release(page);
938 page = NULL;
940 return page;
942 EXPORT_SYMBOL(grab_cache_page_nowait);
945 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
946 * a _large_ part of the i/o request. Imagine the worst scenario:
948 * ---R__________________________________________B__________
949 * ^ reading here ^ bad block(assume 4k)
951 * read(R) => miss => readahead(R...B) => media error => frustrating retries
952 * => failing the whole request => read(R) => read(R+1) =>
953 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
954 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
955 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
957 * It is going insane. Fix it by quickly scaling down the readahead size.
959 static void shrink_readahead_size_eio(struct file *filp,
960 struct file_ra_state *ra)
962 ra->ra_pages /= 4;
966 * do_generic_file_read - generic file read routine
967 * @filp: the file to read
968 * @ppos: current file position
969 * @desc: read_descriptor
970 * @actor: read method
972 * This is a generic file read routine, and uses the
973 * mapping->a_ops->readpage() function for the actual low-level stuff.
975 * This is really ugly. But the goto's actually try to clarify some
976 * of the logic when it comes to error handling etc.
978 static void do_generic_file_read(struct file *filp, loff_t *ppos,
979 read_descriptor_t *desc, read_actor_t actor)
981 struct address_space *mapping = filp->f_mapping;
982 struct inode *inode = mapping->host;
983 struct file_ra_state *ra = &filp->f_ra;
984 pgoff_t index;
985 pgoff_t last_index;
986 pgoff_t prev_index;
987 unsigned long offset; /* offset into pagecache page */
988 unsigned int prev_offset;
989 int error;
991 index = *ppos >> PAGE_CACHE_SHIFT;
992 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
993 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
994 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
995 offset = *ppos & ~PAGE_CACHE_MASK;
997 for (;;) {
998 struct page *page;
999 pgoff_t end_index;
1000 loff_t isize;
1001 unsigned long nr, ret;
1003 cond_resched();
1004 find_page:
1005 page = find_get_page(mapping, index);
1006 if (!page) {
1007 page_cache_sync_readahead(mapping,
1008 ra, filp,
1009 index, last_index - index);
1010 page = find_get_page(mapping, index);
1011 if (unlikely(page == NULL))
1012 goto no_cached_page;
1014 if (PageReadahead(page)) {
1015 page_cache_async_readahead(mapping,
1016 ra, filp, page,
1017 index, last_index - index);
1019 if (!PageUptodate(page)) {
1020 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1021 !mapping->a_ops->is_partially_uptodate)
1022 goto page_not_up_to_date;
1023 if (!trylock_page(page))
1024 goto page_not_up_to_date;
1025 if (!mapping->a_ops->is_partially_uptodate(page,
1026 desc, offset))
1027 goto page_not_up_to_date_locked;
1028 unlock_page(page);
1030 page_ok:
1032 * i_size must be checked after we know the page is Uptodate.
1034 * Checking i_size after the check allows us to calculate
1035 * the correct value for "nr", which means the zero-filled
1036 * part of the page is not copied back to userspace (unless
1037 * another truncate extends the file - this is desired though).
1040 isize = i_size_read(inode);
1041 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1042 if (unlikely(!isize || index > end_index)) {
1043 page_cache_release(page);
1044 goto out;
1047 /* nr is the maximum number of bytes to copy from this page */
1048 nr = PAGE_CACHE_SIZE;
1049 if (index == end_index) {
1050 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1051 if (nr <= offset) {
1052 page_cache_release(page);
1053 goto out;
1056 nr = nr - offset;
1058 /* If users can be writing to this page using arbitrary
1059 * virtual addresses, take care about potential aliasing
1060 * before reading the page on the kernel side.
1062 if (mapping_writably_mapped(mapping))
1063 flush_dcache_page(page);
1066 * When a sequential read accesses a page several times,
1067 * only mark it as accessed the first time.
1069 if (prev_index != index || offset != prev_offset)
1070 mark_page_accessed(page);
1071 prev_index = index;
1074 * Ok, we have the page, and it's up-to-date, so
1075 * now we can copy it to user space...
1077 * The actor routine returns how many bytes were actually used..
1078 * NOTE! This may not be the same as how much of a user buffer
1079 * we filled up (we may be padding etc), so we can only update
1080 * "pos" here (the actor routine has to update the user buffer
1081 * pointers and the remaining count).
1083 ret = actor(desc, page, offset, nr);
1084 offset += ret;
1085 index += offset >> PAGE_CACHE_SHIFT;
1086 offset &= ~PAGE_CACHE_MASK;
1087 prev_offset = offset;
1089 page_cache_release(page);
1090 if (ret == nr && desc->count)
1091 continue;
1092 goto out;
1094 page_not_up_to_date:
1095 /* Get exclusive access to the page ... */
1096 error = lock_page_killable(page);
1097 if (unlikely(error))
1098 goto readpage_error;
1100 page_not_up_to_date_locked:
1101 /* Did it get truncated before we got the lock? */
1102 if (!page->mapping) {
1103 unlock_page(page);
1104 page_cache_release(page);
1105 continue;
1108 /* Did somebody else fill it already? */
1109 if (PageUptodate(page)) {
1110 unlock_page(page);
1111 goto page_ok;
1114 readpage:
1115 /* Start the actual read. The read will unlock the page. */
1116 error = mapping->a_ops->readpage(filp, page);
1118 if (unlikely(error)) {
1119 if (error == AOP_TRUNCATED_PAGE) {
1120 page_cache_release(page);
1121 goto find_page;
1123 goto readpage_error;
1126 if (!PageUptodate(page)) {
1127 error = lock_page_killable(page);
1128 if (unlikely(error))
1129 goto readpage_error;
1130 if (!PageUptodate(page)) {
1131 if (page->mapping == NULL) {
1133 * invalidate_inode_pages got it
1135 unlock_page(page);
1136 page_cache_release(page);
1137 goto find_page;
1139 unlock_page(page);
1140 shrink_readahead_size_eio(filp, ra);
1141 error = -EIO;
1142 goto readpage_error;
1144 unlock_page(page);
1147 goto page_ok;
1149 readpage_error:
1150 /* UHHUH! A synchronous read error occurred. Report it */
1151 desc->error = error;
1152 page_cache_release(page);
1153 goto out;
1155 no_cached_page:
1157 * Ok, it wasn't cached, so we need to create a new
1158 * page..
