virtio: do not statically allocate root device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_fair.c
blob56c0efe902a79bca1c578aa7fcd5e7d5f0df3144
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 static const struct sched_class fair_sched_class;
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
82 static inline struct task_struct *task_of(struct sched_entity *se)
84 return container_of(se, struct task_struct, se);
87 #ifdef CONFIG_FAIR_GROUP_SCHED
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 return cfs_rq->rq;
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
104 return p->se.cfs_rq;
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
110 return se->cfs_rq;
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
116 return grp->my_q;
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
124 return cfs_rq->tg->cfs_rq[this_cpu];
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
138 return 0;
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
143 return se->parent;
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
149 int depth = 0;
151 for_each_sched_entity(se)
152 depth++;
154 return depth;
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
160 int se_depth, pse_depth;
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
189 #else /* CONFIG_FAIR_GROUP_SCHED */
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
193 return container_of(cfs_rq, struct rq, cfs);
196 #define entity_is_task(se) 1
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
203 return &task_rq(p)->cfs;
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
211 return &rq->cfs;
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
217 return NULL;
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
222 return &cpu_rq(this_cpu)->cfs;
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
231 return 1;
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
236 return NULL;
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
257 return min_vruntime;
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
266 return min_vruntime;
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
271 return se->vruntime - cfs_rq->min_vruntime;
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
276 u64 vruntime = cfs_rq->min_vruntime;
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
296 * Enqueue an entity into the rb-tree:
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
307 * Find the right place in the rbtree:
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
347 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
349 struct rb_node *left = cfs_rq->rb_leftmost;
351 if (!left)
352 return NULL;
354 return rb_entry(left, struct sched_entity, run_node);
357 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
361 if (!last)
362 return NULL;
364 return rb_entry(last, struct sched_entity, run_node);
367 /**************************************************************
368 * Scheduling class statistics methods:
371 #ifdef CONFIG_SCHED_DEBUG
372 int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
378 if (ret || !write)
379 return ret;
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
384 return 0;
386 #endif
389 * delta *= P[w / rw]
391 static inline unsigned long
392 calc_delta_weight(unsigned long delta, struct sched_entity *se)
394 for_each_sched_entity(se) {
395 delta = calc_delta_mine(delta,
396 se->load.weight, &cfs_rq_of(se)->load);
399 return delta;
403 * delta /= w
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
411 return delta;
415 * The idea is to set a period in which each task runs once.
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
420 * p = (nr <= nl) ? l : l*nr/nl
422 static u64 __sched_period(unsigned long nr_running)
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
432 return period;
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
439 * s = p*P[w/rw]
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
443 unsigned long nr_running = cfs_rq->nr_running;
445 if (unlikely(!se->on_rq))
446 nr_running++;
448 return calc_delta_weight(__sched_period(nr_running), se);
452 * We calculate the vruntime slice of a to be inserted task
454 * vs = s/w
456 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
458 return calc_delta_fair(sched_slice(cfs_rq, se), se);
462 * Update the current task's runtime statistics. Skip current tasks that
463 * are not in our scheduling class.
465 static inline void
466 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
467 unsigned long delta_exec)
469 unsigned long delta_exec_weighted;
471 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
473 curr->sum_exec_runtime += delta_exec;
474 schedstat_add(cfs_rq, exec_clock, delta_exec);
475 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
476 curr->vruntime += delta_exec_weighted;
477 update_min_vruntime(cfs_rq);
480 static void update_curr(struct cfs_rq *cfs_rq)
482 struct sched_entity *curr = cfs_rq->curr;
483 u64 now = rq_of(cfs_rq)->clock;
484 unsigned long delta_exec;
486 if (unlikely(!curr))
487 return;
490 * Get the amount of time the current task was running
