virtio: do not statically allocate root device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob8e95855ff3cf8c93fe10540110172fe484b8b01b
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
39 * SLAB caches for signal bits.
42 static struct kmem_cache *sigqueue_cachep;
44 DEFINE_TRACE(sched_signal_send);
46 static void __user *sig_handler(struct task_struct *t, int sig)
48 return t->sighand->action[sig - 1].sa.sa_handler;
51 static int sig_handler_ignored(void __user *handler, int sig)
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 static int sig_ignored(struct task_struct *t, int sig)
60 void __user *handler;
63 * Blocked signals are never ignored, since the
64 * signal handler may change by the time it is
65 * unblocked.
67 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 return 0;
70 handler = sig_handler(t, sig);
71 if (!sig_handler_ignored(handler, sig))
72 return 0;
75 * Tracers may want to know about even ignored signals.
77 return !tracehook_consider_ignored_signal(t, sig, handler);
81 * Re-calculate pending state from the set of locally pending
82 * signals, globally pending signals, and blocked signals.
84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
86 unsigned long ready;
87 long i;
89 switch (_NSIG_WORDS) {
90 default:
91 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 ready |= signal->sig[i] &~ blocked->sig[i];
93 break;
95 case 4: ready = signal->sig[3] &~ blocked->sig[3];
96 ready |= signal->sig[2] &~ blocked->sig[2];
97 ready |= signal->sig[1] &~ blocked->sig[1];
98 ready |= signal->sig[0] &~ blocked->sig[0];
99 break;
101 case 2: ready = signal->sig[1] &~ blocked->sig[1];
102 ready |= signal->sig[0] &~ blocked->sig[0];
103 break;
105 case 1: ready = signal->sig[0] &~ blocked->sig[0];
107 return ready != 0;
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
112 static int recalc_sigpending_tsk(struct task_struct *t)
114 if (t->signal->group_stop_count > 0 ||
115 PENDING(&t->pending, &t->blocked) ||
116 PENDING(&t->signal->shared_pending, &t->blocked)) {
117 set_tsk_thread_flag(t, TIF_SIGPENDING);
118 return 1;
121 * We must never clear the flag in another thread, or in current
122 * when it's possible the current syscall is returning -ERESTART*.
123 * So we don't clear it here, and only callers who know they should do.
125 return 0;
129 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130 * This is superfluous when called on current, the wakeup is a harmless no-op.
132 void recalc_sigpending_and_wake(struct task_struct *t)
134 if (recalc_sigpending_tsk(t))
135 signal_wake_up(t, 0);
138 void recalc_sigpending(void)
140 if (unlikely(tracehook_force_sigpending()))
141 set_thread_flag(TIF_SIGPENDING);
142 else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 clear_thread_flag(TIF_SIGPENDING);
147 /* Given the mask, find the first available signal that should be serviced. */
149 int next_signal(struct sigpending *pending, sigset_t *mask)
151 unsigned long i, *s, *m, x;
152 int sig = 0;
154 s = pending->signal.sig;
155 m = mask->sig;
156 switch (_NSIG_WORDS) {
157 default:
158 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 if ((x = *s &~ *m) != 0) {
160 sig = ffz(~x) + i*_NSIG_BPW + 1;
161 break;
163 break;
165 case 2: if ((x = s[0] &~ m[0]) != 0)
166 sig = 1;
167 else if ((x = s[1] &~ m[1]) != 0)
168 sig = _NSIG_BPW + 1;
169 else
170 break;
171 sig += ffz(~x);
172 break;
174 case 1: if ((x = *s &~ *m) != 0)
175 sig = ffz(~x) + 1;
176 break;
179 return sig;
183 * allocate a new signal queue record
184 * - this may be called without locks if and only if t == current, otherwise an
185 * appopriate lock must be held to stop the target task from exiting
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 int override_rlimit)
190 struct sigqueue *q = NULL;
191 struct user_struct *user;
194 * We won't get problems with the target's UID changing under us
195 * because changing it requires RCU be used, and if t != current, the
196 * caller must be holding the RCU readlock (by way of a spinlock) and
197 * we use RCU protection here
199 user = get_uid(__task_cred(t)->user);
200 atomic_inc(&user->sigpending);
201 if (override_rlimit ||
202 atomic_read(&user->sigpending) <=
203 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 q = kmem_cache_alloc(sigqueue_cachep, flags);
205 if (unlikely(q == NULL)) {
206 atomic_dec(&user->sigpending);
207 free_uid(user);
208 } else {
209 INIT_LIST_HEAD(&q->list);
210 q->flags = 0;
211 q->user = user;
214 return q;
217 static void __sigqueue_free(struct sigqueue *q)
219 if (q->flags & SIGQUEUE_PREALLOC)
220 return;
221 atomic_dec(&q->user->sigpending);
222 free_uid(q->user);
223 kmem_cache_free(sigqueue_cachep, q);
226 void flush_sigqueue(struct sigpending *queue)
228 struct sigqueue *q;
230 sigemptyset(&queue->signal);
231 while (!list_empty(&queue->list)) {
232 q = list_entry(queue->list.next, struct sigqueue , list);
233 list_del_init(&q->list);
234 __sigqueue_free(q);
239 * Flush all pending signals for a task.
241 void flush_signals(struct task_struct *t)
243 unsigned long flags;
245 spin_lock_irqsave(&t->sighand->siglock, flags);
246 clear_tsk_thread_flag(t, TIF_SIGPENDING);
247 flush_sigqueue(&t->pending);
248 flush_sigqueue(&t->signal->shared_pending);
249 spin_unlock_irqrestore(&t->sighand->siglock, flags);
252 static void __flush_itimer_signals(struct sigpending *pending)
254 sigset_t signal, retain;
255 struct sigqueue *q, *n;
257 signal = pending->signal;
258 sigemptyset(&retain);
260 list_for_each_entry_safe(q, n, &pending->list, list) {
261 int sig = q->info.si_signo;
263 if (likely(q->info.si_code != SI_TIMER)) {
264 sigaddset(&retain, sig);
265 } else {
266 sigdelset(&signal, sig);
267 list_del_init(&q->list);
268 __sigqueue_free(q);
272 sigorsets(&pending->signal, &signal, &retain);
275 void flush_itimer_signals(void)
277 struct task_struct *tsk = current;
278 unsigned long flags;
280 spin_lock_irqsave(&tsk->sighand->siglock, flags);
281 __flush_itimer_signals(&tsk->pending);
282 __flush_itimer_signals(&tsk->signal->shared_pending);
283 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
286 void ignore_signals(struct task_struct *t)
288 int i;
290 for (i = 0; i < _NSIG; ++i)
291 t->sighand->action[i].sa.sa_handler = SIG_IGN;
293 flush_signals(t);
297 * Flush all handlers for a task.
300 void
301 flush_signal_handlers(struct task_struct *t, int force_default)
303 int i;
304 struct k_sigaction *ka = &t->sighand->action[0];
305 for (i = _NSIG ; i != 0 ; i--) {
306 if (force_default || ka->sa.sa_handler != SIG_IGN)
307 ka->sa.sa_handler = SIG_DFL;
308 ka->sa.sa_flags = 0;
309 sigemptyset(&ka->sa.sa_mask);
310 ka++;
314 int unhandled_signal(struct task_struct *tsk, int sig)
316 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
317 if (is_global_init(tsk))
318 return 1;
319 if (handler != SIG_IGN && handler != SIG_DFL)
320 return 0;
321 return !tracehook_consider_fatal_signal(tsk, sig, handler);
325 /* Notify the system that a driver wants to block all signals for this
326 * process, and wants to be notified if any signals at all were to be
327 * sent/acted upon. If the notifier routine returns non-zero, then the
328 * signal will be acted upon after all. If the notifier routine returns 0,
329 * then then signal will be blocked. Only one block per process is
330 * allowed. priv is a pointer to private data that the notifier routine
331 * can use to determine if the signal should be blocked or not. */
333 void
334 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
336 unsigned long flags;
338 spin_lock_irqsave(&current->sighand->siglock, flags);
339 current->notifier_mask = mask;
340 current->notifier_data = priv;
341 current->notifier = notifier;
342 spin_unlock_irqrestore(&current->sighand->siglock, flags);
345 /* Notify the system that blocking has ended. */
347 void
348 unblock_all_signals(void)
350 unsigned long flags;
352 spin_lock_irqsave(&current->sighand->siglock, flags);
353 current->notifier = NULL;
354 current->notifier_data = NULL;
355 recalc_sigpending();
356 spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
361 struct sigqueue *q, *first = NULL;
364 * Collect the siginfo appropriate to this signal. Check if
365 * there is another siginfo for the same signal.
