2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
44 * ntfs_test_inode - compare two (possibly fake) inodes for equality
45 * @vi: vfs inode which to test
46 * @na: ntfs attribute which is being tested with
48 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
49 * inode @vi for equality with the ntfs attribute @na.
51 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
52 * @na->name and @na->name_len are then ignored.
54 * Return 1 if the attributes match and 0 if not.
56 * NOTE: This function runs with the inode_lock spin lock held so it is not
59 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
63 if (vi
->i_ino
!= na
->mft_no
)
66 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
67 if (likely(!NInoAttr(ni
))) {
68 /* If not looking for a normal inode this is a mismatch. */
69 if (unlikely(na
->type
!= AT_UNUSED
))
72 /* A fake inode describing an attribute. */
73 if (ni
->type
!= na
->type
)
75 if (ni
->name_len
!= na
->name_len
)
77 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
78 na
->name_len
* sizeof(ntfschar
)))
86 * ntfs_init_locked_inode - initialize an inode
87 * @vi: vfs inode to initialize
88 * @na: ntfs attribute which to initialize @vi to
90 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
91 * order to enable ntfs_test_inode() to do its work.
93 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
94 * In that case, @na->name and @na->name_len should be set to NULL and 0,
95 * respectively. Although that is not strictly necessary as
96 * ntfs_read_locked_inode() will fill them in later.
98 * Return 0 on success and -errno on error.
100 * NOTE: This function runs with the inode_lock spin lock held so it is not
101 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
105 ntfs_inode
*ni
= NTFS_I(vi
);
107 vi
->i_ino
= na
->mft_no
;
110 if (na
->type
== AT_INDEX_ALLOCATION
)
111 NInoSetMstProtected(ni
);
114 ni
->name_len
= na
->name_len
;
116 /* If initializing a normal inode, we are done. */
117 if (likely(na
->type
== AT_UNUSED
)) {
119 BUG_ON(na
->name_len
);
123 /* It is a fake inode. */
127 * We have I30 global constant as an optimization as it is the name
128 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
129 * allocation but that is ok. And most attributes are unnamed anyway,
130 * thus the fraction of named attributes with name != I30 is actually
133 if (na
->name_len
&& na
->name
!= I30
) {
137 i
= na
->name_len
* sizeof(ntfschar
);
138 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
141 memcpy(ni
->name
, na
->name
, i
);
142 ni
->name
[na
->name_len
] = 0;
147 typedef int (*set_t
)(struct inode
*, void *);
148 static int ntfs_read_locked_inode(struct inode
*vi
);
149 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
150 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
154 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
155 * @sb: super block of mounted volume
156 * @mft_no: mft record number / inode number to obtain
158 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
159 * file or directory).
161 * If the inode is in the cache, it is just returned with an increased
162 * reference count. Otherwise, a new struct inode is allocated and initialized,
163 * and finally ntfs_read_locked_inode() is called to read in the inode and
164 * fill in the remainder of the inode structure.
166 * Return the struct inode on success. Check the return value with IS_ERR() and
167 * if true, the function failed and the error code is obtained from PTR_ERR().
169 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
180 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
181 (set_t
)ntfs_init_locked_inode
, &na
);
183 return ERR_PTR(-ENOMEM
);
187 /* If this is a freshly allocated inode, need to read it now. */
188 if (vi
->i_state
& I_NEW
) {
189 err
= ntfs_read_locked_inode(vi
);
190 unlock_new_inode(vi
);
193 * There is no point in keeping bad inodes around if the failure was
194 * due to ENOMEM. We want to be able to retry again later.
196 if (unlikely(err
== -ENOMEM
)) {
204 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
205 * @base_vi: vfs base inode containing the attribute
206 * @type: attribute type
207 * @name: Unicode name of the attribute (NULL if unnamed)
208 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 * Obtain the (fake) struct inode corresponding to the attribute specified by
211 * @type, @name, and @name_len, which is present in the base mft record
212 * specified by the vfs inode @base_vi.
214 * If the attribute inode is in the cache, it is just returned with an
215 * increased reference count. Otherwise, a new struct inode is allocated and
216 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
217 * attribute and fill in the inode structure.
219 * Note, for index allocation attributes, you need to use ntfs_index_iget()
220 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 * Return the struct inode of the attribute inode on success. Check the return
223 * value with IS_ERR() and if true, the function failed and the error code is
224 * obtained from PTR_ERR().
226 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
227 ntfschar
*name
, u32 name_len
)
233 /* Make sure no one calls ntfs_attr_iget() for indices. */
234 BUG_ON(type
== AT_INDEX_ALLOCATION
);
236 na
.mft_no
= base_vi
->i_ino
;
239 na
.name_len
= name_len
;
241 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
242 (set_t
)ntfs_init_locked_inode
, &na
);
244 return ERR_PTR(-ENOMEM
);
248 /* If this is a freshly allocated inode, need to read it now. */
249 if (vi
->i_state
& I_NEW
) {
250 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
251 unlock_new_inode(vi
);
254 * There is no point in keeping bad attribute inodes around. This also
255 * simplifies things in that we never need to check for bad attribute
266 * ntfs_index_iget - obtain a struct inode corresponding to an index
267 * @base_vi: vfs base inode containing the index related attributes
268 * @name: Unicode name of the index
269 * @name_len: length of @name in Unicode characters
271 * Obtain the (fake) struct inode corresponding to the index specified by @name
272 * and @name_len, which is present in the base mft record specified by the vfs
275 * If the index inode is in the cache, it is just returned with an increased
276 * reference count. Otherwise, a new struct inode is allocated and
277 * initialized, and finally ntfs_read_locked_index_inode() is called to read
278 * the index related attributes and fill in the inode structure.
280 * Return the struct inode of the index inode on success. Check the return
281 * value with IS_ERR() and if true, the function failed and the error code is
282 * obtained from PTR_ERR().
284 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
291 na
.mft_no
= base_vi
->i_ino
;
292 na
.type
= AT_INDEX_ALLOCATION
;
294 na
.name_len
= name_len
;
296 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
297 (set_t
)ntfs_init_locked_inode
, &na
);
299 return ERR_PTR(-ENOMEM
);
303 /* If this is a freshly allocated inode, need to read it now. */
304 if (vi
->i_state
& I_NEW
) {
305 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
306 unlock_new_inode(vi
);
309 * There is no point in keeping bad index inodes around. This also
310 * simplifies things in that we never need to check for bad index
320 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
324 ntfs_debug("Entering.");
325 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
326 if (likely(ni
!= NULL
)) {
330 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
334 void ntfs_destroy_big_inode(struct inode
*inode
)
336 ntfs_inode
*ni
= NTFS_I(inode
);
338 ntfs_debug("Entering.");
340 if (!atomic_dec_and_test(&ni
->count
))
342 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
345 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
349 ntfs_debug("Entering.");
350 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
351 if (likely(ni
!= NULL
)) {
355 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
359 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
361 ntfs_debug("Entering.");
363 if (!atomic_dec_and_test(&ni
->count
))
365 kmem_cache_free(ntfs_inode_cache
, ni
);
369 * The attribute runlist lock has separate locking rules from the
370 * normal runlist lock, so split the two lock-classes:
372 static struct lock_class_key attr_list_rl_lock_class
;
375 * __ntfs_init_inode - initialize ntfs specific part of an inode
376 * @sb: super block of mounted volume
377 * @ni: freshly allocated ntfs inode which to initialize
379 * Initialize an ntfs inode to defaults.
381 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
382 * untouched. Make sure to initialize them elsewhere.
384 * Return zero on success and -ENOMEM on error.
386 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
388 ntfs_debug("Entering.");
389 rwlock_init(&ni
->size_lock
);
390 ni
->initialized_size
= ni
->allocated_size
= 0;
392 atomic_set(&ni
->count
, 1);
393 ni
->vol
= NTFS_SB(sb
);
394 ntfs_init_runlist(&ni
->runlist
);
395 mutex_init(&ni
->mrec_lock
);
398 ni
->attr_list_size
= 0;
399 ni
->attr_list
= NULL
;
400 ntfs_init_runlist(&ni
->attr_list_rl
);
401 lockdep_set_class(&ni
->attr_list_rl
.lock
,
402 &attr_list_rl_lock_class
);
403 ni
->itype
.index
.block_size
= 0;
404 ni
->itype
.index
.vcn_size
= 0;
405 ni
->itype
.index
.collation_rule
= 0;
406 ni
->itype
.index
.block_size_bits
= 0;
407 ni
->itype
.index
.vcn_size_bits
= 0;
408 mutex_init(&ni
->extent_lock
);
410 ni
->ext
.base_ntfs_ino
= NULL
;
414 * Extent inodes get MFT-mapped in a nested way, while the base inode
415 * is still mapped. Teach this nesting to the lock validator by creating
416 * a separate class for nested inode's mrec_lock's:
418 static struct lock_class_key extent_inode_mrec_lock_key
;
420 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
421 unsigned long mft_no
)
423 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
425 ntfs_debug("Entering.");
426 if (likely(ni
!= NULL
)) {
427 __ntfs_init_inode(sb
, ni
);
428 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
430 ni
->type
= AT_UNUSED
;
438 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
439 * @ctx: initialized attribute search context
441 * Search all file name attributes in the inode described by the attribute
442 * search context @ctx and check if any of the names are in the $Extend system
446 * 1: file is in $Extend directory
447 * 0: file is not in $Extend directory
448 * -errno: failed to determine if the file is in the $Extend directory
450 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
454 /* Restart search. */
455 ntfs_attr_reinit_search_ctx(ctx
);
457 /* Get number of hard links. */
458 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
460 /* Loop through all hard links. */
461 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
463 FILE_NAME_ATTR
*file_name_attr
;
464 ATTR_RECORD
*attr
= ctx
->attr
;
469 * Maximum sanity checking as we are called on an inode that
470 * we suspect might be corrupt.