1160 page = page_cache_alloc_cold(mapping);
1161 if (!page) {
1162 desc->error = -ENOMEM;
1163 goto out;
1165 error = add_to_page_cache_lru(page, mapping,
1166 index, GFP_KERNEL);
1167 if (error) {
1168 page_cache_release(page);
1169 if (error == -EEXIST)
1170 goto find_page;
1171 desc->error = error;
1172 goto out;
1174 goto readpage;
1177 out:
1178 ra->prev_pos = prev_index;
1179 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1180 ra->prev_pos |= prev_offset;
1182 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1183 file_accessed(filp);
1186 int file_read_actor(read_descriptor_t *desc, struct page *page,
1187 unsigned long offset, unsigned long size)
1189 char *kaddr;
1190 unsigned long left, count = desc->count;
1192 if (size > count)
1193 size = count;
1196 * Faults on the destination of a read are common, so do it before
1197 * taking the kmap.
1199 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1200 kaddr = kmap_atomic(page, KM_USER0);
1201 left = __copy_to_user_inatomic(desc->arg.buf,
1202 kaddr + offset, size);
1203 kunmap_atomic(kaddr, KM_USER0);
1204 if (left == 0)
1205 goto success;
1208 /* Do it the slow way */
1209 kaddr = kmap(page);
1210 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1211 kunmap(page);
1213 if (left) {
1214 size -= left;
1215 desc->error = -EFAULT;
1217 success:
1218 desc->count = count - size;
1219 desc->written += size;
1220 desc->arg.buf += size;
1221 return size;
1225 * Performs necessary checks before doing a write
1226 * @iov: io vector request
1227 * @nr_segs: number of segments in the iovec
1228 * @count: number of bytes to write
1229 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1231 * Adjust number of segments and amount of bytes to write (nr_segs should be
1232 * properly initialized first). Returns appropriate error code that caller
1233 * should return or zero in case that write should be allowed.
1235 int generic_segment_checks(const struct iovec *iov,
1236 unsigned long *nr_segs, size_t *count, int access_flags)
1238 unsigned long seg;
1239 size_t cnt = 0;
1240 for (seg = 0; seg < *nr_segs; seg++) {
1241 const struct iovec *iv = &iov[seg];
1244 * If any segment has a negative length, or the cumulative
1245 * length ever wraps negative then return -EINVAL.
1247 cnt += iv->iov_len;
1248 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1249 return -EINVAL;
1250 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1251 continue;
1252 if (seg == 0)
1253 return -EFAULT;
1254 *nr_segs = seg;
1255 cnt -= iv->iov_len; /* This segment is no good */
1256 break;
1258 *count = cnt;
1259 return 0;
1261 EXPORT_SYMBOL(generic_segment_checks);
1264 * generic_file_aio_read - generic filesystem read routine
1265 * @iocb: kernel I/O control block
1266 * @iov: io vector request
1267 * @nr_segs: number of segments in the iovec
1268 * @pos: current file position
1270 * This is the "read()" routine for all filesystems
1271 * that can use the page cache directly.