367 list_for_each_entry(q, &list->list, list) {
368 if (q->info.si_signo == sig) {
369 if (first)
370 goto still_pending;
371 first = q;
375 sigdelset(&list->signal, sig);
377 if (first) {
378 still_pending:
379 list_del_init(&first->list);
380 copy_siginfo(info, &first->info);
381 __sigqueue_free(first);
382 } else {
383 /* Ok, it wasn't in the queue. This must be
384 a fast-pathed signal or we must have been
385 out of queue space. So zero out the info.
387 info->si_signo = sig;
388 info->si_errno = 0;
389 info->si_code = 0;
390 info->si_pid = 0;
391 info->si_uid = 0;
395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 siginfo_t *info)
398 int sig = next_signal(pending, mask);
400 if (sig) {
401 if (current->notifier) {
402 if (sigismember(current->notifier_mask, sig)) {
403 if (!(current->notifier)(current->notifier_data)) {
404 clear_thread_flag(TIF_SIGPENDING);
405 return 0;
410 collect_signal(sig, pending, info);
413 return sig;
417 * Dequeue a signal and return the element to the caller, which is
418 * expected to free it.
420 * All callers have to hold the siglock.
422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
424 int signr;
426 /* We only dequeue private signals from ourselves, we don't let
427 * signalfd steal them
429 signr = __dequeue_signal(&tsk->pending, mask, info);
430 if (!signr) {
431 signr = __dequeue_signal(&tsk->signal->shared_pending,
432 mask, info);
434 * itimer signal ?
436 * itimers are process shared and we restart periodic
437 * itimers in the signal delivery path to prevent DoS
438 * attacks in the high resolution timer case. This is
439 * compliant with the old way of self restarting
440 * itimers, as the SIGALRM is a legacy signal and only
441 * queued once. Changing the restart behaviour to
442 * restart the timer in the signal dequeue path is
443 * reducing the timer noise on heavy loaded !highres
444 * systems too.
446 if (unlikely(signr == SIGALRM)) {
447 struct hrtimer *tmr = &tsk->signal->real_timer;
449 if (!hrtimer_is_queued(tmr) &&
450 tsk->signal->it_real_incr.tv64 != 0) {
451 hrtimer_forward(tmr, tmr->base->get_time(),
452 tsk->signal->it_real_incr);
453 hrtimer_restart(tmr);
458 recalc_sigpending();
459 if (!signr)
460 return 0;
462 if (unlikely(sig_kernel_stop(signr))) {
464 * Set a marker that we have dequeued a stop signal. Our
465 * caller might release the siglock and then the pending
466 * stop signal it is about to process is no longer in the
467 * pending bitmasks, but must still be cleared by a SIGCONT
468 * (and overruled by a SIGKILL). So those cases clear this
469 * shared flag after we've set it. Note that this flag may
470 * remain set after the signal we return is ignored or
471 * handled. That doesn't matter because its only purpose
472 * is to alert stop-signal processing code when another
473 * processor has come along and cleared the flag.
475 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
477 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
479 * Release the siglock to ensure proper locking order
480 * of timer locks outside of siglocks. Note, we leave
481 * irqs disabled here, since the posix-timers code is
482 * about to disable them again anyway.
484 spin_unlock(&tsk->sighand->siglock);
485 do_schedule_next_timer(info);
486 spin_lock(&tsk->sighand->siglock);
488 return signr;
492 * Tell a process that it has a new active signal..
494 * NOTE! we rely on the previous spin_lock to
495 * lock interrupts for us! We can only be called with
496 * "siglock" held, and the local interrupt must
497 * have been disabled when that got acquired!
499 * No need to set need_resched since signal event passing
500 * goes through ->blocked
502 void signal_wake_up(struct task_struct *t, int resume)
504 unsigned int mask;
506 set_tsk_thread_flag(t, TIF_SIGPENDING);
509 * For SIGKILL, we want to wake it up in the stopped/traced/killable
510 * case. We don't check t->state here because there is a race with it
511 * executing another processor and just now entering stopped state.
512 * By using wake_up_state, we ensure the process will wake up and
513 * handle its death signal.
515 mask = TASK_INTERRUPTIBLE;
516 if (resume)
517 mask |= TASK_WAKEKILL;
518 if (!wake_up_state(t, mask))
519 kick_process(t);
523 * Remove signals in mask from the pending set and queue.
524 * Returns 1 if any signals were found.
526 * All callers must be holding the siglock.
528 * This version takes a sigset mask and looks at all signals,
529 * not just those in the first mask word.
531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
533 struct sigqueue *q, *n;
534 sigset_t m;
536 sigandsets(&m, mask, &s->signal);
537 if (sigisemptyset(&m))
538 return 0;
540 signandsets(&s->signal, &s->signal, mask);
541 list_for_each_entry_safe(q, n, &s->list, list) {
542 if (sigismember(mask, q->info.si_signo)) {
543 list_del_init(&q->list);
544 __sigqueue_free(q);
547 return 1;
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
553 * All callers must be holding the siglock.
555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
557 struct sigqueue *q, *n;
559 if (!sigtestsetmask(&s->signal, mask))
560 return 0;
562 sigdelsetmask(&s->signal, mask);
563 list_for_each_entry_safe(q, n, &s->list, list) {
564 if (q->info.si_signo < SIGRTMIN &&
565 (mask & sigmask(q->info.si_signo))) {
566 list_del_init(&q->list);
567 __sigqueue_free(q);
570 return 1;
574 * Bad permissions for sending the signal
575 * - the caller must hold at least the RCU read lock
577 static int check_kill_permission(int sig, struct siginfo *info,
578 struct task_struct *t)
580 const struct cred *cred = current_cred(), *tcred;
581 struct pid *sid;
582 int error;
584 if (!valid_signal(sig))
585 return -EINVAL;
587 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 return 0;
590 error = audit_signal_info(sig, t); /* Let audit system see the signal */
591 if (error)
592 return error;
594 tcred = __task_cred(t);
595 if ((cred->euid ^ tcred->suid) &&
596 (cred->euid ^ tcred->uid) &&
597 (cred->uid ^ tcred->suid) &&
598 (cred->uid ^ tcred->uid) &&
599 !capable(CAP_KILL)) {
600 switch (sig) {
601 case SIGCONT:
602 sid = task_session(t);
604 * We don't return the error if sid == NULL. The
605 * task was unhashed, the caller must notice this.
607 if (!sid || sid == task_session(current))
608 break;
609 default:
610 return -EPERM;
614 return security_task_kill(t, info, sig, 0);
618 * Handle magic process-wide effects of stop/continue signals. Unlike
619 * the signal actions, these happen immediately at signal-generation
620 * time regardless of blocking, ignoring, or handling. This does the
621 * actual continuing for SIGCONT, but not the actual stopping for stop
622 * signals. The process stop is done as a signal action for SIG_DFL.
624 * Returns true if the signal should be actually delivered, otherwise
625 * it should be dropped.
627 static int prepare_signal(int sig, struct task_struct *p)
629 struct signal_struct *signal = p->signal;
630 struct task_struct *t;
632 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
634 * The process is in the middle of dying, nothing to do.
636 } else if (sig_kernel_stop(sig)) {
638 * This is a stop signal. Remove SIGCONT from all queues.
640 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 t = p;
642 do {
643 rm_from_queue(sigmask(SIGCONT), &t->pending);
644 } while_each_thread(p, t);
645 } else if (sig == SIGCONT) {
646 unsigned int why;
648 * Remove all stop signals from all queues,
649 * and wake all threads.
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
652 t = p;
653 do {
654 unsigned int state;
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
657 * If there is a handler for SIGCONT, we must make
658 * sure that no thread returns to user mode before
659 * we post the signal, in case it was the only
660 * thread eligible to run the signal handler--then
661 * it must not do anything between resuming and
662 * running the handler. With the TIF_SIGPENDING
663 * flag set, the thread will pause and acquire the
664 * siglock that we hold now and until we've queued
665 * the pending signal.
667 * Wake up the stopped thread _after_ setting
668 * TIF_SIGPENDING
670 state = __TASK_STOPPED;
671 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
672 set_tsk_thread_flag(t, TIF_SIGPENDING);
673 state |= TASK_INTERRUPTIBLE;
675 wake_up_state(t, state);
676 } while_each_thread(p, t);
679 * Notify the parent with CLD_CONTINUED if we were stopped.
681 * If we were in the middle of a group stop, we pretend it
682 * was already finished, and then continued. Since SIGCHLD
683 * doesn't queue we report only CLD_STOPPED, as if the next
684 * CLD_CONTINUED was dropped.
686 why = 0;
687 if (signal->flags & SIGNAL_STOP_STOPPED)
688 why |= SIGNAL_CLD_CONTINUED;
689 else if (signal->group_stop_count)
690 why |= SIGNAL_CLD_STOPPED;
692 if (why) {
694 * The first thread which returns from finish_stop()
695 * will take ->siglock, notice SIGNAL_CLD_MASK, and
696 * notify its parent. See get_signal_to_deliver().