472 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
473 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
474 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
476 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
477 "attribute. You should run chkdsk.");
480 if (attr
->non_resident
) {
481 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
482 "name. You should run chkdsk.");
486 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
487 "invalid flags. You should run "
491 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
492 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
493 "name. You should run chkdsk.");
496 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
497 le16_to_cpu(attr
->data
.resident
.value_offset
));
498 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
499 if (p2
< (u8
*)attr
|| p2
> p
)
500 goto err_corrupt_attr
;
501 /* This attribute is ok, but is it in the $Extend directory? */
502 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
503 return 1; /* YES, it's an extended system file. */
505 if (unlikely(err
!= -ENOENT
))
507 if (unlikely(nr_links
)) {
508 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
509 "doesn't match number of name attributes. You "
510 "should run chkdsk.");
513 return 0; /* NO, it is not an extended system file. */
517 * ntfs_read_locked_inode - read an inode from its device
520 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
521 * described by @vi into memory from the device.
523 * The only fields in @vi that we need to/can look at when the function is
524 * called are i_sb, pointing to the mounted device's super block, and i_ino,
525 * the number of the inode to load.
527 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
528 * for reading and sets up the necessary @vi fields as well as initializing
531 * Q: What locks are held when the function is called?
532 * A: i_state has I_LOCK set, hence the inode is locked, also
533 * i_count is set to 1, so it is not going to go away
534 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
535 * is allowed to write to them. We should of course be honouring them but
536 * we need to do that using the IS_* macros defined in include/linux/fs.h.
537 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
539 * Return 0 on success and -errno on error. In the error case, the inode will
540 * have had make_bad_inode() executed on it.
542 static int ntfs_read_locked_inode(struct inode
*vi
)
544 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
549 STANDARD_INFORMATION
*si
;
550 ntfs_attr_search_ctx
*ctx
;
553 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
555 /* Setup the generic vfs inode parts now. */
558 * This is for checking whether an inode has changed w.r.t. a file so
559 * that the file can be updated if necessary (compare with f_version).
563 vi
->i_uid
= vol
->uid
;
564 vi
->i_gid
= vol
->gid
;
568 * Initialize the ntfs specific part of @vi special casing
569 * FILE_MFT which we need to do at mount time.
571 if (vi
->i_ino
!= FILE_MFT
)
572 ntfs_init_big_inode(vi
);
575 m
= map_mft_record(ni
);
580 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
586 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
587 ntfs_error(vi
->i_sb
, "Inode is not in use!");
590 if (m
->base_mft_record
) {
591 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
595 /* Transfer information from mft record into vfs and ntfs inodes. */
596 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
599 * FIXME: Keep in mind that link_count is two for files which have both
600 * a long file name and a short file name as separate entries, so if
601 * we are hiding short file names this will be too high. Either we need
602 * to account for the short file names by subtracting them or we need
603 * to make sure we delete files even though i_nlink is not zero which
604 * might be tricky due to vfs interactions. Need to think about this
605 * some more when implementing the unlink command.
607 vi
->i_nlink
= le16_to_cpu(m
->link_count
);
609 * FIXME: Reparse points can have the directory bit set even though
610 * they would be S_IFLNK. Need to deal with this further below when we
611 * implement reparse points / symbolic links but it will do for now.
612 * Also if not a directory, it could be something else, rather than
613 * a regular file. But again, will do for now.
615 /* Everyone gets all permissions. */
616 vi
->i_mode
|= S_IRWXUGO
;
617 /* If read-only, noone gets write permissions. */
619 vi
->i_mode
&= ~S_IWUGO
;
620 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
621 vi
->i_mode
|= S_IFDIR
;
623 * Apply the directory permissions mask set in the mount
626 vi
->i_mode
&= ~vol
->dmask
;
627 /* Things break without this kludge! */
631 vi
->i_mode
|= S_IFREG
;
632 /* Apply the file permissions mask set in the mount options. */
633 vi
->i_mode
&= ~vol
->fmask
;
636 * Find the standard information attribute in the mft record. At this
637 * stage we haven't setup the attribute list stuff yet, so this could
638 * in fact fail if the standard information is in an extent record, but
639 * I don't think this actually ever happens.
641 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
644 if (err
== -ENOENT
) {
646 * TODO: We should be performing a hot fix here (if the
647 * recover mount option is set) by creating a new
650 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
656 /* Get the standard information attribute value. */
657 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
658 le16_to_cpu(a
->data
.resident
.value_offset
));
660 /* Transfer information from the standard information into vi. */
662 * Note: The i_?times do not quite map perfectly onto the NTFS times,
663 * but they are close enough, and in the end it doesn't really matter
667 * mtime is the last change of the data within the file. Not changed
668 * when only metadata is changed, e.g. a rename doesn't affect mtime.
670 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
672 * ctime is the last change of the metadata of the file. This obviously
673 * always changes, when mtime is changed. ctime can be changed on its
674 * own, mtime is then not changed, e.g. when a file is renamed.
676 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
678 * Last access to the data within the file. Not changed during a rename
679 * for example but changed whenever the file is written to.
681 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
683 /* Find the attribute list attribute if present. */
684 ntfs_attr_reinit_search_ctx(ctx
);
685 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
687 if (unlikely(err
!= -ENOENT
)) {
688 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
692 } else /* if (!err) */ {
693 if (vi
->i_ino
== FILE_MFT
)
694 goto skip_attr_list_load
;
695 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
698 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
699 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
703 if (a
->flags
& ATTR_IS_ENCRYPTED
||
704 a
->flags
& ATTR_IS_SPARSE
) {
705 if (a
->non_resident
) {
706 ntfs_error(vi
->i_sb
, "Non-resident attribute "
707 "list attribute is encrypted/"
711 ntfs_warning(vi
->i_sb
, "Resident attribute list "
712 "attribute in inode 0x%lx is marked "
713 "encrypted/sparse which is not true. "
714 "However, Windows allows this and "
715 "chkdsk does not detect or correct it "
716 "so we will just ignore the invalid "
717 "flags and pretend they are not set.",
720 /* Now allocate memory for the attribute list. */
721 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
722 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
723 if (!ni
->attr_list
) {
724 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
725 "buffer for attribute list.");
729 if (a
->non_resident
) {
730 NInoSetAttrListNonResident(ni
);
731 if (a
->data
.non_resident
.lowest_vcn
) {
732 ntfs_error(vi
->i_sb
, "Attribute list has non "
737 * Setup the runlist. No need for locking as we have
738 * exclusive access to the inode at this time.
740 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
742 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
743 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
744 ni
->attr_list_rl
.rl
= NULL
;
745 ntfs_error(vi
->i_sb
, "Mapping pairs "
746 "decompression failed.");
749 /* Now load the attribute list. */
750 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
751 ni
->attr_list
, ni
->attr_list_size
,
752 sle64_to_cpu(a
->data
.non_resident
.
753 initialized_size
)))) {
754 ntfs_error(vi
->i_sb
, "Failed to load "
755 "attribute list attribute.");
758 } else /* if (!a->non_resident) */ {
759 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
761 a
->data
.resident
.value_length
) >
762 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
763 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
767 /* Now copy the attribute list. */
768 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
769 a
->data
.resident
.value_offset
),
771 a
->data
.resident
.value_length
));
776 * If an attribute list is present we now have the attribute list value
777 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
779 if (S_ISDIR(vi
->i_mode
)) {
783 u8
*ir_end
, *index_end
;
785 /* It is a directory, find index root attribute. */
786 ntfs_attr_reinit_search_ctx(ctx
);
787 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
790 if (err
== -ENOENT
) {
791 // FIXME: File is corrupt! Hot-fix with empty
792 // index root attribute if recovery option is
794 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
800 /* Set up the state. */
801 if (unlikely(a
->non_resident
)) {
802 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
806 /* Ensure the attribute name is placed before the value. */
807 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
808 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
809 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
810 "placed after the attribute value.");
814 * Compressed/encrypted index root just means that the newly
815 * created files in that directory should be created compressed/
816 * encrypted. However index root cannot be both compressed and
819 if (a
->flags
& ATTR_COMPRESSION_MASK
)
820 NInoSetCompressed(ni
);
821 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
822 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
823 ntfs_error(vi
->i_sb
, "Found encrypted and "
824 "compressed attribute.");
827 NInoSetEncrypted(ni
);
829 if (a
->flags
& ATTR_IS_SPARSE
)
831 ir
= (INDEX_ROOT
*)((u8
*)a
+
832 le16_to_cpu(a
->data
.resident
.value_offset
));
833 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
834 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
835 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
839 index_end
= (u8
*)&ir
->index
+
840 le32_to_cpu(ir
->index
.index_length
);
841 if (index_end
> ir_end
) {
842 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
845 if (ir
->type
!= AT_FILE_NAME
) {
846 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
850 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
851 ntfs_error(vi
->i_sb
, "Index collation rule is not "
852 "COLLATION_FILE_NAME.");
855 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
856 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
857 if (ni
->itype
.index
.block_size
&
858 (ni
->itype
.index
.block_size
- 1)) {
859 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
861 ni
->itype
.index
.block_size
);
864 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
865 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
866 "PAGE_CACHE_SIZE (%ld) is not "
868 ni
->itype
.index
.block_size
,
873 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
874 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
875 "NTFS_BLOCK_SIZE (%i) is not "
877 ni
->itype
.index
.block_size
,
882 ni
->itype
.index
.block_size_bits
=
883 ffs(ni
->itype
.index
.block_size
) - 1;
884 /* Determine the size of a vcn in the directory index. */
885 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
886 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
887 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
889 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
890 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
893 /* Setup the index allocation attribute, even if not present. */
894 NInoSetMstProtected(ni
);
895 ni
->type
= AT_INDEX_ALLOCATION
;
899 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
900 /* No index allocation. */
901 vi
->i_size
= ni
->initialized_size
=
902 ni
->allocated_size
= 0;
903 /* We are done with the mft record, so we release it. */
904 ntfs_attr_put_search_ctx(ctx
);
905 unmap_mft_record(ni
);
908 goto skip_large_dir_stuff
;
909 } /* LARGE_INDEX: Index allocation present. Setup state. */
910 NInoSetIndexAllocPresent(ni
);
911 /* Find index allocation attribute. */
912 ntfs_attr_reinit_search_ctx(ctx
);
913 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
914 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
917 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
918 "attribute is not present but "
919 "$INDEX_ROOT indicated it is.");
921 ntfs_error(vi
->i_sb
, "Failed to lookup "
927 if (!a
->non_resident
) {
928 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
933 * Ensure the attribute name is placed before the mapping pairs
936 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
938 a
->data
.non_resident
.mapping_pairs_offset
)))) {
939 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
940 "is placed after the mapping pairs "
944 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
945 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
949 if (a
->flags
& ATTR_IS_SPARSE
) {
950 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
954 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
955 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
959 if (a
->data
.non_resident
.lowest_vcn
) {
960 ntfs_error(vi
->i_sb
, "First extent of "
961 "$INDEX_ALLOCATION attribute has non "
965 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
966 ni
->initialized_size
= sle64_to_cpu(
967 a
->data
.non_resident
.initialized_size
);
968 ni
->allocated_size
= sle64_to_cpu(
969 a
->data
.non_resident
.allocated_size
);
971 * We are done with the mft record, so we release it. Otherwise
972 * we would deadlock in ntfs_attr_iget().