1273 ssize_t
1274 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1275 unsigned long nr_segs, loff_t pos)
1277 struct file *filp = iocb->ki_filp;
1278 ssize_t retval;
1279 unsigned long seg;
1280 size_t count;
1281 loff_t *ppos = &iocb->ki_pos;
1283 count = 0;
1284 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1285 if (retval)
1286 return retval;
1288 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 if (filp->f_flags & O_DIRECT) {
1290 loff_t size;
1291 struct address_space *mapping;
1292 struct inode *inode;
1294 mapping = filp->f_mapping;
1295 inode = mapping->host;
1296 if (!count)
1297 goto out; /* skip atime */
1298 size = i_size_read(inode);
1299 if (pos < size) {
1300 retval = filemap_write_and_wait_range(mapping, pos,
1301 pos + iov_length(iov, nr_segs) - 1);
1302 if (!retval) {
1303 retval = mapping->a_ops->direct_IO(READ, iocb,
1304 iov, pos, nr_segs);
1306 if (retval > 0)
1307 *ppos = pos + retval;
1308 if (retval) {
1309 file_accessed(filp);
1310 goto out;
1315 for (seg = 0; seg < nr_segs; seg++) {
1316 read_descriptor_t desc;
1318 desc.written = 0;
1319 desc.arg.buf = iov[seg].iov_base;
1320 desc.count = iov[seg].iov_len;
1321 if (desc.count == 0)
1322 continue;
1323 desc.error = 0;
1324 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1325 retval += desc.written;
1326 if (desc.error) {
1327 retval = retval ?: desc.error;
1328 break;
1330 if (desc.count > 0)
1331 break;
1333 out:
1334 return retval;
1336 EXPORT_SYMBOL(generic_file_aio_read);
1338 static ssize_t
1339 do_readahead(struct address_space *mapping, struct file *filp,
1340 pgoff_t index, unsigned long nr)
1342 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1343 return -EINVAL;
1345 force_page_cache_readahead(mapping, filp, index, nr);
1346 return 0;
1349 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1351 ssize_t ret;
1352 struct file *file;
1354 ret = -EBADF;
1355 file = fget(fd);
1356 if (file) {
1357 if (file->f_mode & FMODE_READ) {
1358 struct address_space *mapping = file->f_mapping;
1359 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1360 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1361 unsigned long len = end - start + 1;
1362 ret = do_readahead(mapping, file, start, len);
1364 fput(file);
1366 return ret;
1368 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1369 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1371 return SYSC_readahead((int) fd, offset, (size_t) count);
1373 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1374 #endif
1376 #ifdef CONFIG_MMU
1378 * page_cache_read - adds requested page to the page cache if not already there
1379 * @file: file to read
1380 * @offset: page index
1382 * This adds the requested page to the page cache if it isn't already there,
1383 * and schedules an I/O to read in its contents from disk.
1385 static int page_cache_read(struct file *file, pgoff_t offset)
1387 struct address_space *mapping = file->f_mapping;
1388 struct page *page;
1389 int ret;
1391 do {
1392 page = page_cache_alloc_cold(mapping);
1393 if (!page)
1394 return -ENOMEM;
1396 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1397 if (ret == 0)
1398 ret = mapping->a_ops->readpage(file, page);
1399 else if (ret == -EEXIST)
1400 ret = 0; /* losing race to add is OK */
1402 page_cache_release(page);
1404 } while (ret == AOP_TRUNCATED_PAGE);
1406 return ret;
1409 #define MMAP_LOTSAMISS (100)
1412 * Synchronous readahead happens when we don't even find
1413 * a page in the page cache at all.
1415 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1416 struct file_ra_state *ra,
1417 struct file *file,
1418 pgoff_t offset)
1420 unsigned long ra_pages;
1421 struct address_space *mapping = file->f_mapping;
1423 /* If we don't want any read-ahead, don't bother */
1424 if (VM_RandomReadHint(vma))
1425 return;
1427 if (VM_SequentialReadHint(vma) ||
1428 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1429 page_cache_sync_readahead(mapping, ra, file, offset,
1430 ra->ra_pages);
1431 return;
1434 if (ra->mmap_miss < INT_MAX)
1435 ra->mmap_miss++;
1438 * Do we miss much more than hit in this file? If so,
1439 * stop bothering with read-ahead. It will only hurt.
1441 if (ra->mmap_miss > MMAP_LOTSAMISS)
1442 return;
1445 * mmap read-around
1447 ra_pages = max_sane_readahead(ra->ra_pages);
1448 if (ra_pages) {
1449 ra->start = max_t(long, 0, offset - ra_pages/2);
1450 ra->size = ra_pages;
1451 ra->async_size = 0;
1452 ra_submit(ra, mapping, file);
1457 * Asynchronous readahead happens when we find the page and PG_readahead,
1458 * so we want to possibly extend the readahead further..
1460 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1461 struct file_ra_state *ra,
1462 struct file *file,
1463 struct page *page,
1464 pgoff_t offset)
1466 struct address_space *mapping = file->f_mapping;
1468 /* If we don't want any read-ahead, don't bother */
1469 if (VM_RandomReadHint(vma))
1470 return;
1471 if (ra->mmap_miss > 0)
1472 ra->mmap_miss--;
1473 if (PageReadahead(page))
1474 page_cache_async_readahead(mapping, ra, file,
1475 page, offset, ra->ra_pages);
1479 * filemap_fault - read in file data for page fault handling
1480 * @vma: vma in which the fault was taken
1481 * @vmf: struct vm_fault containing details of the fault
1483 * filemap_fault() is invoked via the vma operations vector for a
1484 * mapped memory region to read in file data during a page fault.
1486 * The goto's are kind of ugly, but this streamlines the normal case of having
1487 * it in the page cache, and handles the special cases reasonably without
1488 * having a lot of duplicated code.
1490 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1492 int error;
1493 struct file *file = vma->vm_file;
1494 struct address_space *mapping = file->f_mapping;
1495 struct file_ra_state *ra = &file->f_ra;
1496 struct inode *inode = mapping->host;
1497 pgoff_t offset = vmf->pgoff;
1498 struct page *page;
1499 pgoff_t size;
1500 int ret = 0;
1502 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1503 if (offset >= size)
1504 return VM_FAULT_SIGBUS;
1507 * Do we have something in the page cache already?
1509 page = find_get_page(mapping, offset);
1510 if (likely(page)) {
1512 * We found the page, so try async readahead before
1513 * waiting for the lock.