698 signal->flags = why | SIGNAL_STOP_CONTINUED;
699 signal->group_stop_count = 0;
700 signal->group_exit_code = 0;
701 } else {
703 * We are not stopped, but there could be a stop
704 * signal in the middle of being processed after
705 * being removed from the queue. Clear that too.
707 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
711 return !sig_ignored(p, sig);
715 * Test if P wants to take SIG. After we've checked all threads with this,
716 * it's equivalent to finding no threads not blocking SIG. Any threads not
717 * blocking SIG were ruled out because they are not running and already
718 * have pending signals. Such threads will dequeue from the shared queue
719 * as soon as they're available, so putting the signal on the shared queue
720 * will be equivalent to sending it to one such thread.
722 static inline int wants_signal(int sig, struct task_struct *p)
724 if (sigismember(&p->blocked, sig))
725 return 0;
726 if (p->flags & PF_EXITING)
727 return 0;
728 if (sig == SIGKILL)
729 return 1;
730 if (task_is_stopped_or_traced(p))
731 return 0;
732 return task_curr(p) || !signal_pending(p);
735 static void complete_signal(int sig, struct task_struct *p, int group)
737 struct signal_struct *signal = p->signal;
738 struct task_struct *t;
741 * Now find a thread we can wake up to take the signal off the queue.
743 * If the main thread wants the signal, it gets first crack.
744 * Probably the least surprising to the average bear.
746 if (wants_signal(sig, p))
747 t = p;
748 else if (!group || thread_group_empty(p))
750 * There is just one thread and it does not need to be woken.
751 * It will dequeue unblocked signals before it runs again.
753 return;
754 else {
756 * Otherwise try to find a suitable thread.
758 t = signal->curr_target;
759 while (!wants_signal(sig, t)) {
760 t = next_thread(t);
761 if (t == signal->curr_target)
763 * No thread needs to be woken.
764 * Any eligible threads will see
765 * the signal in the queue soon.
767 return;
769 signal->curr_target = t;
773 * Found a killable thread. If the signal will be fatal,
774 * then start taking the whole group down immediately.
776 if (sig_fatal(p, sig) &&
777 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
778 !sigismember(&t->real_blocked, sig) &&
779 (sig == SIGKILL ||
780 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
782 * This signal will be fatal to the whole group.
784 if (!sig_kernel_coredump(sig)) {
786 * Start a group exit and wake everybody up.
787 * This way we don't have other threads
788 * running and doing things after a slower
789 * thread has the fatal signal pending.
791 signal->flags = SIGNAL_GROUP_EXIT;
792 signal->group_exit_code = sig;
793 signal->group_stop_count = 0;
794 t = p;
795 do {
796 sigaddset(&t->pending.signal, SIGKILL);
797 signal_wake_up(t, 1);
798 } while_each_thread(p, t);
799 return;
804 * The signal is already in the shared-pending queue.
805 * Tell the chosen thread to wake up and dequeue it.
807 signal_wake_up(t, sig == SIGKILL);
808 return;
811 static inline int legacy_queue(struct sigpending *signals, int sig)
813 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 int group)
819 struct sigpending *pending;
820 struct sigqueue *q;
822 trace_sched_signal_send(sig, t);
824 assert_spin_locked(&t->sighand->siglock);
825 if (!prepare_signal(sig, t))
826 return 0;
828 pending = group ? &t->signal->shared_pending : &t->pending;
830 * Short-circuit ignored signals and support queuing
831 * exactly one non-rt signal, so that we can get more
832 * detailed information about the cause of the signal.
834 if (legacy_queue(pending, sig))
835 return 0;
837 * fast-pathed signals for kernel-internal things like SIGSTOP
838 * or SIGKILL.
840 if (info == SEND_SIG_FORCED)
841 goto out_set;
843 /* Real-time signals must be queued if sent by sigqueue, or
844 some other real-time mechanism. It is implementation
845 defined whether kill() does so. We attempt to do so, on
846 the principle of least surprise, but since kill is not
847 allowed to fail with EAGAIN when low on memory we just
848 make sure at least one signal gets delivered and don't
849 pass on the info struct. */
851 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
852 (is_si_special(info) ||
853 info->si_code >= 0)));
854 if (q) {
855 list_add_tail(&q->list, &pending->list);
856 switch ((unsigned long) info) {
857 case (unsigned long) SEND_SIG_NOINFO:
858 q->info.si_signo = sig;
859 q->info.si_errno = 0;
860 q->info.si_code = SI_USER;
861 q->info.si_pid = task_pid_vnr(current);
862 q->info.si_uid = current_uid();
863 break;
864 case (unsigned long) SEND_SIG_PRIV:
865 q->info.si_signo = sig;
866 q->info.si_errno = 0;
867 q->info.si_code = SI_KERNEL;
868 q->info.si_pid = 0;
869 q->info.si_uid = 0;
870 break;
871 default:
872 copy_siginfo(&q->info, info);
873 break;
875 } else if (!is_si_special(info)) {
876 if (sig >= SIGRTMIN && info->si_code != SI_USER)
878 * Queue overflow, abort. We may abort if the signal was rt
879 * and sent by user using something other than kill().
881 return -EAGAIN;
884 out_set:
885 signalfd_notify(t, sig);
886 sigaddset(&pending->signal, sig);
887 complete_signal(sig, t, group);
888 return 0;
891 int print_fatal_signals;
893 static void print_fatal_signal(struct pt_regs *regs, int signr)
895 printk("%s/%d: potentially unexpected fatal signal %d.\n",
896 current->comm, task_pid_nr(current), signr);
898 #if defined(__i386__) && !defined(__arch_um__)
899 printk("code at %08lx: ", regs->ip);
901 int i;
902 for (i = 0; i < 16; i++) {
903 unsigned char insn;
905 __get_user(insn, (unsigned char *)(regs->ip + i));
906 printk("%02x ", insn);
909 #endif
910 printk("\n");
911 show_regs(regs);
914 static int __init setup_print_fatal_signals(char *str)
916 get_option (&str, &print_fatal_signals);
918 return 1;
921 __setup("print-fatal-signals=", setup_print_fatal_signals);
924 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 return send_signal(sig, info, p, 1);
929 static int
930 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
932 return send_signal(sig, info, t, 0);
936 * Force a signal that the process can't ignore: if necessary
937 * we unblock the signal and change any SIG_IGN to SIG_DFL.
939 * Note: If we unblock the signal, we always reset it to SIG_DFL,
940 * since we do not want to have a signal handler that was blocked
941 * be invoked when user space had explicitly blocked it.
943 * We don't want to have recursive SIGSEGV's etc, for example,
944 * that is why we also clear SIGNAL_UNKILLABLE.
947 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
949 unsigned long int flags;
950 int ret, blocked, ignored;
951 struct k_sigaction *action;
953 spin_lock_irqsave(&t->sighand->siglock, flags);
954 action = &t->sighand->action[sig-1];
955 ignored = action->sa.sa_handler == SIG_IGN;
956 blocked = sigismember(&t->blocked, sig);
957 if (blocked || ignored) {
958 action->sa.sa_handler = SIG_DFL;
959 if (blocked) {
960 sigdelset(&t->blocked, sig);
961 recalc_sigpending_and_wake(t);
964 if (action->sa.sa_handler == SIG_DFL)
965 t->signal->flags &= ~SIGNAL_UNKILLABLE;
966 ret = specific_send_sig_info(sig, info, t);
967 spin_unlock_irqrestore(&t->sighand->siglock, flags);
969 return ret;
972 void
973 force_sig_specific(int sig, struct task_struct *t)
975 force_sig_info(sig, SEND_SIG_FORCED, t);
979 * Nuke all other threads in the group.