974 ntfs_attr_put_search_ctx(ctx
);
975 unmap_mft_record(ni
);
978 /* Get the index bitmap attribute inode. */
979 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
981 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
986 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
988 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
989 "and/or encrypted and/or sparse.");
990 goto iput_unm_err_out
;
992 /* Consistency check bitmap size vs. index allocation size. */
993 bvi_size
= i_size_read(bvi
);
994 if ((bvi_size
<< 3) < (vi
->i_size
>>
995 ni
->itype
.index
.block_size_bits
)) {
996 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
997 "for index allocation (0x%llx).",
998 bvi_size
<< 3, vi
->i_size
);
999 goto iput_unm_err_out
;
1001 /* No longer need the bitmap attribute inode. */
1003 skip_large_dir_stuff
:
1004 /* Setup the operations for this inode. */
1005 vi
->i_op
= &ntfs_dir_inode_ops
;
1006 vi
->i_fop
= &ntfs_dir_ops
;
1009 ntfs_attr_reinit_search_ctx(ctx
);
1011 /* Setup the data attribute, even if not present. */
1016 /* Find first extent of the unnamed data attribute. */
1017 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1018 if (unlikely(err
)) {
1019 vi
->i_size
= ni
->initialized_size
=
1020 ni
->allocated_size
= 0;
1021 if (err
!= -ENOENT
) {
1022 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1027 * FILE_Secure does not have an unnamed $DATA
1028 * attribute, so we special case it here.
1030 if (vi
->i_ino
== FILE_Secure
)
1031 goto no_data_attr_special_case
;
1033 * Most if not all the system files in the $Extend
1034 * system directory do not have unnamed data
1035 * attributes so we need to check if the parent
1036 * directory of the file is FILE_Extend and if it is
1037 * ignore this error. To do this we need to get the
1038 * name of this inode from the mft record as the name
1039 * contains the back reference to the parent directory.
1041 if (ntfs_is_extended_system_file(ctx
) > 0)
1042 goto no_data_attr_special_case
;
1043 // FIXME: File is corrupt! Hot-fix with empty data
1044 // attribute if recovery option is set.
1045 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1049 /* Setup the state. */
1050 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1051 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1052 NInoSetCompressed(ni
);
1053 if (vol
->cluster_size
> 4096) {
1054 ntfs_error(vi
->i_sb
, "Found "
1055 "compressed data but "
1058 "cluster size (%i) > "
1063 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1064 != ATTR_IS_COMPRESSED
) {
1065 ntfs_error(vi
->i_sb
, "Found unknown "
1066 "compression method "
1067 "or corrupt file.");
1071 if (a
->flags
& ATTR_IS_SPARSE
)
1074 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1075 if (NInoCompressed(ni
)) {
1076 ntfs_error(vi
->i_sb
, "Found encrypted and "
1077 "compressed data.");
1080 NInoSetEncrypted(ni
);
1082 if (a
->non_resident
) {
1083 NInoSetNonResident(ni
);
1084 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1085 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1086 compression_unit
!= 4) {
1087 ntfs_error(vi
->i_sb
, "Found "
1089 "compression unit (%u "
1091 "Cannot handle this.",
1092 a
->data
.non_resident
.
1097 if (a
->data
.non_resident
.compression_unit
) {
1098 ni
->itype
.compressed
.block_size
= 1U <<
1099 (a
->data
.non_resident
.
1101 vol
->cluster_size_bits
);
1102 ni
->itype
.compressed
.block_size_bits
=
1106 ni
->itype
.compressed
.block_clusters
=
1111 ni
->itype
.compressed
.block_size
= 0;
1112 ni
->itype
.compressed
.block_size_bits
=
1114 ni
->itype
.compressed
.block_clusters
=
1117 ni
->itype
.compressed
.size
= sle64_to_cpu(
1118 a
->data
.non_resident
.
1121 if (a
->data
.non_resident
.lowest_vcn
) {
1122 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1123 "attribute has non zero "
1127 vi
->i_size
= sle64_to_cpu(
1128 a
->data
.non_resident
.data_size
);
1129 ni
->initialized_size
= sle64_to_cpu(
1130 a
->data
.non_resident
.initialized_size
);
1131 ni
->allocated_size
= sle64_to_cpu(
1132 a
->data
.non_resident
.allocated_size
);
1133 } else { /* Resident attribute. */
1134 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1135 a
->data
.resident
.value_length
);
1136 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1138 a
->data
.resident
.value_offset
);
1139 if (vi
->i_size
> ni
->allocated_size
) {
1140 ntfs_error(vi
->i_sb
, "Resident data attribute "
1141 "is corrupt (size exceeds "
1146 no_data_attr_special_case
:
1147 /* We are done with the mft record, so we release it. */
1148 ntfs_attr_put_search_ctx(ctx
);
1149 unmap_mft_record(ni
);
1152 /* Setup the operations for this inode. */
1153 vi
->i_op
= &ntfs_file_inode_ops
;
1154 vi
->i_fop
= &ntfs_file_ops
;
1156 if (NInoMstProtected(ni
))
1157 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1159 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1161 * The number of 512-byte blocks used on disk (for stat). This is in so
1162 * far inaccurate as it doesn't account for any named streams or other
1163 * special non-resident attributes, but that is how Windows works, too,
1164 * so we are at least consistent with Windows, if not entirely
1165 * consistent with the Linux Way. Doing it the Linux Way would cause a
1166 * significant slowdown as it would involve iterating over all
1167 * attributes in the mft record and adding the allocated/compressed
1168 * sizes of all non-resident attributes present to give us the Linux
1169 * correct size that should go into i_blocks (after division by 512).
1171 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1172 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1174 vi
->i_blocks
= ni
->allocated_size
>> 9;
1175 ntfs_debug("Done.");
1183 ntfs_attr_put_search_ctx(ctx
);
1185 unmap_mft_record(ni
);
1187 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1188 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1190 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1196 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1197 * @base_vi: base inode
1198 * @vi: attribute inode to read
1200 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1201 * attribute inode described by @vi into memory from the base mft record
1202 * described by @base_ni.
1204 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1205 * reading and looks up the attribute described by @vi before setting up the
1206 * necessary fields in @vi as well as initializing the ntfs inode.
1208 * Q: What locks are held when the function is called?
1209 * A: i_state has I_LOCK set, hence the inode is locked, also
1210 * i_count is set to 1, so it is not going to go away
1212 * Return 0 on success and -errno on error. In the error case, the inode will
1213 * have had make_bad_inode() executed on it.
1215 * Note this cannot be called for AT_INDEX_ALLOCATION.
1217 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1219 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1220 ntfs_inode
*ni
, *base_ni
;
1223 ntfs_attr_search_ctx
*ctx
;
1226 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1228 ntfs_init_big_inode(vi
);
1231 base_ni
= NTFS_I(base_vi
);
1233 /* Just mirror the values from the base inode. */
1234 vi
->i_version
= base_vi
->i_version
;
1235 vi
->i_uid
= base_vi
->i_uid
;
1236 vi
->i_gid
= base_vi
->i_gid
;
1237 vi
->i_nlink
= base_vi
->i_nlink
;
1238 vi
->i_mtime
= base_vi
->i_mtime
;
1239 vi
->i_ctime
= base_vi
->i_ctime
;
1240 vi
->i_atime
= base_vi
->i_atime
;
1241 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1243 /* Set inode type to zero but preserve permissions. */
1244 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1246 m
= map_mft_record(base_ni
);
1251 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1256 /* Find the attribute. */
1257 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1258 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1262 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1263 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1264 NInoSetCompressed(ni
);
1265 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1267 ntfs_error(vi
->i_sb
, "Found compressed "
1268 "non-data or named data "
1269 "attribute. Please report "
1270 "you saw this message to "
1271 "linux-ntfs-dev@lists."
1275 if (vol
->cluster_size
> 4096) {
1276 ntfs_error(vi
->i_sb
, "Found compressed "
1277 "attribute but compression is "
1278 "disabled due to cluster size "
1283 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1284 ATTR_IS_COMPRESSED
) {
1285 ntfs_error(vi
->i_sb
, "Found unknown "
1286 "compression method.");
1291 * The compressed/sparse flag set in an index root just means
1292 * to compress all files.