491 * since the last time we changed load (this cannot
492 * overflow on 32 bits):
494 delta_exec = (unsigned long)(now - curr->exec_start);
495 if (!delta_exec)
496 return;
498 __update_curr(cfs_rq, curr, delta_exec);
499 curr->exec_start = now;
501 if (entity_is_task(curr)) {
502 struct task_struct *curtask = task_of(curr);
504 cpuacct_charge(curtask, delta_exec);
505 account_group_exec_runtime(curtask, delta_exec);
509 static inline void
510 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
516 * Task is being enqueued - update stats:
518 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
521 * Are we enqueueing a waiting task? (for current tasks
522 * a dequeue/enqueue event is a NOP)
524 if (se != cfs_rq->curr)
525 update_stats_wait_start(cfs_rq, se);
528 static void
529 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 schedstat_set(se->wait_max, max(se->wait_max,
532 rq_of(cfs_rq)->clock - se->wait_start));
533 schedstat_set(se->wait_count, se->wait_count + 1);
534 schedstat_set(se->wait_sum, se->wait_sum +
535 rq_of(cfs_rq)->clock - se->wait_start);
536 schedstat_set(se->wait_start, 0);
539 static inline void
540 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 * Mark the end of the wait period if dequeueing a
544 * waiting task:
546 if (se != cfs_rq->curr)
547 update_stats_wait_end(cfs_rq, se);
551 * We are picking a new current task - update its stats:
553 static inline void
554 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
557 * We are starting a new run period:
559 se->exec_start = rq_of(cfs_rq)->clock;
562 /**************************************************
563 * Scheduling class queueing methods:
566 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
567 static void
568 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
570 cfs_rq->task_weight += weight;
572 #else
573 static inline void
574 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
577 #endif
579 static void
580 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
582 update_load_add(&cfs_rq->load, se->load.weight);
583 if (!parent_entity(se))
584 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
585 if (entity_is_task(se)) {
586 add_cfs_task_weight(cfs_rq, se->load.weight);
587 list_add(&se->group_node, &cfs_rq->tasks);
589 cfs_rq->nr_running++;
590 se->on_rq = 1;
593 static void
594 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 update_load_sub(&cfs_rq->load, se->load.weight);
597 if (!parent_entity(se))
598 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
599 if (entity_is_task(se)) {
600 add_cfs_task_weight(cfs_rq, -se->load.weight);
601 list_del_init(&se->group_node);
603 cfs_rq->nr_running--;
604 se->on_rq = 0;
607 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 #ifdef CONFIG_SCHEDSTATS
610 if (se->sleep_start) {
611 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
612 struct task_struct *tsk = task_of(se);
614 if ((s64)delta < 0)
615 delta = 0;
617 if (unlikely(delta > se->sleep_max))
618 se->sleep_max = delta;
620 se->sleep_start = 0;
621 se->sum_sleep_runtime += delta;
623 account_scheduler_latency(tsk, delta >> 10, 1);
625 if (se->block_start) {
626 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
627 struct task_struct *tsk = task_of(se);
629 if ((s64)delta < 0)
630 delta = 0;
632 if (unlikely(delta > se->block_max))
633 se->block_max = delta;
635 se->block_start = 0;
636 se->sum_sleep_runtime += delta;
639 * Blocking time is in units of nanosecs, so shift by 20 to
640 * get a milliseconds-range estimation of the amount of
641 * time that the task spent sleeping:
643 if (unlikely(prof_on == SLEEP_PROFILING)) {
645 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
646 delta >> 20);
648 account_scheduler_latency(tsk, delta >> 10, 0);
650 #endif
653 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 #ifdef CONFIG_SCHED_DEBUG
656 s64 d = se->vruntime - cfs_rq->min_vruntime;
658 if (d < 0)
659 d = -d;
661 if (d > 3*sysctl_sched_latency)
662 schedstat_inc(cfs_rq, nr_spread_over);
663 #endif
666 static void
667 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
669 u64 vruntime = cfs_rq->min_vruntime;
672 * The 'current' period is already promised to the current tasks,
673 * however the extra weight of the new task will slow them down a
674 * little, place the new task so that it fits in the slot that
675 * stays open at the end.
677 if (initial && sched_feat(START_DEBIT))
678 vruntime += sched_vslice(cfs_rq, se);
680 if (!initial) {
681 /* sleeps upto a single latency don't count. */
682 if (sched_feat(NEW_FAIR_SLEEPERS)) {
683 unsigned long thresh = sysctl_sched_latency;
686 * convert the sleeper threshold into virtual time
688 if (sched_feat(NORMALIZED_SLEEPER))
689 thresh = calc_delta_fair(thresh, se);
691 vruntime -= thresh;
694 /* ensure we never gain time by being placed backwards. */
695 vruntime = max_vruntime(se->vruntime, vruntime);
698 se->vruntime = vruntime;
701 static void
702 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
705 * Update run-time statistics of the 'current'.