981 void zap_other_threads(struct task_struct *p)
983 struct task_struct *t;
985 p->signal->group_stop_count = 0;
987 for (t = next_thread(p); t != p; t = next_thread(t)) {
989 * Don't bother with already dead threads
991 if (t->exit_state)
992 continue;
994 /* SIGKILL will be handled before any pending SIGSTOP */
995 sigaddset(&t->pending.signal, SIGKILL);
996 signal_wake_up(t, 1);
1000 int __fatal_signal_pending(struct task_struct *tsk)
1002 return sigismember(&tsk->pending.signal, SIGKILL);
1004 EXPORT_SYMBOL(__fatal_signal_pending);
1006 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1008 struct sighand_struct *sighand;
1010 rcu_read_lock();
1011 for (;;) {
1012 sighand = rcu_dereference(tsk->sighand);
1013 if (unlikely(sighand == NULL))
1014 break;
1016 spin_lock_irqsave(&sighand->siglock, *flags);
1017 if (likely(sighand == tsk->sighand))
1018 break;
1019 spin_unlock_irqrestore(&sighand->siglock, *flags);
1021 rcu_read_unlock();
1023 return sighand;
1027 * send signal info to all the members of a group
1028 * - the caller must hold the RCU read lock at least
1030 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1032 unsigned long flags;
1033 int ret;
1035 ret = check_kill_permission(sig, info, p);
1037 if (!ret && sig) {
1038 ret = -ESRCH;
1039 if (lock_task_sighand(p, &flags)) {
1040 ret = __group_send_sig_info(sig, info, p);
1041 unlock_task_sighand(p, &flags);
1045 return ret;
1049 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1050 * control characters do (^C, ^Z etc)
1051 * - the caller must hold at least a readlock on tasklist_lock
1053 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1055 struct task_struct *p = NULL;
1056 int retval, success;
1058 success = 0;
1059 retval = -ESRCH;
1060 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1061 int err = group_send_sig_info(sig, info, p);
1062 success |= !err;
1063 retval = err;
1064 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1065 return success ? 0 : retval;
1068 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1070 int error = -ESRCH;
1071 struct task_struct *p;
1073 rcu_read_lock();
1074 retry:
1075 p = pid_task(pid, PIDTYPE_PID);
1076 if (p) {
1077 error = group_send_sig_info(sig, info, p);
1078 if (unlikely(error == -ESRCH))
1080 * The task was unhashed in between, try again.
1081 * If it is dead, pid_task() will return NULL,
1082 * if we race with de_thread() it will find the
1083 * new leader.
1085 goto retry;
1087 rcu_read_unlock();
1089 return error;
1093 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1095 int error;
1096 rcu_read_lock();
1097 error = kill_pid_info(sig, info, find_vpid(pid));
1098 rcu_read_unlock();
1099 return error;
1102 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1103 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1104 uid_t uid, uid_t euid, u32 secid)
1106 int ret = -EINVAL;
1107 struct task_struct *p;
1108 const struct cred *pcred;
1110 if (!valid_signal(sig))
1111 return ret;
1113 read_lock(&tasklist_lock);
1114 p = pid_task(pid, PIDTYPE_PID);
1115 if (!p) {
1116 ret = -ESRCH;
1117 goto out_unlock;
1119 pcred = __task_cred(p);
1120 if ((info == SEND_SIG_NOINFO ||
1121 (!is_si_special(info) && SI_FROMUSER(info))) &&
1122 euid != pcred->suid && euid != pcred->uid &&
1123 uid != pcred->suid && uid != pcred->uid) {
1124 ret = -EPERM;
1125 goto out_unlock;
1127 ret = security_task_kill(p, info, sig, secid);
1128 if (ret)
1129 goto out_unlock;
1130 if (sig && p->sighand) {
1131 unsigned long flags;
1132 spin_lock_irqsave(&p->sighand->siglock, flags);
1133 ret = __group_send_sig_info(sig, info, p);
1134 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 out_unlock:
1137 read_unlock(&tasklist_lock);
1138 return ret;
1140 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1143 * kill_something_info() interprets pid in interesting ways just like kill(2).
1145 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1146 * is probably wrong. Should make it like BSD or SYSV.
1149 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1151 int ret;
1153 if (pid > 0) {
1154 rcu_read_lock();
1155 ret = kill_pid_info(sig, info, find_vpid(pid));
1156 rcu_read_unlock();
1157 return ret;
1160 read_lock(&tasklist_lock);
1161 if (pid != -1) {
1162 ret = __kill_pgrp_info(sig, info,
1163 pid ? find_vpid(-pid) : task_pgrp(current));
1164 } else {
1165 int retval = 0, count = 0;
1166 struct task_struct * p;
1168 for_each_process(p) {
1169 if (task_pid_vnr(p) > 1 &&
1170 !same_thread_group(p, current)) {
1171 int err = group_send_sig_info(sig, info, p);
1172 ++count;
1173 if (err != -EPERM)
1174 retval = err;
1177 ret = count ? retval : -ESRCH;
1179 read_unlock(&tasklist_lock);
1181 return ret;
1185 * These are for backward compatibility with the rest of the kernel source.
1189 * The caller must ensure the task can't exit.
1192 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1194 int ret;
1195 unsigned long flags;
1198 * Make sure legacy kernel users don't send in bad values
1199 * (normal paths check this in check_kill_permission).
1201 if (!valid_signal(sig))
1202 return -EINVAL;
1204 spin_lock_irqsave(&p->sighand->siglock, flags);
1205 ret = specific_send_sig_info(sig, info, p);
1206 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207 return ret;
1210 #define __si_special(priv) \
1211 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1214 send_sig(int sig, struct task_struct *p, int priv)
1216 return send_sig_info(sig, __si_special(priv), p);
1219 void
1220 force_sig(int sig, struct task_struct *p)
1222 force_sig_info(sig, SEND_SIG_PRIV, p);
1226 * When things go south during signal handling, we
1227 * will force a SIGSEGV. And if the signal that caused
1228 * the problem was already a SIGSEGV, we'll want to
1229 * make sure we don't even try to deliver the signal..
1232 force_sigsegv(int sig, struct task_struct *p)
1234 if (sig == SIGSEGV) {
1235 unsigned long flags;
1236 spin_lock_irqsave(&p->sighand->siglock, flags);
1237 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1238 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1240 force_sig(SIGSEGV, p);
1241 return 0;
1244 int kill_pgrp(struct pid *pid, int sig, int priv)
1246 int ret;
1248 read_lock(&tasklist_lock);
1249 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1250 read_unlock(&tasklist_lock);
1252 return ret;
1254 EXPORT_SYMBOL(kill_pgrp);
1256 int kill_pid(struct pid *pid, int sig, int priv)
1258 return kill_pid_info(sig, __si_special(priv), pid);
1260 EXPORT_SYMBOL(kill_pid);
1263 * These functions support sending signals using preallocated sigqueue
1264 * structures. This is needed "because realtime applications cannot
1265 * afford to lose notifications of asynchronous events, like timer
1266 * expirations or I/O completions". In the case of Posix Timers
1267 * we allocate the sigqueue structure from the timer_create. If this
1268 * allocation fails we are able to report the failure to the application
1269 * with an EAGAIN error.
1272 struct sigqueue *sigqueue_alloc(void)
1274 struct sigqueue *q;
1276 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1277 q->flags |= SIGQUEUE_PREALLOC;
1278 return(q);
1281 void sigqueue_free(struct sigqueue *q)
1283 unsigned long flags;
1284 spinlock_t *lock = &current->sighand->siglock;
1286 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1288 * We must hold ->siglock while testing q->list
1289 * to serialize with collect_signal() or with
1290 * __exit_signal()->flush_sigqueue().
1292 spin_lock_irqsave(lock, flags);
1293 q->flags &= ~SIGQUEUE_PREALLOC;
1295 * If it is queued it will be freed when dequeued,
1296 * like the "regular" sigqueue.
1298 if (!list_empty(&q->list))
1299 q = NULL;
1300 spin_unlock_irqrestore(lock, flags);
1302 if (q)
1303 __sigqueue_free(q);
1306 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1308 int sig = q->info.si_signo;
1309 struct sigpending *pending;
1310 unsigned long flags;
1311 int ret;
1313 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1315 ret = -1;
1316 if (!likely(lock_task_sighand(t, &flags)))
1317 goto ret;
1319 ret = 1; /* the signal is ignored */
1320 if (!prepare_signal(sig, t))
1321 goto out;
1323 ret = 0;
1324 if (unlikely(!list_empty(&q->list))) {
1326 * If an SI_TIMER entry is already queue just increment
1327 * the overrun count.
1329 BUG_ON(q->info.si_code != SI_TIMER);
1330 q->info.si_overrun++;
1331 goto out;
1333 q->info.si_overrun = 0;
1335 signalfd_notify(t, sig);
1336 pending = group ? &t->signal->shared_pending : &t->pending;
1337 list_add_tail(&q->list, &pending->list);
1338 sigaddset(&pending->signal, sig);
1339 complete_signal(sig, t, group);
1340 out:
1341 unlock_task_sighand(t, &flags);
1342 ret:
1343 return ret;
1347 * Wake up any threads in the parent blocked in wait* syscalls.
1349 static inline void __wake_up_parent(struct task_struct *p,
1350 struct task_struct *parent)
1352 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1356 * Let a parent know about the death of a child.
1357 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1359 * Returns -1 if our parent ignored us and so we've switched to
1360 * self-reaping, or else @sig.
1362 int do_notify_parent(struct task_struct *tsk, int sig)
1364 struct siginfo info;
1365 unsigned long flags;
1366 struct sighand_struct *psig;
1367 struct task_cputime cputime;
1368 int ret = sig;
1370 BUG_ON(sig == -1);
1372 /* do_notify_parent_cldstop should have been called instead. */
1373 BUG_ON(task_is_stopped_or_traced(tsk));
1375 BUG_ON(!tsk->ptrace &&
1376 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1378 info.si_signo = sig;
1379 info.si_errno = 0;
1381 * we are under tasklist_lock here so our parent is tied to
1382 * us and cannot exit and release its namespace.