1294 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1295 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1296 "but the attribute is %s. Please "
1297 "report you saw this message to "
1298 "linux-ntfs-dev@lists.sourceforge.net",
1299 NInoCompressed(ni
) ? "compressed" :
1303 if (a
->flags
& ATTR_IS_SPARSE
)
1306 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1307 if (NInoCompressed(ni
)) {
1308 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1313 * The encryption flag set in an index root just means to
1314 * encrypt all files.
1316 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1317 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1318 "but the attribute is encrypted. "
1319 "Please report you saw this message "
1320 "to linux-ntfs-dev@lists.sourceforge."
1324 if (ni
->type
!= AT_DATA
) {
1325 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1329 NInoSetEncrypted(ni
);
1331 if (!a
->non_resident
) {
1332 /* Ensure the attribute name is placed before the value. */
1333 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1334 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1335 ntfs_error(vol
->sb
, "Attribute name is placed after "
1336 "the attribute value.");
1339 if (NInoMstProtected(ni
)) {
1340 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1341 "but the attribute is resident. "
1342 "Please report you saw this message to "
1343 "linux-ntfs-dev@lists.sourceforge.net");
1346 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1347 a
->data
.resident
.value_length
);
1348 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1349 le16_to_cpu(a
->data
.resident
.value_offset
);
1350 if (vi
->i_size
> ni
->allocated_size
) {
1351 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1352 "(size exceeds allocation).");
1356 NInoSetNonResident(ni
);
1358 * Ensure the attribute name is placed before the mapping pairs
1361 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1363 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1364 ntfs_error(vol
->sb
, "Attribute name is placed after "
1365 "the mapping pairs array.");
1368 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1369 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1370 compression_unit
!= 4) {
1371 ntfs_error(vi
->i_sb
, "Found non-standard "
1372 "compression unit (%u instead "
1373 "of 4). Cannot handle this.",
1374 a
->data
.non_resident
.
1379 if (a
->data
.non_resident
.compression_unit
) {
1380 ni
->itype
.compressed
.block_size
= 1U <<
1381 (a
->data
.non_resident
.
1383 vol
->cluster_size_bits
);
1384 ni
->itype
.compressed
.block_size_bits
=
1385 ffs(ni
->itype
.compressed
.
1387 ni
->itype
.compressed
.block_clusters
= 1U <<
1388 a
->data
.non_resident
.
1391 ni
->itype
.compressed
.block_size
= 0;
1392 ni
->itype
.compressed
.block_size_bits
= 0;
1393 ni
->itype
.compressed
.block_clusters
= 0;
1395 ni
->itype
.compressed
.size
= sle64_to_cpu(
1396 a
->data
.non_resident
.compressed_size
);
1398 if (a
->data
.non_resident
.lowest_vcn
) {
1399 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1400 "non-zero lowest_vcn.");
1403 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1404 ni
->initialized_size
= sle64_to_cpu(
1405 a
->data
.non_resident
.initialized_size
);
1406 ni
->allocated_size
= sle64_to_cpu(
1407 a
->data
.non_resident
.allocated_size
);
1409 if (NInoMstProtected(ni
))
1410 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1412 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1413 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1414 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1416 vi
->i_blocks
= ni
->allocated_size
>> 9;
1418 * Make sure the base inode does not go away and attach it to the
1422 ni
->ext
.base_ntfs_ino
= base_ni
;
1423 ni
->nr_extents
= -1;
1425 ntfs_attr_put_search_ctx(ctx
);
1426 unmap_mft_record(base_ni
);
1428 ntfs_debug("Done.");
1435 ntfs_attr_put_search_ctx(ctx
);
1436 unmap_mft_record(base_ni
);
1438 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1439 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1440 "Marking corrupt inode and base inode 0x%lx as bad. "
1441 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1450 * ntfs_read_locked_index_inode - read an index inode from its base inode
1451 * @base_vi: base inode
1452 * @vi: index inode to read
1454 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1455 * index inode described by @vi into memory from the base mft record described
1458 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1459 * reading and looks up the attributes relating to the index described by @vi
1460 * before setting up the necessary fields in @vi as well as initializing the
1463 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1464 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1465 * are setup like directory inodes since directories are a special case of
1466 * indices ao they need to be treated in much the same way. Most importantly,
1467 * for small indices the index allocation attribute might not actually exist.
1468 * However, the index root attribute always exists but this does not need to
1469 * have an inode associated with it and this is why we define a new inode type
1470 * index. Also, like for directories, we need to have an attribute inode for
1471 * the bitmap attribute corresponding to the index allocation attribute and we
1472 * can store this in the appropriate field of the inode, just like we do for
1473 * normal directory inodes.
1475 * Q: What locks are held when the function is called?
1476 * A: i_state has I_LOCK set, hence the inode is locked, also
1477 * i_count is set to 1, so it is not going to go away
1479 * Return 0 on success and -errno on error. In the error case, the inode will
1480 * have had make_bad_inode() executed on it.
1482 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1485 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1486 ntfs_inode
*ni
, *base_ni
, *bni
;
1490 ntfs_attr_search_ctx
*ctx
;
1492 u8
*ir_end
, *index_end
;
1495 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1496 ntfs_init_big_inode(vi
);
1498 base_ni
= NTFS_I(base_vi
);
1499 /* Just mirror the values from the base inode. */
1500 vi
->i_version
= base_vi
->i_version
;
1501 vi
->i_uid
= base_vi
->i_uid
;
1502 vi
->i_gid
= base_vi
->i_gid
;
1503 vi
->i_nlink
= base_vi
->i_nlink
;
1504 vi
->i_mtime
= base_vi
->i_mtime
;
1505 vi
->i_ctime
= base_vi
->i_ctime
;
1506 vi
->i_atime
= base_vi
->i_atime
;
1507 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1508 /* Set inode type to zero but preserve permissions. */
1509 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1510 /* Map the mft record for the base inode. */
1511 m
= map_mft_record(base_ni
);
1516 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1521 /* Find the index root attribute. */
1522 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1523 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1524 if (unlikely(err
)) {
1526 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1531 /* Set up the state. */
1532 if (unlikely(a
->non_resident
)) {
1533 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1536 /* Ensure the attribute name is placed before the value. */
1537 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1538 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1539 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1540 "after the attribute value.");
1544 * Compressed/encrypted/sparse index root is not allowed, except for
1545 * directories of course but those are not dealt with here.
1547 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1549 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1553 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1554 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1555 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1556 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1559 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1560 if (index_end
> ir_end
) {
1561 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1565 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1566 le32_to_cpu(ir
->type
));
1569 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1570 ntfs_debug("Index collation rule is 0x%x.",
1571 le32_to_cpu(ir
->collation_rule
));
1572 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1573 if (ni
->itype
.index
.block_size
& (ni
->itype
.index
.block_size
- 1)) {
1574 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1575 "two.", ni
->itype
.index
.block_size
);
1578 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1579 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1580 "(%ld) is not supported. Sorry.",
1581 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1585 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1586 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1587 "(%i) is not supported. Sorry.",
1588 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1592 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1593 /* Determine the size of a vcn in the index. */
1594 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1595 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1596 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1598 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1599 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1601 /* Check for presence of index allocation attribute. */
1602 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1603 /* No index allocation. */
1604 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1605 /* We are done with the mft record, so we release it. */
1606 ntfs_attr_put_search_ctx(ctx
);
1607 unmap_mft_record(base_ni
);
1610 goto skip_large_index_stuff
;
1611 } /* LARGE_INDEX: Index allocation present. Setup state. */
1612 NInoSetIndexAllocPresent(ni
);
1613 /* Find index allocation attribute. */
1614 ntfs_attr_reinit_search_ctx(ctx
);
1615 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1616 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1617 if (unlikely(err
)) {
1619 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1620 "not present but $INDEX_ROOT "
1621 "indicated it is.");
1623 ntfs_error(vi
->i_sb
, "Failed to lookup "
1624 "$INDEX_ALLOCATION attribute.");
1628 if (!a
->non_resident
) {
1629 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1634 * Ensure the attribute name is placed before the mapping pairs array.
1636 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1638 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1639 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1640 "placed after the mapping pairs array.");
1643 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1644 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1648 if (a
->flags
& ATTR_IS_SPARSE
) {
1649 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1652 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1653 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1657 if (a
->data
.non_resident
.lowest_vcn
) {
1658 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1659 "attribute has non zero lowest_vcn.");
1662 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1663 ni
->initialized_size
= sle64_to_cpu(
1664 a
->data
.non_resident
.initialized_size
);
1665 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1667 * We are done with the mft record, so we release it. Otherwise
1668 * we would deadlock in ntfs_attr_iget().
1670 ntfs_attr_put_search_ctx(ctx
);
1671 unmap_mft_record(base_ni
);
1674 /* Get the index bitmap attribute inode. */
1675 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1677 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1682 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1684 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1685 "encrypted and/or sparse.");
1686 goto iput_unm_err_out
;
1688 /* Consistency check bitmap size vs. index allocation size. */
1689 bvi_size
= i_size_read(bvi
);
1690 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1691 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1692 "index allocation (0x%llx).", bvi_size
<< 3,
1694 goto iput_unm_err_out
;
1697 skip_large_index_stuff
:
1698 /* Setup the operations for this index inode. */
1701 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1702 vi
->i_blocks
= ni
->allocated_size
>> 9;
1704 * Make sure the base inode doesn't go away and attach it to the
1708 ni
->ext
.base_ntfs_ino
= base_ni
;
1709 ni
->nr_extents
= -1;
1711 ntfs_debug("Done.");
1719 ntfs_attr_put_search_ctx(ctx
);
1721 unmap_mft_record(base_ni
);
1723 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1724 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1727 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1733 * The MFT inode has special locking, so teach the lock validator
1734 * about this by splitting off the locking rules of the MFT from
1735 * the locking rules of other inodes. The MFT inode can never be
1736 * accessed from the VFS side (or even internally), only by the
1737 * map_mft functions.