707 update_curr(cfs_rq);
708 account_entity_enqueue(cfs_rq, se);
710 if (wakeup) {
711 place_entity(cfs_rq, se, 0);
712 enqueue_sleeper(cfs_rq, se);
715 update_stats_enqueue(cfs_rq, se);
716 check_spread(cfs_rq, se);
717 if (se != cfs_rq->curr)
718 __enqueue_entity(cfs_rq, se);
721 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
723 if (cfs_rq->last == se)
724 cfs_rq->last = NULL;
726 if (cfs_rq->next == se)
727 cfs_rq->next = NULL;
730 static void
731 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
734 * Update run-time statistics of the 'current'.
736 update_curr(cfs_rq);
738 update_stats_dequeue(cfs_rq, se);
739 if (sleep) {
740 #ifdef CONFIG_SCHEDSTATS
741 if (entity_is_task(se)) {
742 struct task_struct *tsk = task_of(se);
744 if (tsk->state & TASK_INTERRUPTIBLE)
745 se->sleep_start = rq_of(cfs_rq)->clock;
746 if (tsk->state & TASK_UNINTERRUPTIBLE)
747 se->block_start = rq_of(cfs_rq)->clock;
749 #endif
752 clear_buddies(cfs_rq, se);
754 if (se != cfs_rq->curr)
755 __dequeue_entity(cfs_rq, se);
756 account_entity_dequeue(cfs_rq, se);
757 update_min_vruntime(cfs_rq);
761 * Preempt the current task with a newly woken task if needed:
763 static void
764 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
766 unsigned long ideal_runtime, delta_exec;
768 ideal_runtime = sched_slice(cfs_rq, curr);
769 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
770 if (delta_exec > ideal_runtime)
771 resched_task(rq_of(cfs_rq)->curr);
774 static void
775 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 /* 'current' is not kept within the tree. */
778 if (se->on_rq) {
780 * Any task has to be enqueued before it get to execute on
781 * a CPU. So account for the time it spent waiting on the
782 * runqueue.
784 update_stats_wait_end(cfs_rq, se);
785 __dequeue_entity(cfs_rq, se);
788 update_stats_curr_start(cfs_rq, se);
789 cfs_rq->curr = se;
790 #ifdef CONFIG_SCHEDSTATS
792 * Track our maximum slice length, if the CPU's load is at
793 * least twice that of our own weight (i.e. dont track it
794 * when there are only lesser-weight tasks around):
796 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
797 se->slice_max = max(se->slice_max,
798 se->sum_exec_runtime - se->prev_sum_exec_runtime);
800 #endif
801 se->prev_sum_exec_runtime = se->sum_exec_runtime;
804 static int
805 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
807 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
809 struct sched_entity *se = __pick_next_entity(cfs_rq);
811 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
812 return cfs_rq->next;
814 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
815 return cfs_rq->last;
817 return se;
820 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
823 * If still on the runqueue then deactivate_task()
824 * was not called and update_curr() has to be done:
826 if (prev->on_rq)
827 update_curr(cfs_rq);
829 check_spread(cfs_rq, prev);
830 if (prev->on_rq) {
831 update_stats_wait_start(cfs_rq, prev);
832 /* Put 'current' back into the tree. */
833 __enqueue_entity(cfs_rq, prev);
835 cfs_rq->curr = NULL;
838 static void
839 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
842 * Update run-time statistics of the 'current'.
844 update_curr(cfs_rq);
846 #ifdef CONFIG_SCHED_HRTICK
848 * queued ticks are scheduled to match the slice, so don't bother
849 * validating it and just reschedule.
851 if (queued) {
852 resched_task(rq_of(cfs_rq)->curr);
853 return;
856 * don't let the period tick interfere with the hrtick preemption
858 if (!sched_feat(DOUBLE_TICK) &&
859 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
860 return;
861 #endif
863 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
864 check_preempt_tick(cfs_rq, curr);
867 /**************************************************
868 * CFS operations on tasks:
871 #ifdef CONFIG_SCHED_HRTICK
872 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
874 struct sched_entity *se = &p->se;
875 struct cfs_rq *cfs_rq = cfs_rq_of(se);
877 WARN_ON(task_rq(p) != rq);
879 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
880 u64 slice = sched_slice(cfs_rq, se);
881 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
882 s64 delta = slice - ran;
884 if (delta < 0) {
885 if (rq->curr == p)
886 resched_task(p);
887 return;
891 * Don't schedule slices shorter than 10000ns, that just
892 * doesn't make sense. Rely on vruntime for fairness.