1515 do_async_mmap_readahead(vma, ra, file, page, offset);
1516 lock_page(page);
1518 /* Did it get truncated? */
1519 if (unlikely(page->mapping != mapping)) {
1520 unlock_page(page);
1521 put_page(page);
1522 goto no_cached_page;
1524 } else {
1525 /* No page in the page cache at all */
1526 do_sync_mmap_readahead(vma, ra, file, offset);
1527 count_vm_event(PGMAJFAULT);
1528 ret = VM_FAULT_MAJOR;
1529 retry_find:
1530 page = find_lock_page(mapping, offset);
1531 if (!page)
1532 goto no_cached_page;
1536 * We have a locked page in the page cache, now we need to check
1537 * that it's up-to-date. If not, it is going to be due to an error.
1539 if (unlikely(!PageUptodate(page)))
1540 goto page_not_uptodate;
1543 * Found the page and have a reference on it.
1544 * We must recheck i_size under page lock.
1546 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1547 if (unlikely(offset >= size)) {
1548 unlock_page(page);
1549 page_cache_release(page);
1550 return VM_FAULT_SIGBUS;
1553 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1554 vmf->page = page;
1555 return ret | VM_FAULT_LOCKED;
1557 no_cached_page:
1559 * We're only likely to ever get here if MADV_RANDOM is in
1560 * effect.
1562 error = page_cache_read(file, offset);
1565 * The page we want has now been added to the page cache.
1566 * In the unlikely event that someone removed it in the
1567 * meantime, we'll just come back here and read it again.
1569 if (error >= 0)
1570 goto retry_find;
1573 * An error return from page_cache_read can result if the
1574 * system is low on memory, or a problem occurs while trying
1575 * to schedule I/O.
1577 if (error == -ENOMEM)
1578 return VM_FAULT_OOM;
1579 return VM_FAULT_SIGBUS;
1581 page_not_uptodate:
1583 * Umm, take care of errors if the page isn't up-to-date.
1584 * Try to re-read it _once_. We do this synchronously,
1585 * because there really aren't any performance issues here
1586 * and we need to check for errors.
1588 ClearPageError(page);
1589 error = mapping->a_ops->readpage(file, page);
1590 if (!error) {
1591 wait_on_page_locked(page);
1592 if (!PageUptodate(page))
1593 error = -EIO;
1595 page_cache_release(page);
1597 if (!error || error == AOP_TRUNCATED_PAGE)
1598 goto retry_find;
1600 /* Things didn't work out. Return zero to tell the mm layer so. */
1601 shrink_readahead_size_eio(file, ra);
1602 return VM_FAULT_SIGBUS;
1604 EXPORT_SYMBOL(filemap_fault);
1606 struct vm_operations_struct generic_file_vm_ops = {
1607 .fault = filemap_fault,
1610 /* This is used for a general mmap of a disk file */
1612 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1614 struct address_space *mapping = file->f_mapping;
1616 if (!mapping->a_ops->readpage)
1617 return -ENOEXEC;
1618 file_accessed(file);
1619 vma->vm_ops = &generic_file_vm_ops;
1620 vma->vm_flags |= VM_CAN_NONLINEAR;
1621 return 0;
1625 * This is for filesystems which do not implement ->writepage.
1627 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1629 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1630 return -EINVAL;
1631 return generic_file_mmap(file, vma);
1633 #else
1634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1636 return -ENOSYS;
1638 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1640 return -ENOSYS;
1642 #endif /* CONFIG_MMU */
1644 EXPORT_SYMBOL(generic_file_mmap);
1645 EXPORT_SYMBOL(generic_file_readonly_mmap);
1647 static struct page *__read_cache_page(struct address_space *mapping,
1648 pgoff_t index,
1649 int (*filler)(void *,struct page*),
1650 void *data)
1652 struct page *page;
1653 int err;
1654 repeat:
1655 page = find_get_page(mapping, index);
1656 if (!page) {
1657 page = page_cache_alloc_cold(mapping);
1658 if (!page)
1659 return ERR_PTR(-ENOMEM);
1660 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1661 if (unlikely(err)) {
1662 page_cache_release(page);
1663 if (err == -EEXIST)
1664 goto repeat;
1665 /* Presumably ENOMEM for radix tree node */
1666 return ERR_PTR(err);
1668 err = filler(data, page);
1669 if (err < 0) {
1670 page_cache_release(page);
1671 page = ERR_PTR(err);
1674 return page;
1678 * read_cache_page_async - read into page cache, fill it if needed
1679 * @mapping: the page's address_space
1680 * @index: the page index
1681 * @filler: function to perform the read
1682 * @data: destination for read data
1684 * Same as read_cache_page, but don't wait for page to become unlocked
1685 * after submitting it to the filler.
1687 * Read into the page cache. If a page already exists, and PageUptodate() is
1688 * not set, try to fill the page but don't wait for it to become unlocked.
1690 * If the page does not get brought uptodate, return -EIO.