1739 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1742 * ntfs_read_inode_mount - special read_inode for mount time use only
1743 * @vi: inode to read
1745 * Read inode FILE_MFT at mount time, only called with super_block lock
1746 * held from within the read_super() code path.
1748 * This function exists because when it is called the page cache for $MFT/$DATA
1749 * is not initialized and hence we cannot get at the contents of mft records
1750 * by calling map_mft_record*().
1752 * Further it needs to cope with the circular references problem, i.e. cannot
1753 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1754 * we do not know where the other extent mft records are yet and again, because
1755 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1756 * attribute list is actually present in $MFT inode.
1758 * We solve these problems by starting with the $DATA attribute before anything
1759 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1760 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1761 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1762 * sufficient information for the next step to complete.
1764 * This should work but there are two possible pit falls (see inline comments
1765 * below), but only time will tell if they are real pits or just smoke...
1767 int ntfs_read_inode_mount(struct inode
*vi
)
1769 VCN next_vcn
, last_vcn
, highest_vcn
;
1771 struct super_block
*sb
= vi
->i_sb
;
1772 ntfs_volume
*vol
= NTFS_SB(sb
);
1773 struct buffer_head
*bh
;
1775 MFT_RECORD
*m
= NULL
;
1777 ntfs_attr_search_ctx
*ctx
;
1778 unsigned int i
, nr_blocks
;
1781 ntfs_debug("Entering.");
1783 /* Initialize the ntfs specific part of @vi. */
1784 ntfs_init_big_inode(vi
);
1788 /* Setup the data attribute. It is special as it is mst protected. */
1789 NInoSetNonResident(ni
);
1790 NInoSetMstProtected(ni
);
1791 NInoSetSparseDisabled(ni
);
1796 * This sets up our little cheat allowing us to reuse the async read io
1797 * completion handler for directories.
1799 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1800 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1802 /* Very important! Needed to be able to call map_mft_record*(). */
1805 /* Allocate enough memory to read the first mft record. */
1806 if (vol
->mft_record_size
> 64 * 1024) {
1807 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1808 vol
->mft_record_size
);
1811 i
= vol
->mft_record_size
;
1812 if (i
< sb
->s_blocksize
)
1813 i
= sb
->s_blocksize
;
1814 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1816 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1820 /* Determine the first block of the $MFT/$DATA attribute. */
1821 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1822 sb
->s_blocksize_bits
;
1823 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1827 /* Load $MFT/$DATA's first mft record. */
1828 for (i
= 0; i
< nr_blocks
; i
++) {
1829 bh
= sb_bread(sb
, block
++);
1831 ntfs_error(sb
, "Device read failed.");
1834 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1839 /* Apply the mst fixups. */
1840 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1841 /* FIXME: Try to use the $MFTMirr now. */
1842 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1846 /* Need this to sanity check attribute list references to $MFT. */
1847 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1849 /* Provides readpage() and sync_page() for map_mft_record(). */
1850 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1852 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1858 /* Find the attribute list attribute if present. */
1859 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1861 if (unlikely(err
!= -ENOENT
)) {
1862 ntfs_error(sb
, "Failed to lookup attribute list "
1863 "attribute. You should run chkdsk.");
1866 } else /* if (!err) */ {
1867 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1869 static const char *es
= " Not allowed. $MFT is corrupt. "
1870 "You should run chkdsk.";
1872 ntfs_debug("Attribute list attribute found in $MFT.");
1873 NInoSetAttrList(ni
);
1875 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1876 ntfs_error(sb
, "Attribute list attribute is "
1877 "compressed.%s", es
);
1880 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1881 a
->flags
& ATTR_IS_SPARSE
) {
1882 if (a
->non_resident
) {
1883 ntfs_error(sb
, "Non-resident attribute list "
1884 "attribute is encrypted/"
1888 ntfs_warning(sb
, "Resident attribute list attribute "
1889 "in $MFT system file is marked "
1890 "encrypted/sparse which is not true. "
1891 "However, Windows allows this and "
1892 "chkdsk does not detect or correct it "
1893 "so we will just ignore the invalid "
1894 "flags and pretend they are not set.");
1896 /* Now allocate memory for the attribute list. */
1897 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1898 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1899 if (!ni
->attr_list
) {
1900 ntfs_error(sb
, "Not enough memory to allocate buffer "
1901 "for attribute list.");
1904 if (a
->non_resident
) {
1905 NInoSetAttrListNonResident(ni
);
1906 if (a
->data
.non_resident
.lowest_vcn
) {
1907 ntfs_error(sb
, "Attribute list has non zero "
1908 "lowest_vcn. $MFT is corrupt. "
1909 "You should run chkdsk.");
1912 /* Setup the runlist. */
1913 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1915 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1916 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1917 ni
->attr_list_rl
.rl
= NULL
;
1918 ntfs_error(sb
, "Mapping pairs decompression "
1919 "failed with error code %i.",
1923 /* Now load the attribute list. */
1924 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1925 ni
->attr_list
, ni
->attr_list_size
,
1926 sle64_to_cpu(a
->data
.
1927 non_resident
.initialized_size
)))) {
1928 ntfs_error(sb
, "Failed to load attribute list "
1929 "attribute with error code %i.",
1933 } else /* if (!ctx.attr->non_resident) */ {
1934 if ((u8
*)a
+ le16_to_cpu(
1935 a
->data
.resident
.value_offset
) +
1937 a
->data
.resident
.value_length
) >
1938 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1939 ntfs_error(sb
, "Corrupt attribute list "
1943 /* Now copy the attribute list. */
1944 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1945 a
->data
.resident
.value_offset
),
1947 a
->data
.resident
.value_length
));
1949 /* The attribute list is now setup in memory. */
1951 * FIXME: I don't know if this case is actually possible.
1952 * According to logic it is not possible but I have seen too
1953 * many weird things in MS software to rely on logic... Thus we
1954 * perform a manual search and make sure the first $MFT/$DATA
1955 * extent is in the base inode. If it is not we abort with an
1956 * error and if we ever see a report of this error we will need
1957 * to do some magic in order to have the necessary mft record
1958 * loaded and in the right place in the page cache. But
1959 * hopefully logic will prevail and this never happens...
1961 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1962 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1963 for (;; al_entry
= next_al_entry
) {
1964 /* Out of bounds check. */
1965 if ((u8
*)al_entry
< ni
->attr_list
||
1966 (u8
*)al_entry
> al_end
)
1967 goto em_put_err_out
;
1968 /* Catch the end of the attribute list. */
1969 if ((u8
*)al_entry
== al_end
)
1970 goto em_put_err_out
;
1971 if (!al_entry
->length
)
1972 goto em_put_err_out
;
1973 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1974 le16_to_cpu(al_entry
->length
) > al_end
)
1975 goto em_put_err_out
;
1976 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1977 le16_to_cpu(al_entry
->length
));
1978 if (le32_to_cpu(al_entry
->type
) > le32_to_cpu(AT_DATA
))
1979 goto em_put_err_out
;
1980 if (AT_DATA
!= al_entry
->type
)
1982 /* We want an unnamed attribute. */
1983 if (al_entry
->name_length
)
1984 goto em_put_err_out
;
1985 /* Want the first entry, i.e. lowest_vcn == 0. */
1986 if (al_entry
->lowest_vcn
)
1987 goto em_put_err_out
;
1988 /* First entry has to be in the base mft record. */
1989 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1990 /* MFT references do not match, logic fails. */
1991 ntfs_error(sb
, "BUG: The first $DATA extent "
1992 "of $MFT is not in the base "
1993 "mft record. Please report "
1994 "you saw this message to "
1995 "linux-ntfs-dev@lists."
1999 /* Sequence numbers must match. */
2000 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2002 goto em_put_err_out
;
2003 /* Got it. All is ok. We can stop now. */
2009 ntfs_attr_reinit_search_ctx(ctx
);
2011 /* Now load all attribute extents. */
2013 next_vcn
= last_vcn
= highest_vcn
= 0;
2014 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2016 runlist_element
*nrl
;
2018 /* Cache the current attribute. */
2020 /* $MFT must be non-resident. */
2021 if (!a
->non_resident
) {
2022 ntfs_error(sb
, "$MFT must be non-resident but a "
2023 "resident extent was found. $MFT is "
2024 "corrupt. Run chkdsk.");
2027 /* $MFT must be uncompressed and unencrypted. */
2028 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2029 a
->flags
& ATTR_IS_ENCRYPTED
||
2030 a
->flags
& ATTR_IS_SPARSE
) {
2031 ntfs_error(sb
, "$MFT must be uncompressed, "
2032 "non-sparse, and unencrypted but a "
2033 "compressed/sparse/encrypted extent "
2034 "was found. $MFT is corrupt. Run "
2039 * Decompress the mapping pairs array of this extent and merge
2040 * the result into the existing runlist. No need for locking
2041 * as we have exclusive access to the inode at this time and we
2042 * are a mount in progress task, too.