894 if (rq->curr != p)
895 delta = max_t(s64, 10000LL, delta);
897 hrtick_start(rq, delta);
902 * called from enqueue/dequeue and updates the hrtick when the
903 * current task is from our class and nr_running is low enough
904 * to matter.
906 static void hrtick_update(struct rq *rq)
908 struct task_struct *curr = rq->curr;
910 if (curr->sched_class != &fair_sched_class)
911 return;
913 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
914 hrtick_start_fair(rq, curr);
916 #else /* !CONFIG_SCHED_HRTICK */
917 static inline void
918 hrtick_start_fair(struct rq *rq, struct task_struct *p)
922 static inline void hrtick_update(struct rq *rq)
925 #endif
928 * The enqueue_task method is called before nr_running is
929 * increased. Here we update the fair scheduling stats and
930 * then put the task into the rbtree:
932 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
934 struct cfs_rq *cfs_rq;
935 struct sched_entity *se = &p->se;
937 for_each_sched_entity(se) {
938 if (se->on_rq)
939 break;
940 cfs_rq = cfs_rq_of(se);
941 enqueue_entity(cfs_rq, se, wakeup);
942 wakeup = 1;
945 hrtick_update(rq);
949 * The dequeue_task method is called before nr_running is
950 * decreased. We remove the task from the rbtree and
951 * update the fair scheduling stats:
953 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
955 struct cfs_rq *cfs_rq;
956 struct sched_entity *se = &p->se;
958 for_each_sched_entity(se) {
959 cfs_rq = cfs_rq_of(se);
960 dequeue_entity(cfs_rq, se, sleep);
961 /* Don't dequeue parent if it has other entities besides us */
962 if (cfs_rq->load.weight)
963 break;
964 sleep = 1;
967 hrtick_update(rq);
971 * sched_yield() support is very simple - we dequeue and enqueue.
973 * If compat_yield is turned on then we requeue to the end of the tree.
975 static void yield_task_fair(struct rq *rq)
977 struct task_struct *curr = rq->curr;
978 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
979 struct sched_entity *rightmost, *se = &curr->se;
982 * Are we the only task in the tree?
984 if (unlikely(cfs_rq->nr_running == 1))
985 return;
987 clear_buddies(cfs_rq, se);
989 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
990 update_rq_clock(rq);
992 * Update run-time statistics of the 'current'.
994 update_curr(cfs_rq);
996 return;
999 * Find the rightmost entry in the rbtree:
1001 rightmost = __pick_last_entity(cfs_rq);
1003 * Already in the rightmost position?
1005 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1006 return;
1009 * Minimally necessary key value to be last in the tree:
1010 * Upon rescheduling, sched_class::put_prev_task() will place
1011 * 'current' within the tree based on its new key value.
1013 se->vruntime = rightmost->vruntime + 1;
1017 * wake_idle() will wake a task on an idle cpu if task->cpu is
1018 * not idle and an idle cpu is available. The span of cpus to
1019 * search starts with cpus closest then further out as needed,
1020 * so we always favor a closer, idle cpu.
1021 * Domains may include CPUs that are not usable for migration,
1022 * hence we need to mask them out (cpu_active_mask)
1024 * Returns the CPU we should wake onto.
1026 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1027 static int wake_idle(int cpu, struct task_struct *p)
1029 struct sched_domain *sd;
1030 int i;
1031 unsigned int chosen_wakeup_cpu;
1032 int this_cpu;
1035 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1036 * are idle and this is not a kernel thread and this task's affinity
1037 * allows it to be moved to preferred cpu, then just move!
1040 this_cpu = smp_processor_id();
1041 chosen_wakeup_cpu =
1042 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1044 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1045 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1046 p->mm && !(p->flags & PF_KTHREAD) &&
1047 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1048 return chosen_wakeup_cpu;
1051 * If it is idle, then it is the best cpu to run this task.
1053 * This cpu is also the best, if it has more than one task already.
1054 * Siblings must be also busy(in most cases) as they didn't already
1055 * pickup the extra load from this cpu and hence we need not check
1056 * sibling runqueue info. This will avoid the checks and cache miss
1057 * penalities associated with that.