1384 * the only it can is to switch its nsproxy with sys_unshare,
1385 * bu uncharing pid namespaces is not allowed, so we'll always
1386 * see relevant namespace
1388 * write_lock() currently calls preempt_disable() which is the
1389 * same as rcu_read_lock(), but according to Oleg, this is not
1390 * correct to rely on this
1392 rcu_read_lock();
1393 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1394 info.si_uid = __task_cred(tsk)->uid;
1395 rcu_read_unlock();
1397 thread_group_cputime(tsk, &cputime);
1398 info.si_utime = cputime_to_jiffies(cputime.utime);
1399 info.si_stime = cputime_to_jiffies(cputime.stime);
1401 info.si_status = tsk->exit_code & 0x7f;
1402 if (tsk->exit_code & 0x80)
1403 info.si_code = CLD_DUMPED;
1404 else if (tsk->exit_code & 0x7f)
1405 info.si_code = CLD_KILLED;
1406 else {
1407 info.si_code = CLD_EXITED;
1408 info.si_status = tsk->exit_code >> 8;
1411 psig = tsk->parent->sighand;
1412 spin_lock_irqsave(&psig->siglock, flags);
1413 if (!tsk->ptrace && sig == SIGCHLD &&
1414 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1415 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1417 * We are exiting and our parent doesn't care. POSIX.1
1418 * defines special semantics for setting SIGCHLD to SIG_IGN
1419 * or setting the SA_NOCLDWAIT flag: we should be reaped
1420 * automatically and not left for our parent's wait4 call.
1421 * Rather than having the parent do it as a magic kind of
1422 * signal handler, we just set this to tell do_exit that we
1423 * can be cleaned up without becoming a zombie. Note that
1424 * we still call __wake_up_parent in this case, because a
1425 * blocked sys_wait4 might now return -ECHILD.
1427 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1428 * is implementation-defined: we do (if you don't want
1429 * it, just use SIG_IGN instead).
1431 ret = tsk->exit_signal = -1;
1432 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1433 sig = -1;
1435 if (valid_signal(sig) && sig > 0)
1436 __group_send_sig_info(sig, &info, tsk->parent);
1437 __wake_up_parent(tsk, tsk->parent);
1438 spin_unlock_irqrestore(&psig->siglock, flags);
1440 return ret;
1443 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1445 struct siginfo info;
1446 unsigned long flags;
1447 struct task_struct *parent;
1448 struct sighand_struct *sighand;
1450 if (tsk->ptrace & PT_PTRACED)
1451 parent = tsk->parent;
1452 else {
1453 tsk = tsk->group_leader;
1454 parent = tsk->real_parent;
1457 info.si_signo = SIGCHLD;
1458 info.si_errno = 0;
1460 * see comment in do_notify_parent() abot the following 3 lines
1462 rcu_read_lock();
1463 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1464 info.si_uid = __task_cred(tsk)->uid;
1465 rcu_read_unlock();
1467 info.si_utime = cputime_to_clock_t(tsk->utime);
1468 info.si_stime = cputime_to_clock_t(tsk->stime);
1470 info.si_code = why;
1471 switch (why) {
1472 case CLD_CONTINUED:
1473 info.si_status = SIGCONT;
1474 break;
1475 case CLD_STOPPED:
1476 info.si_status = tsk->signal->group_exit_code & 0x7f;
1477 break;
1478 case CLD_TRAPPED:
1479 info.si_status = tsk->exit_code & 0x7f;
1480 break;
1481 default:
1482 BUG();
1485 sighand = parent->sighand;
1486 spin_lock_irqsave(&sighand->siglock, flags);
1487 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1488 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1489 __group_send_sig_info(SIGCHLD, &info, parent);
1491 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1493 __wake_up_parent(tsk, parent);
1494 spin_unlock_irqrestore(&sighand->siglock, flags);
1497 static inline int may_ptrace_stop(void)
1499 if (!likely(current->ptrace & PT_PTRACED))
1500 return 0;
1502 * Are we in the middle of do_coredump?
1503 * If so and our tracer is also part of the coredump stopping
1504 * is a deadlock situation, and pointless because our tracer
1505 * is dead so don't allow us to stop.
1506 * If SIGKILL was already sent before the caller unlocked
1507 * ->siglock we must see ->core_state != NULL. Otherwise it
1508 * is safe to enter schedule().
1510 if (unlikely(current->mm->core_state) &&
1511 unlikely(current->mm == current->parent->mm))
1512 return 0;
1514 return 1;
1518 * Return nonzero if there is a SIGKILL that should be waking us up.
1519 * Called with the siglock held.
1521 static int sigkill_pending(struct task_struct *tsk)
1523 return sigismember(&tsk->pending.signal, SIGKILL) ||
1524 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1528 * This must be called with current->sighand->siglock held.
1530 * This should be the path for all ptrace stops.
1531 * We always set current->last_siginfo while stopped here.
1532 * That makes it a way to test a stopped process for
1533 * being ptrace-stopped vs being job-control-stopped.
1535 * If we actually decide not to stop at all because the tracer
1536 * is gone, we keep current->exit_code unless clear_code.
1538 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1540 if (arch_ptrace_stop_needed(exit_code, info)) {
1542 * The arch code has something special to do before a
1543 * ptrace stop. This is allowed to block, e.g. for faults
1544 * on user stack pages. We can't keep the siglock while
1545 * calling arch_ptrace_stop, so we must release it now.
1546 * To preserve proper semantics, we must do this before
1547 * any signal bookkeeping like checking group_stop_count.
1548 * Meanwhile, a SIGKILL could come in before we retake the
1549 * siglock. That must prevent us from sleeping in TASK_TRACED.
1550 * So after regaining the lock, we must check for SIGKILL.
1552 spin_unlock_irq(&current->sighand->siglock);
1553 arch_ptrace_stop(exit_code, info);
1554 spin_lock_irq(&current->sighand->siglock);
1555 if (sigkill_pending(current))
1556 return;
1560 * If there is a group stop in progress,
1561 * we must participate in the bookkeeping.
1563 if (current->signal->group_stop_count > 0)
1564 --current->signal->group_stop_count;
1566 current->last_siginfo = info;
1567 current->exit_code = exit_code;
1569 /* Let the debugger run. */
1570 __set_current_state(TASK_TRACED);
1571 spin_unlock_irq(&current->sighand->siglock);
1572 read_lock(&tasklist_lock);
1573 if (may_ptrace_stop()) {
1574 do_notify_parent_cldstop(current, CLD_TRAPPED);
1575 read_unlock(&tasklist_lock);
1576 schedule();
1577 } else {
1579 * By the time we got the lock, our tracer went away.
1580 * Don't drop the lock yet, another tracer may come.
1582 __set_current_state(TASK_RUNNING);
1583 if (clear_code)
1584 current->exit_code = 0;
1585 read_unlock(&tasklist_lock);
1589 * While in TASK_TRACED, we were considered "frozen enough".
1590 * Now that we woke up, it's crucial if we're supposed to be
1591 * frozen that we freeze now before running anything substantial.
1593 try_to_freeze();
1596 * We are back. Now reacquire the siglock before touching
1597 * last_siginfo, so that we are sure to have synchronized with
1598 * any signal-sending on another CPU that wants to examine it.
1600 spin_lock_irq(&current->sighand->siglock);
1601 current->last_siginfo = NULL;
1604 * Queued signals ignored us while we were stopped for tracing.
1605 * So check for any that we should take before resuming user mode.
1606 * This sets TIF_SIGPENDING, but never clears it.
1608 recalc_sigpending_tsk(current);
1611 void ptrace_notify(int exit_code)
1613 siginfo_t info;
1615 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1617 memset(&info, 0, sizeof info);
1618 info.si_signo = SIGTRAP;
1619 info.si_code = exit_code;
1620 info.si_pid = task_pid_vnr(current);
1621 info.si_uid = current_uid();
1623 /* Let the debugger run. */
1624 spin_lock_irq(&current->sighand->siglock);
1625 ptrace_stop(exit_code, 1, &info);
1626 spin_unlock_irq(&current->sighand->siglock);
1629 static void
1630 finish_stop(int stop_count)
1633 * If there are no other threads in the group, or if there is
1634 * a group stop in progress and we are the last to stop,
1635 * report to the parent. When ptraced, every thread reports itself.
1637 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1638 read_lock(&tasklist_lock);
1639 do_notify_parent_cldstop(current, CLD_STOPPED);
1640 read_unlock(&tasklist_lock);
1643 do {
1644 schedule();
1645 } while (try_to_freeze());
1647 * Now we don't run again until continued.
1649 current->exit_code = 0;
1653 * This performs the stopping for SIGSTOP and other stop signals.