1692 struct page *read_cache_page_async(struct address_space *mapping,
1693 pgoff_t index,
1694 int (*filler)(void *,struct page*),
1695 void *data)
1697 struct page *page;
1698 int err;
1700 retry:
1701 page = __read_cache_page(mapping, index, filler, data);
1702 if (IS_ERR(page))
1703 return page;
1704 if (PageUptodate(page))
1705 goto out;
1707 lock_page(page);
1708 if (!page->mapping) {
1709 unlock_page(page);
1710 page_cache_release(page);
1711 goto retry;
1713 if (PageUptodate(page)) {
1714 unlock_page(page);
1715 goto out;
1717 err = filler(data, page);
1718 if (err < 0) {
1719 page_cache_release(page);
1720 return ERR_PTR(err);
1722 out:
1723 mark_page_accessed(page);
1724 return page;
1726 EXPORT_SYMBOL(read_cache_page_async);
1729 * read_cache_page - read into page cache, fill it if needed
1730 * @mapping: the page's address_space
1731 * @index: the page index
1732 * @filler: function to perform the read
1733 * @data: destination for read data
1735 * Read into the page cache. If a page already exists, and PageUptodate() is
1736 * not set, try to fill the page then wait for it to become unlocked.
1738 * If the page does not get brought uptodate, return -EIO.
1740 struct page *read_cache_page(struct address_space *mapping,
1741 pgoff_t index,
1742 int (*filler)(void *,struct page*),
1743 void *data)
1745 struct page *page;
1747 page = read_cache_page_async(mapping, index, filler, data);
1748 if (IS_ERR(page))
1749 goto out;
1750 wait_on_page_locked(page);
1751 if (!PageUptodate(page)) {
1752 page_cache_release(page);
1753 page = ERR_PTR(-EIO);
1755 out:
1756 return page;
1758 EXPORT_SYMBOL(read_cache_page);
1761 * The logic we want is
1763 * if suid or (sgid and xgrp)
1764 * remove privs
1766 int should_remove_suid(struct dentry *dentry)
1768 mode_t mode = dentry->d_inode->i_mode;
1769 int kill = 0;
1771 /* suid always must be killed */
1772 if (unlikely(mode & S_ISUID))
1773 kill = ATTR_KILL_SUID;
1776 * sgid without any exec bits is just a mandatory locking mark; leave
1777 * it alone. If some exec bits are set, it's a real sgid; kill it.
1779 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1780 kill |= ATTR_KILL_SGID;
1782 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1783 return kill;
1785 return 0;
1787 EXPORT_SYMBOL(should_remove_suid);
1789 static int __remove_suid(struct dentry *dentry, int kill)
1791 struct iattr newattrs;
1793 newattrs.ia_valid = ATTR_FORCE | kill;
1794 return notify_change(dentry, &newattrs);
1797 int file_remove_suid(struct file *file)
1799 struct dentry *dentry = file->f_path.dentry;
1800 int killsuid = should_remove_suid(dentry);
1801 int killpriv = security_inode_need_killpriv(dentry);
1802 int error = 0;
1804 if (killpriv < 0)
1805 return killpriv;
1806 if (killpriv)
1807 error = security_inode_killpriv(dentry);
1808 if (!error && killsuid)
1809 error = __remove_suid(dentry, killsuid);
1811 return error;
1813 EXPORT_SYMBOL(file_remove_suid);
1815 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1816 const struct iovec *iov, size_t base, size_t bytes)
1818 size_t copied = 0, left = 0;
1820 while (bytes) {
1821 char __user *buf = iov->iov_base + base;
1822 int copy = min(bytes, iov->iov_len - base);
1824 base = 0;
1825 left = __copy_from_user_inatomic(vaddr, buf, copy);
1826 copied += copy;
1827 bytes -= copy;
1828 vaddr += copy;
1829 iov++;
1831 if (unlikely(left))
1832 break;
1834 return copied - left;
1838 * Copy as much as we can into the page and return the number of bytes which
1839 * were sucessfully copied. If a fault is encountered then return the number of
1840 * bytes which were copied.
1842 size_t iov_iter_copy_from_user_atomic(struct page *page,
1843 struct iov_iter *i, unsigned long offset, size_t bytes)
1845 char *kaddr;
1846 size_t copied;
1848 BUG_ON(!in_atomic());
1849 kaddr = kmap_atomic(page, KM_USER0);
1850 if (likely(i->nr_segs == 1)) {
1851 int left;
1852 char __user *buf = i->iov->iov_base + i->iov_offset;
1853 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1854 copied = bytes - left;
1855 } else {
1856 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1857 i->iov, i->iov_offset, bytes);
1859 kunmap_atomic(kaddr, KM_USER0);
1861 return copied;
1863 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1866 * This has the same sideeffects and return value as
1867 * iov_iter_copy_from_user_atomic().
1868 * The difference is that it attempts to resolve faults.
1869 * Page must not be locked.
1871 size_t iov_iter_copy_from_user(struct page *page,
1872 struct iov_iter *i, unsigned long offset, size_t bytes)
1874 char *kaddr;
1875 size_t copied;
1877 kaddr = kmap(page);
1878 if (likely(i->nr_segs == 1)) {
1879 int left;
1880 char __user *buf = i->iov->iov_base + i->iov_offset;
1881 left = __copy_from_user(kaddr + offset, buf, bytes);
1882 copied = bytes - left;
1883 } else {
1884 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1885 i->iov, i->iov_offset, bytes);
1887 kunmap(page);
1888 return copied;
1890 EXPORT_SYMBOL(iov_iter_copy_from_user);
1892 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1894 BUG_ON(i->count < bytes);
1896 if (likely(i->nr_segs == 1)) {
1897 i->iov_offset += bytes;
1898 i->count -= bytes;
1899 } else {
1900 const struct iovec *iov = i->iov;
1901 size_t base = i->iov_offset;
1904 * The !iov->iov_len check ensures we skip over unlikely
1905 * zero-length segments (without overruning the iovec).