1059 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1060 return cpu;
1062 for_each_domain(cpu, sd) {
1063 if ((sd->flags & SD_WAKE_IDLE)
1064 || ((sd->flags & SD_WAKE_IDLE_FAR)
1065 && !task_hot(p, task_rq(p)->clock, sd))) {
1066 for_each_cpu_and(i, sched_domain_span(sd),
1067 &p->cpus_allowed) {
1068 if (cpu_active(i) && idle_cpu(i)) {
1069 if (i != task_cpu(p)) {
1070 schedstat_inc(p,
1071 se.nr_wakeups_idle);
1073 return i;
1076 } else {
1077 break;
1080 return cpu;
1082 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1083 static inline int wake_idle(int cpu, struct task_struct *p)
1085 return cpu;
1087 #endif
1089 #ifdef CONFIG_SMP
1091 #ifdef CONFIG_FAIR_GROUP_SCHED
1093 * effective_load() calculates the load change as seen from the root_task_group
1095 * Adding load to a group doesn't make a group heavier, but can cause movement
1096 * of group shares between cpus. Assuming the shares were perfectly aligned one
1097 * can calculate the shift in shares.
1099 * The problem is that perfectly aligning the shares is rather expensive, hence
1100 * we try to avoid doing that too often - see update_shares(), which ratelimits
1101 * this change.
1103 * We compensate this by not only taking the current delta into account, but
1104 * also considering the delta between when the shares were last adjusted and
1105 * now.
1107 * We still saw a performance dip, some tracing learned us that between
1108 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1109 * significantly. Therefore try to bias the error in direction of failing
1110 * the affine wakeup.
1113 static long effective_load(struct task_group *tg, int cpu,
1114 long wl, long wg)
1116 struct sched_entity *se = tg->se[cpu];
1118 if (!tg->parent)
1119 return wl;
1122 * By not taking the decrease of shares on the other cpu into
1123 * account our error leans towards reducing the affine wakeups.
1125 if (!wl && sched_feat(ASYM_EFF_LOAD))
1126 return wl;
1128 for_each_sched_entity(se) {
1129 long S, rw, s, a, b;
1130 long more_w;
1133 * Instead of using this increment, also add the difference
1134 * between when the shares were last updated and now.
1136 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1137 wl += more_w;
1138 wg += more_w;
1140 S = se->my_q->tg->shares;
1141 s = se->my_q->shares;
1142 rw = se->my_q->rq_weight;
1144 a = S*(rw + wl);
1145 b = S*rw + s*wg;
1147 wl = s*(a-b);
1149 if (likely(b))
1150 wl /= b;
1153 * Assume the group is already running and will
1154 * thus already be accounted for in the weight.
1156 * That is, moving shares between CPUs, does not
1157 * alter the group weight.
1159 wg = 0;
1162 return wl;
1165 #else
1167 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1168 unsigned long wl, unsigned long wg)
1170 return wl;
1173 #endif
1175 static int
1176 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1177 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1178 int idx, unsigned long load, unsigned long this_load,
1179 unsigned int imbalance)
1181 struct task_struct *curr = this_rq->curr;
1182 struct task_group *tg;
1183 unsigned long tl = this_load;
1184 unsigned long tl_per_task;
1185 unsigned long weight;
1186 int balanced;
1188 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1189 return 0;
1191 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1192 p->se.avg_overlap > sysctl_sched_migration_cost))
1193 sync = 0;
1196 * If sync wakeup then subtract the (maximum possible)
1197 * effect of the currently running task from the load
1198 * of the current CPU:
1200 if (sync) {
1201 tg = task_group(current);
1202 weight = current->se.load.weight;
1204 tl += effective_load(tg, this_cpu, -weight, -weight);
1205 load += effective_load(tg, prev_cpu, 0, -weight);
1208 tg = task_group(p);
1209 weight = p->se.load.weight;
1211 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1212 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1215 * If the currently running task will sleep within
1216 * a reasonable amount of time then attract this newly
1217 * woken task:
1219 if (sync && balanced)
1220 return 1;
1222 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1223 tl_per_task = cpu_avg_load_per_task(this_cpu);
1225 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1226 tl_per_task)) {
1228 * This domain has SD_WAKE_AFFINE and
1229 * p is cache cold in this domain, and
1230 * there is no bad imbalance.