1654 * We have to stop all threads in the thread group.
1655 * Returns nonzero if we've actually stopped and released the siglock.
1656 * Returns zero if we didn't stop and still hold the siglock.
1658 static int do_signal_stop(int signr)
1660 struct signal_struct *sig = current->signal;
1661 int stop_count;
1663 if (sig->group_stop_count > 0) {
1665 * There is a group stop in progress. We don't need to
1666 * start another one.
1668 stop_count = --sig->group_stop_count;
1669 } else {
1670 struct task_struct *t;
1672 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1673 unlikely(signal_group_exit(sig)))
1674 return 0;
1676 * There is no group stop already in progress.
1677 * We must initiate one now.
1679 sig->group_exit_code = signr;
1681 stop_count = 0;
1682 for (t = next_thread(current); t != current; t = next_thread(t))
1684 * Setting state to TASK_STOPPED for a group
1685 * stop is always done with the siglock held,
1686 * so this check has no races.
1688 if (!(t->flags & PF_EXITING) &&
1689 !task_is_stopped_or_traced(t)) {
1690 stop_count++;
1691 signal_wake_up(t, 0);
1693 sig->group_stop_count = stop_count;
1696 if (stop_count == 0)
1697 sig->flags = SIGNAL_STOP_STOPPED;
1698 current->exit_code = sig->group_exit_code;
1699 __set_current_state(TASK_STOPPED);
1701 spin_unlock_irq(&current->sighand->siglock);
1702 finish_stop(stop_count);
1703 return 1;
1706 static int ptrace_signal(int signr, siginfo_t *info,
1707 struct pt_regs *regs, void *cookie)
1709 if (!(current->ptrace & PT_PTRACED))
1710 return signr;
1712 ptrace_signal_deliver(regs, cookie);
1714 /* Let the debugger run. */
1715 ptrace_stop(signr, 0, info);
1717 /* We're back. Did the debugger cancel the sig? */
1718 signr = current->exit_code;
1719 if (signr == 0)
1720 return signr;
1722 current->exit_code = 0;
1724 /* Update the siginfo structure if the signal has
1725 changed. If the debugger wanted something
1726 specific in the siginfo structure then it should
1727 have updated *info via PTRACE_SETSIGINFO. */
1728 if (signr != info->si_signo) {
1729 info->si_signo = signr;
1730 info->si_errno = 0;
1731 info->si_code = SI_USER;
1732 info->si_pid = task_pid_vnr(current->parent);
1733 info->si_uid = task_uid(current->parent);
1736 /* If the (new) signal is now blocked, requeue it. */
1737 if (sigismember(&current->blocked, signr)) {
1738 specific_send_sig_info(signr, info, current);
1739 signr = 0;
1742 return signr;
1745 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1746 struct pt_regs *regs, void *cookie)
1748 struct sighand_struct *sighand = current->sighand;
1749 struct signal_struct *signal = current->signal;
1750 int signr;
1752 relock:
1754 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1755 * While in TASK_STOPPED, we were considered "frozen enough".
1756 * Now that we woke up, it's crucial if we're supposed to be
1757 * frozen that we freeze now before running anything substantial.
1759 try_to_freeze();
1761 spin_lock_irq(&sighand->siglock);
1763 * Every stopped thread goes here after wakeup. Check to see if
1764 * we should notify the parent, prepare_signal(SIGCONT) encodes
1765 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1767 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1768 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1769 ? CLD_CONTINUED : CLD_STOPPED;
1770 signal->flags &= ~SIGNAL_CLD_MASK;
1771 spin_unlock_irq(&sighand->siglock);
1773 if (unlikely(!tracehook_notify_jctl(1, why)))
1774 goto relock;
1776 read_lock(&tasklist_lock);
1777 do_notify_parent_cldstop(current->group_leader, why);
1778 read_unlock(&tasklist_lock);
1779 goto relock;
1782 for (;;) {
1783 struct k_sigaction *ka;
1785 if (unlikely(signal->group_stop_count > 0) &&
1786 do_signal_stop(0))
1787 goto relock;
1790 * Tracing can induce an artifical signal and choose sigaction.
1791 * The return value in @signr determines the default action,
1792 * but @info->si_signo is the signal number we will report.
1794 signr = tracehook_get_signal(current, regs, info, return_ka);
1795 if (unlikely(signr < 0))
1796 goto relock;
1797 if (unlikely(signr != 0))
1798 ka = return_ka;
1799 else {
1800 signr = dequeue_signal(current, &current->blocked,
1801 info);
1803 if (!signr)
1804 break; /* will return 0 */
1806 if (signr != SIGKILL) {
1807 signr = ptrace_signal(signr, info,
1808 regs, cookie);
1809 if (!signr)
1810 continue;
1813 ka = &sighand->action[signr-1];
1816 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1817 continue;
1818 if (ka->sa.sa_handler != SIG_DFL) {
1819 /* Run the handler. */
1820 *return_ka = *ka;
1822 if (ka->sa.sa_flags & SA_ONESHOT)
1823 ka->sa.sa_handler = SIG_DFL;
1825 break; /* will return non-zero "signr" value */
1829 * Now we are doing the default action for this signal.
1831 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1832 continue;
1835 * Global init gets no signals it doesn't want.
1837 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1838 !signal_group_exit(signal))
1839 continue;
1841 if (sig_kernel_stop(signr)) {
1843 * The default action is to stop all threads in
1844 * the thread group. The job control signals
1845 * do nothing in an orphaned pgrp, but SIGSTOP
1846 * always works. Note that siglock needs to be
1847 * dropped during the call to is_orphaned_pgrp()
1848 * because of lock ordering with tasklist_lock.
1849 * This allows an intervening SIGCONT to be posted.
1850 * We need to check for that and bail out if necessary.
1852 if (signr != SIGSTOP) {
1853 spin_unlock_irq(&sighand->siglock);
1855 /* signals can be posted during this window */
1857 if (is_current_pgrp_orphaned())
1858 goto relock;
1860 spin_lock_irq(&sighand->siglock);
1863 if (likely(do_signal_stop(info->si_signo))) {
1864 /* It released the siglock. */
1865 goto relock;
1869 * We didn't actually stop, due to a race
1870 * with SIGCONT or something like that.
1872 continue;
1875 spin_unlock_irq(&sighand->siglock);
1878 * Anything else is fatal, maybe with a core dump.
1880 current->flags |= PF_SIGNALED;
1882 if (sig_kernel_coredump(signr)) {
1883 if (print_fatal_signals)
1884 print_fatal_signal(regs, info->si_signo);
1886 * If it was able to dump core, this kills all
1887 * other threads in the group and synchronizes with
1888 * their demise. If we lost the race with another
1889 * thread getting here, it set group_exit_code
1890 * first and our do_group_exit call below will use
1891 * that value and ignore the one we pass it.
1893 do_coredump(info->si_signo, info->si_signo, regs);
1897 * Death signals, no core dump.
1899 do_group_exit(info->si_signo);
1900 /* NOTREACHED */
1902 spin_unlock_irq(&sighand->siglock);
1903 return signr;
1906 void exit_signals(struct task_struct *tsk)
1908 int group_stop = 0;
1909 struct task_struct *t;
1911 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1912 tsk->flags |= PF_EXITING;
1913 return;
1916 spin_lock_irq(&tsk->sighand->siglock);
1918 * From now this task is not visible for group-wide signals,
1919 * see wants_signal(), do_signal_stop().
1921 tsk->flags |= PF_EXITING;
1922 if (!signal_pending(tsk))
1923 goto out;
1925 /* It could be that __group_complete_signal() choose us to
1926 * notify about group-wide signal. Another thread should be
1927 * woken now to take the signal since we will not.
1929 for (t = tsk; (t = next_thread(t)) != tsk; )
1930 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1931 recalc_sigpending_and_wake(t);
1933 if (unlikely(tsk->signal->group_stop_count) &&
1934 !--tsk->signal->group_stop_count) {
1935 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1936 group_stop = 1;
1938 out:
1939 spin_unlock_irq(&tsk->sighand->siglock);
1941 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1942 read_lock(&tasklist_lock);
1943 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1944 read_unlock(&tasklist_lock);
1948 EXPORT_SYMBOL(recalc_sigpending);
1949 EXPORT_SYMBOL_GPL(dequeue_signal);
1950 EXPORT_SYMBOL(flush_signals);
1951 EXPORT_SYMBOL(force_sig);
1952 EXPORT_SYMBOL(send_sig);
1953 EXPORT_SYMBOL(send_sig_info);
1954 EXPORT_SYMBOL(sigprocmask);
1955 EXPORT_SYMBOL(block_all_signals);
1956 EXPORT_SYMBOL(unblock_all_signals);
1960 * System call entry points.