1907 while (bytes || unlikely(i->count && !iov->iov_len)) {
1908 int copy;
1910 copy = min(bytes, iov->iov_len - base);
1911 BUG_ON(!i->count || i->count < copy);
1912 i->count -= copy;
1913 bytes -= copy;
1914 base += copy;
1915 if (iov->iov_len == base) {
1916 iov++;
1917 base = 0;
1920 i->iov = iov;
1921 i->iov_offset = base;
1924 EXPORT_SYMBOL(iov_iter_advance);
1927 * Fault in the first iovec of the given iov_iter, to a maximum length
1928 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1929 * accessed (ie. because it is an invalid address).
1931 * writev-intensive code may want this to prefault several iovecs -- that
1932 * would be possible (callers must not rely on the fact that _only_ the
1933 * first iovec will be faulted with the current implementation).
1935 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1937 char __user *buf = i->iov->iov_base + i->iov_offset;
1938 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1939 return fault_in_pages_readable(buf, bytes);
1941 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1944 * Return the count of just the current iov_iter segment.
1946 size_t iov_iter_single_seg_count(struct iov_iter *i)
1948 const struct iovec *iov = i->iov;
1949 if (i->nr_segs == 1)
1950 return i->count;
1951 else
1952 return min(i->count, iov->iov_len - i->iov_offset);
1954 EXPORT_SYMBOL(iov_iter_single_seg_count);
1957 * Performs necessary checks before doing a write
1959 * Can adjust writing position or amount of bytes to write.
1960 * Returns appropriate error code that caller should return or
1961 * zero in case that write should be allowed.
1963 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1965 struct inode *inode = file->f_mapping->host;
1966 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1968 if (unlikely(*pos < 0))
1969 return -EINVAL;
1971 if (!isblk) {
1972 /* FIXME: this is for backwards compatibility with 2.4 */
1973 if (file->f_flags & O_APPEND)
1974 *pos = i_size_read(inode);
1976 if (limit != RLIM_INFINITY) {
1977 if (*pos >= limit) {
1978 send_sig(SIGXFSZ, current, 0);
1979 return -EFBIG;
1981 if (*count > limit - (typeof(limit))*pos) {
1982 *count = limit - (typeof(limit))*pos;
1988 * LFS rule
1990 if (unlikely(*pos + *count > MAX_NON_LFS &&
1991 !(file->f_flags & O_LARGEFILE))) {
1992 if (*pos >= MAX_NON_LFS) {
1993 return -EFBIG;
1995 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1996 *count = MAX_NON_LFS - (unsigned long)*pos;
2001 * Are we about to exceed the fs block limit ?
2003 * If we have written data it becomes a short write. If we have
2004 * exceeded without writing data we send a signal and return EFBIG.
2005 * Linus frestrict idea will clean these up nicely..
2007 if (likely(!isblk)) {
2008 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2009 if (*count || *pos > inode->i_sb->s_maxbytes) {
2010 return -EFBIG;
2012 /* zero-length writes at ->s_maxbytes are OK */
2015 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2016 *count = inode->i_sb->s_maxbytes - *pos;
2017 } else {
2018 #ifdef CONFIG_BLOCK
2019 loff_t isize;
2020 if (bdev_read_only(I_BDEV(inode)))
2021 return -EPERM;
2022 isize = i_size_read(inode);
2023 if (*pos >= isize) {
2024 if (*count || *pos > isize)
2025 return -ENOSPC;
2028 if (*pos + *count > isize)
2029 *count = isize - *pos;
2030 #else
2031 return -EPERM;
2032 #endif
2034 return 0;
2036 EXPORT_SYMBOL(generic_write_checks);
2038 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2039 loff_t pos, unsigned len, unsigned flags,
2040 struct page **pagep, void **fsdata)
2042 const struct address_space_operations *aops = mapping->a_ops;
2044 return aops->write_begin(file, mapping, pos, len, flags,
2045 pagep, fsdata);
2047 EXPORT_SYMBOL(pagecache_write_begin);
2049 int pagecache_write_end(struct file *file, struct address_space *mapping,
2050 loff_t pos, unsigned len, unsigned copied,
2051 struct page *page, void *fsdata)
2053 const struct address_space_operations *aops = mapping->a_ops;
2055 mark_page_accessed(page);
2056 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2058 EXPORT_SYMBOL(pagecache_write_end);
2060 ssize_t
2061 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2062 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2063 size_t count, size_t ocount)
2065 struct file *file = iocb->ki_filp;
2066 struct address_space *mapping = file->f_mapping;
2067 struct inode *inode = mapping->host;
2068 ssize_t written;
2069 size_t write_len;
2070 pgoff_t end;
2072 if (count != ocount)
2073 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2075 write_len = iov_length(iov, *nr_segs);
2076 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2078 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2079 if (written)
2080 goto out;
2083 * After a write we want buffered reads to be sure to go to disk to get
2084 * the new data. We invalidate clean cached page from the region we're
2085 * about to write. We do this *before* the write so that we can return
2086 * without clobbering -EIOCBQUEUED from ->direct_IO().
2088 if (mapping->nrpages) {
2089 written = invalidate_inode_pages2_range(mapping,
2090 pos >> PAGE_CACHE_SHIFT, end);
2092 * If a page can not be invalidated, return 0 to fall back
2093 * to buffered write.