1232 schedstat_inc(this_sd, ttwu_move_affine);
1233 schedstat_inc(p, se.nr_wakeups_affine);
1235 return 1;
1237 return 0;
1240 static int select_task_rq_fair(struct task_struct *p, int sync)
1242 struct sched_domain *sd, *this_sd = NULL;
1243 int prev_cpu, this_cpu, new_cpu;
1244 unsigned long load, this_load;
1245 struct rq *this_rq;
1246 unsigned int imbalance;
1247 int idx;
1249 prev_cpu = task_cpu(p);
1250 this_cpu = smp_processor_id();
1251 this_rq = cpu_rq(this_cpu);
1252 new_cpu = prev_cpu;
1254 if (prev_cpu == this_cpu)
1255 goto out;
1257 * 'this_sd' is the first domain that both
1258 * this_cpu and prev_cpu are present in:
1260 for_each_domain(this_cpu, sd) {
1261 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1262 this_sd = sd;
1263 break;
1267 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1268 goto out;
1271 * Check for affine wakeup and passive balancing possibilities.
1273 if (!this_sd)
1274 goto out;
1276 idx = this_sd->wake_idx;
1278 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1280 load = source_load(prev_cpu, idx);
1281 this_load = target_load(this_cpu, idx);
1283 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1284 load, this_load, imbalance))
1285 return this_cpu;
1288 * Start passive balancing when half the imbalance_pct
1289 * limit is reached.
1291 if (this_sd->flags & SD_WAKE_BALANCE) {
1292 if (imbalance*this_load <= 100*load) {
1293 schedstat_inc(this_sd, ttwu_move_balance);
1294 schedstat_inc(p, se.nr_wakeups_passive);
1295 return this_cpu;
1299 out:
1300 return wake_idle(new_cpu, p);
1302 #endif /* CONFIG_SMP */
1304 static unsigned long wakeup_gran(struct sched_entity *se)
1306 unsigned long gran = sysctl_sched_wakeup_granularity;
1309 * More easily preempt - nice tasks, while not making it harder for
1310 * + nice tasks.
1312 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1313 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1315 return gran;
1319 * Should 'se' preempt 'curr'.
1321 * |s1
1322 * |s2
1323 * |s3
1325 * |<--->|c
1327 * w(c, s1) = -1
1328 * w(c, s2) = 0
1329 * w(c, s3) = 1
1332 static int
1333 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1335 s64 gran, vdiff = curr->vruntime - se->vruntime;
1337 if (vdiff <= 0)
1338 return -1;
1340 gran = wakeup_gran(curr);
1341 if (vdiff > gran)
1342 return 1;
1344 return 0;
1347 static void set_last_buddy(struct sched_entity *se)
1349 for_each_sched_entity(se)
1350 cfs_rq_of(se)->last = se;
1353 static void set_next_buddy(struct sched_entity *se)
1355 for_each_sched_entity(se)
1356 cfs_rq_of(se)->next = se;
1360 * Preempt the current task with a newly woken task if needed:
1362 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1364 struct task_struct *curr = rq->curr;
1365 struct sched_entity *se = &curr->se, *pse = &p->se;
1366 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1368 update_curr(cfs_rq);
1370 if (unlikely(rt_prio(p->prio))) {
1371 resched_task(curr);
1372 return;
1375 if (unlikely(p->sched_class != &fair_sched_class))
1376 return;
1378 if (unlikely(se == pse))
1379 return;
1382 * Only set the backward buddy when the current task is still on the
1383 * rq. This can happen when a wakeup gets interleaved with schedule on
1384 * the ->pre_schedule() or idle_balance() point, either of which can
1385 * drop the rq lock.
1387 * Also, during early boot the idle thread is in the fair class, for
1388 * obvious reasons its a bad idea to schedule back to the idle thread.
1390 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1391 set_last_buddy(se);
1392 set_next_buddy(pse);
1395 * We can come here with TIF_NEED_RESCHED already set from new task
1396 * wake up path.