1963 asmlinkage long sys_restart_syscall(void)
1965 struct restart_block *restart = &current_thread_info()->restart_block;
1966 return restart->fn(restart);
1969 long do_no_restart_syscall(struct restart_block *param)
1971 return -EINTR;
1975 * We don't need to get the kernel lock - this is all local to this
1976 * particular thread.. (and that's good, because this is _heavily_
1977 * used by various programs)
1981 * This is also useful for kernel threads that want to temporarily
1982 * (or permanently) block certain signals.
1984 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1985 * interface happily blocks "unblockable" signals like SIGKILL
1986 * and friends.
1988 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1990 int error;
1992 spin_lock_irq(&current->sighand->siglock);
1993 if (oldset)
1994 *oldset = current->blocked;
1996 error = 0;
1997 switch (how) {
1998 case SIG_BLOCK:
1999 sigorsets(&current->blocked, &current->blocked, set);
2000 break;
2001 case SIG_UNBLOCK:
2002 signandsets(&current->blocked, &current->blocked, set);
2003 break;
2004 case SIG_SETMASK:
2005 current->blocked = *set;
2006 break;
2007 default:
2008 error = -EINVAL;
2010 recalc_sigpending();
2011 spin_unlock_irq(&current->sighand->siglock);
2013 return error;
2016 asmlinkage long
2017 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2019 int error = -EINVAL;
2020 sigset_t old_set, new_set;
2022 /* XXX: Don't preclude handling different sized sigset_t's. */
2023 if (sigsetsize != sizeof(sigset_t))
2024 goto out;
2026 if (set) {
2027 error = -EFAULT;
2028 if (copy_from_user(&new_set, set, sizeof(*set)))
2029 goto out;
2030 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2032 error = sigprocmask(how, &new_set, &old_set);
2033 if (error)
2034 goto out;
2035 if (oset)
2036 goto set_old;
2037 } else if (oset) {
2038 spin_lock_irq(&current->sighand->siglock);
2039 old_set = current->blocked;
2040 spin_unlock_irq(&current->sighand->siglock);
2042 set_old:
2043 error = -EFAULT;
2044 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2045 goto out;
2047 error = 0;
2048 out:
2049 return error;
2052 long do_sigpending(void __user *set, unsigned long sigsetsize)
2054 long error = -EINVAL;
2055 sigset_t pending;
2057 if (sigsetsize > sizeof(sigset_t))
2058 goto out;
2060 spin_lock_irq(&current->sighand->siglock);
2061 sigorsets(&pending, &current->pending.signal,
2062 &current->signal->shared_pending.signal);
2063 spin_unlock_irq(&current->sighand->siglock);
2065 /* Outside the lock because only this thread touches it. */
2066 sigandsets(&pending, &current->blocked, &pending);
2068 error = -EFAULT;
2069 if (!copy_to_user(set, &pending, sigsetsize))
2070 error = 0;
2072 out:
2073 return error;
2076 asmlinkage long
2077 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2079 return do_sigpending(set, sigsetsize);
2082 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2084 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2086 int err;
2088 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2089 return -EFAULT;
2090 if (from->si_code < 0)
2091 return __copy_to_user(to, from, sizeof(siginfo_t))
2092 ? -EFAULT : 0;
2094 * If you change siginfo_t structure, please be sure
2095 * this code is fixed accordingly.
2096 * Please remember to update the signalfd_copyinfo() function
2097 * inside fs/signalfd.c too, in case siginfo_t changes.
2098 * It should never copy any pad contained in the structure
2099 * to avoid security leaks, but must copy the generic
2100 * 3 ints plus the relevant union member.
2102 err = __put_user(from->si_signo, &to->si_signo);
2103 err |= __put_user(from->si_errno, &to->si_errno);
2104 err |= __put_user((short)from->si_code, &to->si_code);
2105 switch (from->si_code & __SI_MASK) {
2106 case __SI_KILL:
2107 err |= __put_user(from->si_pid, &to->si_pid);
2108 err |= __put_user(from->si_uid, &to->si_uid);
2109 break;
2110 case __SI_TIMER:
2111 err |= __put_user(from->si_tid, &to->si_tid);
2112 err |= __put_user(from->si_overrun, &to->si_overrun);
2113 err |= __put_user(from->si_ptr, &to->si_ptr);
2114 break;
2115 case __SI_POLL:
2116 err |= __put_user(from->si_band, &to->si_band);
2117 err |= __put_user(from->si_fd, &to->si_fd);
2118 break;
2119 case __SI_FAULT:
2120 err |= __put_user(from->si_addr, &to->si_addr);
2121 #ifdef __ARCH_SI_TRAPNO
2122 err |= __put_user(from->si_trapno, &to->si_trapno);
2123 #endif
2124 break;
2125 case __SI_CHLD:
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 err |= __put_user(from->si_status, &to->si_status);
2129 err |= __put_user(from->si_utime, &to->si_utime);
2130 err |= __put_user(from->si_stime, &to->si_stime);
2131 break;
2132 case __SI_RT: /* This is not generated by the kernel as of now. */
2133 case __SI_MESGQ: /* But this is */
2134 err |= __put_user(from->si_pid, &to->si_pid);
2135 err |= __put_user(from->si_uid, &to->si_uid);
2136 err |= __put_user(from->si_ptr, &to->si_ptr);
2137 break;
2138 default: /* this is just in case for now ... */
2139 err |= __put_user(from->si_pid, &to->si_pid);
2140 err |= __put_user(from->si_uid, &to->si_uid);
2141 break;
2143 return err;
2146 #endif
2148 asmlinkage long
2149 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2150 siginfo_t __user *uinfo,
2151 const struct timespec __user *uts,
2152 size_t sigsetsize)
2154 int ret, sig;
2155 sigset_t these;
2156 struct timespec ts;
2157 siginfo_t info;
2158 long timeout = 0;
2160 /* XXX: Don't preclude handling different sized sigset_t's. */
2161 if (sigsetsize != sizeof(sigset_t))
2162 return -EINVAL;
2164 if (copy_from_user(&these, uthese, sizeof(these)))
2165 return -EFAULT;
2168 * Invert the set of allowed signals to get those we
2169 * want to block.
2171 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2172 signotset(&these);
2174 if (uts) {
2175 if (copy_from_user(&ts, uts, sizeof(ts)))
2176 return -EFAULT;
2177 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2178 || ts.tv_sec < 0)
2179 return -EINVAL;
2182 spin_lock_irq(&current->sighand->siglock);
2183 sig = dequeue_signal(current, &these, &info);
2184 if (!sig) {
2185 timeout = MAX_SCHEDULE_TIMEOUT;
2186 if (uts)
2187 timeout = (timespec_to_jiffies(&ts)
2188 + (ts.tv_sec || ts.tv_nsec));
2190 if (timeout) {
2191 /* None ready -- temporarily unblock those we're
2192 * interested while we are sleeping in so that we'll
2193 * be awakened when they arrive. */
2194 current->real_blocked = current->blocked;
2195 sigandsets(&current->blocked, &current->blocked, &these);
2196 recalc_sigpending();
2197 spin_unlock_irq(&current->sighand->siglock);
2199 timeout = schedule_timeout_interruptible(timeout);
2201 spin_lock_irq(&current->sighand->siglock);
2202 sig = dequeue_signal(current, &these, &info);
2203 current->blocked = current->real_blocked;
2204 siginitset(&current->real_blocked, 0);
2205 recalc_sigpending();
2208 spin_unlock_irq(&current->sighand->siglock);
2210 if (sig) {
2211 ret = sig;
2212 if (uinfo) {
2213 if (copy_siginfo_to_user(uinfo, &info))
2214 ret = -EFAULT;
2216 } else {
2217 ret = -EAGAIN;
2218 if (timeout)
2219 ret = -EINTR;
2222 return ret;
2225 asmlinkage long
2226 sys_kill(pid_t pid, int sig)
2228 struct siginfo info;
2230 info.si_signo = sig;
2231 info.si_errno = 0;
2232 info.si_code = SI_USER;
2233 info.si_pid = task_tgid_vnr(current);
2234 info.si_uid = current_uid();
2236 return kill_something_info(sig, &info, pid);
2239 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2241 int error;
2242 struct siginfo info;
2243 struct task_struct *p;
2244 unsigned long flags;
2246 error = -ESRCH;
2247 info.si_signo = sig;
2248 info.si_errno = 0;
2249 info.si_code = SI_TKILL;
2250 info.si_pid = task_tgid_vnr(current);
2251 info.si_uid = current_uid();
2253 rcu_read_lock();
2254 p = find_task_by_vpid(pid);
2255 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2256 error = check_kill_permission(sig, &info, p);
2258 * The null signal is a permissions and process existence
2259 * probe. No signal is actually delivered.
2261 * If lock_task_sighand() fails we pretend the task dies
2262 * after receiving the signal. The window is tiny, and the
2263 * signal is private anyway.