2095 if (written) {
2096 if (written == -EBUSY)
2097 return 0;
2098 goto out;
2102 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2105 * Finally, try again to invalidate clean pages which might have been
2106 * cached by non-direct readahead, or faulted in by get_user_pages()
2107 * if the source of the write was an mmap'ed region of the file
2108 * we're writing. Either one is a pretty crazy thing to do,
2109 * so we don't support it 100%. If this invalidation
2110 * fails, tough, the write still worked...
2112 if (mapping->nrpages) {
2113 invalidate_inode_pages2_range(mapping,
2114 pos >> PAGE_CACHE_SHIFT, end);
2117 if (written > 0) {
2118 loff_t end = pos + written;
2119 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2120 i_size_write(inode, end);
2121 mark_inode_dirty(inode);
2123 *ppos = end;
2125 out:
2126 return written;
2128 EXPORT_SYMBOL(generic_file_direct_write);
2131 * Find or create a page at the given pagecache position. Return the locked
2132 * page. This function is specifically for buffered writes.
2134 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2135 pgoff_t index, unsigned flags)
2137 int status;
2138 struct page *page;
2139 gfp_t gfp_notmask = 0;
2140 if (flags & AOP_FLAG_NOFS)
2141 gfp_notmask = __GFP_FS;
2142 repeat:
2143 page = find_lock_page(mapping, index);
2144 if (likely(page))
2145 return page;
2147 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2148 if (!page)
2149 return NULL;
2150 status = add_to_page_cache_lru(page, mapping, index,
2151 GFP_KERNEL & ~gfp_notmask);
2152 if (unlikely(status)) {
2153 page_cache_release(page);
2154 if (status == -EEXIST)
2155 goto repeat;
2156 return NULL;
2158 return page;
2160 EXPORT_SYMBOL(grab_cache_page_write_begin);
2162 static ssize_t generic_perform_write(struct file *file,
2163 struct iov_iter *i, loff_t pos)
2165 struct address_space *mapping = file->f_mapping;
2166 const struct address_space_operations *a_ops = mapping->a_ops;
2167 long status = 0;
2168 ssize_t written = 0;
2169 unsigned int flags = 0;
2172 * Copies from kernel address space cannot fail (NFSD is a big user).
2174 if (segment_eq(get_fs(), KERNEL_DS))
2175 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2177 do {
2178 struct page *page;
2179 pgoff_t index; /* Pagecache index for current page */
2180 unsigned long offset; /* Offset into pagecache page */
2181 unsigned long bytes; /* Bytes to write to page */
2182 size_t copied; /* Bytes copied from user */
2183 void *fsdata;
2185 offset = (pos & (PAGE_CACHE_SIZE - 1));
2186 index = pos >> PAGE_CACHE_SHIFT;
2187 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2188 iov_iter_count(i));
2190 again:
2193 * Bring in the user page that we will copy from _first_.
2194 * Otherwise there's a nasty deadlock on copying from the
2195 * same page as we're writing to, without it being marked
2196 * up-to-date.
2198 * Not only is this an optimisation, but it is also required
2199 * to check that the address is actually valid, when atomic
2200 * usercopies are used, below.
2202 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2203 status = -EFAULT;
2204 break;
2207 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2208 &page, &fsdata);
2209 if (unlikely(status))
2210 break;
2212 pagefault_disable();
2213 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2214 pagefault_enable();
2215 flush_dcache_page(page);
2217 mark_page_accessed(page);
2218 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2219 page, fsdata);
2220 if (unlikely(status < 0))
2221 break;
2222 copied = status;
2224 cond_resched();
2226 iov_iter_advance(i, copied);
2227 if (unlikely(copied == 0)) {
2229 * If we were unable to copy any data at all, we must
2230 * fall back to a single segment length write.
2232 * If we didn't fallback here, we could livelock
2233 * because not all segments in the iov can be copied at
2234 * once without a pagefault.
2236 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237 iov_iter_single_seg_count(i));
2238 goto again;
2240 pos += copied;
2241 written += copied;
2243 balance_dirty_pages_ratelimited(mapping);
2245 } while (iov_iter_count(i));
2247 return written ? written : status;
2250 ssize_t
2251 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2252 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2253 size_t count, ssize_t written)
2255 struct file *file = iocb->ki_filp;
2256 struct address_space *mapping = file->f_mapping;
2257 ssize_t status;
2258 struct iov_iter i;
2260 iov_iter_init(&i, iov, nr_segs, count, written);
2261 status = generic_perform_write(file, &i, pos);
2263 if (likely(status >= 0)) {
2264 written += status;
2265 *ppos = pos + status;
2269 * If we get here for O_DIRECT writes then we must have fallen through
2270 * to buffered writes (block instantiation inside i_size). So we sync
2271 * the file data here, to try to honour O_DIRECT expectations.
2273 if (unlikely(file->f_flags & O_DIRECT) && written)
2274 status = filemap_write_and_wait_range(mapping,
2275 pos, pos + written - 1);
2277 return written ? written : status;
2279 EXPORT_SYMBOL(generic_file_buffered_write);
2282 * __generic_file_aio_write - write data to a file
2283 * @iocb: IO state structure (file, offset, etc.)