2044 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2046 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2047 "failed with error code %ld. $MFT is "
2048 "corrupt.", PTR_ERR(nrl
));
2051 ni
->runlist
.rl
= nrl
;
2053 /* Are we in the first extent? */
2055 if (a
->data
.non_resident
.lowest_vcn
) {
2056 ntfs_error(sb
, "First extent of $DATA "
2057 "attribute has non zero "
2058 "lowest_vcn. $MFT is corrupt. "
2059 "You should run chkdsk.");
2062 /* Get the last vcn in the $DATA attribute. */
2063 last_vcn
= sle64_to_cpu(
2064 a
->data
.non_resident
.allocated_size
)
2065 >> vol
->cluster_size_bits
;
2066 /* Fill in the inode size. */
2067 vi
->i_size
= sle64_to_cpu(
2068 a
->data
.non_resident
.data_size
);
2069 ni
->initialized_size
= sle64_to_cpu(
2070 a
->data
.non_resident
.initialized_size
);
2071 ni
->allocated_size
= sle64_to_cpu(
2072 a
->data
.non_resident
.allocated_size
);
2074 * Verify the number of mft records does not exceed
2077 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2079 ntfs_error(sb
, "$MFT is too big! Aborting.");
2083 * We have got the first extent of the runlist for
2084 * $MFT which means it is now relatively safe to call
2085 * the normal ntfs_read_inode() function.
2086 * Complete reading the inode, this will actually
2087 * re-read the mft record for $MFT, this time entering
2088 * it into the page cache with which we complete the
2089 * kick start of the volume. It should be safe to do
2090 * this now as the first extent of $MFT/$DATA is
2091 * already known and we would hope that we don't need
2092 * further extents in order to find the other
2093 * attributes belonging to $MFT. Only time will tell if
2094 * this is really the case. If not we will have to play
2095 * magic at this point, possibly duplicating a lot of
2096 * ntfs_read_inode() at this point. We will need to
2097 * ensure we do enough of its work to be able to call
2098 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2099 * hope this never happens...
2101 ntfs_read_locked_inode(vi
);
2102 if (is_bad_inode(vi
)) {
2103 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2104 "failed. BUG or corrupt $MFT. "
2105 "Run chkdsk and if no errors "
2106 "are found, please report you "
2107 "saw this message to "
2108 "linux-ntfs-dev@lists."
2110 ntfs_attr_put_search_ctx(ctx
);
2111 /* Revert to the safe super operations. */
2116 * Re-initialize some specifics about $MFT's inode as
2117 * ntfs_read_inode() will have set up the default ones.
2119 /* Set uid and gid to root. */
2120 vi
->i_uid
= vi
->i_gid
= 0;
2121 /* Regular file. No access for anyone. */
2122 vi
->i_mode
= S_IFREG
;
2123 /* No VFS initiated operations allowed for $MFT. */
2124 vi
->i_op
= &ntfs_empty_inode_ops
;
2125 vi
->i_fop
= &ntfs_empty_file_ops
;
2128 /* Get the lowest vcn for the next extent. */
2129 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2130 next_vcn
= highest_vcn
+ 1;
2132 /* Only one extent or error, which we catch below. */
2136 /* Avoid endless loops due to corruption. */
2137 if (next_vcn
< sle64_to_cpu(
2138 a
->data
.non_resident
.lowest_vcn
)) {
2139 ntfs_error(sb
, "$MFT has corrupt attribute list "
2140 "attribute. Run chkdsk.");
2144 if (err
!= -ENOENT
) {
2145 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2146 "$MFT is corrupt. Run chkdsk.");
2150 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2151 "corrupt. Run chkdsk.");
2154 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2155 ntfs_error(sb
, "Failed to load the complete runlist for "
2156 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2158 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2159 (unsigned long long)highest_vcn
,
2160 (unsigned long long)last_vcn
- 1);
2163 ntfs_attr_put_search_ctx(ctx
);
2164 ntfs_debug("Done.");
2168 * Split the locking rules of the MFT inode from the
2169 * locking rules of other inodes:
2171 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2172 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2177 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2178 "attribute list. $MFT is corrupt. Run chkdsk.");
2180 ntfs_attr_put_search_ctx(ctx
);
2182 ntfs_error(sb
, "Failed. Marking inode as bad.");
2188 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2190 /* Free all alocated memory. */
2191 down_write(&ni
->runlist
.lock
);
2192 if (ni
->runlist
.rl
) {
2193 ntfs_free(ni
->runlist
.rl
);
2194 ni
->runlist
.rl
= NULL
;
2196 up_write(&ni
->runlist
.lock
);
2198 if (ni
->attr_list
) {
2199 ntfs_free(ni
->attr_list
);
2200 ni
->attr_list
= NULL
;
2203 down_write(&ni
->attr_list_rl
.lock
);
2204 if (ni
->attr_list_rl
.rl
) {
2205 ntfs_free(ni
->attr_list_rl
.rl
);
2206 ni
->attr_list_rl
.rl
= NULL
;
2208 up_write(&ni
->attr_list_rl
.lock
);
2210 if (ni
->name_len
&& ni
->name
!= I30
) {
2217 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2219 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2221 BUG_ON(NInoAttr(ni
));
2222 BUG_ON(ni
->nr_extents
!= -1);
2225 if (NInoDirty(ni
)) {
2226 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2227 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2228 "Losing data! This is a BUG!!!");
2229 // FIXME: Do something!!!
2231 #endif /* NTFS_RW */
2233 __ntfs_clear_inode(ni
);
2236 ntfs_destroy_extent_inode(ni
);
2240 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2241 * @vi: vfs inode pending annihilation
2243 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2244 * is called, which deallocates all memory belonging to the NTFS specific part
2245 * of the inode and returns.
2247 * If the MFT record is dirty, we commit it before doing anything else.
2249 void ntfs_clear_big_inode(struct inode
*vi
)
2251 ntfs_inode
*ni
= NTFS_I(vi
);
2254 if (NInoDirty(ni
)) {
2255 bool was_bad
= (is_bad_inode(vi
));
2257 /* Committing the inode also commits all extent inodes. */
2258 ntfs_commit_inode(vi
);
2260 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2261 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2262 "0x%lx. Losing data!", vi
->i_ino
);
2263 // FIXME: Do something!!!
2266 #endif /* NTFS_RW */
2268 /* No need to lock at this stage as no one else has a reference. */
2269 if (ni
->nr_extents
> 0) {
2272 for (i
= 0; i
< ni
->nr_extents
; i
++)
2273 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2274 kfree(ni
->ext
.extent_ntfs_inos
);
2277 __ntfs_clear_inode(ni
);
2280 /* Release the base inode if we are holding it. */
2281 if (ni
->nr_extents
== -1) {
2282 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2284 ni
->ext
.base_ntfs_ino
= NULL
;
2291 * ntfs_show_options - show mount options in /proc/mounts
2292 * @sf: seq_file in which to write our mount options
2293 * @mnt: vfs mount whose mount options to display
2295 * Called by the VFS once for each mounted ntfs volume when someone reads
2296 * /proc/mounts in order to display the NTFS specific mount options of each
2297 * mount. The mount options of the vfs mount @mnt are written to the seq file
2298 * @sf and success is returned.
2300 int ntfs_show_options(struct seq_file
*sf
, struct vfsmount
*mnt
)
2302 ntfs_volume
*vol
= NTFS_SB(mnt
->mnt_sb
);
2305 seq_printf(sf
, ",uid=%i", vol
->uid
);
2306 seq_printf(sf
, ",gid=%i", vol
->gid
);
2307 if (vol
->fmask
== vol
->dmask
)
2308 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2310 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2311 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2313 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2314 if (NVolCaseSensitive(vol
))
2315 seq_printf(sf
, ",case_sensitive");
2316 if (NVolShowSystemFiles(vol
))
2317 seq_printf(sf
, ",show_sys_files");
2318 if (!NVolSparseEnabled(vol
))
2319 seq_printf(sf
, ",disable_sparse");
2320 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2321 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2322 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2324 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2330 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2334 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2335 * @vi: inode for which the i_size was changed
2337 * We only support i_size changes for normal files at present, i.e. not
2338 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2341 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2342 * that the change is allowed.
2344 * This implies for us that @vi is a file inode rather than a directory, index,
2345 * or attribute inode as well as that @vi is a base inode.
2347 * Returns 0 on success or -errno on error.
2349 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2350 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2351 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2352 * with the current i_size as the offset. The analogous place in NTFS is in
2353 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2354 * without holding ->i_alloc_sem.
2356 int ntfs_truncate(struct inode
*vi
)
2358 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2360 unsigned long flags
;
2361 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2362 ntfs_volume
*vol
= ni
->vol
;
2363 ntfs_attr_search_ctx
*ctx
;
2366 const char *te
= " Leaving file length out of sync with i_size.";
2367 int err
, mp_size
, size_change
, alloc_change
;
2370 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2371 BUG_ON(NInoAttr(ni
));
2372 BUG_ON(S_ISDIR(vi
->i_mode
));
2373 BUG_ON(NInoMstProtected(ni
));
2374 BUG_ON(ni
->nr_extents
< 0);
2377 * Lock the runlist for writing and map the mft record to ensure it is
2378 * safe to mess with the attribute runlist and sizes.
2380 down_write(&ni
->runlist
.lock
);
2384 base_ni
= ni
->ext
.base_ntfs_ino
;
2385 m
= map_mft_record(base_ni
);
2388 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2389 "(error code %d).%s", vi
->i_ino
, err
, te
);
2394 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2395 if (unlikely(!ctx
)) {
2396 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2397 "inode 0x%lx (not enough memory).%s",
2402 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2403 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2404 if (unlikely(err
)) {
2405 if (err
== -ENOENT
) {
2406 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2407 "mft record. Inode 0x%lx is corrupt. "
2408 "Run chkdsk.%s", vi
->i_ino
, te
);
2411 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2412 "inode 0x%lx (error code %d).%s",
2413 vi
->i_ino
, err
, te
);
2419 * The i_size of the vfs inode is the new size for the attribute value.
2421 new_size
= i_size_read(vi
);
2422 /* The current size of the attribute value is the old size. */
2423 old_size
= ntfs_attr_size(a
);
2424 /* Calculate the new allocated size. */
2425 if (NInoNonResident(ni
))
2426 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2427 ~(s64
)vol
->cluster_size_mask
;
2429 new_alloc_size
= (new_size
+ 7) & ~7;
2430 /* The current allocated size is the old allocated size. */
2431 read_lock_irqsave(&ni
->size_lock
, flags
);
2432 old_alloc_size
= ni
->allocated_size
;
2433 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2435 * The change in the file size. This will be 0 if no change, >0 if the
2436 * size is growing, and <0 if the size is shrinking.