1398 if (test_tsk_need_resched(curr))
1399 return;
1402 * Batch tasks do not preempt (their preemption is driven by
1403 * the tick):
1405 if (unlikely(p->policy == SCHED_BATCH))
1406 return;
1408 if (!sched_feat(WAKEUP_PREEMPT))
1409 return;
1411 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1412 (se->avg_overlap < sysctl_sched_migration_cost &&
1413 pse->avg_overlap < sysctl_sched_migration_cost))) {
1414 resched_task(curr);
1415 return;
1418 find_matching_se(&se, &pse);
1420 while (se) {
1421 BUG_ON(!pse);
1423 if (wakeup_preempt_entity(se, pse) == 1) {
1424 resched_task(curr);
1425 break;
1428 se = parent_entity(se);
1429 pse = parent_entity(pse);
1433 static struct task_struct *pick_next_task_fair(struct rq *rq)
1435 struct task_struct *p;
1436 struct cfs_rq *cfs_rq = &rq->cfs;
1437 struct sched_entity *se;
1439 if (unlikely(!cfs_rq->nr_running))
1440 return NULL;
1442 do {
1443 se = pick_next_entity(cfs_rq);
1444 set_next_entity(cfs_rq, se);
1445 cfs_rq = group_cfs_rq(se);
1446 } while (cfs_rq);
1448 p = task_of(se);
1449 hrtick_start_fair(rq, p);
1451 return p;
1455 * Account for a descheduled task:
1457 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1459 struct sched_entity *se = &prev->se;
1460 struct cfs_rq *cfs_rq;
1462 for_each_sched_entity(se) {
1463 cfs_rq = cfs_rq_of(se);
1464 put_prev_entity(cfs_rq, se);
1468 #ifdef CONFIG_SMP
1469 /**************************************************
1470 * Fair scheduling class load-balancing methods:
1474 * Load-balancing iterator. Note: while the runqueue stays locked
1475 * during the whole iteration, the current task might be
1476 * dequeued so the iterator has to be dequeue-safe. Here we
1477 * achieve that by always pre-iterating before returning
1478 * the current task:
1480 static struct task_struct *
1481 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1483 struct task_struct *p = NULL;
1484 struct sched_entity *se;
1486 if (next == &cfs_rq->tasks)
1487 return NULL;
1489 se = list_entry(next, struct sched_entity, group_node);
1490 p = task_of(se);
1491 cfs_rq->balance_iterator = next->next;
1493 return p;
1496 static struct task_struct *load_balance_start_fair(void *arg)
1498 struct cfs_rq *cfs_rq = arg;
1500 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1503 static struct task_struct *load_balance_next_fair(void *arg)
1505 struct cfs_rq *cfs_rq = arg;
1507 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1510 static unsigned long
1511 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1512 unsigned long max_load_move, struct sched_domain *sd,
1513 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1514 struct cfs_rq *cfs_rq)
1516 struct rq_iterator cfs_rq_iterator;
1518 cfs_rq_iterator.start = load_balance_start_fair;
1519 cfs_rq_iterator.next = load_balance_next_fair;
1520 cfs_rq_iterator.arg = cfs_rq;
1522 return balance_tasks(this_rq, this_cpu, busiest,
1523 max_load_move, sd, idle, all_pinned,
1524 this_best_prio, &cfs_rq_iterator);
1527 #ifdef CONFIG_FAIR_GROUP_SCHED
1528 static unsigned long
1529 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1530 unsigned long max_load_move,
1531 struct sched_domain *sd, enum cpu_idle_type idle,
1532 int *all_pinned, int *this_best_prio)
1534 long rem_load_move = max_load_move;
1535 int busiest_cpu = cpu_of(busiest);
1536 struct task_group *tg;
1538 rcu_read_lock();
1539 update_h_load(busiest_cpu);
1541 list_for_each_entry_rcu(tg, &task_groups, list) {
1542 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1543 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1544 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1545 u64 rem_load, moved_load;
1548 * empty group
1550 if (!busiest_cfs_rq->task_weight)
1551 continue;
1553 rem_load = (u64)rem_load_move * busiest_weight;
1554 rem_load = div_u64(rem_load, busiest_h_load + 1);
1556 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1557 rem_load, sd, idle, all_pinned, this_best_prio,
1558 tg->cfs_rq[busiest_cpu]);
1560 if (!moved_load)
1561 continue;
1563 moved_load *= busiest_h_load;
1564 moved_load = div_u64(moved_load, busiest_weight + 1);
1566 rem_load_move -= moved_load;
1567 if (rem_load_move < 0)
1568 break;
1570 rcu_read_unlock();
1572 return max_load_move - rem_load_move;
1574 #else
1575 static unsigned long
1576 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1577 unsigned long max_load_move,
1578 struct sched_domain *sd, enum cpu_idle_type idle,
1579 int *all_pinned, int *this_best_prio)
1581 return __load_balance_fair(this_rq, this_cpu, busiest,
1582 max_load_move, sd, idle, all_pinned,
1583 this_best_prio, &busiest->cfs);
1585 #endif
1587 static int
1588 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1589 struct sched_domain *sd, enum cpu_idle_type idle)
1591 struct cfs_rq *busy_cfs_rq;
1592 struct rq_iterator cfs_rq_iterator;
1594 cfs_rq_iterator.start = load_balance_start_fair;
1595 cfs_rq_iterator.next = load_balance_next_fair;
1597 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1599 * pass busy_cfs_rq argument into
1600 * load_balance_[start|next]_fair iterators
1602 cfs_rq_iterator.arg = busy_cfs_rq;
1603 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1604 &cfs_rq_iterator))
1605 return 1;
1608 return 0;
1610 #endif /* CONFIG_SMP */
1613 * scheduler tick hitting a task of our scheduling class:
1615 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1617 struct cfs_rq *cfs_rq;
1618 struct sched_entity *se = &curr->se;
1620 for_each_sched_entity(se) {
1621 cfs_rq = cfs_rq_of(se);
1622 entity_tick(cfs_rq, se, queued);
1626 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1629 * Share the fairness runtime between parent and child, thus the
1630 * total amount of pressure for CPU stays equal - new tasks
1631 * get a chance to run but frequent forkers are not allowed to
1632 * monopolize the CPU. Note: the parent runqueue is locked,
1633 * the child is not running yet.