2284 * @iov: vector with data to write
2285 * @nr_segs: number of segments in the vector
2286 * @ppos: position where to write
2288 * This function does all the work needed for actually writing data to a
2289 * file. It does all basic checks, removes SUID from the file, updates
2290 * modification times and calls proper subroutines depending on whether we
2291 * do direct IO or a standard buffered write.
2293 * It expects i_mutex to be grabbed unless we work on a block device or similar
2294 * object which does not need locking at all.
2296 * This function does *not* take care of syncing data in case of O_SYNC write.
2297 * A caller has to handle it. This is mainly due to the fact that we want to
2298 * avoid syncing under i_mutex.
2300 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2301 unsigned long nr_segs, loff_t *ppos)
2303 struct file *file = iocb->ki_filp;
2304 struct address_space * mapping = file->f_mapping;
2305 size_t ocount; /* original count */
2306 size_t count; /* after file limit checks */
2307 struct inode *inode = mapping->host;
2308 loff_t pos;
2309 ssize_t written;
2310 ssize_t err;
2312 ocount = 0;
2313 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2314 if (err)
2315 return err;
2317 count = ocount;
2318 pos = *ppos;
2320 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2322 /* We can write back this queue in page reclaim */
2323 current->backing_dev_info = mapping->backing_dev_info;
2324 written = 0;
2326 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2327 if (err)
2328 goto out;
2330 if (count == 0)
2331 goto out;
2333 err = file_remove_suid(file);
2334 if (err)
2335 goto out;
2337 file_update_time(file);
2339 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2340 if (unlikely(file->f_flags & O_DIRECT)) {
2341 loff_t endbyte;
2342 ssize_t written_buffered;
2344 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2345 ppos, count, ocount);
2346 if (written < 0 || written == count)
2347 goto out;
2349 * direct-io write to a hole: fall through to buffered I/O
2350 * for completing the rest of the request.
2352 pos += written;
2353 count -= written;
2354 written_buffered = generic_file_buffered_write(iocb, iov,
2355 nr_segs, pos, ppos, count,
2356 written);
2358 * If generic_file_buffered_write() retuned a synchronous error
2359 * then we want to return the number of bytes which were
2360 * direct-written, or the error code if that was zero. Note
2361 * that this differs from normal direct-io semantics, which
2362 * will return -EFOO even if some bytes were written.
2364 if (written_buffered < 0) {
2365 err = written_buffered;
2366 goto out;
2370 * We need to ensure that the page cache pages are written to
2371 * disk and invalidated to preserve the expected O_DIRECT
2372 * semantics.
2374 endbyte = pos + written_buffered - written - 1;
2375 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2376 SYNC_FILE_RANGE_WAIT_BEFORE|
2377 SYNC_FILE_RANGE_WRITE|
2378 SYNC_FILE_RANGE_WAIT_AFTER);
2379 if (err == 0) {
2380 written = written_buffered;
2381 invalidate_mapping_pages(mapping,
2382 pos >> PAGE_CACHE_SHIFT,
2383 endbyte >> PAGE_CACHE_SHIFT);
2384 } else {
2386 * We don't know how much we wrote, so just return
2387 * the number of bytes which were direct-written
2390 } else {
2391 written = generic_file_buffered_write(iocb, iov, nr_segs,
2392 pos, ppos, count, written);
2394 out:
2395 current->backing_dev_info = NULL;
2396 return written ? written : err;
2398 EXPORT_SYMBOL(__generic_file_aio_write);
2401 * generic_file_aio_write - write data to a file
2402 * @iocb: IO state structure
2403 * @iov: vector with data to write
2404 * @nr_segs: number of segments in the vector
2405 * @pos: position in file where to write
2407 * This is a wrapper around __generic_file_aio_write() to be used by most
2408 * filesystems. It takes care of syncing the file in case of O_SYNC file
2409 * and acquires i_mutex as needed.
2411 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2412 unsigned long nr_segs, loff_t pos)
2414 struct file *file = iocb->ki_filp;
2415 struct inode *inode = file->f_mapping->host;
2416 ssize_t ret;
2418 BUG_ON(iocb->ki_pos != pos);
2420 mutex_lock(&inode->i_mutex);
2421 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2422 mutex_unlock(&inode->i_mutex);
2424 if (ret > 0 || ret == -EIOCBQUEUED) {
2425 ssize_t err;
2427 err = generic_write_sync(file, pos, ret);
2428 if (err < 0 && ret > 0)
2429 ret = err;
2431 return ret;
2433 EXPORT_SYMBOL(generic_file_aio_write);
2436 * try_to_release_page() - release old fs-specific metadata on a page
2438 * @page: the page which the kernel is trying to free
2439 * @gfp_mask: memory allocation flags (and I/O mode)
2441 * The address_space is to try to release any data against the page
2442 * (presumably at page->private). If the release was successful, return `1'.
2443 * Otherwise return zero.
2445 * This may also be called if PG_fscache is set on a page, indicating that the
2446 * page is known to the local caching routines.
2448 * The @gfp_mask argument specifies whether I/O may be performed to release
2449 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2452 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2454 struct address_space * const mapping = page->mapping;
2456 BUG_ON(!PageLocked(page));
2457 if (PageWriteback(page))
2458 return 0;
2460 if (mapping && mapping->a_ops->releasepage)
2461 return mapping->a_ops->releasepage(page, gfp_mask);
2462 return try_to_free_buffers(page);
2465 EXPORT_SYMBOL(try_to_release_page);