2439 if (new_size
- old_size
>= 0) {
2441 if (new_size
== old_size
)
2444 /* As above for the allocated size. */
2446 if (new_alloc_size
- old_alloc_size
>= 0) {
2448 if (new_alloc_size
== old_alloc_size
)
2452 * If neither the size nor the allocation are being changed there is
2455 if (!size_change
&& !alloc_change
)
2457 /* If the size is changing, check if new size is allowed in $AttrDef. */
2459 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2460 if (unlikely(err
)) {
2461 if (err
== -ERANGE
) {
2462 ntfs_error(vol
->sb
, "Truncate would cause the "
2463 "inode 0x%lx to %simum size "
2464 "for its attribute type "
2465 "(0x%x). Aborting truncate.",
2467 new_size
> old_size
? "exceed "
2468 "the max" : "go under the min",
2469 le32_to_cpu(ni
->type
));
2472 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2473 "attribute type 0x%x. "
2474 "Aborting truncate.",
2476 le32_to_cpu(ni
->type
));
2479 /* Reset the vfs inode size to the old size. */
2480 i_size_write(vi
, old_size
);
2484 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2485 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2486 "supported yet for %s files, ignoring.",
2487 NInoCompressed(ni
) ? "compressed" :
2492 if (a
->non_resident
)
2493 goto do_non_resident_truncate
;
2494 BUG_ON(NInoNonResident(ni
));
2495 /* Resize the attribute record to best fit the new attribute size. */
2496 if (new_size
< vol
->mft_record_size
&&
2497 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2498 /* The resize succeeded! */
2499 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2500 mark_mft_record_dirty(ctx
->ntfs_ino
);
2501 write_lock_irqsave(&ni
->size_lock
, flags
);
2502 /* Update the sizes in the ntfs inode and all is done. */
2503 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2504 le16_to_cpu(a
->data
.resident
.value_offset
);
2506 * Note ntfs_resident_attr_value_resize() has already done any
2507 * necessary data clearing in the attribute record. When the
2508 * file is being shrunk vmtruncate() will already have cleared
2509 * the top part of the last partial page, i.e. since this is
2510 * the resident case this is the page with index 0. However,
2511 * when the file is being expanded, the page cache page data
2512 * between the old data_size, i.e. old_size, and the new_size
2513 * has not been zeroed. Fortunately, we do not need to zero it
2514 * either since on one hand it will either already be zero due
2515 * to both readpage and writepage clearing partial page data
2516 * beyond i_size in which case there is nothing to do or in the
2517 * case of the file being mmap()ped at the same time, POSIX
2518 * specifies that the behaviour is unspecified thus we do not
2519 * have to do anything. This means that in our implementation
2520 * in the rare case that the file is mmap()ped and a write
2521 * occured into the mmap()ped region just beyond the file size
2522 * and writepage has not yet been called to write out the page
2523 * (which would clear the area beyond the file size) and we now
2524 * extend the file size to incorporate this dirty region
2525 * outside the file size, a write of the page would result in
2526 * this data being written to disk instead of being cleared.
2527 * Given both POSIX and the Linux mmap(2) man page specify that
2528 * this corner case is undefined, we choose to leave it like
2529 * that as this is much simpler for us as we cannot lock the
2530 * relevant page now since we are holding too many ntfs locks
2531 * which would result in a lock reversal deadlock.
2533 ni
->initialized_size
= new_size
;
2534 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2537 /* If the above resize failed, this must be an attribute extension. */
2538 BUG_ON(size_change
< 0);
2540 * We have to drop all the locks so we can call
2541 * ntfs_attr_make_non_resident(). This could be optimised by try-
2542 * locking the first page cache page and only if that fails dropping
2543 * the locks, locking the page, and redoing all the locking and
2544 * lookups. While this would be a huge optimisation, it is not worth
2545 * it as this is definitely a slow code path as it only ever can happen
2546 * once for any given file.
2548 ntfs_attr_put_search_ctx(ctx
);
2549 unmap_mft_record(base_ni
);
2550 up_write(&ni
->runlist
.lock
);
2552 * Not enough space in the mft record, try to make the attribute
2553 * non-resident and if successful restart the truncation process.
2555 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2557 goto retry_truncate
;
2559 * Could not make non-resident. If this is due to this not being
2560 * permitted for this attribute type or there not being enough space,
2561 * try to make other attributes non-resident. Otherwise fail.
2563 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2564 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2565 "type 0x%x, because the conversion from "
2566 "resident to non-resident attribute failed "
2567 "with error code %i.", vi
->i_ino
,
2568 (unsigned)le32_to_cpu(ni
->type
), err
);
2573 /* TODO: Not implemented from here, abort. */
2575 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2576 "disk for the non-resident attribute value. "
2577 "This case is not implemented yet.");
2578 else /* if (err == -EPERM) */
2579 ntfs_error(vol
->sb
, "This attribute type may not be "
2580 "non-resident. This case is not implemented "
2585 // TODO: Attempt to make other attributes non-resident.
2587 goto do_resident_extend
;
2589 * Both the attribute list attribute and the standard information
2590 * attribute must remain in the base inode. Thus, if this is one of
2591 * these attributes, we have to try to move other attributes out into
2592 * extent mft records instead.
2594 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2595 ni
->type
== AT_STANDARD_INFORMATION
) {
2596 // TODO: Attempt to move other attributes into extent mft
2600 goto do_resident_extend
;
2603 // TODO: Attempt to move this attribute to an extent mft record, but
2604 // only if it is not already the only attribute in an mft record in
2605 // which case there would be nothing to gain.
2608 goto do_resident_extend
;
2609 /* There is nothing we can do to make enough space. )-: */
2612 do_non_resident_truncate
:
2613 BUG_ON(!NInoNonResident(ni
));
2614 if (alloc_change
< 0) {
2615 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2616 if (highest_vcn
> 0 &&
2617 old_alloc_size
>> vol
->cluster_size_bits
>
2620 * This attribute has multiple extents. Not yet
2623 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2624 "attribute type 0x%x, because the "
2625 "attribute is highly fragmented (it "
2626 "consists of multiple extents) and "
2627 "this case is not implemented yet.",
2629 (unsigned)le32_to_cpu(ni
->type
));
2635 * If the size is shrinking, need to reduce the initialized_size and
2636 * the data_size before reducing the allocation.
2638 if (size_change
< 0) {
2640 * Make the valid size smaller (i_size is already up-to-date).
2642 write_lock_irqsave(&ni
->size_lock
, flags
);
2643 if (new_size
< ni
->initialized_size
) {
2644 ni
->initialized_size
= new_size
;
2645 a
->data
.non_resident
.initialized_size
=
2646 cpu_to_sle64(new_size
);
2648 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2649 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2650 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2651 mark_mft_record_dirty(ctx
->ntfs_ino
);
2652 /* If the allocated size is not changing, we are done. */
2656 * If the size is shrinking it makes no sense for the
2657 * allocation to be growing.
2659 BUG_ON(alloc_change
> 0);
2660 } else /* if (size_change >= 0) */ {
2662 * The file size is growing or staying the same but the
2663 * allocation can be shrinking, growing or staying the same.
2665 if (alloc_change
> 0) {
2667 * We need to extend the allocation and possibly update
2668 * the data size. If we are updating the data size,
2669 * since we are not touching the initialized_size we do
2670 * not need to worry about the actual data on disk.
2671 * And as far as the page cache is concerned, there
2672 * will be no pages beyond the old data size and any
2673 * partial region in the last page between the old and
2674 * new data size (or the end of the page if the new
2675 * data size is outside the page) does not need to be
2676 * modified as explained above for the resident
2677 * attribute truncate case. To do this, we simply drop
2678 * the locks we hold and leave all the work to our
2679 * friendly helper ntfs_attr_extend_allocation().
2681 ntfs_attr_put_search_ctx(ctx
);
2682 unmap_mft_record(base_ni
);
2683 up_write(&ni
->runlist
.lock
);
2684 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2685 size_change
> 0 ? new_size
: -1, -1);
2687 * ntfs_attr_extend_allocation() will have done error
2695 /* alloc_change < 0 */
2696 /* Free the clusters. */
2697 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2698 vol
->cluster_size_bits
, -1, ctx
);
2701 if (unlikely(nr_freed
< 0)) {
2702 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2703 "%lli). Unmount and run chkdsk to recover "
2704 "the lost cluster(s).", (long long)nr_freed
);
2708 /* Truncate the runlist. */
2709 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2710 new_alloc_size
>> vol
->cluster_size_bits
);
2712 * If the runlist truncation failed and/or the search context is no
2713 * longer valid, we cannot resize the attribute record or build the
2714 * mapping pairs array thus we mark the inode bad so that no access to
2715 * the freed clusters can happen.
2717 if (unlikely(err
|| IS_ERR(m
))) {
2718 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2720 "restore attribute search context" :
2721 "truncate attribute runlist",
2722 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2726 /* Get the size for the shrunk mapping pairs array for the runlist. */
2727 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2728 if (unlikely(mp_size
<= 0)) {
2729 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2730 "attribute type 0x%x, because determining the "
2731 "size for the mapping pairs failed with error "
2732 "code %i.%s", vi
->i_ino
,
2733 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2738 * Shrink the attribute record for the new mapping pairs array. Note,
2739 * this cannot fail since we are making the attribute smaller thus by
2740 * definition there is enough space to do so.
2742 attr_len
= le32_to_cpu(a
->length
);
2743 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2744 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2747 * Generate the mapping pairs array directly into the attribute record.