1635 static void task_new_fair(struct rq *rq, struct task_struct *p)
1637 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1638 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1639 int this_cpu = smp_processor_id();
1641 sched_info_queued(p);
1643 update_curr(cfs_rq);
1644 place_entity(cfs_rq, se, 1);
1646 /* 'curr' will be NULL if the child belongs to a different group */
1647 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1648 curr && curr->vruntime < se->vruntime) {
1650 * Upon rescheduling, sched_class::put_prev_task() will place
1651 * 'current' within the tree based on its new key value.
1653 swap(curr->vruntime, se->vruntime);
1654 resched_task(rq->curr);
1657 enqueue_task_fair(rq, p, 0);
1661 * Priority of the task has changed. Check to see if we preempt
1662 * the current task.
1664 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1665 int oldprio, int running)
1668 * Reschedule if we are currently running on this runqueue and
1669 * our priority decreased, or if we are not currently running on
1670 * this runqueue and our priority is higher than the current's
1672 if (running) {
1673 if (p->prio > oldprio)
1674 resched_task(rq->curr);
1675 } else
1676 check_preempt_curr(rq, p, 0);
1680 * We switched to the sched_fair class.
1682 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1683 int running)
1686 * We were most likely switched from sched_rt, so
1687 * kick off the schedule if running, otherwise just see
1688 * if we can still preempt the current task.
1690 if (running)
1691 resched_task(rq->curr);
1692 else
1693 check_preempt_curr(rq, p, 0);
1696 /* Account for a task changing its policy or group.
1698 * This routine is mostly called to set cfs_rq->curr field when a task
1699 * migrates between groups/classes.
1701 static void set_curr_task_fair(struct rq *rq)
1703 struct sched_entity *se = &rq->curr->se;
1705 for_each_sched_entity(se)
1706 set_next_entity(cfs_rq_of(se), se);
1709 #ifdef CONFIG_FAIR_GROUP_SCHED
1710 static void moved_group_fair(struct task_struct *p)
1712 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1714 update_curr(cfs_rq);
1715 place_entity(cfs_rq, &p->se, 1);
1717 #endif
1720 * All the scheduling class methods:
1722 static const struct sched_class fair_sched_class = {
1723 .next = &idle_sched_class,
1724 .enqueue_task = enqueue_task_fair,
1725 .dequeue_task = dequeue_task_fair,
1726 .yield_task = yield_task_fair,
1728 .check_preempt_curr = check_preempt_wakeup,
1730 .pick_next_task = pick_next_task_fair,
1731 .put_prev_task = put_prev_task_fair,
1733 #ifdef CONFIG_SMP
1734 .select_task_rq = select_task_rq_fair,
1736 .load_balance = load_balance_fair,
1737 .move_one_task = move_one_task_fair,
1738 #endif
1740 .set_curr_task = set_curr_task_fair,
1741 .task_tick = task_tick_fair,
1742 .task_new = task_new_fair,
1744 .prio_changed = prio_changed_fair,
1745 .switched_to = switched_to_fair,
1747 #ifdef CONFIG_FAIR_GROUP_SCHED
1748 .moved_group = moved_group_fair,
1749 #endif
1752 #ifdef CONFIG_SCHED_DEBUG
1753 static void print_cfs_stats(struct seq_file *m, int cpu)
1755 struct cfs_rq *cfs_rq;
1757 rcu_read_lock();
1758 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1759 print_cfs_rq(m, cpu, cfs_rq);
1760 rcu_read_unlock();
1762 #endif