2265 if (!error && sig && lock_task_sighand(p, &flags)) {
2266 error = specific_send_sig_info(sig, &info, p);
2267 unlock_task_sighand(p, &flags);
2270 rcu_read_unlock();
2272 return error;
2276 * sys_tgkill - send signal to one specific thread
2277 * @tgid: the thread group ID of the thread
2278 * @pid: the PID of the thread
2279 * @sig: signal to be sent
2281 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2282 * exists but it's not belonging to the target process anymore. This
2283 * method solves the problem of threads exiting and PIDs getting reused.
2285 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2287 /* This is only valid for single tasks */
2288 if (pid <= 0 || tgid <= 0)
2289 return -EINVAL;
2291 return do_tkill(tgid, pid, sig);
2295 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2297 asmlinkage long
2298 sys_tkill(pid_t pid, int sig)
2300 /* This is only valid for single tasks */
2301 if (pid <= 0)
2302 return -EINVAL;
2304 return do_tkill(0, pid, sig);
2307 asmlinkage long
2308 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2310 siginfo_t info;
2312 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2313 return -EFAULT;
2315 /* Not even root can pretend to send signals from the kernel.
2316 Nor can they impersonate a kill(), which adds source info. */
2317 if (info.si_code >= 0)
2318 return -EPERM;
2319 info.si_signo = sig;
2321 /* POSIX.1b doesn't mention process groups. */
2322 return kill_proc_info(sig, &info, pid);
2325 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2327 struct task_struct *t = current;
2328 struct k_sigaction *k;
2329 sigset_t mask;
2331 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2332 return -EINVAL;
2334 k = &t->sighand->action[sig-1];
2336 spin_lock_irq(&current->sighand->siglock);
2337 if (oact)
2338 *oact = *k;
2340 if (act) {
2341 sigdelsetmask(&act->sa.sa_mask,
2342 sigmask(SIGKILL) | sigmask(SIGSTOP));
2343 *k = *act;
2345 * POSIX 3.3.1.3:
2346 * "Setting a signal action to SIG_IGN for a signal that is
2347 * pending shall cause the pending signal to be discarded,
2348 * whether or not it is blocked."
2350 * "Setting a signal action to SIG_DFL for a signal that is
2351 * pending and whose default action is to ignore the signal
2352 * (for example, SIGCHLD), shall cause the pending signal to
2353 * be discarded, whether or not it is blocked"
2355 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2356 sigemptyset(&mask);
2357 sigaddset(&mask, sig);
2358 rm_from_queue_full(&mask, &t->signal->shared_pending);
2359 do {
2360 rm_from_queue_full(&mask, &t->pending);
2361 t = next_thread(t);
2362 } while (t != current);
2366 spin_unlock_irq(&current->sighand->siglock);
2367 return 0;
2370 int
2371 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2373 stack_t oss;
2374 int error;
2376 if (uoss) {
2377 oss.ss_sp = (void __user *) current->sas_ss_sp;
2378 oss.ss_size = current->sas_ss_size;
2379 oss.ss_flags = sas_ss_flags(sp);
2382 if (uss) {
2383 void __user *ss_sp;
2384 size_t ss_size;
2385 int ss_flags;
2387 error = -EFAULT;
2388 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2389 || __get_user(ss_sp, &uss->ss_sp)
2390 || __get_user(ss_flags, &uss->ss_flags)
2391 || __get_user(ss_size, &uss->ss_size))
2392 goto out;
2394 error = -EPERM;
2395 if (on_sig_stack(sp))
2396 goto out;
2398 error = -EINVAL;
2401 * Note - this code used to test ss_flags incorrectly
2402 * old code may have been written using ss_flags==0
2403 * to mean ss_flags==SS_ONSTACK (as this was the only
2404 * way that worked) - this fix preserves that older
2405 * mechanism
2407 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2408 goto out;
2410 if (ss_flags == SS_DISABLE) {
2411 ss_size = 0;
2412 ss_sp = NULL;
2413 } else {
2414 error = -ENOMEM;
2415 if (ss_size < MINSIGSTKSZ)
2416 goto out;
2419 current->sas_ss_sp = (unsigned long) ss_sp;
2420 current->sas_ss_size = ss_size;
2423 if (uoss) {
2424 error = -EFAULT;
2425 if (copy_to_user(uoss, &oss, sizeof(oss)))
2426 goto out;
2429 error = 0;
2430 out:
2431 return error;
2434 #ifdef __ARCH_WANT_SYS_SIGPENDING
2436 asmlinkage long
2437 sys_sigpending(old_sigset_t __user *set)
2439 return do_sigpending(set, sizeof(*set));
2442 #endif
2444 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2445 /* Some platforms have their own version with special arguments others
2446 support only sys_rt_sigprocmask. */
2448 asmlinkage long
2449 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2451 int error;
2452 old_sigset_t old_set, new_set;
2454 if (set) {
2455 error = -EFAULT;
2456 if (copy_from_user(&new_set, set, sizeof(*set)))
2457 goto out;
2458 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2460 spin_lock_irq(&current->sighand->siglock);
2461 old_set = current->blocked.sig[0];
2463 error = 0;
2464 switch (how) {
2465 default:
2466 error = -EINVAL;
2467 break;
2468 case SIG_BLOCK:
2469 sigaddsetmask(&current->blocked, new_set);
2470 break;
2471 case SIG_UNBLOCK:
2472 sigdelsetmask(&current->blocked, new_set);
2473 break;
2474 case SIG_SETMASK:
2475 current->blocked.sig[0] = new_set;
2476 break;
2479 recalc_sigpending();
2480 spin_unlock_irq(&current->sighand->siglock);
2481 if (error)
2482 goto out;
2483 if (oset)
2484 goto set_old;
2485 } else if (oset) {
2486 old_set = current->blocked.sig[0];
2487 set_old:
2488 error = -EFAULT;
2489 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2490 goto out;
2492 error = 0;
2493 out:
2494 return error;
2496 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2498 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2499 asmlinkage long
2500 sys_rt_sigaction(int sig,
2501 const struct sigaction __user *act,
2502 struct sigaction __user *oact,
2503 size_t sigsetsize)
2505 struct k_sigaction new_sa, old_sa;
2506 int ret = -EINVAL;
2508 /* XXX: Don't preclude handling different sized sigset_t's. */
2509 if (sigsetsize != sizeof(sigset_t))
2510 goto out;
2512 if (act) {
2513 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2514 return -EFAULT;
2517 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2519 if (!ret && oact) {
2520 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2521 return -EFAULT;
2523 out:
2524 return ret;
2526 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2528 #ifdef __ARCH_WANT_SYS_SGETMASK
2531 * For backwards compatibility. Functionality superseded by sigprocmask.
2533 asmlinkage long
2534 sys_sgetmask(void)
2536 /* SMP safe */
2537 return current->blocked.sig[0];
2540 asmlinkage long
2541 sys_ssetmask(int newmask)
2543 int old;
2545 spin_lock_irq(&current->sighand->siglock);
2546 old = current->blocked.sig[0];
2548 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2549 sigmask(SIGSTOP)));
2550 recalc_sigpending();
2551 spin_unlock_irq(&current->sighand->siglock);
2553 return old;
2555 #endif /* __ARCH_WANT_SGETMASK */
2557 #ifdef __ARCH_WANT_SYS_SIGNAL
2559 * For backwards compatibility. Functionality superseded by sigaction.
2561 asmlinkage unsigned long
2562 sys_signal(int sig, __sighandler_t handler)
2564 struct k_sigaction new_sa, old_sa;
2565 int ret;
2567 new_sa.sa.sa_handler = handler;
2568 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2569 sigemptyset(&new_sa.sa.sa_mask);
2571 ret = do_sigaction(sig, &new_sa, &old_sa);
2573 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2575 #endif /* __ARCH_WANT_SYS_SIGNAL */
2577 #ifdef __ARCH_WANT_SYS_PAUSE
2579 asmlinkage long
2580 sys_pause(void)
2582 current->state = TASK_INTERRUPTIBLE;
2583 schedule();
2584 return -ERESTARTNOHAND;
2587 #endif
2589 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2590 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2592 sigset_t newset;
2594 /* XXX: Don't preclude handling different sized sigset_t's. */
2595 if (sigsetsize != sizeof(sigset_t))
2596 return -EINVAL;
2598 if (copy_from_user(&newset, unewset, sizeof(newset)))
2599 return -EFAULT;
2600 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2602 spin_lock_irq(&current->sighand->siglock);
2603 current->saved_sigmask = current->blocked;
2604 current->blocked = newset;
2605 recalc_sigpending();
2606 spin_unlock_irq(&current->sighand->siglock);
2608 current->state = TASK_INTERRUPTIBLE;
2609 schedule();
2610 set_restore_sigmask();
2611 return -ERESTARTNOHAND;
2613 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2615 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2617 return NULL;
2620 void __init signals_init(void)
2622 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);