2749 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2750 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2751 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2752 if (unlikely(err
)) {
2753 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2754 "attribute type 0x%x, because building the "
2755 "mapping pairs failed with error code %i.%s",
2756 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2761 /* Update the allocated/compressed size as well as the highest vcn. */
2762 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2763 vol
->cluster_size_bits
) - 1);
2764 write_lock_irqsave(&ni
->size_lock
, flags
);
2765 ni
->allocated_size
= new_alloc_size
;
2766 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2767 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2769 ni
->itype
.compressed
.size
-= nr_freed
<<
2770 vol
->cluster_size_bits
;
2771 BUG_ON(ni
->itype
.compressed
.size
< 0);
2772 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2773 ni
->itype
.compressed
.size
);
2774 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2777 vi
->i_blocks
= new_alloc_size
>> 9;
2778 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2780 * We have shrunk the allocation. If this is a shrinking truncate we
2781 * have already dealt with the initialized_size and the data_size above
2782 * and we are done. If the truncate is only changing the allocation
2783 * and not the data_size, we are also done. If this is an extending
2784 * truncate, need to extend the data_size now which is ensured by the
2785 * fact that @size_change is positive.
2789 * If the size is growing, need to update it now. If it is shrinking,
2790 * we have already updated it above (before the allocation change).
2792 if (size_change
> 0)
2793 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2794 /* Ensure the modified mft record is written out. */
2795 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2796 mark_mft_record_dirty(ctx
->ntfs_ino
);
2798 ntfs_attr_put_search_ctx(ctx
);
2799 unmap_mft_record(base_ni
);
2800 up_write(&ni
->runlist
.lock
);
2802 /* Update the mtime and ctime on the base inode. */
2803 /* normally ->truncate shouldn't update ctime or mtime,
2804 * but ntfs did before so it got a copy & paste version
2805 * of file_update_time. one day someone should fix this
2808 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2809 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2812 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2813 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2815 VFS_I(base_ni
)->i_mtime
= now
;
2816 VFS_I(base_ni
)->i_ctime
= now
;
2819 mark_inode_dirty_sync(VFS_I(base_ni
));
2823 NInoClearTruncateFailed(ni
);
2824 ntfs_debug("Done.");
2830 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2832 if (err
!= -EOPNOTSUPP
)
2833 NInoSetTruncateFailed(ni
);
2834 else if (old_size
>= 0)
2835 i_size_write(vi
, old_size
);
2838 ntfs_attr_put_search_ctx(ctx
);
2840 unmap_mft_record(base_ni
);
2841 up_write(&ni
->runlist
.lock
);
2843 ntfs_debug("Failed. Returning error code %i.", err
);
2846 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2848 if (err
!= -EOPNOTSUPP
)
2849 NInoSetTruncateFailed(ni
);
2851 i_size_write(vi
, old_size
);
2856 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2857 * @vi: inode for which the i_size was changed
2859 * Wrapper for ntfs_truncate() that has no return value.
2861 * See ntfs_truncate() description above for details.
2863 void ntfs_truncate_vfs(struct inode
*vi
) {
2868 * ntfs_setattr - called from notify_change() when an attribute is being changed
2869 * @dentry: dentry whose attributes to change
2870 * @attr: structure describing the attributes and the changes
2872 * We have to trap VFS attempts to truncate the file described by @dentry as
2873 * soon as possible, because we do not implement changes in i_size yet. So we
2874 * abort all i_size changes here.
2876 * We also abort all changes of user, group, and mode as we do not implement
2877 * the NTFS ACLs yet.
2879 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2880 * called with ->i_alloc_sem held for writing.
2882 * Basically this is a copy of generic notify_change() and inode_setattr()
2883 * functionality, except we intercept and abort changes in i_size.
2885 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2887 struct inode
*vi
= dentry
->d_inode
;
2889 unsigned int ia_valid
= attr
->ia_valid
;
2891 err
= inode_change_ok(vi
, attr
);
2894 /* We do not support NTFS ACLs yet. */
2895 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2896 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2897 "supported yet, ignoring.");
2901 if (ia_valid
& ATTR_SIZE
) {
2902 if (attr
->ia_size
!= i_size_read(vi
)) {
2903 ntfs_inode
*ni
= NTFS_I(vi
);
2905 * FIXME: For now we do not support resizing of
2906 * compressed or encrypted files yet.
2908 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2909 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2910 "are not supported yet for "
2911 "%s files, ignoring.",
2912 NInoCompressed(ni
) ?
2913 "compressed" : "encrypted");
2916 err
= vmtruncate(vi
, attr
->ia_size
);
2917 if (err
|| ia_valid
== ATTR_SIZE
)
2921 * We skipped the truncate but must still update
2924 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2927 if (ia_valid
& ATTR_ATIME
)
2928 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2929 vi
->i_sb
->s_time_gran
);
2930 if (ia_valid
& ATTR_MTIME
)
2931 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2932 vi
->i_sb
->s_time_gran
);
2933 if (ia_valid
& ATTR_CTIME
)
2934 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2935 vi
->i_sb
->s_time_gran
);
2936 mark_inode_dirty(vi
);
2942 * ntfs_write_inode - write out a dirty inode
2943 * @vi: inode to write out
2944 * @sync: if true, write out synchronously
2946 * Write out a dirty inode to disk including any extent inodes if present.
2948 * If @sync is true, commit the inode to disk and wait for io completion. This
2949 * is done using write_mft_record().
2951 * If @sync is false, just schedule the write to happen but do not wait for i/o
2952 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2953 * marking the page (and in this case mft record) dirty but we do not implement
2954 * this yet as write_mft_record() largely ignores the @sync parameter and
2955 * always performs synchronous writes.
2957 * Return 0 on success and -errno on error.
2959 int ntfs_write_inode(struct inode
*vi
, int sync
)
2962 ntfs_inode
*ni
= NTFS_I(vi
);
2963 ntfs_attr_search_ctx
*ctx
;
2965 STANDARD_INFORMATION
*si
;
2967 bool modified
= false;
2969 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2972 * Dirty attribute inodes are written via their real inodes so just
2973 * clean them here. Access time updates are taken care off when the
2974 * real inode is written.
2978 ntfs_debug("Done.");
2981 /* Map, pin, and lock the mft record belonging to the inode. */
2982 m
= map_mft_record(ni
);
2987 /* Update the access times in the standard information attribute. */
2988 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2989 if (unlikely(!ctx
)) {
2993 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
2994 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2995 if (unlikely(err
)) {
2996 ntfs_attr_put_search_ctx(ctx
);
2999 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3000 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3001 /* Update the access times if they have changed. */
3002 nt
= utc2ntfs(vi
->i_mtime
);
3003 if (si
->last_data_change_time
!= nt
) {
3004 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3005 "new = 0x%llx", vi
->i_ino
, (long long)
3006 sle64_to_cpu(si
->last_data_change_time
),
3007 (long long)sle64_to_cpu(nt
));
3008 si
->last_data_change_time
= nt
;
3011 nt
= utc2ntfs(vi
->i_ctime
);
3012 if (si
->last_mft_change_time
!= nt
) {
3013 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3014 "new = 0x%llx", vi
->i_ino
, (long long)
3015 sle64_to_cpu(si
->last_mft_change_time
),
3016 (long long)sle64_to_cpu(nt
));
3017 si
->last_mft_change_time
= nt
;
3020 nt
= utc2ntfs(vi
->i_atime
);
3021 if (si
->last_access_time
!= nt
) {
3022 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3023 "new = 0x%llx", vi
->i_ino
,
3024 (long long)sle64_to_cpu(si
->last_access_time
),
3025 (long long)sle64_to_cpu(nt
));
3026 si
->last_access_time
= nt
;
3030 * If we just modified the standard information attribute we need to
3031 * mark the mft record it is in dirty. We do this manually so that
3032 * mark_inode_dirty() is not called which would redirty the inode and
3033 * hence result in an infinite loop of trying to write the inode.
3034 * There is no need to mark the base inode nor the base mft record
3035 * dirty, since we are going to write this mft record below in any case
3036 * and the base mft record may actually not have been modified so it
3037 * might not need to be written out.
3038 * NOTE: It is not a problem when the inode for $MFT itself is being
3039 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3040 * on the $MFT inode and hence ntfs_write_inode() will not be
3041 * re-invoked because of it which in turn is ok since the dirtied mft
3042 * record will be cleaned and written out to disk below, i.e. before
3043 * this function returns.
3046 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3047 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3048 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3049 ctx
->ntfs_ino
->page_ofs
);
3051 ntfs_attr_put_search_ctx(ctx
);
3052 /* Now the access times are updated, write the base mft record. */
3054 err
= write_mft_record(ni
, m
, sync
);
3055 /* Write all attached extent mft records. */
3056 mutex_lock(&ni
->extent_lock
);
3057 if (ni
->nr_extents
> 0) {
3058 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3061 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3062 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3063 ntfs_inode
*tni
= extent_nis
[i
];
3065 if (NInoDirty(tni
)) {
3066 MFT_RECORD
*tm
= map_mft_record(tni
);
3070 if (!err
|| err
== -ENOMEM
)
3074 ret
= write_mft_record(tni
, tm
, sync
);
3075 unmap_mft_record(tni
);
3076 if (unlikely(ret
)) {
3077 if (!err
|| err
== -ENOMEM
)
3083 mutex_unlock(&ni
->extent_lock
);
3084 unmap_mft_record(ni
);
3087 ntfs_debug("Done.");
3090 unmap_mft_record(ni
);
3092 if (err
== -ENOMEM
) {
3093 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3094 "Marking the inode dirty again, so the VFS "
3096 mark_inode_dirty(vi
);
3098 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3099 NVolSetErrors(ni
->vol
);
3104 #endif /* NTFS_RW */